Sample records for hydropower working group

  1. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  2. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  3. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  4. Huanghe Hydropower Development Co Ltd Yellow River Group | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizon FuelHuaijiInformation Huanghe

  5. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  6. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  7. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  8. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:

  9. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  10. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  11. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  12. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  13. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Environmental Management (EM)

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  14. Federal Utility Partnership Working Group Meeting: Washington...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Utility Partnership Working Group Meeting: Washington Update fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group Meeting:...

  15. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participants Federal Utility Partnership Working Group Participants The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in...

  16. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility...

  17. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  18. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  19. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  20. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  1. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  2. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  3. Fusion Technology Working Group Presented by

    E-Print Network [OSTI]

    Abdou, Mohamed

    Snowmass Fusion Technology Working Group Summary Presented by M. Abdou, S. Milora Snowmass July 23, 1999 #12;Technology Working Group Subgroup # 1 Subgroup # 2 Solid Walls Ulrickson / Mattas Liquid Walls / Ying Chamber Technology Abdou / Ulrickson Heating/CD/Fueling Swain / Temkin Magnets Schultz / Woolley

  4. First-ever Hydropower Market Report Covers Hydropower Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    website. Addthis Related Articles First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure Hydropower Still in the Mix First-Ever Demonstration of Quantum...

  5. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  6. Hydropower Potential Screening Study

    E-Print Network [OSTI]

    Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

  7. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom

  8. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11

  9. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom7-29-11Rev

  10. RISK ASSESSMENT TECHNICAL EXPERT WORKING GROUP

    Broader source: Energy.gov [DOE]

    The Risk Assessment Technical Expert Working Group (RWG) is established to assist the Department of Energy (DOE) with the appropriate and effective use of quantitative risk assessment in nuclear...

  11. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...

  12. Energy Management Working Group: Accelerating Energy Management 

    E-Print Network [OSTI]

    Scheihing, P.

    2014-01-01T23:59:59.000Z

    Countries participating in the Global Superior Energy Performance (GSEP) Energy Management Working Group (EMWG) are leveraging their resources and taking collective action to strengthen national and international efforts to facilitate the adoption...

  13. Federal Utility Partnership Working Group Seminar Agenda

    Office of Environmental Management (EM)

    Federal Utility Partnership Working Group Seminar November 5-6, 2014 Cape Canaveral, FL Hosted by: Florida Power & Light Monday, November 3 9:00 am - 4:30 pm Advanced UESC...

  14. Informal Assessment Work Group Meeting Notes

    E-Print Network [OSTI]

    O'Laughlin, Jay

    Informal Assessment Work Group Meeting Notes November 15, 2006 Present: Rula Awwad-Rafferty, Doug Baker, Dick Battaglia, Ben Beard, Suzi Billington, Alton Campbell, Jeanne Christiansen, Gail Eckwright is completed for all programs by May 2007? (Can we do the level of work needed in this time period?) Doug

  15. Military Munitions Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  16. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24T23:59:59.000Z

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  17. Energy 101: Hydropower

    SciTech Connect (OSTI)

    None

    2013-04-01T23:59:59.000Z

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  18. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  19. Locally Led Conservation The Local Work Group

    E-Print Network [OSTI]

    Grants ­ Conservation Stewardship Program ­ Environmental Quality Incentive Program ­ Farm & Ranch Lands1 Locally Led Conservation & The Local Work Group Mark Habiger NRCS #12;2 What Is "Locally Led Conservation"? · Community Stakeholders ­ 1. Assessing their natural resource conservation needs ­ 2. Setting

  20. DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    Laporte, TX to near Lake Charles, LA. This system has approximately 228 miles of DOT regulated H2 pipeline of DOT regulated H2 pipeline. Portions of this system operating since early 1983. Pipeline sizeDOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline

  1. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01T23:59:59.000Z

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  2. Federal ESPC Steering Committee Working Group Charter ESPC Data Working Group (WG)

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Federal ESPC Steering Committee Working Group Charter Name ESPC Data Working Group (WG) Problem information on their ESPC projects, differing reporting requirements and definitions of terms have made underscored the need to make ESPC-related data more accurate and complete, so that it can be used more

  3. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups Routing

  4. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic Groups

  5. Energy Management Working Group: Accelerating Energy Management

    E-Print Network [OSTI]

    Scheihing, P.

    2014-01-01T23:59:59.000Z

    for Standardization (ISO) published the ISO 50001 energy management standard in 2011. ISO 50001 provides industrial companies with guidelines for integrating energy efficiency into their management practices— including fine-tuning production processes... efficiency. GSEP’s Energy Management Working Group (EMWG) advocates the increased adoption of EnMS or ISO 50001 in industry and commercial buildings. It goal is to accelerate the adoption and use of energy management systems in industrial facilities...

  6. TEC Working Group Topic Groups Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic

  7. TEC Working Group Topic Groups Tribal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group TopicDepartmentTribal

  8. Federal Utility Partnership Working Group Overview (FUPWG) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  9. Photoelectrochemical Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part BPhotoelectrochemical Working Group

  10. Infrared Thermography (IRT) Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado...

  11. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Energy Savers [EERE]

    4-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document...

  12. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anlaysis Working Group Meeting, December 12, 2006 Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 This document provides a summary of the Hydrogen...

  13. Hydrgoen Storage Systems Analysis Working Group Meeting Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Summary report from the May 17, 2007...

  14. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  15. Council's Regional Hydropower Potential Scoping

    E-Print Network [OSTI]

    Council's Regional Hydropower Potential Scoping Study Generating Resources Advisory Committee 11 to determine potential, and draw conclusions Determine if realistic, reasonable assumption for hydropower at existing non-powered dams, and upgrades at existing hydropower facilities #12;Questions Asked Can

  16. Evaluating New Hydropower Resources

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability. Although the NSD assessment did not make...

  17. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Lab. December 16, 2014 Flexible hydropower: boosting energy Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy source when water levels are...

  18. Working Group Report: Lattice Field Theory

    SciTech Connect (OSTI)

    Blum, T.; et al.,

    2013-10-22T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  19. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  20. EFCOG Work Management Sub-Working Group Session on Overview and...

    Broader source: Energy.gov (indexed) [DOE]

    EFCOG Work Management Sub-Working Group Session on Overview and Results from WP&C Assist Visits across Complex EFCOG Work Management Sub-Working Group Session on Overview and...

  1. THE HIGGS WORKING GROUP: SUMMARY REPORT.

    SciTech Connect (OSTI)

    DAWSON, S.; ET AL.

    2005-08-01T23:59:59.000Z

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.

  2. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  3. T2 working group summary report

    SciTech Connect (OSTI)

    S. Caspi et al.

    2002-11-19T23:59:59.000Z

    The T2 Working Group has reviewed and discussed the issues and challenges of a wide range of magnet technologies: superconducting magnets using NbTi, Nb{sub 3}Sn and HTS conductor with fields ranging from 2-15 T and permanent magnets up to 4 T. The development time of these technologies varies significantly, but all are considered viable, providing an unprecedented variety of choice that can be determined by a balance of cost and application requirements. One of the most significant advances since Snowmass '96 is the increased development and utilization of Nb{sub 3}Sn. All of the current US magnet programs (BNL, FNAL, LBNL, and Texas A and M) have programs using Nb{sub 3}Sn. There are also active programs in HTS development at BNL and LBNL. A DOE/HEP sponsored program to increase the performance and reduce the cost of Nb{sub 3}Sn is in its second year. The program has already made significant advances. The current funding for this program is $500k/year and an increase to $2M has been proposed for FY02.

  4. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  5. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  6. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  7. Proposed Agenda for High T Working Group Meeting: Paris

    Broader source: Energy.gov [DOE]

    Proposed agenda for the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, Thursday, May 26,2005.

  8. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  9. Federal Utility Partnership Working Group: Welcome to Portland

    Broader source: Energy.gov [DOE]

    Presentation covers welcoming attendees to Portland at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  10. International Working Group for New Virtual Reality Applications in Architecture

    E-Print Network [OSTI]

    's developed VR applications in architecture. Group members come from eight universities around the worldWORLD8 International Working Group for New Virtual Reality Applications in Architecture YOSHIHIRO the activities of World8, an international working group on virtual reality (VR), and demonstrates the group

  11. Hydrogen Storage Workshop Advanced Concepts Working Group

    E-Print Network [OSTI]

    / Current Status · Aerogels are the scaffold; template with organic functional groups; physisorption, acid benign ­ Inexpensive #12;Self-Assembled Nanocomposites ­ R&D Needs 1. Studying silica aerogels 2. Modifying aerogels 3. Theoretical Modeling - various chemical structures / materials 4. Functionalization

  12. September 2012, Work Force Retention Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory10MEASUREMENTSensors,8, 200810Work Force

  13. Work Force Retention Work Group Charter | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|ofEvents »SSL BasicsKawtarSue CangeWendeWoodWork Force

  14. Water Electrolysis Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFTEnergy ReviewInnovativeThe

  15. TEC Working Group Topic Groups Security Meeting Summaries | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartmentEnergy Meeting Summaries TEC Working

  16. Catalysis Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshuaThis work plan proposesThe

  17. Transuranic Waste Transportation Working Group Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package ReportsSouthern States Energy

  18. Research Highlights Sorted by Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMaking SenseTitleWorking

  19. Editorial: Time for green certification for all hydropower?

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.

    2012-04-10T23:59:59.000Z

    While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

  20. Meetings of the Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) meets twice per year to share success stories, information on Federal Energy Management Program activities and other business.

  1. 2014-06-09 Issuance: Regional Standards Enforcement Working Group...

    Energy Savers [EERE]

    ISSUANCE 2015-06-30: Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish the Central Air Conditioners and Heat Pumps Working Group...

  2. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. ssawgsummaryreport0608.pdf More Documents & Publications Hydrgoen Storage...

  3. Federal Utility Partnership Working Group Meeting Financing Session Compilation

    Broader source: Energy.gov [DOE]

    Presentation covers the Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in Biloxi, Mississippi.

  4. assessment working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 47 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  5. airp work group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 35 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  6. analysis working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 48 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  7. aer working group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 37 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

  8. Webinar: ASRAC Commercial/Industrial Pumps Working Group

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the Appliance Standards and Rulemaking Federal Advisory Committee's (ASRAC) Commercial and Industrial Pumps Working Group. For more information,...

  9. Federal Utility Partnership Working Group Meeting Financing Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Session Compilation Federal Utility Partnership Working Group Meeting Financing Session Compilation Presentation covers the Space Coast Next Generation Solar Energy...

  10. LPCC MB&UE Working Group CERN February 7, 2011

    E-Print Network [OSTI]

    Field, Richard

    of 2! Jan Fiete Grosse-Oetringhaus LPCC MB&UE Meeting September 2010 #12;LPCC MB&UE Working Group CERN

  11. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National...

  12. International Technical Working Group Round Robin Tests

    SciTech Connect (OSTI)

    Dudder, Gordon B.; Hanlen, Richard C.; Herbillion, Georges M.

    2003-02-01T23:59:59.000Z

    The goal of nuclear forensics is to develop a preferred approach to support illicit trafficking investigations. This approach must be widely understood and accepted as credible. The principal objectives of the Round Robin Tests are to prioritize forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The HEU (Highly Enriched Uranium) Round Robin, and previous Plutonium Round Robin, have made tremendous contributions to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the nine participating internal laboratories. A prioritized list of techniques and methods has been developed based on this exercise. Current work is focused on the extent to which the techniques and methods can be generalized. The HEU Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability is combined with the appropriate knowledge/database, it results in a significant capability to attribute the source of the materials to a specific process or facility. A number of shortfalls were also identified in the current capabilities including procedures for non-nuclear forensics and the lack of a comprehensive network of data/knowledge bases. The results of the Round Robin will be used to develop guidelines or a ''recommended protocol'' to be made available to the interested authorities and countries to use in real cases.

  13. Summary of the TeV33 working group

    SciTech Connect (OSTI)

    Bagley, P.P.; Bieniosek, F.M.; Colestock, P. [and others

    1996-10-01T23:59:59.000Z

    This summary of the TeV33 working group at Snowmass reports on work in the areas of Tevatron store parameters, the beam-beam interaction, Main Injector intensity (slip stacking), antiproton production, and electron cooling.

