Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

2

A progress report on DOE`s advanced hydropower turbine systems program  

SciTech Connect (OSTI)

Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

1997-06-01T23:59:59.000Z

3

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

SciTech Connect (OSTI)

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto] [University of Toronto; Zhang, Qin Fen [ORNL] [ORNL; Karney, Professor Byran W. [University of Toronto] [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia] [University of Belgrade, Belgrade, Serbia

2011-01-01T23:59:59.000Z

4

Challenges and Progress Toward a Commercial Kinetic Hydropower System  

E-Print Network [OSTI]

Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

Walter, M.Todd

5

Review of Pump as Turbine (PAT) for Micro-Hydropower  

E-Print Network [OSTI]

Abstract — Micro-hydropower projects are the excellent alternative for electricity generation in remote areas. These projects can be installed on small streams, rivers, and channels without any recognizable effect on environment. The only problem in micro-hydro projects is the high cost of turbine, for which Pump as Turbine (PAT) is a successful solution. An objective of the present study is to review the selection criteria of PAT for various hydropower sites having different potential. Since no general model has been developed which can be used to calculate the conversion factors for PAT, so this paper focuses on the research that have been carried out in this field. The limitations of the various available models and other selection criteria have also been discussed in this paper.

Tarang Agarwal

6

Low Head/Low Power Hydropower Resource Assessment of the Pacific Northwest Hydrologic Region  

E-Print Network [OSTI]

three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro

Power Hydropower; Douglas G. Hall; Gregory R. Carroll; Shane J. Cherry; Y D. Lee; Garold L. Sommers

2002-01-01T23:59:59.000Z

7

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

8

EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers  

SciTech Connect (OSTI)

The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

None

2011-12-01T23:59:59.000Z

9

Hydropower R&D: Recent Advances in Turbine Passage Technology  

SciTech Connect (OSTI)

The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

Rinehart, Bennie Nelson; Cada, G. F.

2000-04-01T23:59:59.000Z

10

New Hydropower Turbines to Save Snake River Steelhead | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformationDepartment ofNational HydropowerNationalofEnergy

11

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect (OSTI)

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01T23:59:59.000Z

12

Energy Department Announces $4.4 Million to Advance Hydropower...  

Office of Environmental Management (EM)

low-head hydropower turbine and generator system prototype that combines lightweight, corrosion-resistant metallic components that can be produced through an additive manufacturing...

13

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect (OSTI)

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

14

Laboratory Demonstration of a New American Low-Head Hydropower...  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

15

Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming  

E-Print Network [OSTI]

i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

Lund, Jay R.

16

Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI  

E-Print Network [OSTI]

i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

Lund, Jay R.

17

DOE Hydropower Program Annual Report for FY 2002  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

Garold L. Sommers; R. T. Hunt

2003-07-01T23:59:59.000Z

18

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

19

EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems  

SciTech Connect (OSTI)

Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

Nguyen, Ba Nghiep; Paquette, Joshua

2010-08-01T23:59:59.000Z

20

Modeling California's high-elevation hydropower systems in energy units  

E-Print Network [OSTI]

conditions, hydropower provides 5­10% of the electricity used in the United States [National Energy Education it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy

Pasternack, Gregory B.

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - advanced hydropower turbine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

22

Gas turbine premixing systems  

DOE Patents [OSTI]

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

23

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

24

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Power Cycles Advanced Combustion Turbines Advanced Research University Turbine Systems Research SBIR Program Plan Project Portfolio Project Information Publications...

25

Turbine blade tip gap reduction system  

DOE Patents [OSTI]

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

26

Editorial: Time for green certification for all hydropower?  

SciTech Connect (OSTI)

While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

Deng, Zhiqun; Carlson, Thomas J.

2012-04-10T23:59:59.000Z

27

Gas turbine diagnostic system  

E-Print Network [OSTI]

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

28

Environmental Mitigation Technology (Innovative System Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

29

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

30

Turbine nozzle positioning system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

31

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

32

Turbine nozzle attachment system  

DOE Patents [OSTI]

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

33

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

34

1 INTRODUCTION High-head storage hydropower plants operate  

E-Print Network [OSTI]

1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

Floreano, Dario

35

DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)  

SciTech Connect (OSTI)

This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1997-06-01T23:59:59.000Z

36

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

37

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

38

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

39

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization  

E-Print Network [OSTI]

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

40

Historical Perspective on the U.S. Department of Energy's Hydropower Program  

SciTech Connect (OSTI)

For 30 years, the U.S. Department of Energy supported unique research and development activities focused on improving the domestic hydropower industry. In the 1970s and early 1980s, DOE’s Hydropower Program focused on technology assessment and a Small Hydropower Demonstration Program. After a period of zero funding in the late 1980s, the Program restarted with the goal of developing new technology that would improve the environmental performance of hydropower projects. A unique partnership of industry and federal cost-sharing allowed the Advanced Hydropower Turbine Systems activity to be established in 1994 – this led to new fish-friendly turbine designs and testing. Interagency cooperation with organizations like the U.S. Army Corps of Engineers has been a consistent part of the Program, along with scientific leadership and technical expertise from three of DOE’s National Laboratories: INL, ORNL, and PNNL. Program accomplishments include several new turbine designs, biological design criteria, computational and physical modeling, and environmental sensors. In contrast to other R&D on fish passage at dams, the DOE-sponsored research has focused on making the path through the turbine safer.

Sale, Michael J.; Cada, G. F.; Dauble, Dennis D.

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P.

2010-06-15T23:59:59.000Z

42

Water turbine system and method of operation  

DOE Patents [OSTI]

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2011-05-10T23:59:59.000Z

43

Magnus air turbine system  

DOE Patents [OSTI]

A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.

Hanson, Thomas F. (24204 Heritage La., Newhall, CA 91321)

1982-01-01T23:59:59.000Z

44

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

45

Lightning protection system for a wind turbine  

DOE Patents [OSTI]

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

46

Demonstration of a Variable Phase Turbine Power System for Low...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources Demonstration of a Variable Phase Turbine Power System for Low Temperature...

47

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

48

NEXT GENERATION TURBINE SYSTEM STUDY  

SciTech Connect (OSTI)

Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

Frank Macri

2002-02-28T23:59:59.000Z

49

DOE Hydropower Program Biennial Report for FY 2005-2006  

SciTech Connect (OSTI)

SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

2006-07-01T23:59:59.000Z

50

Combustion modeling in advanced gas turbine systems  

SciTech Connect (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

51

2014 University Turbine Systems Research Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Turbine Systems Research Workshop October 21-24, 2014 Accommodations Union Club Hotel 101 N. Grant Street West Lafayette, IN 47907 The Union Club Hotel will be the...

52

Nine Universities Begin Critical Turbine Systems Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy’s University Turbine Systems Research Program.

53

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

54

Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.  

E-Print Network [OSTI]

Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

55

Airfoil seal system for gas turbine engine  

DOE Patents [OSTI]

A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

Diakunchak, Ihor S.

2013-06-25T23:59:59.000Z

56

E-Print Network 3.0 - assessment hydropower evaluation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

functional displays for hydropower systems: Model-based guidance of scenario design... Work Domain Analysis and Ecological Interface Design for Hydropower System Monitoring and...

57

Flexible hydropower: boosting energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab....

