Sample records for hydrothermal hot water

  1. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  2. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

  3. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  4. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  5. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  6. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  7. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  8. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  9. STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements with Multiple Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water

  10. Verification of numerical models for hydrothermal plume water through field measurements at TAG

    E-Print Network [OSTI]

    Wichers, Sacha

    2005-01-01T23:59:59.000Z

    Hydrothermal vents discharge superheated, mineral rich water into our oceans, thereby providing a habitat for exotic chemosynthetic biological communities. Hydrothermal fluids are convected upwards until they cool and reach ...

  11. Solar Hot Water Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

  12. Monitoring SERC Technologies Ś Solar Hot Water

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

  13. Are we putting in hot water?

    E-Print Network [OSTI]

    Combes, Stacey A.

    Are we putting our fish in hot water? Global warming and the world's fisheries Ě Hot, hungry, and gasping for air Ě Shrinking fish and fewer babies? Ě Global warming puts fish on the run Ě Warm water Ě Howmucharefishworth? Ě Which fish are feeling the heat? Ě How will fisheries change? Ě 2░C is too much! Ě What needs

  14. Solar Hot Water Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of...

  15. Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

  16. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01T23:59:59.000Z

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  17. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  18. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

  19. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control

    E-Print Network [OSTI]

    Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

    2002-01-01T23:59:59.000Z

    A&M University College Station, TX ABSTRACT More and more variable frequency devices (VFD) are being installed on the chilled water and hot water pumps on the TAMU campus. Those pump speeds are varied to maintain chilled water... and the rest 46 buildings are located on the west campus. More and more variable frequency devices (VFD) are installed on chilled water and hot water pumps. The variable speed pump has reduced the over-pressuring of water systems and reduced pump...

  1. Continuous Commissioning of a Central Chilled Water & Hot Water System

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01T23:59:59.000Z

    the campus loops and the building loops. Some optimization of the plant chiller 1 boiler operation is also necessary and beneficial. In general, through Continuous Commissioning, chilled water and hot water loop temperature differences will be improved...

  2. CC Retrofits and Optimal Controls for Hot Water Systems

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01T23:59:59.000Z

    Continuous Commissioning (CC) technologies, three old boilers (13.39 MMBH each) were replaced by three new boilers (1.675 MMBH each) and hot water pumps. Optimal controls for the hot water systems included optimal hot water temperature reset, hot water pump...

  3. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficient gas water heating appliance to market; a plan toefficient gas water heating appliance to market; and to planefficient gas water heating appliance to market; and 3) to

  4. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

  5. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    step in developing a realistic degradation term for tankless water heatersstep (water draw event) in the simulation. Instantaneous Gas Water Heater

  6. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  7. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

  8. Alternatives for reducing hot-water bills

    SciTech Connect (OSTI)

    Bennington, G.E.; Spewak, P.C.

    1981-06-01T23:59:59.000Z

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  9. Hot water bitumen extraction process

    SciTech Connect (OSTI)

    Rendall, J.S.

    1989-10-24T23:59:59.000Z

    This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

  10. Solar Hot Water Creates Savings for Homeless Shelters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts?...

  11. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  12. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29T23:59:59.000Z

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  13. Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Ticsani and Ubinas volcanoes, Southern Peru.

    E-Print Network [OSTI]

    and temperature of the hot springs together with the water table position given by self-potential data can be used-volcanic hydrothermal systems. Keywords: self-potential mapping, hydrothermal system, hot springs, temperature 1 by fu- marolic activity and hot springs on the flanks of the edifice, high electric conductivity

  14. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  15. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  16. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  17. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

  18. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  19. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  20. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    and monitoring at the water heater and hot water end uses.water at the trunk (water heater) and twigs (individual end-and outlet of the water heater and several hot water end-

  1. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01T23:59:59.000Z

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  2. Hot Spot Conditions during Cavitation in Water Yuri T. Didenko,

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Hot Spot Conditions during Cavitation in Water Yuri T. Didenko, William B. McNamara III-13 the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants

  3. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...

    Broader source: Energy.gov (indexed) [DOE]

    II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the presentation slides below Zero Energy Ready Homes...

  4. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  5. DOE Zero Energy Ready Home Efficient Hot Water Distribution II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- How to Get it Right Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution II -- How to Get it Right Webinar (Text Version) Below is the text...

  6. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P. [University of Wyoming; Sims, Kenneth W.W. [University of Wyoming; Pluda, Allison R.

    2014-03-01T23:59:59.000Z

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  7. STATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS

    E-Print Network [OSTI]

    Certified Water Heater ┬ž111, ┬ž113 (a) Water Heater Efficiency ┬ž113 (b) Service Water Heating Installation/A" in the column next to the measure. 2: For each water heater, pool heat and domestic water loop (or groupsSTATE OF CALIFORNIA AIR, WATER SIDE SYSTEM, SERVICE HOT WATER & POOL REQUIREMENTS CEC-MECH-2C

  8. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08T23:59:59.000Z

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  9. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01T23:59:59.000Z

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  10. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01T23:59:59.000Z

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  11. Evaporative system for water and beverage refrigeration in hot countries

    E-Print Network [OSTI]

    Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

  12. STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)

    E-Print Network [OSTI]

    attached CEC F-Chart) # of Collectors in System Collector Size Solar Tank Volume (gallons) ž150(j)1B piping shall be insulated. ž150(j)4: Solar water-heating system and/or/collectors are certifiedSTATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08

  13. Solar Hot Water Heater Industry in Barbados

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy ResourceSolar Hot

  14. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  15. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  16. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11T23:59:59.000Z

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  17. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home National Program encourages, but does not require,...

  18. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01T23:59:59.000Z

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  19. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  20. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    end use point, at the water heater in one second intervalsand monitoring at the water heater and hot water end uses.of water at the trunk (water heater) and twigs (individual

  1. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  2. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01T23:59:59.000Z

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  3. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right

    Broader source: Energy.gov [DOE]

    Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.á Hot water distribution is one of these critical systems ľ affecting energy use , water...

  4. DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake

    Broader source: Energy.gov [DOE]

    Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.á Hot water distribution is one of these critical systems ľ affecting energy use , water...

  5. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  6. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  7. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  8. Hydrothermal investigation of SYNROC formulations from 150/sup 0/ to 610/sup 0/ at 100-MPa water pressure

    SciTech Connect (OSTI)

    Page, L.E.; Bazan, C.; Piwinskii, A.J.; Smith, G.S.; Wootton, S.

    1980-12-01T23:59:59.000Z

    The static leaching behavior of seven formulations of SYNROC and two preparations of hollandite have been investigated under hydrothermal conditions. Each formulation was tested at several times (1 to 60 days) and temperatures (150 to 610/sup 0/C) at 100-MPa water pressure, using distilled water as the fluid. Both cored and powdered samples were employed in the hydrothermal experiments. Leach rates (g SYNROC/m/sup 2/ day) were calculated on the basis of element concentrations observed in the leachate. Postrun SEM and XRD observations of some core specimens revealed crystalline precipitates occurring on core surfaces, which are interpreted to be metastable phases and/or precipitates that were formed during quenching. As a result, calculated leach rates based on some elements in the fluid phase are not true leach rates. The temperature dependence of apparent leach rate was erratic. The time dependence of apparent leach rate was consistent and well defined for all SYNROC formulations; it decreased as a function of time. Analysis of hydrothermal results suggests that runs of 30 to 60 days are required to approach, or to attain, steady-state apparent leach rates. Sample form appears to have a demonstrable effect on leaching behavior. For comparable run conditions, powders generally have lower apparent leach rates but have a higher percentage of material leached than cores. The mineral hollandite appears to be very resistant to hydrothermal leaching, with only titanium found in the leachate.

  9. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| DepartmentReduce Hot Water Use for Energy Savings

  10. Solar Hot Water Heater Industry in Barbados | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and|WaterEnergyFieldHot

  11. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01T23:59:59.000Z

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  12. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26T23:59:59.000Z

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  13. Targeted removal of ant colonies in ecological experiments, using hot water

    E-Print Network [OSTI]

    . An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water perTargeted removal of ant colonies in ecological experiments, using hot water Walter R. Tschinkela

  14. INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water piping

  15. Evaporative water losses of exercising sheep in neutral and hot climates

    E-Print Network [OSTI]

    Paris-Sud XI, UniversitÚ de

    Evaporative water losses of exercising sheep in neutral and hot climates T Othman KG Johnson, DW, Australia Hot climates require an accelerated water loss to allowed for thermoregulation (Rai et al, 1979, Trop Anim Hlth Prod, 11, 51-56). The water losses associated with locomotion should be greater

  16. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  17. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  18. home power 114 / august & september 2006 in Solar Hot Water

    E-Print Network [OSTI]

    Knowles, David William

    : Heliotrope Thermal DTT-84 Solar Collectors: Two Heliodyne Gobi 410, 4 x 10 ft. Cold Supply In Hot to House

  19. Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates

    E-Print Network [OSTI]

    Johnson, K. F.; Shedd, A. C.

    Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

  20. "Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots

    E-Print Network [OSTI]

    Torgersen, Christian

    "Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

  1. Commissioning the Domestic Hot Water System on a Large University Campus: A Case Study

    E-Print Network [OSTI]

    Chen, H.; Bensouda, N.; Claridge, D.; Bruner, H.

    2004-01-01T23:59:59.000Z

    was to investigate the causes of these problems and help determine how to best operate the system. It was found that reported problems of low flows, low temperatures and long hot water lag time resulted from reverse flows and no hot water circulation caused by: 1...

  2. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01T23:59:59.000Z

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  3. Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve

    E-Print Network [OSTI]

    Cha, K. S.; Park, M. S.; Seo, H. Y.

    hot water piping system, Thermo controlled valve, Circulation, Mixing water pipe, Recirculation water pipe INTRODUCTION Finding ways to conserve energy while heating a building?s water supply can be approached from a number of angles. Still...?s disadvantage is that so much water is wasted until the optimal tap temperature is reached.(6) We tried to solve this problem by developing a water-saving hot water plumbing system that utilizes a thermo-controlled valve. The goal was to not allow...

  4. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  5. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01T23:59:59.000Z

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  6. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  7. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; He, Hongbo (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM) [Building Specialists, Inc., Albuquerque, NM; Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Burch, Jay (National Renewable Energy Laboratory, Golden CO) [National Renewable Energy Laboratory, Golden CO

    2011-07-01T23:59:59.000Z

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  8. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene by Meng-Chieh Ling A

  9. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating Systemá

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  10. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  11. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  12. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  13. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Hot water decontamination of beef carcasses to increase microbiological safety and shelf-life

    E-Print Network [OSTI]

    Barakate, Michelle Lee

    1991-01-01T23:59:59.000Z

    : -:r . ~ &:: ? ri:~ 4 c:r l, &, ?a??. . ' ' !"-' &! ~i i 4?'&. " ~ li r, '?Pil ril i '. ' rl iit'~'. ~a', '. ''+, I";= t I t h( ii il HOT WATER DECONTAMINATION OF BEEF CARCASSES TO INCREASE MICROBIOLOGICAL SAFETY AND SHELF-LIFE A Thesis... by MICHELLE LEE BARKATE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991 Major Subject: Food Science and Technology HOT WATER DECONTAMINATION...

  15. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

  16. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

    1981-01-01T23:59:59.000Z

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  17. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  18. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  19. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13T23:59:59.000Z

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  20. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  1. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpenEyeforenergyFEMSolar Hot

  2. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onof Energy Hot

  3. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past OpportunitiesRedAirReduce Hot

  4. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  5. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  6. NV Energy (Northern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

  7. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy...

  8. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  9. Solar Water Heating: What's Hot and What's Notá

    E-Print Network [OSTI]

    Stein, J.

    1992-01-01T23:59:59.000Z

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  10. Solar Water Heating: What's Hot and What's Not

    E-Print Network [OSTI]

    Stein, J.