  14. Virtual Hydropower Prospecting – Searching for Hydropower Gold

    SciTech Connect (OSTI)

    Douglas G. Hall

    2007-12-01T23:59:59.000Z

    The availability of geographic information system (GIS) tools and analytical modeling of natural streams has made it possible to perform virtual “river inventories” that were formerly done using topographic maps, stream flow estimates, and physical reconnaissance. The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) virtually assessed the gross power potential of all natural streams in the United States of America and identified feasible potential project sites and estimated their developable power potential. The results of this virtual prospecting have been incorporated into a GIS application called the Virtual Hydropower Prospector that is available for public use on the Internet.

  15. Climate change impacts on financial risk in hydropower projects 

    E-Print Network [OSTI]

    Harrison, Gareth P; Whittington, Bert; Wallace, Robin

    the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

  16. Summary Report of the Energy Issues Working Group

    E-Print Network [OSTI]

    Information Agency Annual Energy Outlook 1999. #12;Fusion Power Plant Attractiveness, Technical RiskSummary Report of the Energy Issues Working Group Organizer: Farrokh Najmabadi Covenors: Jeffrey Sauthoff 1999 Fusion Summer Study July 12-23, 1999, Snowmass, CO Energy Working Group Web Site: http

  17. Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices

    E-Print Network [OSTI]

    Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting

  18. Presentation of progress of work in the "Accident Analysis" working group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Presentation of progress of work in the "Accident Analysis" working group J.P. PINEAU INERIS Summary The "Accident Analysis" - AA - working group, initiated in January 1993, was at the origin of this investigation were presented at the Autumn 1994 ESReDA Seminar on Accident Analysis. A second step of the AA

  19. Working Group 5 Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut

    E-Print Network [OSTI]

    Spagnolo, Filippo

    Working Group 5 ­ Applying Mathematics in Realistic Situations Group Leaders: Ivan Meznik & Enrica Lemut Seven papers have been presented and discussed out of the 9 announced and the 8 included people presenting a contribution participated to all the Working Group sessions; also other people

  20. DOE Hydropower Program Annual Report for FY 2002

    SciTech Connect (OSTI)

    Garold L. Sommers; R. T. Hunt

    2003-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  1. STAFFREPORT Prepared for the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

  2. Microsoft PowerPoint - DEC1387487090408 OECM Working Group April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Team MA-50 DOEOECM 1 OECM PARS II Working Group: OA Module April 9, 2009 Created by: EESDekker PARS II Team Agenda * Obtain Consensus On Data Elements That Appear On...

  3. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  4. ASRAC Fans and Blower Working Group Creation Notice of Intent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consensus on the 7 terms of a proposed rule. Representation on the advisory committee or working group may be direct; that is, each member may represent a specific interest, or...

  5. Catalysis Working Group Kick-Off Meeting Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  6. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  7. NuFact'03 machine working group summary

    SciTech Connect (OSTI)

    T.R. Edgecock; S. Machida; R.A. Rimmer

    2004-10-01T23:59:59.000Z

    The machine working group sessions at NuFact workshops have always been characterized by the presentation and discussion of both new ideas and the developments in existing concepts and by lively debate. The machine sessions at NuFact'03 were no exception to this. In this article, we will try and summarize the work presented and the discussion that took place.

  8. Work and Energy Simulation Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    Work and Energy Simulation Name_______________________ Lab Worksheet Group member names://phet.colorado.edu, in a browser and click on the Go to the simulations button. Open Work, Energy, and Power on the left. This lab uses three of the simulations on this page, Masses and Springs, Energy Skate Park, and The Ramp. I

  9. A New Vision for United States Hydropower

    Broader source: Energy.gov [DOE]

    Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range National Hydropower Vision.

  10. Relative projective cover works for Broue's abelian defect group

    E-Print Network [OSTI]

    Thévenaz, Jacques

    University, Chiba, Japan Tue. 22 June, 2010 Joint work with J¨urgen M¨uller and Felix Noeske Brou´e's abelian that A is a block algebra of OG with a defect group P and that AN is a block algebra of ONG(P) which is the Brauer´e's abelian defect group conjecture holds for all primes p and for all block algebras of OG if G = Co3, where

  11. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »TraveleBooksMathematicianFlexible hydropower:

  12. Hydropower Potential Scoping Study Gauging Interest

    E-Print Network [OSTI]

    6/19/2013 1 Hydropower Potential Scoping Study ­ Gauging Interest Generating Resources Advisory and associated technologies. ­ Hydropower upgrades, new hydropower projects 2 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan

  13. Museum group works against cyberbullying By Abby Stewart

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Museum group works against cyberbullying By Abby Stewart StarNews Correspondent Published: Monday Month, and to recognize that, local students are participating in The Burnett-Eaton Museum Foundation-Eaton Museum Foundation. Winners of the contest will be announced at a program at 6:30 p.m. Saturday, Oct. 30

  14. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  15. Federal Utility Partnership Working Group Spring 2009 Meeting Welcome

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Federal Energy Management Program (FEMP) mission and services; Energy Independence and Security Act (EISA) Section 432 guidance; and American Reinvestment and Recovery Act (ARRA).

  16. Catalyst Working Group Kick-off Meeting: Personal Commentary

    Broader source: Energy.gov [DOE]

    Personal commentary on future directions in fuel cell electrocatalysis, presented by Mark Debe, 3M, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  17. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  18. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Pumped Storage Hydropower...

  19. Hydropower and Ocean Energy Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Photo of water flowing from several openings in a hydropower dam....

  20. PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION WORKING GROUP: METHODOLOGY AND APPLICATIONS

    SciTech Connect (OSTI)

    Bari R. A.; Whitlock, J.; Therios, I.U.; Peterson, P.F.

    2012-11-14T23:59:59.000Z

    We summarize the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection (PR and PP) of Generation IV nuclear energy systems. We intend the results of the evaluations performed with the methodology for three types of users: system designers, program policy makers, and external stakeholders. The PR and PP Working Group developed the methodology through a series of demonstration and case studies. Over the past few years various national and international groups have applied the methodology to nuclear energy system designs as well as to developing approaches to advanced safeguards.

  1. HEP-FCE Working Group on Libraries and Tools

    E-Print Network [OSTI]

    Anders Borgland; Peter Elmer; Michael Kirby; Simon Patton; Maxim Potekhin; Brett Viren; Brian Yanny

    2015-06-03T23:59:59.000Z

    This is a report from the Libraries and Tools Working Group of the High Energy Physics Forum for Computational Excellence. It presents the vision of the working group for how the HEP software community may organize and be supported in order to more efficiently share and develop common software libraries and tools across the world's diverse set of HEP experiments. It gives prioritized recommendations for achieving this goal and provides a survey of a select number of areas in the current HEP software library and tools landscape. The survey identifies aspects which support this goal and areas with opportunities for improvements. The survey covers event processing software frameworks, software development, data management, workflow and workload management, geometry information management and conditions databases.

  2. HEP-FCE Working Group on Libraries and Tools

    E-Print Network [OSTI]

    Borgland, Anders; Kirby, Michael; Patton, Simon; Potekhin, Maxim; Viren, Brett; Yanny, Brian

    2015-01-01T23:59:59.000Z

    This is a report from the Libraries and Tools Working Group of the High Energy Physics Forum for Computational Excellence. It presents the vision of the working group for how the HEP software community may organize and be supported in order to more efficiently share and develop common software libraries and tools across the world's diverse set of HEP experiments. It gives prioritized recommendations for achieving this goal and provides a survey of a select number of areas in the current HEP software library and tools landscape. The survey identifies aspects which support this goal and areas with opportunities for improvements. The survey covers event processing software frameworks, software development, data management, workflow and workload management, geometry information management and conditions databases.

  3. Transport Modeling Working Group Meeting Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmissionModeling Working Group

  4. Summary of the particle physics and technology working group

    SciTech Connect (OSTI)

    Stephan Lammel et al.

    2002-12-10T23:59:59.000Z

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  5. Preliminary results of the APAC spills working group

    SciTech Connect (OSTI)

    Brereton, S.; Hesse, D.; kalinich, D.; Lazaro, M.; Mubayi, V.; Shinn, J.

    1996-04-01T23:59:59.000Z

    The Spills Working Group is one of 6 working groups under the DOE-DP Accident Phenomenology and Consequence (APAC) methodology evaluation program. Objectives are to assess methodologies available in this area, evaluate their adequacy for accident analysis at DOE facilities, identify development needs, and define standard practices to be followed in the analyses supporting facility safety basis documentation. The group focused on methodologies for estimating 4 types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills. Computer models were identified with capabilities for quantifying release rates or released amounts from spills, and a set of sample test problems was established for evaluating a specific model for some common or probable accident release scenarios. The group agreed on a set of recommended computer codes which are classified according to spill type and hazard category. Code results for a given problem varied by up to an order of magnitude; this is attributed to differences in how the physics and thermodynamics of the problems were treated by the models.

  6. HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2 ABSTRACT: Hydropower represents impacts to natural and human communities, future long-term fixed licenses of hydropower operation. (KEY TERMS: climate change; environmental regulations; hydropower; relicensing; water law; water policy

  7. Challenges and Progress Toward a Commercial Kinetic Hydropower System

    E-Print Network [OSTI]

    Walter, M.Todd

    Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

  8. LEDSGP/about/working-groups | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎ | about Jump to: navigation, search

  9. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel forShale_Gas.pdfUS-EU-Japan Working Group on

  10. Work Group Leadership Meetings: Transition Elements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavita RaviValerie ReedWork Group Leadership

  11. Summary of working group g: beam material interaction

    SciTech Connect (OSTI)

    Kiselev, D.; /PSI, Villigen; Mokhov, N.V.; /Fermilab; Schmidt, R.; /CERN

    2010-11-01T23:59:59.000Z

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  12. Chemical Safety Vulnerability Working Group report. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  13. November 13 - 15, 2012 HSS Work Group Leadership Meeting Summary - Work Force Retention

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work Force Retention Work Group

  14. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    none,

    2011-04-01T23:59:59.000Z

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  15. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom September

  16. September 8, 2011, HSS/Union Focus Group Work Group Telecom - Meeting Overview and Action Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union Work Group Telecom September

  17. TEC Working Group Topic Groups Section 180(c) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working Group Topic GroupsSection

  18. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  19. Minutes of the October 2008 Meeting of the High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    Meeting minutes of the High Temperature Membrane Working Group from October 16, 2008, in Honolulu, Hawaii.

  20. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  1. Hydropower '93: The year in review

    SciTech Connect (OSTI)

    Barnes, M.J.; Smith-Noggle, L.

    1994-01-01T23:59:59.000Z

    During 1993, 43 hydropower projects began operating in North America, adding 970 MW of hydroelectric capacity to electrical grids in the US and Canada. Owners include the US federal government, provincially owned Canadian utilities, municipalities, irrigation and water conservation groups, rural electric cooperatives, and private developers. Taken together, these new projects offer a telling commentary on trends and issues in the North American hydroelectric industry. A pervasive theme among the 1993 projects is one of making the most of what's available; that is, developing new hydropower capacity at existing structures - existing dams, irrigation canals, water supply conduits. Another is attention to environmental protection and incorporation of power facilities into the natural surroundings. A third is blending the old with the new through redevelopment of abandoned sites and refurbishing used equipment. In addition to these themes, another observation can be made: there is an abundance of diversity in hydro development in North America-diversity in approach, diversity in equipment, and diversity in the developers themselves.

  2. How Hydropower Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star| DepartmentHow Gas Turbine

  3. Working Groups Collaborate on U.S. Virgin Islands Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map A diverse set...

  4. 12010-10-21 ESDSWG -Technolgy Infusion Working Group Technology Infusion Process

    E-Print Network [OSTI]

    Christian, Eric

    12010-10-21 ESDSWG - Technolgy Infusion Working Group Technology Infusion Process Steve Olding 9th Infusion Working Group Technology Infusion Process 2009 Stakeholder needs identification Science needs End technologies Candidate technologies Known infusion barriers Infusion planning Technology matching Identified

  5. ORIGINAL ARTICLE Hydropower development in the lower Mekong basin

    E-Print Network [OSTI]

    Vermont, University of

    ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

  6. Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES

    E-Print Network [OSTI]

    Lund, Jay R.

    Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

  7. Interagency Sustainability Working Group: Update Report; December 2009, Federal Energy Management Program (FEMP) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    December 2009 update report offered by the Interagency Sustainability Working Group (ISWG). This report is updated bi-annually.