58

Estimated impacts of climate warming on California’s high-elevation hydropower  

E-Print Network [OSTI]

on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

59

Industrial Advanced Turbine Systems Program overview  

SciTech Connect (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

60

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

62

Water Power Technologies The most widespread environmental constraints to the development of hydropower are interference  

E-Print Network [OSTI]

to the development of hydropower are interference with fish passage, provision of adequate environmental flows to address these issues and to help ensure environmentally sound hydropower development in the following through hydropower turbines, remains a serious problem at many sites. The fish passage task focuses

63

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network [OSTI]

ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

64

Hydropower Potential Screening Study  

E-Print Network [OSTI]

Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

65

Advanced turbine systems: Studies and conceptual design  

SciTech Connect (OSTI)

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

66

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

SciTech Connect (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

67

Virtual Hydropower Prospecting – Searching for Hydropower Gold  

SciTech Connect (OSTI)

The availability of geographic information system (GIS) tools and analytical modeling of natural streams has made it possible to perform virtual “river inventories” that were formerly done using topographic maps, stream flow estimates, and physical reconnaissance. The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) virtually assessed the gross power potential of all natural streams in the United States of America and identified feasible potential project sites and estimated their developable power potential. The results of this virtual prospecting have been incorporated into a GIS application called the Virtual Hydropower Prospector that is available for public use on the Internet.

Douglas G. Hall

2007-12-01T23:59:59.000Z

68

IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration  

SciTech Connect (OSTI)

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

Acker, T.

2011-12-01T23:59:59.000Z

69

advanced turbine systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goebel; Lo Obrecht 43 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

70

advanced turbine system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goebel; Lo Obrecht 43 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

71

Dynamic wind turbine models in power system simulation tool  

E-Print Network [OSTI]

Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

72

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

1998-01-01T23:59:59.000Z

73

Closed loop air cooling system for combustion turbines  

DOE Patents [OSTI]

Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

Huber, D.J.; Briesch, M.S.

1998-07-21T23:59:59.000Z

74

IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies  

SciTech Connect (OSTI)

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

Acker, T.

2011-12-01T23:59:59.000Z

75

Leaf seal for transition duct in turbine system  

DOE Patents [OSTI]

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2013-06-11T23:59:59.000Z

76

Flexible metallic seal for transition duct in turbine system  

DOE Patents [OSTI]

A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

2014-04-22T23:59:59.000Z

77

Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine  

SciTech Connect (OSTI)

In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

Capstone Turbine Corporation

2007-12-31T23:59:59.000Z

78

Closed-loop air cooling system for a turbine engine  

DOE Patents [OSTI]

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

79

Optimizing wind turbine control system parameters  

SciTech Connect (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

80

Advanced Turbine Systems scoping and feasibility studies  

SciTech Connect (OSTI)

The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

82

Energy 101: Hydropower  

SciTech Connect (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-01T23:59:59.000Z

83

Energy 101: Hydropower  

ScienceCinema (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-24T23:59:59.000Z

84

Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units.  

E-Print Network [OSTI]

??The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical… (more)

Tsai, Chia-Chun

2012-01-01T23:59:59.000Z

85

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network [OSTI]

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu of Aberdeen Aberdeen, AB24 3UE, UK {jyu, ereiter, jhunter, ssripada}@csd.abdn.ac.uk Abstract: SumTime-Turbine produces textual summaries of archived time- series data from gas turbines. These summaries should help

Reiter, Ehud

86

Optical monitoring system for a turbine engine  

DOE Patents [OSTI]

The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

2013-05-14T23:59:59.000Z

87

Advanced Turbine Systems Program. Topical report  

SciTech Connect (OSTI)

The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

NONE

1993-03-01T23:59:59.000Z

88

Combustion Turbine CHP System for Food Processing Industry -...  

Broader source: Energy.gov (indexed) [DOE]

power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

89

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect (OSTI)

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

90

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

91

Ris DTU 09-06-08 Energy Technology Systems Analysis Programme (ETSAP)  

E-Print Network [OSTI]

· Aktive deltagere (2007): Australien, Belgien, Canada, Danmark, EU, Finland, Tyskland, Grækenland, Italien) Renewable Energy Technologies (9) · Bioenergy · Hydrogen · Hydropower, Ocean Energy Systems · Wind Turbines

92

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

93

Power Smoothing Control in a Grid-Connected Marine Current Turbine System for Compensating  

E-Print Network [OSTI]

similar principles in wind generation systems can be applied in marine current turbine (MCT) systems due

Boyer, Edmond

94

Guidelines for maintaining steam turbine lubrication systems. Final report  

SciTech Connect (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

Lamping, G.A.; Cuellar, J.P. Jr.; Silvus, H.S.; Barsun, H.F.

1986-07-01T23:59:59.000Z

95

National Hydropower Association conference proceedings  

SciTech Connect (OSTI)

These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

Not Available

1985-01-01T23:59:59.000Z

96

Steam turbine restart temperature maintenance system and method  

SciTech Connect (OSTI)

A restart temperature maintenance system is described for a steam turbine system; the steam turbine system comprising a steam turbine, the turbine including a rotation shaft, an outer metal shell means. The restart temperature maintenance system consists of: (a) fastener means affixed to the outer surface of the shell means at predetermined positions; (b) air gap spacer means affixed to the outer surface of the shell means, the air gap spacer means substantially covering the shell means; (c) a plurality of electric heating blanket means of predetermined size and shape positioned in insulative relationship over the air gap spacer means and the heating blanket means maintained in predetermined position by the fastener means; (d) heat sensor means affixed to the outer metal shell means of the steam turbine in predetermined position; (e) power supply means for supplying power to the heating blanket means; (f) heat sensor monitor and controller means connected in circuit between the power supply means and the heat sensor means.

McClelland, T.R.

1986-04-29T23:59:59.000Z

97

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

98

MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment Initiative ...16 CONTINUING: Validation and Analysis of Alden Fish-Friendly Turbine ...17 NEW: Advanced...

99

Inspection system for a turbine blade region of a turbine engine  

DOE Patents [OSTI]

An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

Smed, Jan P. (Winter Springs, FL); Lemieux, Dennis H. (Casselberry, FL); Williams, James P. (Orlando, FL)

2007-06-19T23:59:59.000Z

100

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect (OSTI)

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

102

Reliability, Availability and Maintainability Considerations for Gas Turbine Cogeneration Systems  

E-Print Network [OSTI]

RELIABILITY, AVAILABILITY AND MAINTAINABILITY CONSIDERATIONS FOR GAS TURBINE COGENERATION SYSTEMS Gyrus B. Meher-Homji and Alfred B. Focke Boyce Engineering International, Inc. Houston, Texas ABSTRACT The success of a cogeneration system... the choice of the number of gas turbines and waste heat recovery units to be utilized down to small components, such as pumps, dampers, hea t exchangers and auxiliary systems. . Rand M studies must be initiated in the conceptual phases of the project...

Meher-Homji, C. B.; Focke, A. B.

1984-01-01T23:59:59.000Z

103

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect (OSTI)

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

NONE

1996-08-31T23:59:59.000Z

104

Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development  

SciTech Connect (OSTI)

Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

2014-11-04T23:59:59.000Z

105

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

SciTech Connect (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

106

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network [OSTI]

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

Aljeeran, Fares

2012-07-16T23:59:59.000Z

107

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect (OSTI)

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

NONE

1996-12-31T23:59:59.000Z

108

Hydropower Resource Assessment of Brazilian Streams  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

109

Low pressure cooling seal system for a gas turbine engine  

DOE Patents [OSTI]

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

110

NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY  

SciTech Connect (OSTI)

Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as to how they could serve multiple applications, both in terms of incorporation of technology into current products, as well as to an NGGT product. In summary, potential program costs are shown for development of the candidate systems along with the importance of future DOE enabling participation. Three main conclusions have been established via this study: (1) Rapid recent changes within the power generation regulatory environment and the resulting ''bubble'' of gas turbine orders has altered the timing and relative significance associated with the conclusions of the ADL study upon which the original DOE NGGT solicitation was based. (2) Assuming that the relevant technologies were developed and available for an NGGT market opportunity circa 2010, the top candidate system that meets or exceeds the DOE PRDA requirements was determined to be a hybrid aero-derivative/heavy duty concept. (3) An investment by DOE of approximately $23MM/year to develop NGGT technologies near/mid term for validation and migration into a reasonable fraction of the installed base of GE F-class products could be leveraged into $1.2B Public Benefit, with greatest benefits resulting from RAM improvements. In addition to the monetary Public Benefit, there is also significant benefit in terms of reduced energy consumption, and reduced power plant land usage.