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  11. Opportunities for utility involvement with solar domestic hot water

    SciTech Connect (OSTI)

    Carlisle, N.; Christensen, C. (National Renewable Energy Lab., Golden, CO (United States)); Barrett, L. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

    1992-05-01T23:59:59.000Z

    Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

  12. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W. (Sag Harbor, NY)

    1983-06-28T23:59:59.000Z

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  13. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25T23:59:59.000Z

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  14. New Hampshire Electric Co-Op- Solar Hot Water

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

  15. NV Energy (Southern Nevada)- Solar Hot Water Incentive Program

    Broader source: Energy.gov [DOE]

    NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

  16. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oilá

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  17. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  18. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  19. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  20. Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water Systemá

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

  1. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina. Final report

    SciTech Connect (OSTI)

    None

    1981-05-01T23:59:59.000Z

    Included in this report is detailed information regarding the design and installation of a heating and hot water system in a commercial application. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  2. Trout in hot water Understanding the effects of climate change on ecosystems is a complex

    E-Print Network [OSTI]

    Brierley, Andrew

    Trout in hot water Understanding the effects of climate change on ecosystems is a complex business as we set out for the Hengill geothermal valley. You might think of Iceland as a cold, dark country up the breakdown of organic matter and nutrients are recycled more quickly, leading to more resources

  3. HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800

    E-Print Network [OSTI]

    Gill, Kulvinder

    HOT PHENOL RNA EXTRACTION PROTOCOL 1) Set the water bath to 800 C. 2) Make 50 mL Extraction bufferL SDS = 0.5 gm DEPC treated water = 43.2 mL Total = 50 mL 3) Add 50 mL phenol (pH = 4.7), in 50 mL extraction buffer (final concentration of 1:1). For small sample add 200 to 300ul of 1Extraction buffer: 1

  4. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  5. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01T23:59:59.000Z

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  6. The potential for photosynthesis in hydrothermal vents: a new avenue for life in the Universe?

    E-Print Network [OSTI]

    Perez, Noel; Martin, Osmel; Leiva-Mora, Michel

    2013-01-01T23:59:59.000Z

    We perform a quantitative assessment for the potential for photosynthesis in hydrothermal vents in the deep ocean. The photosynthetically active radiation in this case is from geothermal origin: the infrared thermal radiation emitted by hot water, at temperatures ranging from 473 up to 673 K. We find that at these temperatures the photosynthetic potential is rather low in these ecosystems for most known species. However, species which a very high efficiency in the use of light and which could use infrared photons till 1300nm, could achieve good rates of photosynthesis in hydrothermal vents. These organisms might also thrive in deep hydrothermal vents in other planetary bodies, such as one of the more astrobiologically promising Jupiter satellites: Europa.

  7. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect (OSTI)

    Bradley, D.E.

    1997-12-31T23:59:59.000Z

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  8. Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell often

    E-Print Network [OSTI]

    . Odor-causing bacteria live and thrive in warm water and can infest the water heater. The problem (approximately 160 degrees F) for 8 hours. This will kill the bacteria. (Caution: Be sure the water heater has#12;Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell

  9. Solar hot water system installed at Quality Inn, Key West, Florida. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings, is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50% of the energy required for the domestic hot water system. The solar system consists of approximately 1400 ft/sup 2/ of flat plate collector, two 500 gal storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in 40% fuel savings.

  10. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01T23:59:59.000Z

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  11. Hydrothermal interaction of crushed Topopah Spring tuff and J-13 water at 90, 150, and 250{sup 0}C using Dickson-type, gold-bag rocking autoclaves

    SciTech Connect (OSTI)

    Knauss, K.G.; Beiriger, W.J.; Peifer, D.W.

    1985-05-01T23:59:59.000Z

    As part of the Package Environment subtask of the Waste Package task within the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository in tuff. These experiments used crushed Topopah Spring tuff from both drillcore and outcrop samples. The data, when considered in conjunction with results from analogous experiments using solid wafers of tuff, define near-field repository conditions and can be used to assess the ability to use "accelerated" tests based on the surface area/volume (SA/V) parameter and temperature; allow the measurement of chemical changes due to reaction in phases present in the tuff before reaction; and permit the identification and chemical analysis of secondary phases resulting from hydrothermal reactions. Some of the results presented in this report have been used to demonstrate the usefulness of geochemical modeling in a repository environment using the EQ3/6 thermodynamic/kinetic geochemical modeling code. The tuff was reacted with a natural ground water in Dickson-type gold-bag rocking autoclaves that were periodically sampled under in situ conditions. Five short-term (<90-day) experiments using crushed tuff were run covering the range 90 to 250{sup 0}C and 50 to 100 bars. This report will focus on the results of experiments with crushed tuff, while a companion report will cover results of analogous short-term experiments run with solid waters of tuff.

  12. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect (OSTI)

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01T23:59:59.000Z

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  13. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  14. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Diagram 1: A Typical Tank Water Heater Source: http://California households. Tank water heaters stayed constant.the same impact as tank water heaters. The project results

  15. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaand Assessmentö in Water Heating Rulemaking TechnicalG. Smith, Tankless Gas Water Heaters: Oregon Market Status,

  16. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaheater. Eco-design of Water Heaters and Methodology studyboth storage-type water heaters and tankless water heaters.

  17. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    for PAH emissions. The PAHs from tank water heaters in theIncreased Tankless Water Usage: PAHs Heavy Metals to WaterIncreased Tankless Water Usage: VOCs PAHs Heavy Metals to

  18. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01T23:59:59.000Z

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  19. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface...

  20. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30T23:59:59.000Z

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  1. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  2. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    Study on Eco-Design of Water Heaters, Van Holstein en Kemnaon Eco-Design of Water Heatersö, Task 5 Report, DefinitionTesting of Tankless Gas Water Heater Performance. Davis

  3. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    SciTech Connect (OSTI)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01T23:59:59.000Z

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  4. Hot Water Distribution System Program Documentation and Comparison to Experimental Data

    SciTech Connect (OSTI)

    Baskin, Evelyn [GE Infrastructure Energy; Craddick, William G [ORNL; Lenarduzzi, Roberto [ORNL; Wendt, Robert L [ORNL; Woodbury, Professor Keith A. [University of Alabama, Tuscaloosa

    2007-09-01T23:59:59.000Z

    In 2003, the California Energy Commission s (CEC s) Public Interest Energy Research (PIER) program funded Oak Ridge National Laboratory (ORNL) to create a computer program to analyze hot water distribution systems for single family residences, and to perform such analyses for a selection of houses. This effort and its results were documented in a report provided to CEC in March, 2004 [1]. The principal objective of effort was to compare the water and energy wasted between various possible hot water distribution systems for various different house designs. It was presumed that water being provided to a user would be considered suitably warm when it reached 105 F. Therefore, what was needed was a tool which could compute the time it takes for water reaching the draw point to reach 105 F, and the energy wasted during this wait. The computer program used to perform the analyses was a combination of a calculational core, produced by Dr. Keith A. Woodbury, Professor of Mechanical Engineering and Director, Alabama Industrial Assessment Center, University of Alabama, and a user interface based on LabVIEW, created by Dr. Roberto Lenarduzzi of ORNL. At that time, the computer program was in a relatively rough and undocumented form adequate to perform the contracted work but not in a condition where it could be readily used by those not involved in its generation. Subsequently, the CEC provided funding through Lawrence Berkeley National Laboratory (LBNL) to improve the program s documentation and user interface to facilitate use by others, and to compare the program s results to experimental data generated by Dr. Carl Hiller. This report describes the program and provides user guidance. It also summarizes the comparisons made to experimental data, along with options built into the program specifically to allow these comparisons. These options were necessitated by the fact that some of the experimental data required options and features not originally included in the program. A more detailed description of these program modifications along with detailed comparisons to the experimental data are provided in a report produced by Dr. Woodbury, which accompanies this report as Appendix H.

  5. Assembly and comparison of available solar hot water system reliability databases and information.

    SciTech Connect (OSTI)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2009-05-01T23:59:59.000Z

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  6. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect (OSTI)

    East, J.

    1982-04-01T23:59:59.000Z

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  7. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  8. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  9. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California

    SciTech Connect (OSTI)

    Ally, M.R.

    2002-11-14T23:59:59.000Z

    This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

  10. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10T23:59:59.000Z

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  11. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01T23:59:59.000Z

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  12. Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995

    SciTech Connect (OSTI)

    Swift, T.N.

    1996-09-01T23:59:59.000Z

    Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

  13. Water as a Reagent for Soil Remediation

    SciTech Connect (OSTI)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  14. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    E-Print Network [OSTI]

    Lu, Alison

    2011-01-01T23:59:59.000Z

    consumer/your_home/water_ heating/index.cfm/mytopic=12980heating is a large source of energy use in California homes.heating is the third largest source of energy use in homes [

  15. High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  16. HOT WATER IN THE INNER 100 AU OF THE CLASS 0 PROTOSTAR NGC 1333 IRAS2A

    SciTech Connect (OSTI)

    Visser, Ruud; Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Jorgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Kristensen, Lars E.; Van Dishoeck, Ewine F., E-mail: visserr@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-05-20T23:59:59.000Z

    Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of {approx}10{sup -4} relative to H{sub 2}. Observational evidence so far points at abundances of only a few 10{sup -6}. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3{sub 12}-3{sub 03} lines of H{sub 2}{sup 16}O and H{sub 2}{sup 18}O (1097 GHz, E{sub u}/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H{sub 2}{sup 18}O 3{sub 13}-2{sub 20} line (203 GHz, E{sub u}/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C{sup 18}O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 Multiplication-Sign 10{sup -5}, consistent with the theoretical predictions of {approx}10{sup -4}. The revised HDO/H{sub 2}O abundance ratio is 1 Multiplication-Sign 10{sup -3}, an order of magnitude lower than previously estimated.

  17. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  18. Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi

    SciTech Connect (OSTI)

    Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

    1991-12-01T23:59:59.000Z

    Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

  19. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of Natural Gas Tankless Water Heaters. Center for Energy andhot water from the water heater to each end-use locationMixed Temperature Water Water Heater Drain Indoor Boundary

  20. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of Natural Gas Tankless Water Heaters. Center for Energy andof water at the water heater and at several end-use pointsshowerhead, entering the water heater and leaving the water

  1. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2011-07-01T23:59:59.000Z

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  2. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heaters, hot water supply boilers, and unfired hot water storage tanks.heaters, hot water supply boilers, and unfired hot water storage tanks.

  3. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01T23:59:59.000Z

    DEALING WITH ôBIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCEö BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

  4. Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Two Demand Electric Water Heaters for Northeast Utilities.Two Demand Electric Water Heaters for Northeast Utilities.Johnson. Heat Pump Water Heater Field Test: 30 Crispaire

  5. Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    and R.K. Johnson. Heat Pump Water Heater Field Test: 30a Market-Optimized Heat- Pump Water Heater. Prepared by TIAXcost savings of heat pump water heaters Field test of

  6. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    of Comingled Biomass and Coal Slurries with HydrothermalCo-Mingled Biomass and Coal Slurries with Different Water tocomingled biomass and coal slurry with a high carbon content

  7. The BGU/CERN solar hydrothermal reactor

    E-Print Network [OSTI]

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01T23:59:59.000Z

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  8. A Preliminary Study Of Older Hot Spring Alteration In Sevenmile...

    Open Energy Info (EERE)

    hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a...

  9. Hydrothermal metamorphism and low-temperature alteration on the Mid-Atlantic ridge

    E-Print Network [OSTI]

    Peron, Philippe Raymond

    1978-01-01T23:59:59.000Z

    occur to form hydrated rocks. Oxygen isotopic data from hydrothermally metamorphosed rocks show that hydrothermal fluids are derived from a low g 0 source such as sea- 18 water rather than the higher $0 source typical for mantle-derived water... inferred hydrothermal fluid vent sites. The style of alteration of these rocks ranges from weathering at ambient ocean floor temperatures to metamorphism at greenshist facies conditions, The alteration products associated with the weathered ba- salts...