  8. New Stream-Reach Hydropower Development

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability. Although the NSD assessment did not make...

  9. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  10. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States, and it continues to advance with new developments, including "powering" dams that currently do not generate electricity. Making Hydropower More Eco-Friendly...

  11. Hydropower and Ocean Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

  12. INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste (which addresses tribal environmental issues) o How to encourage DOE to develop a technology assessment group focused on biomass? o Role of U.S. Department of Agriculture...

  13. Doing Ethos-Work: Exploring Group Ethos Among Indie Musicians

    E-Print Network [OSTI]

    Warnock, Jon D.

    2010-04-26T23:59:59.000Z

    Utilizing the perspectives of Goffman, Aristotle and Burke this study investigated the concepts of ethos and group ethos in three case studies of indie music artists as discursive performances of character in action through ...

  14. Group work with families of nursing home residents 

    E-Print Network [OSTI]

    Duncan, Richard Tillett

    1985-01-01T23:59:59.000Z

    the counseling orientation. Both formats have been offered to families of nursing home residents, but it is not known if one format offers more positive results than the other, or if there is any difference. The study attempts to measure results in terms... consist. Thus, one of the goals of this study was to eventually improve the programs and services which nursing homes provide. By observing and recording the development of each group and by measuring each group's effectiveness in the terms described...

  15. ORNL scientists generate landmark DOE hydropower report | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 ORNL scientists generate landmark DOE hydropower report The 2014 Hydropower Market Report provides comprehensive data and trends useful for...

  16. Los Alamos County Completes Abiquiu Hydropower Project, Bringing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy...

  17. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  18. Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization

    E-Print Network [OSTI]

    Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

  19. Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower...

    Office of Environmental Management (EM)

    Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower Report (June 2012) Comparison The rehab study is compared to the 11th Circuit Hydropower Report for capacity...

  20. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  1. Memorandum of Understanding for Hydropower Two Year Progress...

    Broader source: Energy.gov (indexed) [DOE]

    Memorandum of Understanding for Hydropower Two Year Progress Report Memorandum of Understanding for Hydropower Two Year Progress Report On March 24, 2010, the Department of the...

  2. Laboratory Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

  3. History of Hydropower

    Broader source: Energy.gov [DOE]

    Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour more than 2,000 years ago. The evolution of the modern...

  4. Considering Climate Change in Hydropower Relicensing

    E-Print Network [OSTI]

    for many purposes including drinking, manufacturing, and energy production. In California due to climate of hydropower units used for energy production. Hydropower is an important renewable energy, supplying including energy production and other human and environmental water use impacts. · Analyze model results

  5. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and

  6. Workforce Retention Work Group Status Overview - July 2012 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms.12.1AJanuary 2013,This report

  7. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  8. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  9. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  10. U.S. Hydropower Resource Assessment - Georgia

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

  11. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  12. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY ASSURANCE WORKING

  13. July 2012, 10 CFR 851 Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About10 CFR 851 Work

  14. Catalysis Working Group Meeting: June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists,CaseyCatalysis Working

  15. Working Group Reports A Short-Wave Radiometer Array Across

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:9

  16. Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  17. State and Tribal Government Working Group Visits the Fernald Preserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShotBelowTheThe documentLessonsReview |out

  18. Metadata Working Group Activity Summary for 2009-2010 (Prepared by Steven Folsom, Chair of Metadata Working Group)

    E-Print Network [OSTI]

    Schweik, Charles M.

    Service - Inform the process for inclusion of local digital collections in a discovery service platform of metadata for digital objects within the UMass Libraries. The survey was sent to all Department Heads and a small number of other librarians who are known to work with digital objects and metadata. The questions

  19. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  20. The ChiCI Group This paper describes the work, the vision, and the

    E-Print Network [OSTI]

    welcomes associate members from similar research groups around the globe. Eight of the full membersThe ChiCI Group Abstract This paper describes the work, the vision, and the approach of the Child Computer Interaction (ChiCI) group at the University of Central Lancashire in the UK. This group, formed

  1. 2015-03-26 Issuance: Fans and Blowers ASRAC Working Group; Notice...

    Office of Environmental Management (EM)

    Group Notice of Intent.pdf More Documents & Publications 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group 2014-06-09...

  2. Risk Assessment Technical Expert Working Group (RWG) Conference Call Minutes, March 8, 2010

    Broader source: Energy.gov [DOE]

    Risk Assessment Technical Experts Working Group Charter – The steeringcommittee discussed the draft charter. Two recommended changes were agreed upon:• A sentence will be added to identify that the...

  3. Network Working Group S. Bryant, Ed. Request for Comments: 3985 Cisco Systems

    E-Print Network [OSTI]

    Wood, Lloyd

    Network Working Group S. Bryant, Ed. Request for Comments: 3985 Cisco Systems Category . . . . . . . . . . . . . . . . . . . . . . . . . 17 5. PW Encapsulation. . . . . . . . . . . . . . . . . . . . . . . 18 Bryant & Pate Standards Track

  4. Risk Assessment Technical Expert Working Group (RWG)Conference Call Minutes, February 20, 2010

    Broader source: Energy.gov [DOE]

    Risk Assessment Technical Experts Working Group Charter – discussed whoshould sign and at what level the charter should be authorized. It was concluded thatthe Under Secretaries as the Central...

  5. High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006

    Broader source: Energy.gov [DOE]

    These meeting minutes provide information about the High Temperature Membrane Working Group meeting on September 14, 2006 in San Francisco, Ca.

  6. Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's

    E-Print Network [OSTI]

    Harrison, Gareth

    Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

  7. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  8. May 21, 2012, Office of Health, Safety and Security (HSS) Focus Group Work Force Retention Work Group Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartmentJune 29,05-21-12Work Force

  9. The SM and NLO Multileg Working Group: Summary Report

    SciTech Connect (OSTI)

    Andersen, J.R.; Archibald, J.; Badger, S.; Ball, R.D.; Bevilacqua, G.; Bierenbaum, I.; Binoth, T.; Boudjema, F.; Boughezal, R.; Bredenstein, A.; Britto, R.; Campanelli, M.; Campbell, J.; Carminati, L.; Chachamis, G.; Ciulli, V.; Cullen, G.; Czakon, M.; Del Debbio, L.; Denner, A.; Dissertori, G.; /Edinburgh U. /Zurich, ETH /Michigan State U. /CAFPE, Granada /CERN /Durham U., IPPP /DESY, Zeuthen /Democritos Nucl. Res. Ctr. /Valencia U., IFIC /Annecy, LAPTH /Zurich U. /KEK, Tsukuba /Saclay, SPhT /University Coll. London /Fermilab /INFN, Milan /Milan U. /PSI, Villigen /Florence U. /INFN, Florence /RWTH Aachen U.

    2012-04-10T23:59:59.000Z

    After years of waiting, and after six Les Houches workshops, the era of LHC running is finally upon us, albeit at a lower initial center-of-mass energy than originally planned. Thus, there has been a great sense of anticipation from both the experimental and theoretical communities. The last two years, in particular, have seen great productivity in the area of multi-parton calculations at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO), and this productivity is reflected in the proceedings of the NLM group. Both religions, Feynmanians and Unitarians, as well as agnostic experimenters, were well-represented in both the discussions at Les Houches, and in the contributions to the write-up. Next-to-leading order (NLO) is the first order at which the normalization, and in some cases the shape, of perturbative cross sections can be considered reliable. This can be especially true when probing extreme kinematic regions, as for example with boosted Higgs searches considered in several of the contributions to this writeup. A full understanding for both standard model and beyond the standard model physics at the LHC requires the development of fast, reliable programs for the calculation of multi-parton final states at NLO. There have been many advances in the development of NLO techniques, standardization and automation for such processes and this is reflected in the contributions to the first section of this writeup. Many calculations have previously been performed with the aid of semi-numerical techniques. Such techniques, although retaining the desired accuracy, lead to codes which are slow to run. Advances in the calculation of compact analytic expressions for Higgs + 2 jets have resulted in the development of much faster codes, which extend the phenomenology that can be conducted, as well as making the code available to the public for the first time. A prioritized list of NLO cross sections was assembled at Les Houches in 2005 and added to in 2007. This list includes cross sections which are experimentally important, and which are theoretically feasible (if difficult) to calculate. Basically all 2-3 cross sections of interest have been calculated, with the frontier now extending to 2 {yields} 4 calculations. Often these calculations exist only as private codes. Since 2007, two additional calculations have been completed: t{bar t}b{bar b} and W+3 jets, reflecting the advance of the NLO technology to 2 {yields} 4 processes. In addition, the cross section for b{bar b}b{bar b} has been calculated for the q{bar q} initial state with the gg initial state calculation in progress. Final states of such complexity usually lead to multi-scale problems, and the correct choice of scales to use can be problematic not only at LO, but also at NLO. The size of the higher order corrections and of the residual scale dependence at NLOcan depend strongly on whether the considered cross section is inclusive, or whether a jet veto cut has been applied. Depending on the process, dramatically different behavior can be observed upon the application of a jet veto. There is a trade-off between suppressing the NLO cross section and increasing the perturbative uncertainty, with application of a jet veto sometimes destroying the cancellation between infra-red logs of real and virtual origin, and sometimes just suppressing large (and very scale-sensitive) tree-level contributions. So far, there is no general rule predicting the type of behavior to be expected, but this is an important matter for further investigation. From the experimental side, an addition to the above wish-list that will be crucial is the determination of the accuracy to which each of the calculations needs to be known. This is clearly related to the experimental accuracy at which the cross sections can be measured at the LHC, and can determine, for example, for what processes it may be necessary to calculate electo-weak corrections, in addition to the higher order QCD corrections. On the theoretical side, it would also be interesting to categorize

  10. CCSM Polar Climate Working Group The Village at Breckenridge, Aspen/Bighorn Rooms

    E-Print Network [OSTI]

    CCSM Polar Climate Working Group AGENDA The Village at Breckenridge, Aspen/Bighorn Rooms Wednesday (Aspen/Bighorn Rooms) Focus: Abrupt Climate Change 1:30 PM-1:40 PM Opening Statement (M. Holland and Z Polar Climate Working Group Meeting (Aspen/Bighorn Rooms) Focus: Model Intercomparison Studies 3:30 PM-3

  11. Lushui Jiansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,Lushui Jiansheng Hydropower

  12. Lushui Jinman River Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,Lushui Jiansheng HydropowerLushui

  13. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories' Defense

  14. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  15. Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation

    SciTech Connect (OSTI)

    Merrill, R.D.

    1995-02-01T23:59:59.000Z

    The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

  16. July 10-11, 2012, HSS Focus Group Training Work Group - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About UsHSS Focus Group

  17. July 10-11, 2012, HSS Focus Group Training Work Group - Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |Julian Wong About UsHSS Focus Group

  18. Chair, CTBT working group B Radionuclide Expert Group and the U.S.

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear Security AdministrationRadionuclide

  19. TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup | Department ofGroup

  20. April 24, 2012, HSS Focus Group Training Working Group (TWG) Meeting - Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagementOpportunityUse23Group Charter

  1. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  2. Report of the Finance Cost Reduction Working Group to the Federal ESPC Steering Committee

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Report of the Finance Cost Reduction Working Group to the Federal ESPC Steering Committee Reducing Financing Costs for Federal ESPCs Federal Energy Management Program Energy Savings Performance Contracting 2. REQUIREMENTS FOR COMPETITIVE FINANCING ACQUISITION .................................7 2.1 Use

  3. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper

    Broader source: Energy.gov [DOE]

    Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

  4. Lijiang Nengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang RiverLijiang Nengda Hydropower

  5. Linjiawu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City YujiangLincolnLinjiawu Hydropower

  6. Longsheng Gezu Autonomous County Dayun Hydropower Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformation Dayun Hydropower Co Ltd Jump

  7. Miyi Chengnan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi:Miyi Chengnan Hydropower

  8. Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmannScoringHongyuan Hydropower

  9. The FERC EBB working group: Put a fork in us, we`re done

    SciTech Connect (OSTI)

    White, B.

    1995-12-31T23:59:59.000Z

    The Federal Energy Regulatory Commission`s (FERC) Order 636 required interstate pipelines to set up electronic bulletin boards for trading released capacity. Their goal was to foster an efficient and competitive secondary market for pipeline capacity. Five working groups were created to address the issues of core capacity, operationally available capacity, customer specific gas flows, communications protocols/operational logistics, and common codes. This paper describes the scope of the working groups and their accomplishments.