Unknown

2001-12-05T23:59:59.000Z

111

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

SciTech Connect (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

112

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents [OSTI]

A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

Yang, W.C.; Newby, R.A.; Bannister, R.L.

1999-04-27T23:59:59.000Z

113

Thermal chemical recuperation method and system for use with gas turbine systems  

DOE Patents [OSTI]

A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

1999-01-01T23:59:59.000Z

114

Climate Warming and Adaptability of High-Elevation Hydropower Generation in California  

E-Print Network [OSTI]

Climate Warming and Adaptability of High-Elevation Hydropower Generation in California Kaveh Madani's high-elevation hydropower system is composed of more than 150 power plants. Most of the associated to winter, the adaptability of high-elevation hydropower system to new climatic conditions is in question

Keller, Arturo A.

115

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

116

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

117

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

118

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

119

UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY  

SciTech Connect (OSTI)

The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

Lawrence P. Golan; Richard A. Wenglarz

2004-07-01T23:59:59.000Z

120

Warming systems prolong steam-turbine life, accelerate startup  

SciTech Connect (OSTI)

Cycling capability is one of the top challenges in the design, operation, and maintenance of today's powerplants. This article describes how permanent warming systems can be a powerful ally in meeting this challenge, particularly for aging steam turbines. The warming system is typically used to hold steam-turbine shell temperatures during short shutdowns (up to about three days), or to pre-warm shells after longer shut-downs. Permanent warming systems elevate metal temperature above 500 F, distinguishing them from heat tracing systems that operate at much lower temperatures for freeze protection or viscosity control. Permanent warming systems can reduced steam-turbine damage during both startup heating and off-line cooling, and can reduce plant startup time.

Swanekamp, R.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using  

E-Print Network [OSTI]

Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

Ponce, V. Miguel

122

Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) -...

123

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

124

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

125

Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17Turbines Hydrogen

126

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

127

Single module pressurized fuel cell turbine generator system  

DOE Patents [OSTI]

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

128

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect (OSTI)

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

129

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

130

Wind turbine ring/shroud drive system  

DOE Patents [OSTI]

A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

Blakemore, Ralph W.

2005-10-04T23:59:59.000Z

131

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect (OSTI)

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

132

System for pressure modulation of turbine sidewall cavities  

DOE Patents [OSTI]

A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

Leone, Sal Albert (Scotia, NY); Book, Matthew David (Altamont, NY); Banares, Christopher R. (Schenectady, NY)

2002-01-01T23:59:59.000Z

133

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit  

E-Print Network [OSTI]

Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

Mease, Kenneth D.

134

Solar Energy and Small Hydropower Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

135

Solar Energy and Small Hydropower Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

136

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect (OSTI)

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

137

Debris trap in a turbine cooling system  

DOE Patents [OSTI]

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

138

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

SciTech Connect (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

139

Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect (OSTI)

Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

NONE

1995-02-01T23:59:59.000Z

140

A comparison between the performance of different silencer designs for gas turbine exhaust systems  

E-Print Network [OSTI]

A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynamic behaviour of a DFIG wind turbine subjected to power system faults  

E-Print Network [OSTI]

of the dynamic interaction between variable speed DFIG wind turbines and the power system subjected by the Danish Transmission System Operator Energinet.dk. Keywords: doubly-fed induction generator (DFIG), wind turbines, the variable speed DFIG wind turbine with its dynamic behaviour and its ride-through capabil- ity

142

A Systemic Design Methodology of PM Generators for Fixed-Pitch Marine Current Turbines  

E-Print Network [OSTI]

A Systemic Design Methodology of PM Generators for Fixed-Pitch Marine Current Turbines Sofiane of permanent magnet (PM) generator associated with fixed-pitch turbine for tidal energy generation. The main problem with marine current turbines systems are the maintenance requirements of the drive

Paris-Sud XI, Université de

143

Advanced coal-fueled gas turbine systems reference system definition update  

SciTech Connect (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

144

Materials and Component Development for Advanced Turbine Systems  

SciTech Connect (OSTI)

In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

2008-10-01T23:59:59.000Z

145

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

SciTech Connect (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

146

Types of Hydropower Turbines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of EnergyDepartment

147

Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code  

SciTech Connect (OSTI)

Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

148

Steam cooling system for a gas turbine  

DOE Patents [OSTI]

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

149

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect (OSTI)

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

150

A Portable Expert System for Gas Turbine Maintenance  

E-Print Network [OSTI]

Combustion turbines for electric power generation and industrial applications have steadily increased in size, efficiency and prominence. The newest class of gas turbine-generators coming into service will deliver 150 megawatts, with turbine inlet...

Quentin, G. H.

151

“Sustainable development of hydropower in third countries...  

Broader source: Energy.gov (indexed) [DOE]

&8220;Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development,...

152

The Tremblay-Turbiner-Winternitz system as extended Hamiltonian  

E-Print Network [OSTI]

We generalize the idea of "extension of Hamiltonian systems" -- developed in a series of previous articles -- which allows the explicit construction of Hamiltonian systems with additional non-trivial polynomial first integrals of arbitrarily high degree, as well as the determination of new superintegrable systems from old ones. The present generalization, that we call "modified extension of Hamiltonian systems", produces the third independent first integral for the (complete) Tremblay-Turbiner-Winternitz (TTW) system, as well as for the caged anisotropic oscillator in dimension two.

Claudia Maria Chanu; Luca Degiovanni; Giovanni Rastelli

2014-04-18T23:59:59.000Z

153

Impact of DFIG wind turbines on transient stability of power systems a review  

E-Print Network [OSTI]

Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

Pota, Himanshu Roy

154

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN-SITU INSPECTION OF WIND TURBINE BLADES  

E-Print Network [OSTI]

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN- SITU INSPECTION OF WIND TURBINE BLADES Abington, Cambridge, CB21 6AL, UK bic@brunel.ac.uk ABSTRACT It is crucial to maintain wind turbine blades. This work investigates using pulse-echo ultrasound to detect internal damages in wind turbine blades without

Boyer, Edmond

155

UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)  

SciTech Connect (OSTI)

In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

Lawrence P. Golan; Richard A. Wenglarz; William H. Day

2003-03-01T23:59:59.000Z

156

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

as topping combustors for both turbines. A recuperated-heat exchanger recovers waste heat from the power turbine exhaust. This recuperated thermal energy partially heats the...

157

Proceedings of the Advanced Turbine Systems annual program review meeting  

SciTech Connect (OSTI)

Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

NONE

1994-12-31T23:59:59.000Z

158

Solid fuel combustion system for gas turbine engine  

DOE Patents [OSTI]

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

159

Hydropower in the Northwest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content

160

Shaken, not stirred: The recipe for a fish-friendly turbine  

SciTech Connect (OSTI)

It is generally agreed that injuries and mortalities among turbine-passed fish can result from several mechanisms, including rapid and extreme water pressure changes, cavitation, shear, turbulence, and mechanical injuries (strike and grinding). Advances in the instrumentation available for monitoring hydraulic conditions and Computational Fluid Dynamics (CFD) techniques now make it possible both to estimate accurately the levels of these potential injury mechanisms in operating turbines and to predict the levels in new turbine designs. This knowledge can be used to {open_quotes}design-out{close_quotes} the most significant injury mechanisms in the next generation of turbines. However, further improvements in turbine design are limited by a poor understanding of the levels of mechanical and hydraulic stresses that can be tolerated by turbine-passed fish. The turbine designers need numbers (biological criteria) that define a safety zone for fish within which pressures, shear forces, cavitation, and chance of mechanical strike are all at acceptable levels for survival. This paper presents the results of a literature review of fish responses to the types of biological stresses associated with turbine passage, as studied separately under controlled conditions in the laboratory rather than in combination at field sites. Some of the controlled laboratory and field studies reviewed here were bioassays carried out for reasons unrelated to hydropower production. Analysis of this literature was used to develop provisional biological criteria for hydroelectric turbine designers. These biological criteria have been utilized in the U.S. Department of Energy`s Advanced Hydropower Turbine System (AHTS) Program to evaluate the results of conceptual engineering designs and the potential value of future turbine models and prototypes.