  10. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  11. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  12. A cash-flow economic model for analyzing utility/ESCO solar hot water programs

    SciTech Connect (OSTI)

    Bircher, C. [ENSTAR, De Pere, WI (United States); DeLaune, J.L. [Wisconsin Public Service Corp., Green Bay, WI (United States); Lyons, C.R. [Energy Alliance Group, Boston, MA (United States)

    1996-11-01T23:59:59.000Z

    Wisconsin Public Service Corporation (WPSC), in partnership with Energy Alliance Group (EAG), has developed a robust cash-flow economic model to analyze an energy service company (ESCO) approach to utility solar water heating programs. This paper describes the ESCO approach and its potential to increase penetration of solar water heating. The economic model is presented, and its use in designing WPSC`s Solar-Wise Water Heating Service program is described. The model`s results for WPSC are positive, indicating that an ESCO approach has strong potential. A feasibility study of ESCO solar water heating programs for a varied sample of other US utilities was also conducted using the model, and the results are summarized. Sensitivity analyses from the study reveal that the three key drivers of ESCO solar water heating success are electric rate, length of the service agreement, and the amount of the customer`s payment for the service.

  13. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D. (Olympia, WA)

    1983-03-29T23:59:59.000Z

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  14. Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge

    SciTech Connect (OSTI)

    Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1990-01-01T23:59:59.000Z

    The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

  15. Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands

    SciTech Connect (OSTI)

    Dahlstrom, D.A.

    1996-12-31T23:59:59.000Z

    A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

  16. An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networksá

    E-Print Network [OSTI]

    Yamaha, M.; Takahashi, M.

    2004-01-01T23:59:59.000Z

    Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

  17. An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networks

    E-Print Network [OSTI]

    Yamaha, M.; Takahashi, M.

    2004-01-01T23:59:59.000Z

    Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

  18. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  19. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22T23:59:59.000Z

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 ░C and 60 ░C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  20. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    v i i where, h = molar enthalpy, Btu/mol (J/mol), M = molarEnergy Used at Shower Water Heater average 5169 BTU ( 5.454MJ ) 4335 BTU ( 4.573 MJ ) 4151 BTU ( 4.379 MJ ) 4192 BTU (

  1. Environmental Radioactivity 47 (2000) 127}133 Radon concentrations in hot spring waters in

    E-Print Network [OSTI]

    Horvßth, ┴kos

    2000-01-01T23:59:59.000Z

    in northern Venezuela AD . HorvaH th *, L.O. Bohus , F. Urbani , G. Marx , A. PiroH th , E.D. Greaves Eo( tvo and underground waters stemming from uranium-rich soil are the "rst candidates for high radon and radium

  2. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    SciTech Connect (OSTI)

    White, A.F.

    1980-08-01T23:59:59.000Z

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  3. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater PowerInformation

  4. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWater

  5. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation Beowawe

  6. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformation

  7. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search ContentsWaterInformationEnergy

  8. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01T23:59:59.000Z

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  9. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada

    SciTech Connect (OSTI)

    Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01T23:59:59.000Z

    Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

  10. Methods and apparatus for catalytic hydrothermal gasification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods and apparatus for catalytic hydrothermal gasification of biomass Re-direct Destination: Continuous processing of wet biomass feedstock by catalytic hydrothermal...

  11. Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report

    SciTech Connect (OSTI)

    Kauffman, D.; Houghton, A.V.

    1980-12-31T23:59:59.000Z

    The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

  12. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

    2012-06-01T23:59:59.000Z

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

  13. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect (OSTI)

    Sun Meng [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Li Danzhen, E-mail: dzli@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2012-06-15T23:59:59.000Z

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  14. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3AŚConversion Technologies III: Energy from Our WasteŚWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  15. Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Hawthorne, S.B.

    1997-12-31T23:59:59.000Z

    This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

  16. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guritno; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-18T23:59:59.000Z

    Wet macroalgal slurries can be converted into a biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable oil product were accomplished at relatively low temperature (350 ?C) in a pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics. As a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  17. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen andHydropower is one

  18. DRILLED HYDROTHERMAL ENERGY Drilling for seawater

    E-Print Network [OSTI]

    DRILLED HYDROTHERMAL ENERGY Drilling for seawater An "ALL of the ABOVE" Approach to Ocean Thermal-Ars├Ęne d'Arsonval in 1881 conceptualized producing electricity from ocean temperature difference DRILLED HYDROTHERMAL ENERGY BACKGROUND #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND French Inventor Georges Claude

  19. INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND

    E-Print Network [OSTI]

    J. Stene

    designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

  20. 1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive

    E-Print Network [OSTI]

    J. Stene

    2008-01-01T23:59:59.000Z

    designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

  1. Sulfur gas geochemical detection of hydrothermal systems. Final report

    SciTech Connect (OSTI)

    Rouse, G.E.

    1984-01-01T23:59:59.000Z

    The purpose of this investigation was to determine whether a system of exploration using sulfur gases was capable of detecting convecting hydrothermal systems. Three surveying techniques were used at the Roosevelt Hot Springs KGRA in Utah. These were (a) a sniffing technique, capable of instantaneous determinations of sulfur gas concentration, (b) an accumulator technique, capable of integrating the sulfur gas emanations over a 30 day interval, and (c) a method of analyzing the soils for vaporous sulfur compounds. Because of limitations in the sniffer technique, only a limited amount of surveying was done with this method. The accumulator and soil sampling techniques were conducted on a 1000 foot grid at Roosevelt Hot Springs, and each sample site was visited three times during the spring of 1980. Thus, three soil samples and two accumulator samples were collected at each site. The results are shown as averages of three soil and two accumulator determinations of sulfur gas concentrations at each site. Soil surveys and accumulator surveys were conducted at two additional KGRA's which were chosen based on the state of knowledge of these hydrothermal systems and upon their differences from Roosevelt Hot Springs in an effort to show that the exploration methods would be effective in detecting geothermal reservoirs in general. The results at Roosevelt Hot Springs, Utah show that each of the three surveying methods was capable of detecting sulfur gas anomalies which can be interpreted to be related to the source at depth, based on resistivity mapping of that source, and also correlatable with major structural features of the area which are thought to be controlling the geometry of the geothermal reservoir. The results of the surveys at Roosevelt did not indicate that either the soil sampling technique or the accumulator technique was superior to the other.

  2. Use of a submersible viscometer in the primary separation step of the hot water process for recovery of bitumen from tar sand

    SciTech Connect (OSTI)

    Schramm, L.L.

    1987-01-20T23:59:59.000Z

    The patent describes the primary separation step of the hot water process for extracting bitumen from tar sand in primary separation vessel. The bitumen floats upwardly in a tar sand slurry to form a froth layer, the coarse solids drop to form a tailings layer, and a middlings layer is formed between the froth and the tailings. The improvement described here comprises: providing a submerged viscometer in the middlings layer and actuating the viscometer to measure the viscosity of the middlings at one or more levels in the vertical column of middlings and produce signals, external of the vessel, which are indicative of the measurements; taking sufficient measurements to determine the viscosity of the region of maximum viscosity within the middlings layer and adjusting the viscosity of the middlings in response to the signals to maintain the maximum viscosity in the column below a predetermined value, whereby the flotation of the bitumen through the middlings layer to the froth layer is substantially enhanced.

  3. Present State of the Hydrothermal System in Long Valley Caldera...

    Open Energy Info (EERE)

    Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

  4. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  5. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01T23:59:59.000Z

    by approximately $1.5 million per year. The thermal storage tank is a fully buried cylindrical, precast, pre-stressed tank with four-ring single pipe octagonal diffusers. It holds 5.2 million gallons (1 9.7 million L) of water, and is 140 ft (42.7 m... of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management...

  6. A Detection of Water in the Transmission Spectrum of the Hot Jupiter WASP-12b and Implications for its Atmospheric Composition

    E-Print Network [OSTI]

    Kreidberg, Laura; Bean, Jacob L; Stevenson, Kevin B; Desert, Jean-Michel; Madhusudhan, Nikku; Fortney, Jonathan J; Barstow, Joanna K; Henry, Gregory W; Williamson, Michael; Showman, Adam P

    2015-01-01T23:59:59.000Z

    Detailed characterization of exoplanets has begun to yield measurements of their atmospheric properties that constrain the planets' origins and evolution. For example, past observations of the dayside emission spectrum of the hot Jupiter WASP-12b indicated that its atmosphere has a high carbon-to-oxygen ratio (C/O $>$ 1), suggesting it had a different formation pathway than is commonly assumed for giant planets. Here we report a precise near-infrared transmission spectrum for WASP-12b based on six transit observations with the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotometric light curves from 0.84 - 1.67 $\\mu$m and measure the transit depths to a median precision of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and find strong evidence for water absorption (7$\\sigma$ confidence). This detection marks the first high-confidence, spectroscopic identification of a molecule in the atmosphere of WASP-12b. The retrieved 1$\\sigma$ water volume mixin...

  7. Hydrothermal Exploration Best Practices and Geothermal Knowledge...

    Open Energy Info (EERE)

    on Openei Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei...

  8. Stratigraphy, Structure, Hydrothermal Alteration and Ore Mineralizatio...

    Open Energy Info (EERE)

    Mexico- a Detailed Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Stratigraphy, Structure, Hydrothermal Alteration and Ore Mineralization...

  9. Hydrothermal alteration mineral mapping using hyperspectral imagery...

    Open Energy Info (EERE)

    in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal alteration mineral mapping using hyperspectral...

  10. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    of water heaters and hot water storage tanks of June 2010,for water heaters and hot water storage tanks, and of theof water heaters and hot water storage tanks," 2010. http://

  11. The Coupling of the Numerical Heat Transfer Model of the Pauzhetka Hydrothermal System (Kamchatka, USSR) with Hydroisotopic Data

    SciTech Connect (OSTI)

    Kiryukhin, A.V.; Sugrobov, V.M.

    1986-01-21T23:59:59.000Z

    The application of the two-dimensional numerical heat-transfer model to the Pauzhetka hydrothermal system allowed us to establish that: (1) a shallow magma body with the anomalous temperature of 700-1000 C and with a volume of 20-30 km{sup 3} may be a heat source for the formation of the Pauzhetka hydrothermal system. (2) The water feeding source of the Pauzhetka hydrothermal system may be meteoric waters which are infiltrated at an average rate of 5-10 kg/s {center_dot} km{sup 2}. The coupling of the numerical heat-transfer model with hydroisotopic data (D,T,{sup 18}O) obtained from the results of testing of exploitation wells, rivers and springs is the basis to understand more clearly the position of recharge areas and the structure of water flows in the hydrothermal system.

  12. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  13. Possible Origin of Improved High Temperature Performance of Hydrotherm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origin of Improved High Temperature Performance of Hydrothermally Aged CuBeta Zeolite Catalysts. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged...

  14. Relations Of Ammonium Minerals At Several Hydrothermal Systems...

    Open Energy Info (EERE)

    Minerals At Several Hydrothermal Systems In The Western Us Abstract Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems...

  15. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  16. A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    in Residential Hot Water Heaters. Berkeley, CA: Lawrenceelectricity savings because gas hot water heaters are moreprevalent than electric water heaters in California. Bathing

  17. Treatment of primary tailings and middlings from the hot water extraction process for recovering bitumen from tar sand

    SciTech Connect (OSTI)

    Cymbalisty, L. M. O.; Cymerman, J.

    1995-10-08T23:59:59.000Z

    The primary tailings and middlings are combined and fed to a vessel having the general form of a deep cone thickener. The feed is deflected outwardly and generally horizontally by a baffle, as it is delivered to the vessel. Simultaneously, the outwardly radiating layer of newly added feed is contacted from below by an upwelling stream of aerated middlings, which stream moves in parallel with the aforesaid layer. Bitumen froth is formed and recovered. The upwelling stream is provided by circulating middlings through eductor/aerator assemblies and a plenum chamber mounted centrally in the body of middlings in the vessel. A generally circular circulation of middlings is generated. In this manner, the newly added bitumen is quickly and efficiently recovered. Recirculation of middlings to the aeration zone yields an additional recovery of bitumen. Use of the deep cone ensures that the tailings from the vessel are relatively low in water and bitumen content.