  10. Energy Department Making Hydropower More Eco-Friendly

    Broader source: Energy.gov [DOE]

    Hydropower has long provided a flexible, low-cost, and renewable source of power for the United States—since the 1800s, in fact. Even today, in fact, hydropower accounted for roughly half of the...

  11. President Obama Signs Two Bills to Boost Small Hydropower Projects...

    Broader source: Energy.gov (indexed) [DOE]

    President Obama on August 9 signed into law two bills aimed at boosting development of small U.S. hydropower projects. The bills, H.R. 267, the Hydropower Regulatory Efficiency...

  12. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Energy Savers [EERE]

    to Advance Low-Impact Hydropower Technologies Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies March 18, 2015 - 11:27am Addthis On March 18, EERE's Water...

  13. 1 INTRODUCTION High-head storage hydropower plants operate

    E-Print Network [OSTI]

    Floreano, Dario

    1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

  14. Research Article Effects of alpine hydropower operations on primary production

    E-Print Network [OSTI]

    Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

  15. Vulnerability of Hydropower Projects to Climate Change Revision: 20th

    E-Print Network [OSTI]

    Harrison, Gareth

    Vulnerability of Hydropower Projects to Climate Change Revision: 20th December 2001 Dr Gareth P and increased use of renewable sources including hydropower. Paradoxically, climate change itself may alter role in whether emissions cuts are achieved. 2. Climate Change and Hydropower A rising demand

  16. forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

  17. Lessons learned from facilitating the state and tribal government working group

    SciTech Connect (OSTI)

    Kurstedt, H.A. Jr.

    1994-12-31T23:59:59.000Z

    Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.

  18. Closing plenary summary of working group 4 instrumentation and controls for ERL2011

    SciTech Connect (OSTI)

    Gassner, D.; Obina, T.

    2011-10-16T23:59:59.000Z

    Working group 4 was charged with presentations and discussions on instrumentation and controls with regards to Energy Recovery Linacs (ERL). There were 4 sessions spanning 3.5 hours in which 7 talks were delivered, the first being an invited plenary presentation. The time allotted for each talk was limited to 20-25 minutes in order to allow 5-10 minutes for discussion. Most of the talks were held in joint session with working group 5 (Unwanted Beam Loss). This format was effective for the purpose of this workshop. A final series of discussion sessions were also held with working group 5. Summary of the working group 4 activities, presented in the closing plenary session. We had a plenary presentation on operational performance, experience, and future plans at the existing ERL injector prototype at Cornell. This included instrumentation data, controls system configurations, as well as description of future needs. This was followed by four talks from KEK and RIKEN/SPring-8 that described electron beam instrumentation already in use or under development that can be applied to ERL facilities. The final talks described the ERLs under construction at KEK and BNL. The format of having joint sessions with working group 5 was beneficial as there were a significant number of common topics and concerns with regards to the causes of beam loss, instrumentation hardware, and techniques used to measure and analyze beam loss.

  19. Final report of the accident phenomenology and consequence (APAC) methodology evaluation. Spills Working Group

    SciTech Connect (OSTI)

    Brereton, S.; Shinn, J. [Lawrence Livermore National Lab., CA (United States); Hesse, D [Battelle Columbus Labs., OH (United States); Kaninich, D. [Westinghouse Savannah River Co., Aiken, SC (United States); Lazaro, M. [Argonne National Lab., IL (United States); Mubayi, V. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01T23:59:59.000Z

    The Spills Working Group was one of six working groups established under the Accident Phenomenology and Consequence (APAC) methodology evaluation program. The objectives of APAC were to assess methodologies available in the accident phenomenology and consequence analysis area and to evaluate their adequacy for use in preparing DOE facility safety basis documentation, such as Basis for Interim Operation (BIO), Justification for Continued Operation (JCO), Hazard Analysis Documents, and Safety Analysis Reports (SARs). Additional objectives of APAC were to identify development needs and to define standard practices to be followed in the analyses supporting facility safety basis documentation. The Spills Working Group focused on methodologies for estimating four types of spill source terms: liquid chemical spills and evaporation, pressurized liquid/gas releases, solid spills and resuspension/sublimation, and resuspension of particulate matter from liquid spills.

  20. European Working Groupe on Internal Erorion in embankment dams April 12th to 14th 2010, Granada, Spain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Working Groupe on Internal Erorion in embankment dams April 12th to 14th 2010, Granada Working Groupe on Internal Erosion in embankment dams, Granada : Spain (2010)" #12;

  1. Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants

    SciTech Connect (OSTI)

    Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

    2011-02-01T23:59:59.000Z

    The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

  2. From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the

    E-Print Network [OSTI]

    Greenberg, Saul

    From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the Group. and Cockburn, A. (1995) From Awareness to TeamRooms, GroupWeb and TurboTurtle: Eight Snapshots of Recent Work in the GroupLab Project. Research Report 95/580/32, Department of Computer Science, University of Calgary

  3. Hydropower Potential Studies Reviewed for Scoping Study

    E-Print Network [OSTI]

    States A3 Hydropower Resource Assessment at Existing Reclamation Facilities CONDUIT AND KINETIC PROJECTS in the US D2 Mapping and Assessment of the US Ocean Wave Energy Resources D3 Assessment/Mapping of Riverine Hydroknetic Resource in the Contintental US GENERAL GENERATION PROJECT ASSESSMENTS: E1 New Streamreach

  4. CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER

    E-Print Network [OSTI]

    of climate warming on energy prices. California's EnergyBased Hydropower Optimization Model (EBHOM to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generat WITH CONSIDERATION OF WARMING IMPACTS ON ELECTRICITY DEMAND AND PRICING A White Paper from the California

  5. U.S.-Vietnam Climate Change Working Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLCNational Hydrogen-Vietnam

  6. Parity Violation in Photonuclear Reactions at HIGS Submission to Fundamental Symmetries and Neutrino Physics Working Group

    E-Print Network [OSTI]

    and Neutrino Physics Working Group H. Gao,1 S.S. Jawalker,1 M.R. Schindler,2 W.M. Snow,3 R.P. Springer,1 and Ying Wu1 1 Department of Physics, Duke University, Durham, NC 27708, USA 2 Department of Physics; W. Xu*, Shanghai Institute of Applied Physics; Shi-Lin Zhu, Peking U; * to be confirmed I

  7. Service station requirements for safe use of hydrogen based fuels: NHA work group update

    SciTech Connect (OSTI)

    Coutts, D.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the results of the meeting of the working group on safety standards. A standard for an odorant for hydrogen leak detection is set forth. Recent activities with the National Fire Protection Association and the International Standard Organization are enumerated. The path forward is also summarized.

  8. Updated by Cornell University Library PSEC Documentation Working Group (August 2010) Search GuideCornell University

    E-Print Network [OSTI]

    Rodriguez, Carlos

    the specific item you wish to find. Boolean operators To search for an exact phrase, enclose the search terms, will search for either of the words listed in the search box. The minus sign will exclude terms from yourUpdated by Cornell University Library PSEC Documentation Working Group (August 2010) Search Guide

  9. HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES

    E-Print Network [OSTI]

    Sheridan, Jennifer

    HUMAN RESOURCES WORKING GROUP: ACTION PLAN VISION PRIORITY: MAXIMIZING OUR HUMAN RESOURCES, and student body." From David Ward, "A Vision for the Future," p. 9. This document lists the human-resource goals and plans of the Office of Human Resources, the Equity and Diversity Resource Center

  10. Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review

    E-Print Network [OSTI]

    applications. The IPHE (International Partnership for the Hydrogen Economy) safety program to assess storageHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

  11. Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices

    E-Print Network [OSTI]

    at Savannah River National Laboratory (Don Anton and Bruce Hardy, SRNL) Based on the operating conditionsHydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices 955 by Romesh Kumar Argonne National Laboratory and Laura Verduzco Sentech, Inc. February 28, 2007 #12;SUMMARY

  12. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group & Hydrogen Production Technical Team Research Review

    E-Print Network [OSTI]

    -Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar 12:00 - 12:30 Lunch 12:30 Research Review Continued o Investigation of Bio-ethanol Steam Reforming over Cobalt basedBio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production

  13. Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils

    E-Print Network [OSTI]

    .31 O2 + 0.26 H2O 0.71 CO2 + 0.96 H2 #12;Key Performance Metrics Catalytic Steam Reforming of Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank $106,040 Reformer $803,000 Shift Reactor, PSA, BOP $1Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis

  14. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG),

    E-Print Network [OSTI]

    ReviewReport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 12:30ResearchReviewContinued Investigation of Bio-ethanol Steam Reforming over Cobalt based Ethanol Reforming,ANL,RomeshKumar ..................23 MeritBio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen

  15. Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different Traffic

    E-Print Network [OSTI]

    Boyer, Edmond

    Euro Working Group on Transportation 2014 Estimating Travel Time Distribution under different of the distribution of travel time is needed to properly estimate these values. Congestion distorts the distribution and particular statistical distributions are needed. Different distributions have been proposed in the literature

  16. 2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report to Governor Edmund G. Brown Karen Ross Secretary, Department of Food and Agriculture Matthew Rodriquez, California Energy Commission Ken Pimlott Director, Department of Forestry and Fire Protection Caroll

  17. Library Web Standards Recommendations of the SCIS Web Standards Working Group

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Library Web Standards Recommendations of the SCIS Web Standards Working Group Prepared by L. Jacobs: In support of research, teaching, and public service, the mission of the University of Lethbridge Library of the Library. Goals of Library Web Pages: To facilitate access to Library resources To supplement access

  18. PALeo-constraints on SEA-level rise (PALSEA) -a PAGES/IMAGES working group

    E-Print Network [OSTI]

    Siddall, Mark

    PALeo-constraints on SEA-level rise (PALSEA) - a PAGES/IMAGES working group Coordinators: Mark for the reduction in ice sheets and subsequent rise in sea level over the next century are highly uncertain rise. Interglacial sea levels constrain the global sensitivity of sea-level to radiative forcing. Well

  19. EFCOG Work Management Sub-Working Group Session on Overview and Results from WP&C Assist Visits across Complex

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, EFCOG Work Management Subgroup Chair. EFCOG Work Management Subgroup--Introduction and Overview.

  20. Estimated impacts of climate warming on California’s high-elevation hydropower

    E-Print Network [OSTI]

    Madani, Kaveh; Lund, Jay R.

    2010-01-01T23:59:59.000Z

    on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

  1. Hydropower resources at risk: The status of hydropower regulation and development - 1997

    SciTech Connect (OSTI)

    Hunt, R.T.; Hunt, J.A. [Richard Hunt Associates, Inc., Annapolis, MD (United States)

    1997-09-01T23:59:59.000Z

    This report documents today`s hydropower licensing and development status based on published data as follows: (a) Federal Energy Regulatory Commission (FERC) databases, maintained by FERC`s Office of Hydropower Licensing, of: (1) operating FERC-regulated projects, federal projects, and known unlicensed projects; (2) surrendered licenses; and, (3) recent licensing and relicensing actions; (b) Energy Information Administration (EIA) data on installed capacity and generation from 1949 through 1995 for the various resources used to produce electricity in the U.S.; and, (c) FERC licensing orders, and environmental assessments or environmental impact statements for each individual project relicensed since 1980. The analysis conducted to prepare this paper includes the effects of all FERC hydropower licensing actions since 1980, and applies those findings to estimate the costs of hydropower licensing and development activity for the next 15 years. It also quantifies the national cost of hydropower regulation. The future estimates are quite conservative. The are presented in 1996 dollars without speculating on the effects of future inflation, license surrenders, conditions imposed through open-ended license articles, license terms greater than 30 years, or low water years. Instead, they show the most directly predictable influences on licensing outcomes using actual experiences since ECPA (after 1986).