Cada, G.F.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

162

Hydropower Potential Scoping Study Gauging Interest  

E-Print Network [OSTI]

6/19/2013 1 Hydropower Potential Scoping Study ­ Gauging Interest Generating Resources Advisory and associated technologies. ­ Hydropower upgrades, new hydropower projects 2 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan

163

Cooling system for a gas turbine  

DOE Patents [OSTI]

A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.

Wilson, Ian David (Mauldin, SC); Salamah, Samir Armando (Niskayuna, NY); Bylina, Noel Jacob (Niskayuna, NY)

2003-01-01T23:59:59.000Z

164

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012 465 Dynamics of Type-3 Wind Turbine Generator Models  

E-Print Network [OSTI]

Turbine Generator Models Ian A. Hiskens, Fellow, IEEE Abstract--The influence of wind turbine generators, singular systems, small disturbance analysis, switching deadlock, wind turbine generator modeling. I. INTRODUCTION THE dynamic behavior of wind turbine generators (WTGs) is quite different to that of synchronous

Hiskens, Ian A.

165

Helical Turbine and Fish Safety By Alexander Gorlov, August, 2010  

E-Print Network [OSTI]

1 Helical Turbine and Fish Safety By Alexander Gorlov, August, 2010 Abstract The objective of this paper is to describe research using the Helical Turbine for hydropower with particular focus on fish). Correspondingly, the following two conclusions are formulated. Probability of fish kill by kinetic turbines

Gorban, Alexander N.

166

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

167

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

168

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

169

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

170

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

171

HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2  

E-Print Network [OSTI]

HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2 ABSTRACT: Hydropower represents impacts to natural and human communities, future long-term fixed licenses of hydropower operation. (KEY TERMS: climate change; environmental regulations; hydropower; relicensing; water law; water policy

Schladow, S. Geoffrey

172

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems  

E-Print Network [OSTI]

Modeling of Multilayer Composite Fabrics for Gas Turbine Engine Containment Systems J. Sharda1 ; C of multilayer composite fabrics used in a gas turbine engine containment system is developed. Specifically: Tensile strength; Stress analysis; Stress strain relations; Fabrics; Composite materials; Finite element

Mobasher, Barzin

173

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

174

Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations  

SciTech Connect (OSTI)

The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

1999-07-01T23:59:59.000Z

175

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

176

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

177

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

SciTech Connect (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

178

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling  

E-Print Network [OSTI]

The Hybrid Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Systems Steady State Modeling Penyarat Fuel Cells (SOFCs) are of great interest nowadays. The feature of SOFCs makes them suitable for hybrid plants offer high cycle efficiencies. In this work a hybrid solid oxide fuel cell and gas turbine power

Paris-Sud XI, Université de

179

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey  

E-Print Network [OSTI]

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey EXPERIMENTAL TURBINE AERO-HEAT TRANSFER STUDIES IN ROTATING RESEARCH FACILITIES Cengiz Camci Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering The Pennsylvania State University 233

Camci, Cengiz

180

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR  

E-Print Network [OSTI]

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR Mads@ramboll.com ABSTRACT It is investigated if material based structural safety can be replaced with safety obtained from of the NREL 5MW wind turbine tower subjected to bending fatigue and horizontal circumferential cracking

Boyer, Edmond

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM  

E-Print Network [OSTI]

STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM, Taipei, Taiwan 2 Department of Hydraulic & Ocean Engineering, National Cheng Kung University, Tainan, Taiwan kclu@narlabs.org.tw ABSTRACT The wind turbine heavily depends on the success of the support

Boyer, Edmond

182

Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995  

SciTech Connect (OSTI)

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

NONE

1995-12-31T23:59:59.000Z

183

Axially staged combustion system for a gas turbine engine  

DOE Patents [OSTI]

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

184

Damage Modeling and Life Extending Control of a Boiler-Turbine System1  

E-Print Network [OSTI]

Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

Marquez, Horacio J.

185

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

186

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

SciTech Connect (OSTI)

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30T23:59:59.000Z

187

Lifting system and apparatus for constructing wind turbine towers  

DOE Patents [OSTI]

The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

2011-02-01T23:59:59.000Z

188

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

189

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS  

SciTech Connect (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760şC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

M. A. Alvin

2009-06-12T23:59:59.000Z

190

Internal combustion engine system having a power turbine with a broad efficiency range  

DOE Patents [OSTI]

An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

Whiting, Todd Mathew; Vuk, Carl Thomas

2010-04-13T23:59:59.000Z

191

Turbine airfoil with an internal cooling system having vortex forming turbulators  

DOE Patents [OSTI]

A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

Lee, Ching-Pang

2014-12-30T23:59:59.000Z

192

Composite turbine blade design options for Claude (open) cycle OTEC power systems  

SciTech Connect (OSTI)

Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

Penney, T.R.

1985-11-01T23:59:59.000Z

193

Development of a measurement system able to determine the ow velocity eld on models of hydraulic turbines  

E-Print Network [OSTI]

. Antoine Bombenger Probing strategy in a Kaplan Turbine Such a probe typically has a spherical head with 5 turbines Christian Landry Motivations & Objectives The project was driven by the need to improve the measurement of velocity elds and pressures in a hydraulic turbine. The development of a new probing system

Diggavi, Suhas

194

Characterization of Bead Trajectories Through the Draft Tube of a Turbine Physical Model.  

SciTech Connect (OSTI)

Using high-speed video imaging, trajectories, and kinematics of beads passing below the turbine runner and through the draft tube region of the 1:25 scale model of a single turbine unit from Bonneville Dam powerhouse 1 were collected from May 6-9, 2003 at U.S. Army Corps of Engineers (USACE) Environmental Research and Development Center (ERDC) in Vicksburg, MS. An individual camera was used to produce 2-dimensional trajectories and paired cameras with overlapping fields of view were used to produce 3-dimension trajectories of near neutrally buoyant beads as they passed through the draft tube region of the turbine model. Image data was collected at two turbine operating levels, lower 1% efficiency and maximum rated output for beads released mid-depth into the turbine intake from each of the three gatewell slots. The purpose of this study was to determine the feasibility of using video imaging to track the trajectories of beads through the draft tube of turbine physical models and from the trajectories calculate the kinematics of the bead trajectory and the beads response to turbulence in the model. This project is part of a research program supported by the U.S. Department of Energy Advanced Hydropower Turbine System Program (AHTS) who's goal is to increase the operating potential of hydroelectric facilities while also reducing the reducing the risk of injury and death to fish as they pass through the turbines.

Weiland, Mark A.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiquan; McKinstry, Craig A.

2005-02-18T23:59:59.000Z

195

Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine  

E-Print Network [OSTI]

As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

Peck, Jhongwoo, 1976-

2003-01-01T23:59:59.000Z

196

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

SciTech Connect (OSTI)

Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

NONE

1995-06-01T23:59:59.000Z

197

Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System  

SciTech Connect (OSTI)

An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

Di Bella, Francis A

2014-09-29T23:59:59.000Z

198

Advanced Turbine System (ATS): Task 1, System scoping and feasibility study. Final report  

SciTech Connect (OSTI)

Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO{sub x} < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB`s experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

van der Linden, S.