  18. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01T23:59:59.000Z

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  19. Major transitions in evolution linked to thermal gradients above hydrothermal vents

    E-Print Network [OSTI]

    Anthonie W. J. Muller

    2012-12-03T23:59:59.000Z

    The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a silk protein which also has a very high thermal conductivity, I combine and extend the mentioned ideas, and propose the general conjecture that several major transitions of evolution were effected by thermal processes, with four additional partial conjectures: (1) The first organisms used heat engines during thermosynthesis in convection cells; (2) The first eukaryotic cells used MT during thermosynthesis in the thermal gradient above SHV; (3) The first metazoans used transport of water or in water during thermosynthesis above SHV under an ice-covered ocean during the Gaskiers Snowball Earth; and (4) The first mammalian brain used a thermal machinery based on thermal gradients in or across the cortex. When experimentally proven these conjectures, which are testable by the methods of synthetic biology, would significantly enhance our understanding of life.

  20. Evaluation of Hot Water Wash Parameters to Achieve Maximum Effectiveness in Reducing Levels of Salmonella Typhimurium, Escherichia coli O157:H7 and coliforms/Escherichia coli on Beef Carcass Surfaces

    E-Print Network [OSTI]

    Davidson, Melissa A.

    2010-07-14T23:59:59.000Z

    EVALUATION OF HOT WATER WASH PARAMETERS TO ACHIEVE MAXIMUM EFFECTIVENESS IN REDUCING LEVELS OF SALMONELLA TYPHIMURIUM, ESCHERICHIA COLI O157:H7 AND COLIFORMS/ ESCHERICHIA COLI ON BEEF CARCASS SURFACES A Thesis by MELISSA ANN DAVIDSON... PARAMETERS TO ACHIEVE MAXIMUM EFFECTIVENESS IN REDUCING LEVELS OF SALMONELLA TYPHIMURIUM, ESCHERICHIA COLI O157:H7 AND COLIFORMS/ ESCHERICHIA COLI ON BEEF CARCASS SURFACES A Thesis by MELISSA ANN DAVIDSON Submitted to the Office of Graduate...

  1. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  2. Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)] [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2013-11-15T23:59:59.000Z

    A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

  3. Biomass reforming processes in hydrothermal media

    E-Print Network [OSTI]

    Peterson, Andrew A

    2009-01-01T23:59:59.000Z

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  4. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  5. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26T23:59:59.000Z

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  6. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  7. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North...

  8. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    points for maximum cooling liquid supply temperatures thatLiquid cooling guidelines may include: Supply temperatureliquid supply temperature for liquid cooling guidelines. Due

  9. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    defining liquid cooling guidelines for future use. The goalis key to reducing cooling energy consumption for futureliquid-cooling temperatures to guide future supercomputer

  10. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    This is because the heat capacity of liquids is orders ofthe heat capacity and transfer efficiency of liquids is

  11. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    Format Locations sorted by Dry Bulb Temperature Locationssorted by Wet Bulb Temperature 11. APPENDIX C: DIRECT LIQUIDis constrained by outdoor wet bulb temperature) or dry

  12. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working34 30

  13. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  14. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water...

  15. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    cold water to the water heater and hot water from the waterinduced draft water heaters, water heaters with flue designsInput Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tank

  16. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the California Building Energy Efficiency Standards (Titlethe 2008 California Building Energy Efficiency Standards forrevision to the Building Energy Efficiency Standards (Title

  17. Hydrothermal activity Hydrothermal circulation at mid-ocean ridges

    E-Print Network [OSTI]

    Siebel, Wolfgang

    Monolith vent site The deepThe deep--sea floorsea floor #12;Bacteria Chemosynthesis: 6CO2 + 6H2O + 3H2S C6H into the crust, Ca, sulfate, and Mg are removed from the water. As the water begins to heat up sodium, potassium

  18. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect (OSTI)

    Rachel Emerson; Garold Gresham

    2012-09-01T23:59:59.000Z

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170░C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation ľhydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  19. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  20. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  1. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    SciTech Connect (OSTI)

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15T23:59:59.000Z

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  2. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  3. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  4. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  5. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  6. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  7. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31T23:59:59.000Z

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  8. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01T23:59:59.000Z

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  9. active hydrothermal systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars: channelslocatedalongthe margins of impactcrater Farmer, Jack D. 7 Interconnected hydro-thermal systems Models, methods, and applications Computer Technologies and...

  10. Robust optimization based self scheduling of hydro-thermal Genco ...

    E-Print Network [OSTI]

    Alireza Soroudi

    2013-12-29T23:59:59.000Z

    Dec 29, 2013 ... Abstract: This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposedá...

  11. active hydrothermal system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars: channelslocatedalongthe margins of impactcrater Farmer, Jack D. 7 Interconnected hydro-thermal systems Models, methods, and applications Computer Technologies and...

  12. Development of a Hydrothermal Spallation Drilling System for EGS

    Broader source: Energy.gov [DOE]

    Project objective: Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource.

  13. assisted hydrothermal synthesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 155 Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring Geosciences Websites Summary: Dynamics...

  14. Hydrothermal Alteration and Past and Present Thermal Regimes...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Alteration and Past and Present Thermal Regimes in the Western Moat of Long Valley Caldera Abstract...

  15. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER...

  16. Characterization of past hydrothermal fluids in the Humboldt...

    Open Energy Info (EERE)

    studies of core samples Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of past hydrothermal fluids in the Humboldt...

  17. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Helium Isotope...

  18. Altered Tectonic and Hydrothermal Breccias in Corehole VC-1,...

    Open Energy Info (EERE)

    origin. Hydrothermal breccias and associated crackle zones or stockworks created by hydraulic fracturing can provide significant secondary permeability, as demonstrated by their...

  19. Inferences On The Hydrothermal System Beneath The Resurgent Dome...

    Open Energy Info (EERE)

    Usa, From Recent Pumping Tests And Geochemical Sampling Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Inferences On The Hydrothermal System...

  20. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  1. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States...

  2. The Hydrothermal Outflow Plume of Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    to mixed fluids flowing in the hydrothermal plume. However, isotopic data, borehole data, basic geology, and inverse relations between temperature and chloride content at...

  3. apparent hydrothermal vents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDROTHERMAL ENERGY Drilling for seawater An "ALL of the ABOVE" Approach to Ocean Thermal Energy Ted Jagusztyn - Cotherm of America Corp - Honolulu OTEC Symposium - September...

  4. Florida Sunshine -- Natural Source for Heating Water

    SciTech Connect (OSTI)

    Not Available

    2002-05-01T23:59:59.000Z

    This brochure, part of the State Energy Program (SEP) Stellar Project series, describes a utility solar hot water program in Lakeland, Florida. It is the first such utility-run solar hot water program in the country.

  5. Hydrothermally grown nanostructured WO films and their electrochromic characteristics

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Hydrothermally grown nanostructured WO 3 films and their electrochromic characteristics.1088/0022-3727/43/28/285501 Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics Zhihui Jiao1 , Xiao Wei and their electrochromic characteristics. Plate-like monoclinic WO3 nanostructures were grown directly on fluorine

  6. Hydrothermally Deposited Rock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long Valley CalderaHydrothermally

  7. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01T23:59:59.000Z

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  8. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot PlateHotHot

  9. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  10. Tankless Gas Water Heater Performance - Building America Top...

    Energy Savers [EERE]

    Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

  11. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30T23:59:59.000Z

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185░C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185░C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  12. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  13. A Hydrothermal Model of the Roosevelt Hot Springs Area, Utah, USA | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy Information FlashingEvaluation | Open

  14. Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTown Hall Meeting JulyTownToyolaUtah

  15. The fate of lignin during hydrothermal pretreatment

    E-Print Network [OSTI]

    Trajano, Heather L; Engle, Nancy L; Foston, Marcus; Ragauskas, Arthur J; Tschaplinski, Timothy J; Wyman, Charles E

    2013-01-01T23:59:59.000Z

    followed by a dioxane water extraction, while Trajano et al.water, limited condensation reactions for both substrates, as evidenced by greater lignin extraction

  16. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30T23:59:59.000Z

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  17. Seismic Evidence For A Hydrothermal Layer Above The Solid Roof...

    Open Energy Info (EERE)

    enhanced hydrothermal activity at the sea floor seems to be associated with a fresh supply of magma in the crust from the mantle. The presence of the solid floor indicates...

  18. Rational control of hydrothermal nanowire synthesis and its applications

    E-Print Network [OSTI]

    Joo, Jaebum

    2010-01-01T23:59:59.000Z

    Hydrothermal nanowire synthesis is a rapidly emerging nanowire discipline that enables low temperature growth and batch process. It has a major impact on the development of novel energy conversion devices, high density ...

  19. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...

    Open Energy Info (EERE)

    An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  20. Self-excited hydrothermal waves in evaporating sessile dropsá

    E-Print Network [OSTI]

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-08-01T23:59:59.000Z

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops...

  1. RESEARCH Open Access The fate of lignin during hydrothermal

    E-Print Network [OSTI]

    California at Riverside, University of

    , heteronuclear single quantum coherence NMR, compositional analysis, and gas chromatography┬şmass spectrometry of aromatic monomers point strongly to depolymerization and condensation being primary mechanisms for lignin during pretreatment. Keywords: Condensation, Depolymerization, Flowthrough pretreatment, Hydrothermal

  2. Base hydrolysis and hydrothermal processing of PBX-9404

    SciTech Connect (OSTI)

    Flesner, R.L.; Spontarelli, T.; Dell`Orco, P.C.; Sanchez, J.A.

    1994-11-01T23:59:59.000Z

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide.

  3. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOE Patents [OSTI]

    Anderson, Chris M. (Shakopee, MN); Musich, Mark A. (Grand Forks, ND); Mann, Michael D. (Thompson, ND); DeWall, Raymond A. (Grand Forks, ND); Richter, John J. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); Willson, Warrack G. (Fairbanks, AK)

    2000-01-01T23:59:59.000Z

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  4. Enhanced heat transfer in partially-saturated hydrothermal systems

    SciTech Connect (OSTI)

    Bixler, N.E.; Carrigan, C.R.

    1986-01-01T23:59:59.000Z

    The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.

  5. IR Hot Wave

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  6. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  7. Commercial Solar Hot Water Financing Program

    Broader source: Energy.gov [DOE]

    A variety of financing options will be available depending on the project, including power purchase agreements or energy service agreements. A third party will finance the construction, maintenan...

  8. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01T23:59:59.000Z

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  9. Considerations for Energy Efficient Showers in Hot-Humid Climates

    E-Print Network [OSTI]

    Claridge, D. E.; Turner, W. D.

    1989-01-01T23:59:59.000Z

    CONSIDERATIONS FOR ENERGY EFFICIENT SHOWERS IN HOT-HUMID CLIMATES D. E. Claridge and W.D. Turner Energy Systems Laboratory Department of Mechanical Engineering Texas ALM University ABSTRACT Measurements have been conducted on four low... for typical operation in Texas. This has significant implications for everyone who purchases or uses showerheads; this is particularly true in hot climates where supply water temperatures are relatively high. TESTS CONDUCTED Showerheads Tested Two...

  10. Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working in Hot Environments

    E-Print Network [OSTI]

    Lennard, William N.

    Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working is intended to prevent potential heat induced illness as a result of hot weather or hot workplace environments in hot weather or hot workplace environments. The following parameters will serve as triggers

  11. K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles...

    Open Energy Info (EERE)

    Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Jump to: navigation, search OpenEI...

  12. Reproductive traits of pioneer gastropod species colonizing deep-see hydrothermal vents after an eruption

    E-Print Network [OSTI]

    Bayer, Skylar (Skylar Rae)

    2011-01-01T23:59:59.000Z

    The colonization dynamics and life histories of pioneer species are vital components in understanding the early succession of nascent hydrothermal vents. The reproductive ecology of pioneer species at deep-sea hydrothermal ...

  13. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean

    E-Print Network [OSTI]

    Fitzsimmons, Jessica N.