  2. Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report

    E-Print Network [OSTI]

    G. Brooijmans; R. Contino; B. Fuks; F. Moortgat; P. Richardson; S. Sekmen; A. Weiler; A. Alloul; A. Arbey; J. Baglio; D. Barducci; A. J. Barr; L. Basso; M. Battaglia; G. Bélanger; A. Belyaev; J. Bernon; A. Bharucha; O. Bondu; F. Boudjema; E. Boos; M. Buchkremer; V. Bunichev; G. Cacciapaglia; G. Chalons; E. Conte; M. J. Dolan; A. Deandrea; K. De Causmaecker; A. Djouadi; B. Dumont; J. Ellis; C. Englert; A. Falkowski; S. Fichet; T. Flacke; A. Gaz; M. Ghezzi; R. Godbole; A. Goudelis; M. Gouzevitch; D. Greco; R. Grober; C. Grojean; D. Guadagnoli; J. F. Gunion; B. Herrmann; J. Kalinowski; J. H. Kim; S. Kraml; M. E. Krauss; S. Kulkarni; S. J. Lee; S. H. Lim; D. Liu; F. Mahmoudi; Y. Maravin; A. Massironi; L. Mitzka; K. Mohan; G. Moreau; M. M. Mühlleitner; D. T. Nhung; B. O'Leary; A. Oliveira; L. Panizzi; D. Pappadopulo; S. Pataraia; W. Porod; A. Pukhov; F. Riva; J. Rojo; R. Rosenfeld; J. Ruiz-Álvarez; H. Rzehak; V. Sanz; D. Sengupta; M. Spannowsky; M. Spira; J. Streicher; N. Strobbe; A. Thamm; M. Thomas; R. Torre; W. Waltenberger; K. Walz; A. Wilcock; A. Wulzer; F. Würthwein; C. Wymant

    2014-05-07T23:59:59.000Z

    We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC.

  3. Philosophy 148 --Assignment #4 This assignment is due Thursday, April 17 at 3pm. If you work in a group, list your group members at the

    E-Print Network [OSTI]

    Fitelson, Branden

    work in a group, list your group members at the top of your submitted work. Hempel's Desiderata algebra B of propositions. Consider the following seven conditions that might be met by a confirmation restrict these seven principles to contingent E's and H's, then 6/7 of them can be satisfied by some

  4. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoosting America's Hydropower Output

  5. 2015 Forum on Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergy Systems2015 Forum on Hydropower

  6. Bureau of Reclamation Small Conduit Hydropower Development and...

    Open Energy Info (EERE)

    Bureau of Reclamation Small Conduit Hydropower Development and Rural Jobs Act of 2013 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  7. Hydropower Licensing and Endangered Species A Guide for Applicants...

    Open Energy Info (EERE)

    Staff Abstract A guide developed to assist applicants, contractors, and staff of Federal Energy Regulatory Commission (FERC) regulated hydropower. The guide outlines compliance...

  8. FERC Hydropower Licensing and Endangered Species - A Guide for...

    Open Energy Info (EERE)

    Energy Regulatory Commission. 2001. FERC Hydropower Licensing and Endangered Species - A Guide for Applicants, Contractors, and Staff. Federal Energy Regulatory Commission....

  9. Energy Department Announces $4.4 Million to Advance Hydropower...

    Office of Environmental Management (EM)

    low-head hydropower turbine and generator system prototype that combines lightweight, corrosion-resistant metallic components that can be produced through an additive manufacturing...

  10. The Next Generation of Hydropower Engineers and Scientists |...

    Energy Savers [EERE]

    | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to...

  11. Memorandum of Understanding for Hydropower Two-Year Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additionally, the MOU aims to "(1) support the maintenance and sustainable optimization of existing federal and non-federal hydropower projects, (2) elevate the goal of...

  12. Power Builds Ships Northwest Hydropower Helps Win World War II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power-Builds-Ships-Northwest-Hydropower-Helps-Win-World-War-II Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  13. Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing Consumers Protection Act (1986), which instructs federal regulators to ``balance'' hydropower

  14. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect (OSTI)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01T23:59:59.000Z

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  15. 2014-06-09 Issuance: Manufactured Housing Working Group; Notice of Intent

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register? notice of intent to establish the manufactured housing working group to negotiate a notice of proposed rulemaking for energy efficiency standards for manufactured housing, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 9, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  16. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect (OSTI)

    Klueh, R.L.

    1996-12-31T23:59:59.000Z

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  17. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group

  18. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5: Oil

  19. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5:

  20. Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen Research, Aiken, GA

    E-Print Network [OSTI]

    Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen..................................................................................................... 1. Introduction The DOE Hydrogen Pipeline Working Group (PWG) met on September 25-26, 2007 challenges and future goals for hydrogen pipeline research and development (R&D). One of the near-term goals

  1. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  2. U.S. hydropower resource assessment for Maine

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  3. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  4. U.S. hydropower resource assessment for Maryland

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-11-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Maryland.

  5. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  6. U.S. hydropower resource assessment for Ohio

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-12-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  7. U.S. hydropower resource assessment for Michigan

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

  8. 13 Sep 2001 http://www.ccsm.ucar.edu/working_groups/Software/reports/010628.html Report on CCSM Software Engineering Working Group Meeting

    E-Print Network [OSTI]

    the meeting with an overview of the new CCSM Software Engineering Group (CSEG). Tony is managing the group methodology. Steve Thomas (NCAR/SCD) presented early results from a high-performance spectral element method Kluzek erik@ucar.edu NCAR Keith Lindsay klindsay@ucar.edu NCAR Rebecca McKeown beckym@nrel

  9. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisory FinancialErpu HydropowerEryuan

  10. Hydropower Resource Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit a FreedomResearch &Hydropower

  11. National Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPV JumpHydropower Association

  12. Hydropower Modernization Initiative Proposed Implementation Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and FuelInnovation PortalHydropower

  13. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search Name: Tianlin

  14. Final Report. An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group

    SciTech Connect (OSTI)

    Rosenthal, Andrew [New Mexico State Univ., Las Cruces, NM (United States)

    2013-12-30T23:59:59.000Z

    The DOE grant, “An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group,” to New Mexico State University created the Solar America Board for Codes and Standards (Solar ABCs). From 2007 – 2013 with funding from this grant, Solar ABCs identified current issues, established a dialogue among key stakeholders, and catalyzed appropriate activities to support the development of codes and standards that facilitated the installation of high quality, safe photovoltaic systems. Solar ABCs brought the following resources to the PV stakeholder community; Formal coordination in the planning or revision of interrelated codes and standards removing “stove pipes” that have only roofing experts working on roofing codes, PV experts on PV codes, fire enforcement experts working on fire codes, etc.; A conduit through which all interested stakeholders were able to see the steps being taken in the development or modification of codes and standards and participate directly in the processes; A central clearing house for new documents, standards, proposed standards, analytical studies, and recommendations of best practices available to the PV community; A forum of experts that invites and welcomes all interested parties into the process of performing studies, evaluating results, and building consensus on standards and code-related topics that affect all aspects of the market; and A biennial gap analysis to formally survey the PV community to identify needs that are unmet and inhibiting the market and necessary technical developments.

  15. Digital Creation and Preservation Working Group Plan and oversee implementation for the Libraries' digital preservation program, particularly in relation

    E-Print Network [OSTI]

    Schweik, Charles M.

    for the Libraries' digital preservation program, particularly in relation to the Libraries' unique resources to the Digital Strategies Group. Chair: Appointed by the Director of Libraries Membership: Members serveDigital Creation and Preservation Working Group Charge: Plan and oversee implementation

  16. Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.

    E-Print Network [OSTI]

    Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

  17. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  18. Solar Energy and Small Hydropower Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

  19. Solar Energy and Small Hydropower Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

  20. Optimal sequencing site of hydro-power stations

    SciTech Connect (OSTI)

    Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

    1995-06-01T23:59:59.000Z

    At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

  1. Report by the ESA-ESO Working Group on Extra-Solar Planets

    E-Print Network [OSTI]

    M. Perryman; O. Hainaut; D. Dravins; A. Leger; A. Quirrenbach; H. Rauer; F. Kerber; R. Fosbury; F. Bouchy; F. Favata; M. Fridlund; R. Gilmozzi; A. -M. Lagrange; T. Mazeh; D. Rouan; S. Udry; J. Wambsganss

    2005-06-08T23:59:59.000Z

    Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) displacements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical knowledge arising especially from transit and astrometric measurements over the years 2005-15, with some hundreds of terrestrial-type planets expected from transit measurements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, `Life Finder' (aiming to produce confirmatory evidence of the presence of life) and `Earth Imager' (some massive interferometric array providing resolved images of a distant Earth) appear as distant visions. This report, to ESA and ESO, summarises the direction of exo-planet research that can be expected over the next 10 years or so, identifies the roles of the major facilities of the two organisations in the field, and concludes with some recommendations which may assist development of the field. The report has been compiled by the Working Group members and experts over the period June-December 2004.

  2. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  3. Yunnan Minfa Group Yuanjiang Lutong Hydropower Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnan Diqing Shangri La

  4. Beam diagnostics, collimation, injection/extraction, targetry, accidents and commissioning: Working group C&G summary report

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab; Hasegawa, K.; /JAEA, Ibaraki; Henderson, S.; /Oak Ridge; Schmidt, R.; /CERN; Tomizawa, M.; /KEK, Tsukuba; Wittenburg, K.; /DESY

    2006-11-01T23:59:59.000Z

    The performance of accelerators with high beam power or high stored beam energy is strongly dependent on the way the beam is handled, how beam parameters are measured and how the machine is commissioned. Two corresponding working groups have been organized for the Workshop: group C ''Beam diagnostics, collimation, injection/extraction and targetry'' and group G ''Commissioning strategies and procedures''. It has been realized that the issues to be discussed in these groups are interlaced with the participants involved and interested in the above topics, with an extremely important subject of beam-induced accidents as additional topic. Therefore, we have decided to combine the group sessions as well as this summary report. Status, performance and outstanding issues of each the topic are described in the sections below, with additional observations and proposals by the joint group at the end.

  5. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21T23:59:59.000Z

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  6. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006

    Broader source: Energy.gov [DOE]

    Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  7. Les Houches Physics at TeV Colliders 2005 Beyond the Standard Model Working Group: Summary Report

    SciTech Connect (OSTI)

    Allanach, B.C.; /Cambridge U., DAMTP; Grojean, C.; /Saclay, SPhT /CERN; Skands, P.; /Fermilab; Accomando, E.; Azuelos, G.; Baer, H.; Balazs, C.; Belanger, G.; Benakli, K.; Boudjema, F.; Brelier, B.; Bunichev, V.; Cacciapaglia, G.; Carena, M.; Choudhury, D.; Delsart, P.-A.; De Sanctis, U.; Desch, K.; Dobrescu, B.A.; Dudko, L.; El Kacimi, M.; /Saclay,

    2006-03-17T23:59:59.000Z

    The work contained herein constitutes a report of the ''Beyond the Standard Model'' working group for the Workshop ''Physics at TeV Colliders'', Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.

  8. Real World Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American...

  9. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  10. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  11. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03T23:59:59.000Z

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  12. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  13. Meeting of The New York State Sustainability Education Working Group Syracuse Center of Excellence In Environmental and Energy Systems

    E-Print Network [OSTI]

    Linsley, Braddock K.

    In Environmental and Energy Systems 727 East Washington Street Syracuse, New York April 1, 2012 RECOMMENDED ACTIONMeeting of The New York State Sustainability Education Working Group Syracuse Center of Excellence STEPS The Goal: Every graduate of a New York college or university will be literate about how to live

  14. Final report of the NRC-Agreement State Working Group to evaluate control and accountability of licensed devices

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    US NRC staff acknowledged that licensees were having problems maintaining control over and accountability for devices containing radioactive material. In June 1995, NRC approved the staff`s suggestion to form a joint NRC-Agreement State Working Group to evaluate the problem and propose solutions. The staff indicated that the Working Group was necessary to address the concerns from a national perspective, allow for a broad level of Agreement State input, and to reflect their experience. Agreement State participation in the process was essential since some Agreement States have implemented effective programs for oversight of device users. This report includes the 5 recommendations proposed by the Working Group to increase regulatory oversight, increase control and accountability of devices, ensure proper disposal, and ensure disposal of orphaned devices. Specifically, the Working Group recommends that: (1) NRC and Agreement States increase regulatory oversight for users of certain devices; (2) NRC and Agreement State impose penalties on persons losing devices; (3) NRC and Agreement States ensure proper disposal of orphaned devices; (4) NRC encourage States to implement similar oversight programs for users of Naturally-Occurring or Accelerator- Produced Material; and (5) NRC encourage non-licensed stakeholders to take appropriate actions, such as instituting programs for material identification.