1993-02-01T23:59:59.000Z

199

Advanced Turbine System (ATS): Task 1, System scoping and feasibility study  

SciTech Connect (OSTI)

Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO[sub x] < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB's experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

van der Linden, S.

1993-02-01T23:59:59.000Z

200

A Holistic Framework for Environmental Flows Determination in Hydropower Contexts  

SciTech Connect (OSTI)

Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect (OSTI)

This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

NONE

1995-11-01T23:59:59.000Z

202

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network [OSTI]

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

203

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network [OSTI]

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

204

Air cooled turbine component having an internal filtration system  

DOE Patents [OSTI]

A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

Beeck, Alexander R. (Orlando, FL)

2012-05-15T23:59:59.000Z

205

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-Print Network [OSTI]

focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage/energy sizing. In this paper, one grid-connected MCT generation system with battery energy storage system (BESSApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou

Brest, Université de

206

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

207

Impact of Advanced Turbine Systems on coal-based power plants  

SciTech Connect (OSTI)

The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

Bechtel, T.F.

1993-12-31T23:59:59.000Z

208

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

209

Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998  

SciTech Connect (OSTI)

The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

Gorlov, A.

1998-08-01T23:59:59.000Z

210

Methodology and Process for Condition Assessment at Existing Hydropower Plants  

SciTech Connect (OSTI)

Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

Zhang, Qin Fen [ORNL] [ORNL; Smith, Brennan T [ORNL] [ORNL; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

211

Cooling system having reduced mass pin fins for components in a gas turbine engine  

DOE Patents [OSTI]

A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

Lee, Ching-Pang; Jiang, Nan; Marra, John J

2014-03-11T23:59:59.000Z

212

Development and demonstration of a wood-fired gas turbine system  

SciTech Connect (OSTI)

The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

Smith, V.; Selzer, B.; Sethi, V.

1993-08-01T23:59:59.000Z

213

Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect (OSTI)

This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

NONE

1994-11-01T23:59:59.000Z

214

Data-Based Performance Assessments for the DOE Hydropower Advancement Project  

SciTech Connect (OSTI)

The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.] [WolffWare Ltd.; Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy

2012-01-01T23:59:59.000Z

215

Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996  

SciTech Connect (OSTI)

Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

NONE

1996-12-31T23:59:59.000Z

216

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October, 1994  

SciTech Connect (OSTI)

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. During this report period, the following tasks were completed: Market study; System definition and analysis; and Integrated program plans. Progress on Task 8, Design and Test of Critical Components, is also discussed. This particular task includes expanded materials and component research covering recuperators, combustion, autothermal fuel reformation, ceramics application and advanced gas turbine system controls.

NONE

1995-01-01T23:59:59.000Z

217

A new emergency lubricating-oil system for steam turbine generators: Final report  

SciTech Connect (OSTI)

A positive-displacement pump, powered by a turbine-shaft driven permanent magnet generator (PMG) can be used to provide lubricating oil over nearly the entire turbine generator speed range. The concept offers high reliability through its simplicity; switchgear, batteries and other auxiliaries are eliminated by hard-wiring the PMG to the pump induction drive motor. In this study, an existing PMG supplying power to the electrohydraulic control (EHC) system was evaluated as the power supply for an induction motor-driven screw pump running in a ''wafting'' mode as a backup to a conventional dc emergency oil system. The screw pump rotates all the time that the turbine shaft turns; check valves allow it to deliver oil instantly if the system pressure falls. It was found that the pump drive motor would start and run reliably with no adverse effects on the PMG or the electrohydraulic control (EHC) system. 6 refs., 23 figs., 11 tabs.

Kalan, G.L.; Oney, W.R.; Steenburgh, J.H.; Elwell, R.C.

1987-04-01T23:59:59.000Z

218

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

219

Advanced turbine systems sensors and controls needs assessment study. Final report  

SciTech Connect (OSTI)

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01T23:59:59.000Z

220

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Considering Climate Change in Hydropower Relicensing  

E-Print Network [OSTI]

Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

222

Cooling system for a bearing of a turbine rotor  

DOE Patents [OSTI]

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

223

EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

224

System engineering and energy costs of small and medium wind turbines  

SciTech Connect (OSTI)

A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

Tu, P.K.C.

1985-07-01T23:59:59.000Z

225

U.S. Hydropower Resource Assessment - Georgia  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

226

US hydropower resource assessment for Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

227

US hydropower resource assessment for Utah  

SciTech Connect (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

228

U.S. Hydropower Resource Assessment - California  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

229

Hydropower Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this page

230

A comparative assessment of alternative combustion turbine inlet air cooling system  

SciTech Connect (OSTI)

Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

1996-02-01T23:59:59.000Z

231

Systems and methods for detecting a flame in a fuel nozzle of a gas turbine  

DOE Patents [OSTI]

A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

2013-05-07T23:59:59.000Z

232

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect (OSTI)

Objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for anultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. Technical progress covered in this report is confined to Task 4 (conversion to coal) and the nine subtasks under Task 8 (design and test of critical components). These nine subtasks address six ATS technologies: catalytic combustion, recuperator, autothermal fuel reformer, high temperature turbine disc, advanced control system, and ceramic materials.

NONE

1995-02-01T23:59:59.000Z

233

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

234

Hydropower: Setting a Course for Our Energy Future  

SciTech Connect (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

235

Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades  

SciTech Connect (OSTI)

IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

2010-10-30T23:59:59.000Z

236

Hydropower Upgrades to Yield Added Generation at Average Costs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and advanced control systems in order to...

237

Hot spot detection system for vanes or blades of a combustion turbine  

DOE Patents [OSTI]

This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

Twerdochlib, Michael (Oviedo, FL)

1999-01-01T23:59:59.000Z

238

Hot spot detection system for vanes or blades of a combustion turbine  

DOE Patents [OSTI]

This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

Twerdochlib, M.

1999-02-02T23:59:59.000Z

239

Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's  

E-Print Network [OSTI]

Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

Harrison, Gareth

240

System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134  

SciTech Connect (OSTI)

The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

Annen, K.D.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Disappearing rivers — The limits of environmental assessment for hydropower in India  

SciTech Connect (OSTI)

The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

2013-11-15T23:59:59.000Z

242

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

SciTech Connect (OSTI)

This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

Karstensen, K.W.

1995-07-01T23:59:59.000Z

243

Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs  

DOE Patents [OSTI]

An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

1981-01-01T23:59:59.000Z

244

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

SciTech Connect (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

245

Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems  

E-Print Network [OSTI]

to stability problems caused by wind power integration. In the grid impact studies of wind power integrationImpact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems M. J connected to a higher voltage level, their impact is becoming more widespread. The European Wind Energy

Pota, Himanshu Roy

246

Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006  

SciTech Connect (OSTI)

This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

Dauble, Dennis D.

2006-08-01T23:59:59.000Z

247

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect (OSTI)

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

248

Hydropower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC

249

Wind turbine blade testing system using base excitation  

DOE Patents [OSTI]

An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

2014-03-25T23:59:59.000Z

250

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

251

Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint  

SciTech Connect (OSTI)

This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

2014-02-01T23:59:59.000Z

252

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect (OSTI)

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

NONE

1996-07-26T23:59:59.000Z

253

LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub-scale combustor rig, performing and validating CFD predictions, and ultimately conducting a full system demonstration in a multi-injector combustion system at Solar Turbines.