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on ...

  14. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect (OSTI)

    Zhao, Jinbo, E-mail: zhaojinb@gmail.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China); Wu, Lili, E-mail: wulili@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China); Zou, Ke, E-mail: zouk2005@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China)

    2011-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  15. Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

  16. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    E-Print Network [OSTI]

    Johnson, Alissa

    2013-01-01T23:59:59.000Z

    blankets to electric hot water heaters in South Africa,ö J.for Residential Water Heaters, Direct Heating Equipment, andfor Residential Water Heaters, Direct Heating Equipment, and

  17. U-Th-Pb systematics in hot springs on the east Pacific rise at 2'/sup 0/N and Guaymas Basin

    SciTech Connect (OSTI)

    Chen, J.H.; Wasserburg, G.J.; von Damm, K.L.; Edmond, J.M.

    1986-11-01T23:59:59.000Z

    The concentrations and isotopic compositions of U, Th and Pb were determined in hydrothermal fluids from 21/sup 0/N, East Pacific Rise and Guaymas Basin, Gulf of California. The purest hydrothermal end members (96%) have 0.06-0.18 ppb U, < 0.1-4.3 ppt Th and 40-67 ppb Pb. Several samples show a /sup 234/U enrichment relative to the equilibrium value. This indicates that U was quantitatively removed from seawater and deposited to the crust during the hydrothermal circulation. The 21/sup 0/N fluids with intermediate Mg content show that U and Mg are coherently removed from seawater, but Pb is not, during mixing of the hot hydrothermal fluid and cold ambient seawater. Both the end-member and intermediate hydrothermal fluids at 21/sup 0/N have similar Pb isotope compositions and limited ranges in /sup 206/Pb//sup 204/Pb (18.444-18.503), /sup 207/Pb//sup 204/Pb (15.471-15.514), and /sup 208/Pb//sup 204/Pb (37l.832-37.966). These ratios are within the range of values of MORB and are distinctly less radiogenic than the ambient seawater. This means that a significant amount of Pb was removed from the basalts by the hot springs. In contrast, Th does not appear to be significantly removed from the basalts. Some of this Pb was incorporated into the metalliferous sediments in a wide area straddling the EPR. The Pb isotopic composition of a hydrothermal sample from the Guaymas Basin is more radiogenic than at 21/sup 0/N and resembles that of sediments from the Gulf of California. This is consistent with the uptake of Pb from heated sediments having a substantial component of the volcanogenic detritus.

  18. Hydrothermal monitoring data from the Cascade Range, northwestern United States

    E-Print Network [OSTI]

    ....................................................................................................................9 (2) Boulder Creek.....................................................................................................................11 (3) Unnamed tributary to Sulphur Creek..........................................................................................................................................15 (4) Gamma Hot Springs and Gamma Creek

  19. Pilgrim Hot Springs, Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim Hot

  20. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot Plate

  1. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. 43 deg.

  2. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  3. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov (indexed) [DOE]

    * Model Cu-Zeolite SCR Catalyst Cu-SSZ-13 (SiAl 2 12), Cu-ZSM-5 (SiAl 2 30) Cu-beta (SiAl 2 38), Cu-Y(SiAl 2 5.2) * Hydrothermal Aging 10% H 2 O in air, 800 o C,...

  4. Hydro-Thermal Scheduling (HTS) 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    1 Hydro-Thermal Scheduling (HTS) 1.0 Introduction From an overall systems view, the single most, relative to that of thermal plants, are very small. There are three basic types of hydroelectric plants;2 Pump-storage This kind of hydro plant is a specialized reservoir-type plant which has capability to act

  5. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    R÷misch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  6. POWER SCHEDULING IN A HYDROTHERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    R÷misch, Werner

    POWER SCHEDULING IN A HYDROşTHERMAL SYSTEM UNDER UNCERTAINTY C.C. Car°e 1 , M.P. Nowak 2 , W. R in the complexş ity of the traditional power optimization modş els. The remedy we propose is decomposition whichşstorage hydro plants and delivery conş tracts and describe an optimization model for its leastşcost operation

  7. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  8. Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation

    SciTech Connect (OSTI)

    Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

    1986-02-01T23:59:59.000Z

    The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

  9. Hydrothermal synthesis and crystallographic properties of silicoaluminophosphate with different content of silicon

    SciTech Connect (OSTI)

    Araujo, A.S.; Fernandes, V.J. Jr.; Diniz, J.C.; Silva, A.O.S.; Silva, C.C.; Santos, R.H.A.

    1999-07-01T23:59:59.000Z

    Silicoaluminophosphate molecular sieves of SAPO-11 type were synthesized with variation in the [Si/(Al + Si + P)] ratio, using the hydrothermal method, starting from silica, pseudobohemite, orthophosphoric acid and water, in the presence of a di-isopropylamine organic template. The samples were characterized by elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG/DTA), and scanning electron microscopy (SEM). The incorporation of silicon into the framework of SAPO-11 is demonstrated by the variation of the unit-cell volume with the silicon content. CELREF software was used to index and refine the main lines of the XRD patterns. It is shown that the unit-cell volume decreases over a wide range of silicon content.

  10. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01T23:59:59.000Z

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  11. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22T23:59:59.000Z

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  12. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  13. Quantification of thermophilic archaea and bacteria in a Nevada hot spring using fluorescent in situ hybridization

    E-Print Network [OSTI]

    Walker, Lawrence R.

    in situ hybridization Abstract Previous studies of high temperature hot springs in Yellowstone National temperatures. The cells, which were concentrated from 300 liters of hot spring water through tangential flow dominate in high-temperature environments such as Yellowstone National Park. However, our study indicates

  14. Steam treatment of surface soil: how does it affect water-soluble organic matter, C mineralization, and bacterial community composition?

    E-Print Network [OSTI]

    Roux-Michollet, Dad; Dudal, Yves; Jocteur-Monrozier, Lucile; Czarnes, Sonia

    2010-01-01T23:59:59.000Z

    organic components Water extraction was performed by shakingresulting from hot water extraction, as measured by Sparlingboiling soil in water resulted in the extraction of both

  15. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  16. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioning Heat Pumps NAECA 1987 Water Heaters NAECA 1987Conditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  17. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    conditioners and heat pumps, and water heaters We modifiedConditioners and Heat Pumps NAECA 1987 Water Heaters NAECAConditioners and Heat Pumps EPACT 1992 Water Heaters, Hot

  18. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬░F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?center├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬Ł of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬░F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  19. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer...

  20. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    SciTech Connect (OSTI)

    Currier, R.P. [comp.

    1994-10-01T23:59:59.000Z

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported.

  1. Hot carrier diffusion in graphene

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

    2010-11-01T23:59:59.000Z

    We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

  2. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01T23:59:59.000Z

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  3. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    E-Print Network [OSTI]

    Sanders, J. G.

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking ...

  4. Coping with Hot Work Environments

    E-Print Network [OSTI]

    Smith, David

    2005-04-28T23:59:59.000Z

    exposed to these conditions. A hot work environment can impair safety and health. Both workers and their employers are responsi- ble for taking steps to prevent heat stress in the work- place. How Your Body Handles Heat Humans are warm-blooded, which... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A...

  5. Rheological study of comingled biomass and coal slurries with hydrothermal pretreatment

    SciTech Connect (OSTI)

    Wei He; Chan S. Park; Joseph M. Norbeck [University of California, Riverside, CA (United States). Bourns College of Engineering Center for Environmental Research and Technology

    2009-09-15T23:59:59.000Z

    Gasification of comingled biomass and coal feedstock is an effective means of reducing the net life cycle greenhouse gas emissions in the coal gasification process while maintaining its inherent benefits of abundance and high-energy density. However, feeding a comingled biomass and coal feedstock into a pressurized gasification reactor poses a technical problem. Conventional dry feeding systems, such as lock hoppers and pressurized pneumatic transport, are complex and operationally expensive. A slurry formation of comingled biomass and coal feedstock can be easily fed into the gasification reactor but, in normal conditions, only allows for a small portion of biomass in the mixture. This is a consequence of the hydroscopic and hydrophilic nature of the biomass. The College of Engineering Center for Environmental Research and Technology (CE-CERT) at the University of California, Riverside, has developed a process producing high solid content biomass-water slurry using a hydrothermal pretreatment process. In this paper, the systematic investigation of the rheological properties (e.g., shear rate, shear stress, and viscosity) of coal-water slurries, biomass-water slurries, and comingled biomass and coal-water slurries is reported. The solid particle size distribution in the slurry and the initial solid/water ratio were investigated to determine the impact on shear rate and viscosity. This was determined using a rotational rheometer. The experimental results show that larger particle size offers better pumpability. The presence of a high percentage of biomass in solid form significantly decreases slurry pumpability. It is also shown that the solid loading of the biomass-water slurry can be increased to approximately 35 wt % with viscosity of less than 0.7 Pa.s after the pretreatment process. The solid loading increased to approximately 45 wt % when the biomass is comingled with coal. 18 refs., 7 figs., 3 tabs.

  6. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  7. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  8. Mechanical and transport properties of rocks at high temperatures and pressures. Task II: fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The primary objective is to measure and understand the variation of the fracture permeability of quartzite subjected to hydrothermal conditions. Pore fluids will consist of distilled water and aqueous Na/sub 2/CO/sub 3/ solutions at temperatures to 250/sup 0/C, fluid pressures to 20 MPa and effective normal stresses to 70 MPa. Fluid flow rates will be controllable to rates at least as small as 0.2 ml/day (approx. 4 fracture volumes). Experiments are designed to assess what role, if any, pressure solution may play at time scales of those of the experiments (less than or equal to 2 weeks). Secondary objectives are: (1) continue simulated fracture studies, incorporating inelastic deformation into model and characterize the nature of inelastic deformation occurring on loaded tensile fractures in quartzite; (2) continue dissolution experiment, with emphasis on dissolution modification of tensile fracture surfaces on quartzite; and (3) study natural fractures in a quartzite exhibiting hydrothermal dissolution features.

  9. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  10. DEPOSITIONAL FACIES AND AQUEOUS-SOLID GEOCHEMISTRY OF TRAVERTINE-DEPOSITING HOT SPRINGS (ANGEL TERRACE, MAMMOTH HOT SPRINGS, YELLOWSTONE NATIONAL PARK, U.S.A.)

    E-Print Network [OSTI]

    Farmer, Jack D.

    include hot spring travertine (precipitates from high-temperature springs, also called carbonate sinters spring water in the higher-temperature (-50-73┬░C) depositional facies. Conversely, travertine from waters in low- to high- * Present Address: Department of Geology, Arizona State University, Box

  11. Hot Beverages Cold Beverages

    E-Print Network [OSTI]

    New Hampshire, University of

    Juices $3.19 Vitamin Water $1.79 Java Tree Iced Coffee $2.59 Milk, 2% or Low Fat $1.39 20 oz. Coke Products $1.39 Energy Drinks Rockstar $2.39 Full Throttle $2.39 Red Bull Energy Drink $2.39 Rejuvenation in a sustainable way. 12 oz. 16 oz. 20 oz. House Blend $1.69 $1.79 $1.90 French Roast $1.69 $1.79 $1.90 Decaf Dark

  12. air-water interactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 27 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE...

  13. Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...

    Open Energy Info (EERE)

    Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways...

  14. ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS

    E-Print Network [OSTI]

    Paris-Sud XI, UniversitÚ de

    1 ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS: II. ONE-D HRTEM structure images of hydrothermal I-S mixed-layer minerals The person to whom correspondence manuscript, published in "Clays and Clay Minerals 53 (2005) 440-451" DOI : 10.1346/CCMN.2005.0530502 hal

  15. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    E-Print Network [OSTI]

    Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent numerical simulations of multiphase (liquid-gas), multicomponent (H2O┬şCO2) hydrothermal fluid flow

  16. Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...

    Open Energy Info (EERE)

    caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies,...