  15. Journal of Astronomical History and Heritage, 15(3), 255-257 (2012). IAU HISTORIC RADIO ASTRONOMY WORKING GROUP

    E-Print Network [OSTI]

    Groppi, Christopher

    2012-01-01T23:59:59.000Z

    Journal of Astronomical History and Heritage, 15(3), 255-257 (2012). Page 255 IAU HISTORIC RADIO Wielebinski Hugo van Woerden 1 INTRODUCTION The IAU Working Group on Historical Radio Astron- omy (WGHRA Astronomy) and 41 (History of Astronomy), in order to: a) assemble a master list of surviving historically

  16. Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). THE IAU HISTORIC RADIO ASTRONOMY WORKING GROUP.

    E-Print Network [OSTI]

    Groppi, Christopher

    2009-01-01T23:59:59.000Z

    Journal of Astronomical History and Heritage, 12(3), 249-253 (2009). 249 THE IAU HISTORIC RADIO and Heritage. 1 Role of the Working Group This WG was formed at the 2003 General Assembly of the IAU as a joint a master list of surviving historically- significant radio telescopes and associated instru- mentation

  17. GSDI Legal and Economic Working Group: A Template for Reporting National Legal and Economic Issues Affecting Spatial Data

    E-Print Network [OSTI]

    Onsrud, Harlan J.

    complementary laws. A basic policy assumption underlying most U.S. information law is that the economicGSDI Legal and Economic Working Group: A Template for Reporting National Legal and Economic Issues Affecting Spatial Data Infrastructure Developments The primary objective of the GSDI Legal and Economic

  18. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    the necessary balancing reserves for wind. Hydropower's flexibility and capacity are limited, however, by non-power resources that can adjust their output rapidly to keep power supply in balance with demand. HydropowerA Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement

  19. Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

  20. Water Power Technologies The most widespread environmental constraints to the development of hydropower are interference

    E-Print Network [OSTI]

    to the development of hydropower are interference with fish passage, provision of adequate environmental flows to address these issues and to help ensure environmentally sound hydropower development in the following through hydropower turbines, remains a serious problem at many sites. The fish passage task focuses

  1. SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994

    E-Print Network [OSTI]

    SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

  2. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    E-Print Network [OSTI]

    Lund, Jay R.

    i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

  3. EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations

    E-Print Network [OSTI]

    McCarthy, T.K.

    EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations and associated river on stocking lakes with elvers and fingerling eels. These were trapped at the hydropower facilities.) stocks is a matter of great concern and Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood

  4. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  5. SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE G. P. Harrison, H. W. Whittington

    E-Print Network [OSTI]

    Harrison, Gareth

    1 SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE CHANGE G. P. Harrison, H. W. Whittington and A-fuelled electricity generation with renewable sources including hydropower. However, simultaneous changes in climate may alter the available hydropower resource, threatening the financial viability of schemes

  6. Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,

    E-Print Network [OSTI]

    Stoffel, Markus

    Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a, , Franco H I G H L I G H T S · Impact of climate change on hydropower in the Italian and Swiss alpine regions October 2013 Available online xxxx Keywords: Climate change Hydropower management Electricity market Alps

  7. Potential Economic Impacts of Zebra Mussels on the Hydropower Facilities in the Columbia River Basin

    E-Print Network [OSTI]

    Potential Economic Impacts of Zebra Mussels on the Hydropower Facilities in the Columbia River mussel infestation. We estimated hydropower maintenance costs associated with zebra mussels by examining, and a survey of zebra mussel mitigation costs at other hydropower generation facilities in North America. We

  8. Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,

    E-Print Network [OSTI]

    Stoffel, Markus

    Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a, , Franco H I G H L I G H T S · Impact of climate change on hydropower in the Italian and Swiss alpine regions October 2013 Available online 14 November 2013 Keywords: Climate change Hydropower management Electricity

  9. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S of California at Davis, Davis, California, USA b State Key Laboratory of Water Resources and Hydropower alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using

  10. Climate Warming and Adaptability of High-Elevation Hydropower Generation in California

    E-Print Network [OSTI]

    Keller, Arturo A.

    Climate Warming and Adaptability of High-Elevation Hydropower Generation in California Kaveh Madani's high-elevation hydropower system is composed of more than 150 power plants. Most of the associated to winter, the adaptability of high-elevation hydropower system to new climatic conditions is in question

  11. Research Article Effects of Alpine hydropower dams on particle transport and

    E-Print Network [OSTI]

    Gilli, Adrian

    Research Article Effects of Alpine hydropower dams on particle transport and lacustrine December 2006 Abstract. The effects of high-alpine hydropower damming on lacustrine sedimentation impact, such as by hydropower dam construction that form artifi- cial sediment sinks acting as manmade

  12. How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer

    E-Print Network [OSTI]

    Jager, Henriette I.

    How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Æ Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

  13. Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI

    E-Print Network [OSTI]

    Lund, Jay R.

    i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

  14. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  15. The Use of Traits-Based Assessment to Estimate Effects of Hydropower Projects on Fish Populations

    E-Print Network [OSTI]

    The Use of Traits-Based Assessment to Estimate Effects of Hydropower Projects on Fish Populations Background Safe downstream passage of fish at conventional hydropower projects affects not only migratory fish species for testing, assess impacts of new hydropower development, and develop mitigation measures

  16. Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production

    E-Print Network [OSTI]

    by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

  17. SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y

    E-Print Network [OSTI]

    Jager, Henriette I.

    SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal

  18. Climate change -a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert Whittington

    E-Print Network [OSTI]

    Harrison, Gareth

    Climate change - a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert capital may not favour hydropower given that hydro capital costs are relatively high and payback periods financial return than the public sector, traditionally the main source of funds for hydropower development

  19. Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology to gross final energy consumption is only about 2% ­ hydropower plays a vital role. This is largely due be stored in reservoirs. Hydropower supplies around 56% of Switzerland's electricity needs. Worldwide

  20. Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,

    E-Print Network [OSTI]

    Asselin, Hugo

    Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

  1. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

    2013-05-01T23:59:59.000Z

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  2. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.

    1994-12-01T23:59:59.000Z

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as far as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.

  3. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  4. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

    2006-07-01T23:59:59.000Z

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  5. Proceedings of the DOE/Industry Sensor Working Group meeting, Austin, Texas

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This paper report contains topics presented at a sensor workshop group meeting. The topics describe measuring instruments of use in the pulp and paper industry. Topics include: measurement of solids fraction; process instrumentation research for the pulp paper industry; real-time non-contact optical surface motion monitor; on-machine sensors to measure paper mechanical properties; hierarchical intelligent control of industrial processes -- an in-parallel lime kiln application; proposal for research on lignin concentration measurement in pulping liquors; and advanced polymeric sensor materials for industrial drying.

  6. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and RadioactiveCooperation

  7. Working Group Report on - Space Nuclear Power Systems and Nuclear Waste

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008Ms.12.1AJanuaryEnergyTechnology

  8. 2001-2002 Long Range Plan Working Group Members | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's's

  9. 2007 Long Range Plan Working Group Members | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's

  10. Microsoft PowerPoint - Highlights of the Industry Working Group_Jessica White-Horton

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis and Feedback onWorking

  11. Working Group Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShadesVirginia RegionsWisconsinWorking

  12. Working Group Reports Calibration of Radiation Codes Used in Climate Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  13. Working Group Reports Summary of Single-Column Model Intensive Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1: Model4:97

  14. State and Tribal Government Working Group Visits the Weldon Spring Site |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShotBelowTheThe documentLessonsReview

  15. Modeling California's high-elevation hydropower systems in energy units

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    is cheaper; while it costs almost 4 cents and 2 cents for 1 kWh of electricity from coal and nuclear plants power's low cost, near-zero pollution emissions, and ability to quickly respond to peak loads make it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity

  16. Methodology and Process for Condition Assessment at Existing Hydropower Plants

    SciTech Connect (OSTI)

    Zhang, Qin Fen [ORNL] [ORNL; Smith, Brennan T [ORNL] [ORNL; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

  17. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    SciTech Connect (OSTI)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01T23:59:59.000Z

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  18. Solar America Initiative State Working Group: Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Julie Taylor

    2012-03-30T23:59:59.000Z

    Through the support from the Department of Energy, NARUC has educated thousands of stakeholders, including Public Utility Commissioners, commission staff, and State energy officials on solar energy technology, implementation, and policy. During the lifetime of this grant, NARUC staff engaged stakeholders in policy discussions, technical research, site visits, and educational meetings/webinars/materials that provided valuable education and coordination on solar energy technology and policy among the States. Primary research geared toward State decision-makers enabled stakeholders to be informed on current issues and created new solar energy leaders throughout the United States. Publications including a Frequently Asked Questions guide on feed-in tariffs and a legal analysis of state implementation of feed-in tariffs gave NARUC members the capacity to understand complex issues related to the economic impacts of policies supportive of solar energy, and potential paths for implementation of technology. Technical partnerships with the National Renewable Energy Laboratory (NREL) instructed NARUC members on feed-in tariff policy for four States and solar PV resource assessment in seven States, as well as economic impacts of solar energy implementation in those States. Because many of the States in these technical partnerships had negligible amounts of solar energy installed, this research gave them new capacity to understand how policies and implementation could impact their constituency. This original research produced new data now available, not only to decision-makers, but also to the public at-large including educational institutions, NGOs, consumer groups, and other citizens who have an interest in solar energy adoption in the US. Under this grant, stakeholders engaged in several dialogs. These educational opportunities brought NARUC members and other stakeholders together several times each year, shared best practices with State decision-makers, fostered partnerships and relationships with solar energy experts, and aided in increasing the implementation of smart policies that will foster solar technology deployment. The support from the Department of Energyâ??s Office of Energy Efficiency and Renewable Energy has created solar energy leaders in the States; leaders who will serve to be a continuing valuable resource as States consider adoption of new low-carbon and domestic energy supply to meet the energy needs of the United States.

  19. New Physics at the LHC: A Les Houches Report. Physics at Tev Colliders 2007 - New Physics Working Group

    SciTech Connect (OSTI)

    Brooijmans, Gustaaf H.; /Columbia U.; Delgado, A.; /Notre Dame U.; Dobrescu, Bogdan A.; /Fermilab; Grojean, C.; /CERN /Saclay, SPhT; Narain, Meenakshi; /Brown U.; Alwall, Johan; /SLAC; Azuelos, Georges; /Montreal U. /TRIUMF; Black, K.; /Harvard U.; Boos, E.; /SINP, Moscow; Bose, Tulika; /Brown U.; Bunichev, V.; /SINP, Moscow; Chivukula, R.S.; /Michigan State U.; Contino, R.; /CERN; Djouadi, A.; /Louis Pasteur U., Strasbourg I /Orsay, LAL; Dudko, Lev V.; /Durham U.; Ferland, J.; /Montreal U.; Gershtein, Yuri S.; /Florida State U.; Gigg, M.; /Durham U.; Gonzalez de la Hoz, S.; /Valencia U., IFIC; Herquet, M.; /Louvain U.; Hirn, J.; /Yale U. /Brown U. /Boston U. /Annecy, LAPTH /INFN, Turin /Valencia U., IFIC /Yale U. /Arizona U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /KEK, Tsukuba /Moscow State U. /Lisbon, LIFEP /CERN /Durham U. /Valencia U., IFIC /Sao Paulo, IFT /Fermilab /Zurich, ETH /Boston U. /DESY /CERN /Saclay, SPhT /Durham U. /Cambridge U. /Michigan State U. /Louis Pasteur U., Strasbourg I /Orsay, LAL /Annecy, LAPTH /Fermilab /CERN /Arizona U. /Northwestern U. /Argonne /Kyoto U. /Valencia U., IFIC /UC, Berkeley /LBL, Berkeley

    2011-12-05T23:59:59.000Z

    We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. The signatures are organized according to the experimental objects that appear in the final state, and in particular the number of high p{sub T} leptons. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the 'New Physics' working group for the 'Physics at TeV Colliders' workshop (Les Houches, France, 11-29 June, 2007).