Vivek Khanna

2002-09-30T23:59:59.000Z

254

Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control the flow of water in hydropower developments, urban  

E-Print Network [OSTI]

Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control, their solution is found either by physical hydraulic modeling or, more recently, by numerical modeling significantly reduce turbine efficiency and cause premature mechanical failure when they occur at hydropower

Barthelat, Francois

255

Sliding vane geometry turbines  

DOE Patents [OSTI]

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30T23:59:59.000Z

256

Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006  

SciTech Connect (OSTI)

This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

Schulz, M. J.; Sundaresan, M. J.

2006-08-01T23:59:59.000Z

257

The Tremblay-Turbiner-Winternitz system on spherical and hyperbolic spaces : Superintegrability, curvature-dependent formalism and complex factorization  

E-Print Network [OSTI]

The higher-order superintegrability of the Tremblay-Turbiner-Winternitz system (related to the harmonic oscillator) is studied on the two-dimensional spherical and hiperbolic spaces, $S_\\k^2$ ($\\k>0$), and $H_{\\k}^2$ ($\\kTurbiner-Winternitz system on $S_\\k^2$ ($\\k>0$) and $H_{\\k}^2$ ($\\k<0$), and to the explicit expression of the constants of motion.

Manuel F. Ranada

2014-03-25T23:59:59.000Z

258

Advanced Turbine Systems (ATS): Phase 1 system scoping and feasibility studies  

SciTech Connect (OSTI)

As part of this involvement Solar intends to design and commercialize a unique gas turbine system that promises high cycle efficiencies and low exhaust emissions. This engine of approximately 12-MW will be targeted for the dispersed power markets both urban and rural. Goals of 50% thermal efficiency and 8 parts-per-million by volume (ppmv) nitrogen oxide emissions were established. Reliability, availability, and maintainability (RAM) will continue to be the most important factors in the competitive marketplace. The other major goal adopted was one of reducing the cost of power produced by 10%. This reduction is based on the cost of power (COP) associated with today`s engines that lie in the same horsepower range as that targeted in this study. An advanced cycle based on an approximation of the Ericsson Cycle was adopted after careful studies of a number of different cycles. This advanced intercooled, recuperated engine when fired at 2450{degree}F will be capable of meeting the 50% efficiency goal if the cooling air requirements do not exceed 7% of the total air flow rate. This latter qualification will probably dictate the use of ceramic parts for both the nozzle guide vanes and the turbine blades. Cooling of these parts will probably be required and the 7% cooling flow allowance is thought to be adequate for such materials. Analyses of the cost of power and RAM goals show that the installed cost of this advanced engine can be approximately 50% above today`s costs. This cost is based on $4.00 per million Btu fuel and a COP reduction of 10% while maintaining the same RAM as today`s engines.

White, D.J.

1993-04-15T23:59:59.000Z

259

Hybrid lean premixing catalytic combustion system for gas turbines  

DOE Patents [OSTI]

A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

Critchley, Ian L.

2003-12-09T23:59:59.000Z

260

Advanced gas turbine systems research. Quarterly report, January--March, 1994  

SciTech Connect (OSTI)

The Department of Energy is sponsoring a series of studies related to advanced gas turbine systems. Ten universities participated in the first round studies, and an additional 13 studies have been funded this year. The five areas being covered are heat transfer, aerodynamics, materials, combustion, and dynamics. Summaries are given for the 6-month progress on the 1993 subcontract studies and on the planned research for the new subcontract studies.

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Research Article Effects of alpine hydropower operations on primary production  

E-Print Network [OSTI]

Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

262

Vulnerability of Hydropower Projects to Climate Change Revision: 20th  

E-Print Network [OSTI]

Vulnerability of Hydropower Projects to Climate Change Revision: 20th December 2001 Dr Gareth P and increased use of renewable sources including hydropower. Paradoxically, climate change itself may alter role in whether emissions cuts are achieved. 2. Climate Change and Hydropower A rising demand

Harrison, Gareth

263

forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE  

E-Print Network [OSTI]

O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

Pasternack, Gregory B.

264

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

SciTech Connect (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

265

Cost effective designs for integrating new electronic turbine control systems into existing steam power plants  

SciTech Connect (OSTI)

Different cost-effective approaches have been developed for integrating new digital turbine control systems into existing power plants. The devices under consideration range from self contained actuators which replace the existing hydraulic and mechanical servomotor components, linear proportional actuators, which mechanically drive the original servomotor pilot relays, to electro-hydraulic converters which provide a control pressure to the existing hydraulic servomotor pilot relays. These devices significantly reduce the implementation cost, while still providing most of the benefits that can be gained through greater utilization of the new electronic control capabilities. These three design approaches are analyzed for control performance, failure modes, long-term maintenance issues, and applicability to specific turbine configurations.

Nguyen, T.V. [Westinghouse Electric Corp., Orlando, FL (United States)

1996-10-01T23:59:59.000Z

266

Differential pressure sensing system for airfoils usable in turbine engines  

DOE Patents [OSTI]

A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.

Yang, Wen-Ching; Stampahar, Maria E.

2005-09-13T23:59:59.000Z

267

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

268

Monitoring systems for predictive maintenance of steam turbines  

SciTech Connect (OSTI)

This paper describes two PC based computer systems that have been developed, constructed and installed in a power plant for predictive maintenance. The first system, called SIMPER, is operating on-line, collecting operational parameters such as: vibration, rotor thermal stresses, efficiency, pressures, temperatures and water level in the boiler drum from four 300 MW units. SIMPER is embedded in a network of eight nodes under the QNX operating system, and the data acquisition system has sixty four input channels. SICAD, the second system, is a dedicated computerized vibration acquisition and analysis system. The system is embedded in a 386 personal computer, and has eight input channels; each channel has its own programmable digital tracking filter. SICAD can record the vibration waveform, and the synchronous or subsynchronous vectors; the graphic interface displays in real time the polar diagram, the spectrum and waveform of the vibration signature that is being collected. SICAD can be used for balancing a multi rotor system applying the modal balancing concept.

Santiago, A.A.; Poujol-Galvan, F.C.; Kubiak, J.A.; Rivera-Grijalva, J.J.; Lopez, P.J. [Inst. de Investigaciones Electricas, Cuernavaca (Mexico)

1994-12-31T23:59:59.000Z

269

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US SoutheastGHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions

270

Fully coupled dynamic analysis of a floating wind turbine system  

E-Print Network [OSTI]

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01T23:59:59.000Z

271

New Small Hydropower Technology to be Deployed in the United States  

SciTech Connect (OSTI)

Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

2012-01-01T23:59:59.000Z

272

Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

NONE

1998-12-31T23:59:59.000Z

273

User's Guide Virtual Hydropower Prospector Version 1.1  

SciTech Connect (OSTI)

The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.

Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

2005-11-01T23:59:59.000Z

274

Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)  

SciTech Connect (OSTI)

The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

2015-01-01T23:59:59.000Z

275

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-Print Network [OSTI]

of climate warming on energy prices. California's EnergyBased Hydropower Optimization Model (EBHOM to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generat WITH CONSIDERATION OF WARMING IMPACTS ON ELECTRICITY DEMAND AND PRICING A White Paper from the California

276

Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator  

SciTech Connect (OSTI)

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

1994-10-01T23:59:59.000Z

277

RAM analysis helps cut turbine-generator systems costs  

SciTech Connect (OSTI)

Maintenance is effective when it improves equipment availability and reduces costs. Reduced costs stem from increased availability, which is the primary objective of this study. As a result, overall operating costs decrease. RAM analysis requires a logical approach to the problem through the use of techniques such as FMEA, FTA and goal trees. To illustrate the steps of this method, the authors used a simplified T-G system. This method is to rank critical components in terms of the severity of failure. On the basis of ranking, it is possible to assign the preventive maintenance tasks in order of priority. Other options are available. Examples are revised procedures, more detailed outage plans using PC-based programs and better spare parts management.