  17. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  18. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08T23:59:59.000Z

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  19. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHotPot,Hot

  20. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  1. How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

  2. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  3. In Situ Type Study of Hydrothermally Prepared Titanates and Silicotitanates

    SciTech Connect (OSTI)

    Clearfield,A.; Tripathi, A.; Medvedev, D.; Celestian, A.; Parise, J.

    2006-01-01T23:59:59.000Z

    One of the most vexing problems facing the nuclear industry and countries with nuclear weapons is the safe disposal of the generated nuclear waste. Huge quantities of nuclear waste arising from weapons manufacture are stored at the Hanford and Savannah River sites in the USA. The general method of remediation involves the removal of Cs-137, Sr-90 and actinides from a huge quantity of salts, principally NaNO{sub 3}, organics and complexing agents. It has been found that a sodium silicotitanate is able to remove Cs{sup +} selectively from the waste and certain sodium titanates remove Sr{sup 2+} and actinides. These compounds have been prepared by ex-situ hydrothermal methods. We have studied the In situ growth of these materials at the National Synchrotron Light Source, Brookhaven National Laboratory. In addition we will describe the mechanism of ion exchange in the titanosilicate as observed by In situ methods and how the combination of these techniques coupled with an intimate knowledge of the structure of the solids is helping to solve the remediation process. In general, the In situ method allows the investigator to follow the nucleation and crystal growth or phase transformations occurring in hydrothermal reactions.

  4. apoplastic water flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    district heating system Texas A&M University - TxSpace Summary: -rise building hot water heating system. Energy for sustainable development, the journal of the international...

  5. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  6. Is My Water Safe? disaster may disrupt the electricity needed to pump

    E-Print Network [OSTI]

    . Emergency water Your hot water heater or water pressure tank could supply many gallons of safe water during the water heater on again until the water system is back in service. Water from the toilet tank may be used an emergency. Before using water from the water heater, switch off the gas or elec- tricity that heats

  7. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley

    SciTech Connect (OSTI)

    Renaut, R.W.; Owen, R.B.

    1988-08-01T23:59:59.000Z

    An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

  8. Statistical mechanics of hot dense matter

    SciTech Connect (OSTI)

    More, R.

    1986-10-01T23:59:59.000Z

    Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

  9. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot

    E-Print Network [OSTI]

    Fouke, Bruce W.

    flow of spring water from the high-temperature to low-temperature facies. These results suggest of depositional facies models that correlate (1) the depth, velocity, temperature, and chemistry of waterPartitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs

  10. 2000 Astronomy Department, University of Texas at Austin Full Of Hot Air?

    E-Print Network [OSTI]

    Hemenway, Mary Kay

    ┬ę2000 Astronomy Department, University of Texas at Austin Full Of Hot Air? Introduction Light has standing by a pool, the medium is air. If you are looking at the Moon from under water after you jump into the pool, the mediums are both air and water. The Moon would appear dif- ferent from underwater because

  11. Wind information derived from hot air

    E-Print Network [OSTI]

    Haak, Hein

    Wind information derived from hot air balloon flights for use in short term wind forecasts E Introduction/Motivation Hot air balloons as wind measuring device Setup of nested HIRLAM models Results Ě Three, The Nertherlands #12;Hot air balloon ĚDisplacement/time unit = wind speed ĚVertical resolution 30m ĚInertia (500 kg

  12. Hydrothermal research and development assessment. Task Force report: projections for direct-heat applications

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Low and moderate temperature hydrothermal resources suitable for direct-heat applications have been identified in 37 states. The extent to which three resources might be used over the next 20 years were evaluated and the probable impact of Federal programs on hydrothermal resource utilization was assessed. The use types that comprise the bulk of the market were determined. Representative firms and municipalities were interviewed to determine their willingness to use hydrothermal energy, and to determine the investment decision criteria that would influence their actions. (MHR)

  13. Emergency Factsheet for Disinfecting Water Wells by Shock Chlorination

    E-Print Network [OSTI]

    an alternate water source during the treatment period. Most water treatment equipment (such as water heaters, release the air to allow the tank to be filled with chlorinated water. Drain all hot water heatersEmergency Factsheet for Disinfecting Water Wells by Shock Chlorination Mark L. McFarland, Associate

  14. Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data

    SciTech Connect (OSTI)

    Freiburger, R.M.

    1984-09-01T23:59:59.000Z

    This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Drain Water Heat Recovery

    E-Print Network [OSTI]

    household, the NPV of DWHR is -$203.68 for homes with electric water heaters and -$464.88 for homes with natural gas water heaters. DWHR is much more economical for households with electric hot water heaters as their energy costs are much higher. A household of 4 or more people with an electric hot water heater would

  16. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14T23:59:59.000Z

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  17. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Winchester, W.W. [ed.; Duchane, D.V.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  18. Hot Dry Rock energy annual report fiscal year 1992

    SciTech Connect (OSTI)

    Duchane, D.V.; Winchester, W.W.

    1993-04-01T23:59:59.000Z

    Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

  19. Geochemistry of deep-sea hydrothermal vent fluids from the Mid-Cayman Rise, Caribbean Sea

    E-Print Network [OSTI]

    McDermott, Jill Marie

    2015-01-01T23:59:59.000Z

    This thesis examines the controls on organic, inorganic, and volatile species distributions in hydrothermal fluids venting at Von Damm and Piccard, two recently discovered vent fields at the ultra slow spreading Mid-Cayman ...

  20. Laboratory and field-based investigations of subsurface geochemical processes in seafloor hydrothermal systems

    E-Print Network [OSTI]

    Reeves, Eoghan

    2010-01-01T23:59:59.000Z

    This thesis presents the results of four discrete investigations into processes governing the organic and inorganic chemical composition of seafloor hydrothermal fluids in a variety of geologic settings. Though Chapters 2 ...

  1. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA) [Richland, WA; Hoffmann, Markus M. (Richland, WA) [Richland, WA

    2001-11-13T23:59:59.000Z

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  2. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Hoffmann, Markus M. (Richland, WA)

    2003-12-23T23:59:59.000Z

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  3. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    and Heat Pumps NAECA 1987 Water Heaters NAECA 1987 FurnacesPumps EPACT 1992 Water Heaters, Hot Water Supply Boilers andand heat pumps, and water heaters We modified the analytical

  4. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  5. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect (OSTI)

    Greer, Charles R.

    1980-09-01T23:59:59.000Z

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  6. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged Cu/Beta Zeolite Catalysts

    SciTech Connect (OSTI)

    Peden, Charles HF; Kwak, Ja Hun; Burton, Sarah D.; Tonkyn, Russell G.; Kim, Do Heui; Lee, Jong H.; Jen, H. W.; Cavattaio, Giovanni; Cheng, Yisun; Lambert, Christine

    2012-04-30T23:59:59.000Z

    The hydrothermal stability of Cu/beta NH3 SCR catalysts are explored here. In particular, this paper focuses on the interesting ability of this catalyst to maintain and even enhance high-temperature performance for the "standard" SCR reaction after modest (900 ░C, 2 hours) hydrothermal aging. Characterization of the fresh and aged catalysts was performed with an aim to identify possible catalytic phases responsible for the enhanced high temperature performance. XRD, TEM and 27Al NMR all showed that the hydrothermally aging conditions used here resulted in almost complete loss of the beta zeolite structure between 1 and 2 hours aging. While the 27Al NMR spectra of 2 and 10 hour hydrothermally-aged catalysts showed significant loss of a peak associated with tetrahedrally-coordinated Al species, no new spectral features were evident. Two model catalysts, suggested by these characterization data as possible mimics of the catalytic phase formed during hydrothermal aging of Cu/beta, were prepared and tested for their performance in the "standard" SCR and NH3 oxidation reactions. The similarity in their reactivity compared to the 2 hour hydrothermally-aged Cu/beta catalyst suggests possible routes for preparing multi-component catalysts that may have wider temperature windows for optimum performance than those provided by current Cu/zeolite catalysts.

  7. Arsenic in your water?: Economists study perceptions of risks from drinking water high in arsenic

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    Arsenic in water?your tx H2O | pg. 27 Story by Kathy Wythe Economists study perceptions of risks from drinking water high in arsenic In several ?hot spots? across the United States people may be drinking water with high levels of naturally... occurring arsenic without understanding the associated risks, according to agricultural economists. ?Many households in arsenic ?hot spots? are in fact being exposed to harmful doses of arsenic,? said Dr. Douglass Shaw, professor of agricultural...

  8. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  9. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  10. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  11. Axion hot dark matter bounds

    E-Print Network [OSTI]

    G. Raffelt; S. Hannestad; A. Mirizzi; Y. Y. Y. Wong

    2008-08-06T23:59:59.000Z

    We derive cosmological limits on two-component hot dark matter consisting of neutrinos and axions. We restrict the large-scale structure data to the safely linear regime, excluding the Lyman-alpha forest. We derive Bayesian credible regions in the two-parameter space consisting of m_a and sum(m_nu). Marginalizing over sum(m_nu) provides m_aaxions the same data and methods give sum(m_nu)< 0.63 eV (95% CL).

  12. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01T23:59:59.000Z

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  13. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHotPage Edit

  14. Idaho_LavaHotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. Lava

  15. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  16. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  17. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  18. air-water countercurrent flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 38 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE...

  19. Hot Spring Monitoring at Lassen Volcanic National Park, California 1983-1985

    SciTech Connect (OSTI)

    Sorey, Michael L.

    1986-01-21T23:59:59.000Z

    Data collected on several occasions between 1983 and 1985 as part of a hydrologic monitoring program by the U.S. Geological Survey permit preliminary estimation of the natural variability in the discharge characteristics of hydrothermal features in Lassen Volcanic National Park and the Lassen KGRA in northern California. The total rate of discharge of high-chloride hot springs along Mill Creek and Canyon Creek in the Lassen KGRA has averaged 20.9 {+-} 1.7 L/s, based on seven measurements of the flux of chloride in these streams. Measured chloride flux does not appear to increase with streamflow during the spring-summer snowmelt period, as observed at Yellowstone and Long Valley Caldera. The corresponding fluxes of arsenic in Mill Creek and Canyon Creek decrease within distances of about 2 km downstream from the hot springs by approximately 30%, most likely due to chemical absorption on streambed sediments. Within Lassen Volcanic National Park, measurements of sulfate flux in streams draining steam-heated thermal features at Sulphur Works and Bumpass Hell have averaged 7.5 {+-} 1.0 and 4.0 {+-} 1.5 g/s, respectively. Calculated rates of steam upflow containing, dissolved H{sub 2}S to supply these sulfate fluxes are 1.8 kg/s at Sulphur Works and 1.0 kg/s at Bumpass Hell.

  20. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  1. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  2. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    and non-thermal waters and reaction with wall rock were simulated using the reaction path code EQ36. Mass balance calculations were conducted to estimate the extent of water-rock...