  20. 2014-05-05 Issuance: ASRAC Commercial and Industrial Pumps Working Group; Notice of Open Teleconference/Webinar

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of open teleconference/webinar regarding the commercial and industrial pumps working group, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group

    SciTech Connect (OSTI)

    Akerib, Daniel S.; Aprile, E.; /Case Western Reserve U. /Columbia U.; Baltz, E.A.; /KIPAC, Menlo Park; Dragowsky, M.R.; /Case Western Reserve U.; Gaitskell, R.J.; /Brown U.; Gondolo, P.; /Utah U.; Hime, A.; /Los Alamos; Martoff, C.J.; /Temple U.; Mei, D.-M.; /Los Alamos; Nelson, H.; /UC, Santa Barbara; Sadoulet, B.; /UC, Berkeley; Schnee, R.W.; /Case Western; Sonnenschein, A.H.; /Fermilab; Strigari, L.E.; /UC, Irvine

    2006-06-09T23:59:59.000Z

    In this report we have described the broad and compelling range of astrophysical and cosmological evidence that defines the dark matter problem, and the WIMP hypothesis, which offers a solution rooted in applying fundamental physics to the dynamics of the early universe. The WIMP hypothesis is being vigorously pursued, with a steady march of sensitivity improvements coming both from astrophysical searches and laboratory efforts. The connections between these approaches are profound and will reveal new information from physics at the smallest scales to the origin and workings of the entire universe. Direct searches for WIMP dark matter require sensitive detectors that have immunity to electromagnetic backgrounds, and are located in deep underground laboratories to reduce the flux from fast cosmic-ray-muon-induced neutrons which is a common background to all detection methods. With US leadership in dark matter searches and detector R&D, a new national laboratory will lay the foundation of technical support and facilities for the next generation of scientists and experiments in this field, and act as magnet for international cooperation and continued US leadership. The requirements of depth, space and technical support for the laboratory are fairly generic, regardless of the approach. Current experiments and upgraded versions that run within the next few years will probe cross sections on the 10{sup -45}-10{sup -44} cm{sup 2} scale, where depths of 3000-4000 m.w.e. are sufficient to suppress the neutron background. On the longer term, greater depths on the 5000-6000 level are desirable as cross sections down to 10{sup -46} cm{sup 2} are probed, and of course, if WIMPs are discovered then building up a statistical sample free of neutron backgrounds will be essential to extracting model parameters and providing a robust solution to the dark matter problem. While most of the detector technologies are of comparable physical scale, i.e., the various liquid and solid-state detector media under consideration have comparable density, a notable exception is the low-pressure gaseous detectors. These detectors are very likely to play a critical role in establishing the galactic origin of a signal, and so it is important to design the lab with this capability in mind. For example, for a WIMP-nucleon cross section of 10{sup -43} cm{sup 2} (just below the present limit [20]), 100 of the current DRIFT-II modules of 1 m{sup 3} at 40 torr CS{sub 2} [63] would require a two-year exposure [61] to get the approximately 200 events [64] required to establish the signal's galactic origin. While detector improvements are under investigation, a simple scaling for the bottom of the MSSM region at 10{sup -46} cm{sup 2} would require a 100,000 m{sup 3} detector volume. If a factor of 10 reduction in required volume is achieved (e.g., higher pressure operation, more detailed track reconstruction, etc.) then an experimental hall of (50 m){sup 3} could accommodate the experiment. Because the WIMP-nucleon cross section is unknown, it is impossible to make a definitive statement as to the ultimate requirements for a directional gaseous dark matter detector, or any other device, for that matter. What is clear, however, is that whatever confidence one gives to specific theoretical considerations, the foregoing discussion clearly indicates the high scientific priority of, broad intellectual interest in, and expanding technical capabilities for increasing the ultimate reach of direct searches for WIMP dark matter. Upcoming experiments will advance into the low-mass Supersymmetric region and explore the most favored models in a complementary way to the LHC, and on a similar time scale. The combination of astrophysical searches and accelerator experiments stands to check the consistency of the solution to the dark matter problem and provide powerful constraints on the model parameters. Knowledge of the particle properties from laboratory measurements will help to isolate and reduce the astrophysical uncertainties, which will allow a more complete picture of

  2. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    SciTech Connect (OSTI)

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01T23:59:59.000Z

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to schedule delays, inefficiencies, and corrective actions. The Working Group discussions emphasized that early planning and up-front appreciation of the problems ahead are very important for minimizing the cost and for the greatest success of any such project. Perhaps part of the project approval process should re-enforce this need. The cost of all this up-front work is now reflected in the DOE cost of any project we do. If we are being held to an upper limit on the project cost, the only thing available for compromise is the eventual project scope.

  3. 173TURTLE TAXONOMY WORKING GROUP Annotated List of Turtle Taxa Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises

    E-Print Network [OSTI]

    Grether, Gregory

    173TURTLE TAXONOMY WORKING GROUP ­ Annotated List of Turtle Taxa Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley with Comments on Areas of Taxonomic Instability and Recent Change TURTLE TAXONOMY WORKING GROUP* * Authorship

  4. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01T23:59:59.000Z

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  5. Site clearance working group

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Gulf of Mexico and Louisiana continue to be areas with a high level of facility removal, and the pace of removal is projected to increase. Regulations were promulgated for the Gulf of Mexico and Louisiana requiring that abandoned sites be cleared of debris that could interfere with fishing and shrimping activities. The site clearance regulations also required verification that the sites were clear. Additionally, government programs were established to compensate fishermen for losses associated with snagging their equipment on oil and gas related objects that remained on the water bottoms in areas other than active producing sites and sites that had been verified as clear of obstructions and snags. The oil and gas industry funds the compensation programs. This paper reviews the regulations and evolving operating practices in the Gulf of Mexico and Louisiana where site clearance and fisherman`s gear compensation regulations have been in place for a number of years. Although regulations and guidelines may be in place elsewhere in the world, this paper focuses on the Gulf of Mexico and Louisiana. Workshop participants are encouraged to bring up international issues during the course of the workshop. Additionally, this paper raises questions and focuses on issues that are of concern to the various Gulf of Mexico and Louisiana water surface and water bottom stakeholders. This paper does not have answers to the questions or issues. During the workshop participants will debate the questions and issues in an attempt to develop consensus opinions and/or make suggestions that can be provided to the appropriate organizations, both private and government, for possible future research or policy adjustments. Site clearance and facility removal are different activities. Facility removal deals with removal of the structures used to produce oil and gas including platforms, wells, casing, piles, pipelines, well protection structures, etc.

  6. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan 5th Annual Report for FY 2011 (pdf) Trails Management Program Mitigation Action Plan 4th Annual Report for FY 2010 (pdf) General Background Trails Use Survey Summary The...

  7. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1TrackingTrails » Trails

  8. CSTEC Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,Computers » Discussion CS267:

  9. Macro Industrial Working Group

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s

  10. Winter 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWindWind Vision:Window3

  11. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil andDecade Year-0 FullJuly

  12. Winter 2014 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New TodayWindows,4 C

  13. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINO

  14. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloud

  15. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloudHow Do the

  16. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The

  17. Fall 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet2 C STEC W orking G

  18. Fall 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014FacilitiesSheet2 C STEC W orking G3 C

  19. Summer 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories Touching The LivesSummer 2 012 C STEC W

  20. 16 R&D Projects Across 11 States to Advance Hydropower in U.S...

    Office of Environmental Management (EM)

    while creating jobs. Hydropower technologies capture water's potential energy via a turbine to generate electricity. It is the nation's largest, most reliable, and least...

  1. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  2. International Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan

  3. Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager

    E-Print Network [OSTI]

    Jager, Henriette I.

    1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

  4. 73TURTLE TAXONOMY WORKING GROUP Recommendations and Guidelines Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises

    E-Print Network [OSTI]

    Grether, Gregory

    73TURTLE TAXONOMY WORKING GROUP ­ Recommendations and Guidelines Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley 4:73-84 · © 2007 by Chelonian Research Foundation Turtle Taxonomy: Methodology, Recommendations

  5. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  6. Jintai Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd JumpInformation JinpingJintai

  7. Jiulong Wanbao Hydropower Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhou HuariJiulong CountyJiulong

  8. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLC

  9. Heilongjiang Province Linhai Hydropower Development | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebei Qindao PhotovoltaicHeidrich Gera

  10. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1997-06-01T23:59:59.000Z

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  11. Xiangtang Xia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenerga JumpXiangtang Xia Hydropower

  12. Xinhua Chengyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhua Chengyuan Hydropower

  13. Xinjiang Heneng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHeneng Hydropower Co Ltd Jump

  14. Xinning County Xinyuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHeneng Hydropower

  15. Xuanen Shiziguan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to: navigation,

  16. Xupu County Xiaoshanyang Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to:Xupu County

  17. Yangcheng Motan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd JumpYang

  18. Yangxian Longsheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd JumpYangYangrui

  19. Yanling Xinsheng Hydropower Plant Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling Xinsheng

  20. Yanshan County Dequan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling XinshengCounty

  1. Yanshan Leqing Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanling

  2. Yanyuan Lujiang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co LtdYanlingYantai

  3. Yellow River Water and Hydropower Development Corp | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga Wire Saw

  4. Yingjiang County Nandan River Hydropower Exploring Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunagaKaiyuan

  5. Yingjiang County Zhanda River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower

  6. Yingjiang Huimin Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan HydropowerInformation

  7. Yingjiang Rongfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen ShiziguanInformation MingyuRongfa Hydropower Co

  8. Yingjiang Zhina River Second Level Hydropower Station Development Co Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen ShiziguanInformation MingyuRongfa HydropowerOpen

  9. Yongzhou Zhongxin Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin Hydropower Development Co Ltd Jump

  10. Yuexi Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba County Water

  11. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba County

  12. Yumen Changyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba CountyYuma

  13. Yumen Jiqianfeng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba CountyYumaYumen

  14. Yun County Changrun Xishan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYuba

  15. Yunan Province Fugong Hengli Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYun County

  16. Yunlong Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYun CountyYunlong

  17. Yunnan Baoshan Supahe Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhou Zhongxin HydropowerYubaYunInformation

  18. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnan DiqingZZhangjiajie Tumuxi Hydropower

  19. Zhangye Longhui Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co Ltd Jump

  20. Zhangye Longqu Stage III Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co Ltd

  1. Zhanyi County Tingzitang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui Hydropower Co

  2. Zhaoping I Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui HydropowerZhaoping I

  3. Zhaotong Jili Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanenYongzhouYunnanZhangye Longhui HydropowerZhaoping

  4. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in CarbonLaboratories'Hydropower, Wave and

  5. Microsoft Word - FINAL 2014 Hydropower Meeting Agenda 061114

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2Dances done1Q and07HYDROPOWER

  6. Erpu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisory FinancialErpu Hydropower

  7. Federal Memorandum of Understanding for Hydropower/Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformation Hydropower Jump to:

  8. Sichuan Miyi Shixia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan Miyi Shixia Hydropower

  9. Hydropower Regulatory Efficiency Act of 2013 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA)Hydropower Regulatory

  10. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHome Energy Score HomeSustainable» Hydropower

  11. Diebu Donglian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilaria detheDiebu Donglian Hydropower

  12. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrentHydronic Heating Coil VersusofHydropower

  13. Changde Taohuayuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentralCerealeChangde Taohuayuan Hydropower

  14. Tianquan County Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search Name:Tianquan

  15. Tiantai County Chayuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to: navigation, search

  16. Tongren Jiuzhou Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao Yaolaitan HydroTongren

  17. Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,Anfu Guanshan Hydropower Development Co Ltd

  18. Hydropower Still in the Mix | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe Ranking Member,71 Hydrogen and Fuelof EnergyHydropower

  19. Wudu Xiangyu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin Polysilicon CoWudu Xiangyu Hydropower

  20. Property:PotentialHydropowerCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump to:

  1. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump

  2. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity

  3. Guangdong Meiyan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |Grundy ElectricGuangdong Meiyan Hydropower Co

  4. Guizhou Zhenyuan Putian Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,Guizhou Zhenyuan Putian Hydropower Co

  5. Guizhou Zhijin Ouhua hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,Guizhou Zhenyuan Putian Hydropower

  6. IUFRO Landscape Ecology Working Group International Conference, 2127 September, 2010 Bragana, Symposium 7: A landscape approach to sustainable forest management: the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on biodiversity conservation as a proxy for ecological dimensions of sustainable forest management the workIUFRO Landscape Ecology Working Group International Conference, 2127 September, 2010 Bragança, Portugal Symposium 7: A landscape approach to sustainable forest management: the challenge to adaptive

  7. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

    SciTech Connect (OSTI)

    Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States)] [ed.; comp.; Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)] [ed.; comp.; Brookhaven National Lab., Upton, NY (United States)

    1997-10-01T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. It`s main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  8. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

    2013-12-06T23:59:59.000Z

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  9. CSEWG SYMPOSIUM, A CSWEG RETROSPECTIVE. 35TH ANNIVERSARY CROSS SECTION EVALUATION WORKING GROUP, NOV. 5, 2001, BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    DUNFORD, C.; HOLDEN, N.; PEARLSTEIN, S.

    2001-11-05T23:59:59.000Z

    This publication has been prepared to record some of the history of the Cross Section Evaluation Working Group (CSEWG). CSEWG is responsible for creating the evaluated nuclear data file (ENDF/B) which is widely used by scientists and engineers who are involved in the development and maintenance of applied nuclear technologies. This organization has become the model for the development of nuclear data libraries throughout the world. The data format (ENDF) has been adopted as the international standard. On November 5, 2001, a symposium was held at Brookhaven National Laboratory to celebrate the 50 th meeting of the CSEWG organization and the 35 th anniversary of its first meeting in November 1966. The papers presented in this volume were prepared by present and former CSEWG members for presentation at the November 2001 symposium. All but two of the presentations are included. I have included an appendix to list all of the CSEWG members and their affiliations, which has been compiled from the minutes of each of the CSEWG meetings. Minutes exist for all meetings except the 4 th meeting held in January 1968. The list includes 348 individuals from 71 organizations. The dates for each of the 50 CSEWG meetings are listed. The committee structure and chairmen of all committees and subcommittees are also included in the appendix. This volume is dedicated to three individuals whose foresight and talents made CSEWG possible and successful. They are Henry Honeck who lead the effort to develop the ENDF format and the CSEWG system, Ira Zartman, the Atomic Energy Commission program manager who provided the programmatic direction and support, and Sol Pearlstein who led the development of the CESWG organization and the ENDF/B evaluated nuclear data library.

  10. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

    SciTech Connect (OSTI)

    SMITH,D.L.; MCLANE,V.

    1998-10-20T23:59:59.000Z

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  11. EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect (OSTI)

    None

    2011-12-01T23:59:59.000Z

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

  12. DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-07-01T23:59:59.000Z

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  13. DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)

    SciTech Connect (OSTI)

    Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

    1991-07-01T23:59:59.000Z

    This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

  14. DOE Hydropower Program biennial report 1994--1995 with an updated annotated bibliography

    SciTech Connect (OSTI)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1995-05-01T23:59:59.000Z

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1994 and 1995. The report discusses the activities in the four areas of the hydropower program: Environmental Research; Resource Assessment; Research Cost-Shared with Industry; and Technology Transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  15. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  16. Data-Based Performance Assessments for the DOE Hydropower Advancement Project

    SciTech Connect (OSTI)

    March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.] [WolffWare Ltd.; Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy

    2012-01-01T23:59:59.000Z

    The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

  17. EDUCATION AT THE CONTROL LABORATORY Lately, teaching emphasis has been more on group and individual works and

    E-Print Network [OSTI]

    3 2 EDUCATION AT THE CONTROL LABORATORY Lately, teaching emphasis has been more on group processes. The laboratory carries a major role in this program. Control engineering students have seven

  18. Disappearing rivers — The limits of environmental assessment for hydropower in India

    SciTech Connect (OSTI)

    Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

    2013-11-15T23:59:59.000Z

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

  19. A multi-scale approach to address environmental impacts of small hydropower development

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Samu, Nicole M [ORNL; Kao, Shih-Chieh [ORNL; Bevelhimer, Mark S [ORNL; Hetrick, Shelaine L [ORNL

    2014-01-01T23:59:59.000Z

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  20. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water conducts research on new development opportunities and provides a comprehensive hydropower database integrating information about existing hydropower plants. Research Summary and Resources Example: · Existing

  1. Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction

    SciTech Connect (OSTI)

    Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

    2010-09-15T23:59:59.000Z

    In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

  2. Health and Safety Work Plan for Sampling Colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Marsh, J.D.; McCarthy, J.F.

    1994-01-01T23:59:59.000Z

    This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  3. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  4. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - Meeting Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4, 2014

  5. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - Package Bookmark

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4,

  6. November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives- Illness and Injury Surveillance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember 4, Office of

  7. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Action Matrix

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB Meeting4 2008

  8. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEAB Meeting4

  9. December 4, 2008; HSS/Union Working Group Meeting on 2008 HSS/Union Topical Wrap Up - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3 SEABTopical

  10. Historical Perspective on the U.S. Department of Energy's Hydropower Program

    SciTech Connect (OSTI)

    Sale, Michael J.; Cada, G. F.; Dauble, Dennis D.

    2006-08-01T23:59:59.000Z

    For 30 years, the U.S. Department of Energy supported unique research and development activities focused on improving the domestic hydropower industry. In the 1970s and early 1980s, DOE’s Hydropower Program focused on technology assessment and a Small Hydropower Demonstration Program. After a period of zero funding in the late 1980s, the Program restarted with the goal of developing new technology that would improve the environmental performance of hydropower projects. A unique partnership of industry and federal cost-sharing allowed the Advanced Hydropower Turbine Systems activity to be established in 1994 – this led to new fish-friendly turbine designs and testing. Interagency cooperation with organizations like the U.S. Army Corps of Engineers has been a consistent part of the Program, along with scientific leadership and technical expertise from three of DOE’s National Laboratories: INL, ORNL, and PNNL. Program accomplishments include several new turbine designs, biological design criteria, computational and physical modeling, and environmental sensors. In contrast to other R&D on fish passage at dams, the DOE-sponsored research has focused on making the path through the turbine safer.

  11. Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing

    SciTech Connect (OSTI)

    Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

  12. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25T23:59:59.000Z

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  13. Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK

    E-Print Network [OSTI]

    Kammen, Daniel M.

    density of water 1 INTRODUCTION Hydropower is another form of solar energy. Of the Sun's radiation the oceans. It is this solar energy, converted into the latent heat of evaporation of water, that powers, Luytens Close, Chineham, Hants, UK Abstract: Hydropower on a small scale, or micro-hydro, is one

  14. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01T23:59:59.000Z

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  15. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  16. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01T23:59:59.000Z

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  17. Massachusetts Wind Working Group Meeting

    Broader source: Energy.gov [DOE]

    The meeting will feature a panel presentation and discussion on Shadow-Flicker, as well as updates related to the Community Wind Outreach Initiative.   Panel speakers so far include: Elizabeth King...

  18. High Temperature Membrane Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Using Advanced Polymeric Membranes BESP 20 Michael Heben NREL Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity BESP 21 G. Kane Jennings...

  19. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The theme of the meeting was ``A Path to Commercialization`` and discussion was devoted to addressing the nearest-term products and the time frame for implementation. The objectives of the meeting were to identify the barriers to commercialization, methods to overcome these barriers, and the actions required to achieve success. The meeting was planned to bring together government agencies and industry customers and, suppliers to discuss and conclude where the CFCC Program is today, where it is going, and how they plan to get there. It was also planned to join component developers with end users who can describe systems needs and projected schedules for introducing CFCC components in industrial applications.

  20. Mechanical Working Group meeting minutes

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This documents contains the minutes and viewgraphs from the October 27--28, 1992 meeting on the subject of power generation and delivery systems for military applications. Attendees represented the US Air Force and NASA. The thermal management panel reported on the capillary pump loop test facility, thermal control systems and compressors, and the oxygen heat pipe flight experiment. The aerospace power panel reported on the integrated power unit for the more electric airplane, the solar dynamic power system, the modular high temperature gas cooled reactor-gas-turbine program, the multi-megawatt CBC power system, and analytical modeling for heat pipe performance. The terrestrial power panel reported on a free piston stirling engine power generation system, fuel cell vehicles, and the advanced gas turbine project.

  1. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors forA2.

  2. Working Group Industrial Presentation-2014

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25, 20123 (Million13) Monthly

  3. 2011-2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011MarchDecember1

  4. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn

  5. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn and MFRSR

  6. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAn and

  7. BEDES Strategic Working Group Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource1-01 Audit LetterYearAvi Shultz Avi7

  8. Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Resources Planning and Management, 2012, in press ABSTRACT Representing peak and off-peak energy prices and examines the reliability of an existing approximate method to incorporate hourly energy price information

  9. Cumulative biophysical impact of small and large hydropower development, Nu River, China

    E-Print Network [OSTI]

    Tullos, Desiree

    ; Latin America and Caribbean: Benstead et al., 1999]. New national-level regulations, as well The hydropower sector currently comprises eighty percent of global capacity for renewable energy generation of fostering renewable energy development, allowing realization of low-carbon energy potential in developing

  10. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects) This analysis was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis

  11. Tongwei Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:TiogaTongdao YaolaitanTongwei Group

  12. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department`s plutonium storage. Volume 2, Appendix A: Process and protocol

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This appendix contains documentation prepared by the Plutonium ES and H Vulnerability Working Group for conducting the Plutonium ES and H Vulnerability Assessment and training the assessment teams. It has the following five parts. (1) The Project Plan describes the genesis of the project, sets forth the goals, objectives and scope, provides definitions, the projected schedule, and elements of protocol. (2) The Assessment Plan provides a detailed methodology necessary to guide the many professionals who have been recruited to conduct the DOE-wide assessment. It provides guidance on which types and forms of plutonium are to be considered within the scope of the assessment, and lays out the assessment methodology to be used. (3) The memorandum from the Project to Operations Office Managers provides the protocol and direction for participation in the assessment by external stakeholders and members of the public; and the guidance for the physical inspection of plutonium materials in storage. (4) The memorandum from the Project to the assessment teams provides guidance for vulnerability screening criteria, vulnerability evaluation and prioritization process, and vulnerability quantification for prioritization. (5) The Team Training manual was used at the training session held in Colorado Springs on April 19--21, 1994 for all members of the Working Group Assessment Teams and for the leaders of the Site Assessment Teams. The goal was to provide the same training to all of the individuals who would be conducting the assessments, and thereby provide consistency in the conduct of the assessments and uniformity in reporting of the results. The training manual in Section A.5 includes supplemental material provided to the attendees after the meeting.

  13. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01T23:59:59.000Z

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  14. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01T23:59:59.000Z

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  15. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect (OSTI)

    Pasha, M. Fayzul K. [California State University, Fresno; Yeasmin, Dilruba [ORNL; Kao, Shih-Chieh [ORNL; Hadjerioua, Boualem [ORNL; Wei, Yaxing [ORNL; Smith, Brennan T [ORNL

    2014-01-01T23:59:59.000Z

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  16. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -Summaries |

  17. Mabian Shichuang Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDLMPMX Group

  18. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01T23:59:59.000Z

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  19. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  20. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    SciTech Connect (OSTI)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01T23:59:59.000Z

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  1. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

    2012-01-01T23:59:59.000Z

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  2. Jingning County Baihe II Station Hydropower Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd Jump to:Jinglong Group Jump

  3. Jingning County Jinkengyuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co Ltd Jump to:Jinglong Group

  4. Luoning County Yellow River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, search

  5. Luquan County Xiaopengzu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, searchCentury New

  6. Luquan Yunhong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation, searchCentury NewLuquan

  7. Lushui Huili Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,

  8. Mian county Jiangyuan Hydropower developmemnt Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformationMexicoInformation Mian county

  9. Mianning Beiji River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformationMexicoInformation Mian

  10. Hunan Bolian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group Jump to:Hunan

  11. Hunan Jintaiyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubeiHumus Group|Hunan

  12. Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006

    SciTech Connect (OSTI)

    Mansfield, Betty Kay [ORNL; Martin, Sheryl A [ORNL

    2006-02-01T23:59:59.000Z

    Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

  13. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  14. Pingnan County Hengli Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International

  15. Longsheng Ge autonomous county Hongshuihe Hydropower Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan

  16. Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighlyFromInnovations |Energy|

  17. FERC Division of Hydropower Administration and Compliance | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy JumpFAC 04-08 Jump to:FC3 Group

  18. Pingnan Daixi Liyudang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformation Pingnan Daixi Liyudang

  19. Pingnan Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformation Pingnan Daixi LiyudangPingnan

  20. Pingwu County Yetang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformation Pingnan DaixiPingwu