  3. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    conductivity and heat capacity of saturated liquid water inHeat capacity Material (k, W/m /K) (C p , kJ/kg/K) Sand Air, P atm , 180 o C Water, saturated liquid,

  4. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect (OSTI)

    Key, M.H.; Estabrook, K.; Hammel, B. [and others

    1997-12-01T23:59:59.000Z

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  5. Hydrothermal Methods as a New Way of Actinide Phosphate Preparation

    SciTech Connect (OSTI)

    Clavier, Nicolas [Institut de Chimie Separative de Marcoule, CNRS UMR 5257, Bagnols / Ceze, 30207 (France); Dacheux, Nicolas [Groupe de Radiochimie, IPNO - Bat. 100, Univ. Paris-Sud, Orsay, 91406 (France); Wallez, Gilles; Quarton, Michel [Chimie de la matiere condensee, Univ. Pierre et Marie Curie-Paris 6, CNRS UMR 7574, 4 Place Jussieu, Paris, 75005 (France)

    2007-07-01T23:59:59.000Z

    Precipitation processes driven in hydrothermal conditions were applied to the preparation of phosphate-based ceramics. In particular, three systems composed by a crystallized precursor linked with a high temperature compound were examined: M(OH)PO{sub 4} / M{sub 2}O(PO{sub 4}){sub 2} (M = Th, U), MPO{sub 4} 0.5 H{sub 2}O / MPO{sub 4} (M = La - Dy), and Th{sub 2-x/2}An{sub x/2}(PO{sub 4}){sub 2}(HPO{sub 4}) H{sub 2}O / {beta}-Th{sub 4-x}An{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} (M = U, Np, Pu). A significant improvement of several physico-chemical properties of the powders, especially in the sintering capability and the homogeneity of the final solids, was evidenced when starting from the precursors. Furthermore, these phases were also found to control the solubility of lanthanides and actinides during leaching experiments when reaching the saturation conditions in the solution. (authors)

  6. Hydrothermal Synthesis and Structure of Neptunium(V) Oxide

    SciTech Connect (OSTI)

    Forbes, Tori Z. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556 (United States); Burns, Peter C.; Soderholm, L. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556 (United States)]|[Chemistry Division, Argonne National Laboratory, Argonne, IL, 60439 (United States); Skanthakumar, S. [Chemistry Division, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2007-07-01T23:59:59.000Z

    Single crystals of Np{sub 2}O{sub 5} have been synthesized by low-temperature hydrothermal reaction of a (NpO{sub 2}){sup +} stock solution with natural calcite crystals. The structure of Np{sub 2}O{sub 5} was solved by direct methods and refined on the basis of F{sup 2} for all unique data collected on a Bruker X-ray diffractometer equipped with an APEX II CCD detector. Np{sub 2}O{sub 5} is monoclinic, space group P2/c, with a = 8.168(2) A, b = 6.584(1) A, c = 9.3130(2) A, {beta} = 116.01(1) deg., V = 449.8(2) A{sup 3}, and Z = 1. The structure contains chains of edge-sharing neptunyl pentagonal bi-pyramids linked into sheets through cation-cation interactions with distorted neptunyl square bi-pyramids. Additional cation-cation interactions connect the sheets into a three-dimensional framework. The formation of Np{sub 2}O{sub 5} on the surface of calcite crystals has important implications for the precipitation of isolated neptunyl phases in natural aqueous systems. (authors)

  7. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    SciTech Connect (OSTI)

    Zhu, Renqiang [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)] [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhu, Kongjun, E-mail: kjzhu@nuaa.edu.cn [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)] [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Qiu, Jinhao; Bai, Lin; Ji, Hongli [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)] [The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2010-08-15T23:59:59.000Z

    Lanthanum-modified lead zirconate titanate Pb{sub 1-x}La{sub x}(Zr{sub 1-y}Ti{sub y})O{sub 3} (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  8. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  9. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11T23:59:59.000Z

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  11. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01T23:59:59.000Z

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  12. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days. ┬Ě Heat stroke is life threatening! Symptoms include high body temperature, red and dry skin, rapid before you get thirsty. Adequate fluid intake is the biggest key. Cool (not ice cold) water is the best

  13. Droplet impingement and vapor layer formation on hot hydrophobic surfaces Ji Yong Park1

    E-Print Network [OSTI]

    Cahill, David G.

    diameter) water droplets that bounce from hydrophobic surfaces whose temperature exceeds the boiling point angle. The residence time determined by high-speed imaging is constant at 1 msec over the temperature-speed imaging is approximately independent of the temperature of the hot surface. Measurements of thermal

  14. Chemical markers of possible hot spots on Mars Ah-San Wong and Sushil K. Atreya

    E-Print Network [OSTI]

    Atreya, Sushil

    Chemical markers of possible hot spots on Mars Ah-San Wong and Sushil K. Atreya Department not be ruled out. If outgassing does occur somewhere on Mars, water, carbon dioxide, sulfur species, methane, and to a lesser extent, halogens would be the likely molecules of outgassing, based on terrestrial analogs

  15. Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Computerized, Transient Hot-Wire Thermal Conductivity (HWTC) Apparatus for Nanofluids M. KOSTIC for thermal conductivity measurements of common fluids and nanofluids has been recently developed, designed nanofluids of 1 % volumetric concentration of 35 nm size copper nanoparticles in ethylene glycol and in water

  16. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    SciTech Connect (OSTI)

    Bessinger, Brad; Apps, John A.

    2003-03-23T23:59:59.000Z

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.

  17. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20T23:59:59.000Z

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  18. Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-10T23:59:59.000Z

    The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

  19. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  20. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  1. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  2. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  3. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  4. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  5. Quenching and Partitioning Process Development to Replace Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Quenching and Partitioning Process Development to Replace Hot Stamping of...

  6. Hot Water Heating System Operation and Energy Conservationá

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    heating period, and temperature-flow adjustment with frequency control. The study shows the most energy efficient operating method is a variable flow heating system, which should be popularized to the heating field....

  7. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    Renewable Energy Laboratory Natural Resources Canada GasRenewable Energy Laboratory (NREL) performed with Integrated Building and Construction Solutions (IBACOS) Natural Resources Canada

  8. Mandating Solar Hot Water by California Local Governments: Legal Issues

    E-Print Network [OSTI]

    Hoffman,, Peter C.

    1981-01-01T23:59:59.000Z

    and counties the power to require dedication of solar accessthe power to re- quire dedication of solar easements as a

  9. Mandating Solar Hot Water by California Local Governments: Legal Issues

    E-Print Network [OSTI]

    Hoffman,, Peter C.

    1981-01-01T23:59:59.000Z

    the county building code to require solar energy to be thebuilding code, in accord with the energy element of its general plan, to require solar

  10. CC Retrofits and Optimal Controls for Hot Water Systemsá

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01T23:59:59.000Z

    and exterior zones. Each AHU has design airflow of 45,000 CFM. The high gas usage is caused by a dual-duct system with CAV boxes, which is an outdated and inefficient technology. Pneumatic controls make the operation and maintenance more difficult and do...

  11. Why Is Nevada in Hot Water? Structural Controls and Tectonic...

    Open Energy Info (EERE)

    to the northwest in west-central Nevada near the southeast margin of the high heat-flow region. The abundant geothermal fields may therefore result from a transfer of...

  12. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    of oversizing of existing boilers (in study buildings) based on actual DHW and EDR loads. Phase I1 of this project which will investigate these issues with the assistance...

  13. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformationAffinity Wind

  14. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJerseyMarketsWhyPressPolicyPortfolio2 0 1

  15. Predictive Control of Hot Water Heaters - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTING SYSTEMMeso-Scale during Electron

  16. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMtInformationOpen

  17. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpenInformation Henkle,EnergyOpen

  18. Model Simulating Real Domestic Hot Water Use - Building America Top

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4EnergyMissionIllness |BasedInnovation |

  19. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformation

  20. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart,Department of Energy Webinar: ENERGY STAR

  1. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment| Department ofSavingDepartment ofof

  2. Hot New Advances in Water Heating Technology | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontal

  3. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department ofDepartment

  4. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source Heat Pumps | Department

  5. Domestic Hot Water Event Schedule Generator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register /NATIONALDoes

  6. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01T23:59:59.000Z

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  7. Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia

    E-Print Network [OSTI]

    Brown, Adrian J; Walter, Malcolm R

    2014-01-01T23:59:59.000Z

    An airborne hyperspectral remote sensing dataset was obtained of the North Pole Dome region of the Pilbara Craton in October 2002. It has been analyzed for indications of hydrothermal minerals. Here we report on the identification and mapping of hydrothermal minerals in the 3.459 Ga Panorama Formation and surrounding strata. The spatial distribution of a pattern of subvertical pyrophyllite rich veins connected to a pyrophyllite rich palaeohorizontal layer is interpreted to represent the base of an acid-sulfate epithermal system that is unconformably overlain by the stromatolitic 3.42 Ga Strelley Pool Chert.

  8. Case studies of low-to-moderate temperature hydrothermal energy development

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    Six development projects are examined that use low- (less than 90/sup 0/C (194/sup 0/F)) to-moderate (90 to 150/sup 0/C (194 to 302/sup 0/F)) temperature geothermal resources. These projects were selected from 22 government cost-shared projects to illustrate the many facets of hydrothermal development. The case studies describe the history of this development, its exploratory methods, and its resource definition, as well as address legal, environmental, and institutional constraints. A critique of procedures used in the development is also provided and recommendations for similar future hydrothermal projects are suggested.

  9. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars

    E-Print Network [OSTI]

    Brown, Adrian J; Baldridge, Alice M; Crowley, James K; Bridges, Nathan T; Thomson, Bradley J; Marion, Giles M; Filho, Carlos R de Souza; Bishop, Janice L

    2014-01-01T23:59:59.000Z

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg- carbonate in small (characterize these carbonate-bearing units. We applied absorption band mapping techniques to investigate a range of possible phyllosilicate and carbonate minerals that could be present in the Nili Fossae region. We also describe a clay-carbonate hydrothermal alteration mineral assemblage in the Archean Warrawoona Group of Western Australia that is a potential Earth analog to the Nili Fossae carbonate-bearing rock units. We discuss the geological and biological implications for hydrothermal processes on Noachian Mars.

  10. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    SciTech Connect (OSTI)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong, E-mail: lizhongh@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024 (China); Yang, Dechao [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian 116024 (China); Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-17T23:59:59.000Z

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ?10?mV to 7?V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  11. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Stefano Bellucci; Vinod Chandra; Bhupendra Nath Tiwari

    2010-10-07T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  12. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2008-01-01T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  13. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  14. Workshops to rate and assign air and water issues for hydrothermal energy development

    SciTech Connect (OSTI)

    Williams, J.M.; Wewerka, E.M.

    1980-12-01T23:59:59.000Z

    The presentations, discussions, and recommendations associated with a semiformal, 2-day workshop organized and hosted by Los Alamos Scientific Laboratory personnel at Los Alamos, NM, for March, 11-12, 1980, and an informal, 2-day workshop hosted by Lawrence Livermore Laboratory at Livermore and Konocti Harbor, CA, from April 15-16, 1980 are described briefly. These workshops were not conducted to determine what the problems are, but rather to determine which ones should be addressed and who should address them. Brief reviews of issues identified by previous workshops and studies are included as background.

  15. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM --Version 3

    E-Print Network [OSTI]

    .S. Geological Survey Techniques and Methods 6-A25, 160 p. ii #12;Contents CONVERSION FACTORS ............................................................................. 2-1 2.1.2 Thermal-Energy Transport Equation

  16. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfand RangeOpen

  17. Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, searchClean Energy Place:Energy

  18. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01T23:59:59.000Z

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  19. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang [Columbia University Department of Chemistry

    2013-09-12T23:59:59.000Z

    During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

  20. Charm and Beauty in a Hot Environment

    E-Print Network [OSTI]

    Helmut Satz

    2006-02-28T23:59:59.000Z

    We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

  1. Wall Drying in Hot and Humid Climatesá

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

  2. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universit├Ąt

    Info HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan Verne: "Fife weeks on a balloon". HeiDAS stands for Hei├?DampfAeroStat (Hot-Steam AeroStat) and it refers to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei

  3. Surficial Extent And Conceptual Model Of Hydrothermal System...

    Open Energy Info (EERE)

    Area (Frank, 1995) Rock Sampling At Mt Ranier Area (Frank, 1995) Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Water Sampling At Mt Ranier Area (Frank, 1995) Areas...

  4. Spatial And Temporal Geochemical Trends In The Hydrothermal System...

    Open Energy Info (EERE)

    draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order,...

  5. Dynamics and storage of brine in mid-ocean ridge hydrothermal systems

    E-Print Network [OSTI]

    Wilcock, William

    Dynamics and storage of brine in mid-ocean ridge hydrothermal systems Fabrice J. Fontaine1 and brine phases. Time series of vent temperature and salinity (chlorinity) show that some black-smoker vent below seawater for over a decade, which raises important questions concerning the fate of brines

  6. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOE Patents [OSTI]

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16T23:59:59.000Z

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  7. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    SciTech Connect (OSTI)

    Murphy, William M. [Geological and Environmental Sciences, California State University, Chico, CA, 95929 (United States)

    2007-07-01T23:59:59.000Z

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  8. ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ILLITE-SMECTITE MIXED-LAYER MINERALS IN HYDROTHERMAL ALTERATION OF VOLCANIC ROCKS: I. ONE-layer minerals The person to whom correspondence and page proofs should be sent: Atsuyuki Inoue Department-00107011,version1-5Dec2007 Author manuscript, published in "Clays and Clay Minerals 53 (2005) 423-439" DOI

  9. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30N, MAR)

    E-Print Network [OSTI]

    Gilli, Adrian

    Massif (Mid-Atlantic Ridge, 30░N) was exam- ined to characterize carbon sources and speciation in oceanic. The speciation of carbon de- pends on the chemical and physical conditions prevailing in the reservoir, and itsCarbon geochemistry of serpentinites in the Lost City Hydrothermal System (30░N, MAR) Ade

  10. Mantle helium reveals Southern Ocean hydrothermal venting Gisela Winckler,1,2

    E-Print Network [OSTI]

    Winckler, Gisela

    Click Here for Full Article Mantle helium reveals Southern Ocean hydrothermal venting Gisela the distribution of helium isotopes along an oceanic transect at 67░S to identify previously unobserved provided by the helium isotope anomaly with independent hydrographic information from the Southern Ocean

  11. The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UVVisible

    E-Print Network [OSTI]

    The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV of aqueous nickel chloride complexes is important for understanding and quantitatively evaluating nickel for dissolved nickel in perchlorate, triflic acid and sodium chloride solutions at temperatures up to 250 ░C

  12. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    SciTech Connect (OSTI)

    Machmudah, Siti, E-mail: machmudah@chem-eng.its.ac.id; Widiyastuti, W., E-mail: machmudah@chem-eng.its.ac.id; Prastuti, Okky Putri, E-mail: machmudah@chem-eng.its.ac.id; Nurtono, Tantular, E-mail: machmudah@chem-eng.its.ac.id; Winardi, Sugeng, E-mail: machmudah@chem-eng.its.ac.id [Chemical Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya 60111 (Indonesia); Wahyudiono,; Kanda, Hideki; Goto, Motonobu [Department of Chemical Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2014-02-24T23:59:59.000Z

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 ľ 200░C with precursor concentration of 0.1 ľ 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  13. An Interior-Point Method for Long Term Scheduling of Large Scale Hydrothermal System

    E-Print Network [OSTI]

    Oliveira, AurÚlio R. L.

    The operational planning of hydrothermal power systems aims to provide an economic and reliable operational policy hydro plants in the same cascade and the nonlinear nature of thermal costs and hydro generation of the hydroelectric plants, using deterministic optimization tools to compute the optimal operation decision

  14. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    R÷misch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

  15. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    properties investigated using off-axis electron holography and more conventional rock magnetism techniqueHydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles measurements. 1. Introduction The ability of a rock to reliably record the geomagnetic field depends

  16. Surfactant-Assisted Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals

    SciTech Connect (OSTI)

    Wadia, Cyrus; Wu, Yue; Gul, Sheraz; Volkman, Steven; Guo, Jinghua; Alivisatos, Paul

    2009-03-27T23:59:59.000Z

    Iron pyrite nanocrystals with high purity have been synthesized through a surfactant-assisted hydrothermal reaction under optimum pH value. These pyrite nanocrystals represent a new group of well-defined nanoscale structures for high-performance photovoltaic solar cells based on non-toxic and earth abundant materials.

  17. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges

    E-Print Network [OSTI]

    Langmuir, Charles H.

    and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization of spreading rate, establish a robust linear trend (Fs = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing Fs

  18. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa

    E-Print Network [OSTI]

    Rhoads, James

    Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa Mikhail Y. Zolotov, chemical energy is suggested as a more likely source for oceanic life [Jakosky and Shock, 1998; Mc of chemical energy in the ocean [e.g., McCollom, 1999; Kargel et al., 2000; Chyba and Phillips, 2001; Schulze

  19. Journal of Mammalogy, 83(3):665673, 2002 WATER INFLUX AND FOOD CONSUMPTION OF FREE-LIVING

    E-Print Network [OSTI]

    Williams, Jos. B.

    , Columbus, OH 43210 (JBW) We measured water-influx rate during the hot summer in free-ranging adult Arabian.2% of total water influx. For ungulates living in hot environments, we constructed an allometric curve: log(water influx Desert environments are characterized by high ambient temperature, intense solar ra- diation

  20. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  1. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    RICHARD A. WAGNER

    1998-09-04T23:59:59.000Z

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 ░C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

  2. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01T23:59:59.000Z

    Stratigraphic geothermal reservoirs at 3 ľ 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200░C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  3. Finite element analysis of heat transport in a hydrothermal zone

    SciTech Connect (OSTI)

    Bixler, N.E.; Carrigan, C.R.

    1987-01-01T23:59:59.000Z

    Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).

  4. Grundfos HVAC OEM Efficient water hydraulics

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    complexity ┬Ě20 years of experience in hydraulics for the Boiler System industry. ┬ĚKey success factor is our Benefits with an integrated solution #12;Heat pump unit with storage tank 1 2 Efficient water hydraulics 3 return Heatin g supply Cold wate r Hot water PRV Drain 3 way valve 1 2 3 air ventPT Grundfos flow sensor

  5. Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser

    E-Print Network [OSTI]

    Wang, D.; Shan, S.; Wang, R.

    2006-01-01T23:59:59.000Z

    presented a mathematic model for a cylindrical water tank with a cylindrical condenser as its heat source. The computational fluid dynamics (CFD) software package, FLUENT, was used to study hot water temperature distribution in the tank of the ASHPWH...

  6. air-water vertical upward: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 30 Chapter 2 x Pressure Distribution in a Fluid 89...

  7. air-water cross flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HOT WATER & POOL REQUIREMENTS CEC-MECH-2C (Revised 0809) CALIFORNIA ENERGY COMMISSION WATER SIDE SYSTEM REQUIREMENTS (Part 2 First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12...

  8. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10T23:59:59.000Z

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called ôShockley-Queisserö limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates ôhotö charge carriers that quickly ôcoolö to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a ôphonon bottleneckö wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  9. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [USDOE Morgantown Energy Technology Center, WV (United States)

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  10. Small-scale AFBC hot air gas turbine power cycle

    SciTech Connect (OSTI)

    Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1995-12-31T23:59:59.000Z

    The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately} 25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

  11. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect (OSTI)

    Baldwin, D.E.; Cena, R.J.

    1993-12-31T23:59:59.000Z

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  12. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  13. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

    1993-01-01T23:59:59.000Z

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  14. Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin

    E-Print Network [OSTI]

    Craddock, Paul R

    2009-01-01T23:59:59.000Z

    Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back-arc basin ...

  15. Biotic and abiotic interactions of deep-sea hydrothermal vent-endemic fish on the East Pacific Rise

    E-Print Network [OSTI]

    Buckman, Kate Lynn

    2009-01-01T23:59:59.000Z

    A study of the ecology of fish endemic to hydrothermal vents on the East Pacific Rise was undertaken utilizing a variety of techniques, focusing on the bythitid Thermichthys hollisi. Stable isotope and gut content analyses ...

  16. Microbial Manganese(II) oxidation : biogeochemistry of a deep-sea hydrothermal plume, enzymatic mechanism, and genomic perspectives

    E-Print Network [OSTI]

    Dick, Gregory J.

    2006-01-01T23:59:59.000Z

    2738. Cowen J. P. and Bruland K. W. (1985) Metal depositsLanding W. M. and Bruland K. W. (1987) The contrastingopen ocean (Landing and Bruland, 1987) or some hydrothermal

  17. Spatial and temporal population genetics at deep-sea hydrothermal vents along the East Pacific Rise and Galßpagos Rift

    E-Print Network [OSTI]

    Fusaro, Abigail Jean

    2008-01-01T23:59:59.000Z

    Ecological processes at deep-sea hydrothermal vents on fast-spreading mid-ocean ridges are punctuated by frequent physical disturbance. Larval dispersal among disjunct vent sites facilitates the persistence of sessile ...

  18. Kepler constraints on planets near hot Jupiters

    SciTech Connect (OSTI)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01T23:59:59.000Z

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  19. Hot gas filter and system assembly

    DOE Patents [OSTI]

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31T23:59:59.000Z

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  20. Radioactive hot cell access hole decontamination machine

    DOE Patents [OSTI]

    Simpson, William E. (Richland, WA)

    1982-01-01T23:59:59.000Z

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  1. Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!!

    E-Print Network [OSTI]

    Burger, R.

    requirements before a cooling tower is purchased. This relates to the volume of circulating water, hot water temperature on the tower, cold water discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower...

  2. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  3. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  4. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Through a partnership with the Orlando Federal Credit Union (OFCU), OUC also offers a Residential Solar Loan Program to finance the solar hot water system. Customers who choose to finance through...

  5. Water-related constraints to the development of geothermal electric generating stations

    SciTech Connect (OSTI)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01T23:59:59.000Z

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  6. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect (OSTI)

    Wang Ling; Hao Yanjing; Zhao Yan [College of Chemistry, Sichuan University, Chengdu 610064 (China); Lai Qiongyu, E-mail: laiqy5@hotmail.co [College of Chemistry, Sichuan University, Chengdu 610064 (China); Xu Xiaoyun [College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2010-11-15T23:59:59.000Z

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  7. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    SciTech Connect (OSTI)

    Jia, Li-Ping; Zhang, Qiang [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China); Yan, Bing, E-mail: byan@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); State Key Laboratory of Pollution Control and Resource Reuse (Tongji University) (China)

    2014-07-01T23:59:59.000Z

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: Ľ Mixed hydrothermal system H{sub 2}OľOA (EDA)ľO-A(LO-A) is used for synthesis. Ľ Barium rare earth fluoride nanocrystals are synthesized comprehensively. Ľ Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}OľOA (EDA)ľO-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 ░C, 6 h) is lower than those of them using OA (220 ░C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.

  8. Dutch experience with hot windbox repowering

    SciTech Connect (OSTI)

    Ploumen, P.J. [KEMA Nederland B.V., Arnhem (Netherlands); Veenema, J.J. [EPON, Zwolle (Netherlands)

    1995-10-01T23:59:59.000Z

    This paper gives an overview of the options available for repowering existing fossil fuel power plants. It includes an examination of the hot windbox repowering program in the Netherlands. The topics of the paper include efficiency improvement, NO{sub x} emission decrease, power increase, flexibility, and an economic evaluation of repowering.

  9. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  10. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  11. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  12. Hot topics in flavor physics at CDF

    SciTech Connect (OSTI)

    Jun, Soon Yung; /Carnegie Mellon U.

    2005-01-01T23:59:59.000Z

    Hot topics in flavor physics at CDF are reviewed. Selected results of top, beauty, charm physics and exotic states in about 200 pb{sup -1} data collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron are presented.

  13. Development and Analysis of a Sustainable Low Energy House in a Hot and Humid Climate

    E-Print Network [OSTI]

    Chulsukon, P.; Haberl, J. S.; Degelman, L. O.; Sylvester, K. E.

    2002-01-01T23:59:59.000Z

    cooling. In cold-climate countries, electricity is often used for space heating as well. Natural gas is mainly Energy Used in Building Demolition Demolition Removal Energy Used in Building Operation Space Cooling Lighting Equipment Water... Lifetime Building Energy Consumption Figure 1: Lifetime Building Energy Consumption Components for a Typical Residence in Thailand. used for only cooking for hot and humid climates such as Thailand. In cold climates, gas is also used for space...

  14. Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport

    SciTech Connect (OSTI)

    Hardee, H.C.

    1980-09-01T23:59:59.000Z

    A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

  15. The High Albedo of the Hot Jupiter Kepler-7 B

    E-Print Network [OSTI]

    Demory, Brice-Olivier

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric ...

  16. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01T23:59:59.000Z

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  17. Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

  18. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Pressure Temperature Log At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  20. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect (OSTI)

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01T23:59:59.000Z

    Algaeĺs high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.