Cockerill, A.W. (Delta Tech. Systems, Cobourg, Ontario (CA)); Lavoie, M. (Ontario Hydro, Tiverton, Ontario (CA))

1990-07-01T23:59:59.000Z

278

A new coordinated control strategy for boiler-turbine system of coal-fired power plant  

SciTech Connect (OSTI)

This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

2005-11-01T23:59:59.000Z

279

Advanced Turbine Systems Program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect (OSTI)

The stated objective of the project was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems (GFATS) in order to select one that would achieve all of the ATS Program goals. Detailed cycle performance, cost of electricity, and RAM analysis were carried out to provide information on the final selection of the GFATS cycle. To achieve the very challenging goals, innovative approaches and technological advances are required, especially in combustion, aerodynamic design, cooling design, mechanical design, leakage control, materials, and coating technologies.

Not Available

1994-11-01T23:59:59.000Z

280

Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

NONE

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

None

1999-09-01T23:59:59.000Z

282

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING SYSTEMS  

E-Print Network [OSTI]

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING to simulated vibrations of a rotating rotor. KEYWORDS : wind turbine blade, rotor anisotropy, Floquet analysis, OMA INTRODUCTION Blades of modern wind turbines are complex high-tech structures, and their cost

Paris-Sud XI, Université de

283

Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines q  

E-Print Network [OSTI]

Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind compressed air energy storage. Maximizes energy production, levels load, downsizes electrical parts, meets presents the modeling and control for a novel Compressed Air Energy Storage (CAES) system for wind turbines

Li, Perry Y.

284

Industrial advanced turbine systems: Development and demonstration. Quarterly report, July 1--September 30, 1997  

SciTech Connect (OSTI)

The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. Significant efforts were spent this quarter to reforecast and control expenditures due to Solar`s and DOE`s current funding and resource constraints. Selective reductions and delays in program activities were identified and implemented. Although these actions will increase technical risk and the attainment of stretch goals, it is not anticipated that the schedule for initial test units or the attainment of basic program performance requirements will be impacted. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

NONE

1997-12-31T23:59:59.000Z

285

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

286

Rampressor Turbine Design  

SciTech Connect (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

287

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

288

Power Builds Ships Northwest Hydropower Helps Win World War II  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power-Builds-Ships-Northwest-Hydropower-Helps-Win-World-War-II Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

289

Memorandum of Understanding for Hydropower Two-Year Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additionally, the MOU aims to "(1) support the maintenance and sustainable optimization of existing federal and non-federal hydropower projects, (2) elevate the goal of...

290

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect (OSTI)

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

NONE

1996-10-01T23:59:59.000Z

291

Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam  

E-Print Network [OSTI]

Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing Consumers Protection Act (1986), which instructs federal regulators to ``balance'' hydropower

Kotchen, Matthew J.

292

Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System  

E-Print Network [OSTI]

controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine storage vessel. The storage vessel contains both liquid and compressed air at the same pressure. Energy significant reduction in generation costs. Among all different types of energy storage approaches, compressed

Li, Perry Y.

293

Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to  

E-Print Network [OSTI]

Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel components can be downsized for demand instead of supply. A novel Compressed Air Energy Storage (CAES

Li, Perry Y.

294

Smart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines using wireless  

E-Print Network [OSTI]

. Longer and lighter blade designs using novel materials (e.g., fiberglass composites) will yield better performance (Schulz and Sundaresan 2006). Frequently reversing wind loads and blade orientation with respectSmart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines

Sweetman, Bert

2010-01-01T23:59:59.000Z

295

Smart Structures and Systems, Vol. 6, No. 3 (2010) 183-196 183 Structural monitoring of wind turbines using wireless  

E-Print Network [OSTI]

turbine designs. Longer and lighter blade designs using novel materials (e.g., fiberglass composites) will yield better performance (Schulz and Sundaresan 2006). Frequently reversing wind loads and bladeSmart Structures and Systems, Vol. 6, No. 3 (2010) 183-196 183 Structural monitoring of wind

Lynch, Jerome P.

2010-01-01T23:59:59.000Z

296

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

297

Analysis of Low Pressure Steam Turbine Diffuser and Exhaust Hood Systems.  

E-Print Network [OSTI]

??This thesis concerns the computational modelling of low pressure (LP) steam turbine exhaust hood flows. A test case for LP last stage blades (LSBs) with… (more)

BURTON, ZOE

2014-01-01T23:59:59.000Z

298

A Methodology for Estimating the Parameters of Steam Turbine Generator Shaft Systems for Subsynchronous Resonance Studies .  

E-Print Network [OSTI]

??The increase of coal and nuclear power steam turbines over the past few decades combined with transmission line series capacitors creates a potential drawback known… (more)

Sambarapu, Krishna

2012-01-01T23:59:59.000Z

299

E-Print Network 3.0 - advanced turbine systems-research Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

300

Wind turbine generators having wind assisted cooling systems and cooling methods  

DOE Patents [OSTI]

A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

2008-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Industrial advanced turbine systems: Development and demonstration. Quarterly report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 24.7% complete (22.8% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 41.6% complete. Although a great amount of work occurred in the quarter, a significant amount of this work entailed the revision and rerelease of several Mercury 50 drawings. Estimates of percent compete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variation information is provided in Section 4.0 Program Management.

NONE

1998-06-01T23:59:59.000Z

302

U.S. hydropower resource assessment for Maine  

SciTech Connect (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

303

U.S. hydropower resource assessment for Idaho  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

304

U.S. hydropower resource assessment for Oregon  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

Conner, A.M.; Francfort, J.E.

1998-03-01T23:59:59.000Z

305

U.S. hydropower resource assessment for Nevada  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

306

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network [OSTI]

with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One ­ the size of PV arrays, the number of wind turbines and the capacity of battery storage ­ that limit

Low, Steven H.

307

Hydropower Research & Development | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this

308

Hydropower Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageisHydropower is used

309

Hydropower Technology Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageisHydropower is

310

National Hydropower Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatEl JumpGypsum JumpHydropower

311

Hydropower Modernization Initiative Proposed Implementation Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof theCoalMarketHydropower

312

Hydropower Market Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower Market

313

Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994  

SciTech Connect (OSTI)

Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

NONE

1995-02-01T23:59:59.000Z

314

554 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 37, NO. 3, JULY 2012 Generator Systems for Marine Current Turbine  

E-Print Network [OSTI]

Current Turbine Applications: A Comparative Study Seifeddine Benelghali, Member, IEEE, Mohamed El Hachemi for marine current turbines are mainly related to works that have been carried out on wind turbines and ship turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators

Paris-Sud XI, Université de

315

Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998  

SciTech Connect (OSTI)

Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.

NONE

1999-01-19T23:59:59.000Z

316

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Broader source: Energy.gov [DOE]

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

317

Base excitation testing system using spring elements to pivotally mount wind turbine blades  

DOE Patents [OSTI]

A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

2013-12-10T23:59:59.000Z

318

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

319

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

320

Physical modeling of wind turbine generators in a small scale analog system  

E-Print Network [OSTI]

This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid ...

Wang, Xuntuo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect (OSTI)

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

322

Sandia National Laboratories: New Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyNew Wind Turbine Blade Design New Wind Turbine Blade Design More Energy with Less Weight ATLAS II Data Acquisition System New Wind Turbine Blade Design On May 18,...

323

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

324

Optimal sequencing site of hydro-power stations  

SciTech Connect (OSTI)

At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

1995-06-01T23:59:59.000Z

325

Climate change impacts on financial risk in hydropower projects   

E-Print Network [OSTI]

the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

Harrison, Gareth P; Whittington, Bert; Wallace, Robin

326

Wind turbine/generator set having a stator cooling system located between stator frame and active coils  

DOE Patents [OSTI]

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

2012-11-13T23:59:59.000Z

327

Memorandum of Understanding for Hydropower Two Year Progress Report  

Broader source: Energy.gov [DOE]

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

328

Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine  

DOE Patents [OSTI]

A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

1994-01-01T23:59:59.000Z

329

Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival  

SciTech Connect (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation.

Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

2005-10-14T23:59:59.000Z

330

Cooling supply system for stage 3 bucket of a gas turbine  

DOE Patents [OSTI]

In a land based gas turbine including a compressor, a combustor and turbine section including at least three stages, an improvement comprising an inlet into a third stage nozzle from the compressor for feeding cooling air from the compressor to the third stage nozzle; at least one passageway running substantially radially through each airfoil of the third stage nozzle and an associated diaphragm, into an annular space between the rotor and the diaphragm; and passageways communicating between the annular space and individual buckets of the third stage.

Eldrid, Sacheverel Quentin (Saratoga Springs, NY); Burns, James Lee (Schenectady, NY); Palmer, Gene David (Clifton Park, NY); Leone, Sal Albert (Scotia, NY); Drlik, Gary Joseph (Fairfield, OH); Gibler, Edward Eugene (Cincinnati, OH)

2002-01-01T23:59:59.000Z

331

Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam  

SciTech Connect (OSTI)

Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

2010-10-13T23:59:59.000Z

332

Advanced gas turbine systems research. Technical quarterly progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

Major accomplishments by AGTSR during this reporting period are highlighted and then amplified in later sections of this report. Main areas of research are combustion, heat transfer, and materials. Gas turbines are used for power generation by utilities and industry and for propulsion.

NONE

1997-12-31T23:59:59.000Z

333

Advanced gas turbine systems research. Quarterly technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

A cooperative development of gas turbines for electric power generation in USA is underway. Since the first AGTSR program manager has retired, a search for a new manager has begun. Reports during this period include membership, combustion instability white paper, and a summary paper for the ASME IGTI conference.

Not Available

1994-07-01T23:59:59.000Z

334

Best Practices Implementation for Hydropower Efficiency and Utilization Improvement  

SciTech Connect (OSTI)

By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

335

Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy  

SciTech Connect (OSTI)

This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

Gagnon, L.

2004-10-03T23:59:59.000Z

336

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

NONE

1997-12-31T23:59:59.000Z

337

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

338

Lubricating system for thermal medium delivery parts in a gas turbine  

DOE Patents [OSTI]

Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

Mashey, Thomas Charles (Coxsackie, NY)

2002-01-01T23:59:59.000Z

339

Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,  

E-Print Network [OSTI]

1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

Harrison, Gareth

340

Research Article Effects of Alpine hydropower dams on particle transport and  

E-Print Network [OSTI]

Research Article Effects of Alpine hydropower dams on particle transport and lacustrine December 2006 Abstract. The effects of high-alpine hydropower damming on lacustrine sedimentation impact, such as by hydropower dam construction that form artifi- cial sediment sinks acting as manmade

Gilli, Adrian

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Methodology to Assess the Value of Integrated Hydropower and Wind Generation  

E-Print Network [OSTI]

A Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement entitled: A Methodology to Assess the Value of Integrated Hydropower and Wind Generation written by Mitch A) A Methodology to Assess the Value of Integrated Hydropower and Wind Generation Thesis directed by Professor

342

EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations  

E-Print Network [OSTI]

EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations and associated river on stocking lakes with elvers and fingerling eels. These were trapped at the hydropower facilities.) stocks is a matter of great concern and Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood

McCarthy, T.K.

343

Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology  

E-Print Network [OSTI]

Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology to gross final energy consumption is only about 2% ­ hydropower plays a vital role. This is largely due be stored in reservoirs. Hydropower supplies around 56% of Switzerland's electricity needs. Worldwide

Wehrli, Bernhard

344

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994  

E-Print Network [OSTI]

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

345

RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN  

E-Print Network [OSTI]

RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S of California at Davis, Davis, California, USA b State Key Laboratory of Water Resources and Hydropower alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using

Pasternack, Gregory B.

346

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network [OSTI]

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

347

Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,  

E-Print Network [OSTI]

Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

Asselin, Hugo

348

Climate change -a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert Whittington  

E-Print Network [OSTI]

Climate change - a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert capital may not favour hydropower given that hydro capital costs are relatively high and payback periods financial return than the public sector, traditionally the main source of funds for hydropower development

Harrison, Gareth

349

SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE G. P. Harrison, H. W. Whittington  

E-Print Network [OSTI]

1 SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE CHANGE G. P. Harrison, H. W. Whittington and A-fuelled electricity generation with renewable sources including hydropower. However, simultaneous changes in climate may alter the available hydropower resource, threatening the financial viability of schemes

Harrison, Gareth

350

Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy  

E-Print Network [OSTI]

sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

Leon, Marco E.

2007-01-01T23:59:59.000Z

351

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

352

Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population  

SciTech Connect (OSTI)

This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

2006-09-01T23:59:59.000Z

353

Rugged ATS turbines for alternate fuels  

SciTech Connect (OSTI)

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

354

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower, Wave

355

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

356

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1997-12-31T23:59:59.000Z

357

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

358

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

359

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

360

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect (OSTI)

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

362

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect (OSTI)

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

NONE

1997-03-01T23:59:59.000Z

363

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents [OSTI]

A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-07-24T23:59:59.000Z

364

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

365

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect (OSTI)

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

Not Available

1990-12-01T23:59:59.000Z

366

Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine  

DOE Patents [OSTI]

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

2002-01-01T23:59:59.000Z

367

Extreme Methane Emissions from a Swiss Hydropower Reservoir  

E-Print Network [OSTI]

Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments manuscript received February 3, 2010. Accepted February 15, 2010. Methane emission pathways.Methanediffusionfromthesediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane

Wehrli, Bernhard

368

Analysis of torques in large steam turbine driven induction generator shafts following disturbances on the system supply  

SciTech Connect (OSTI)

The paper first summarizes advantages of steam turbine driven induction generators over conventional generators such as low cost, less maintenance, rugged and brushless rotors (squirrel cage type, no need for synchronization, etc.), together with problems concerning excitation (var compensation at loads etc.). A mathematical model of the induction generator simulated in direct-phase quantities where saturation of the magnetizing reactances is simulated and saturation of stator and rotor leakage reactances is ignored is developed and employed for detailed simulation of the machine. Discrete-mass models of the machine shaft where both steam and electrical viscous damping is simulated are employed in comparing transient shaft torsional response evaluated by time domain simulation and frequency domain analysis following incidence and clearance of severe system faults. The paper then investigates torsional response following incidence and clearance of severe supply system disturbances, when the rotor is stationary and when running at close to synchronous speed unexcited, and following malsynchronization when excited by a controlled var source, together with torsional response following bolted stator-terminal short-circuits at full-load and no-load following switching in of the induction generator onto the system supply. It examines precision of predicting torque in turbine-generator shafts by frequency domain analysis not analyzed for induction-generators in the literature heretofore following incidence and clearance of worst-case disturbances on the supply. Effect of steam and electrical damping on maximum shaft torques predicted by frequency domain analysis is also illustrated. The results illustrate there is no tendency for shaft torques to become more onerous as the fault clearing time is increased as is the case for shaft torques in large synchronous machines. Three large two-pole machines of rating of up to a few hundred MWs are analyzed.

Hammons, T.J.; Lee, S.K.; Low, K.Y. [Univ. of Glasgow (United Kingdom)] [Univ. of Glasgow (United Kingdom)

1996-12-01T23:59:59.000Z

369

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect (OSTI)

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

370

Air/fuel supply system for use in a gas turbine engine  

SciTech Connect (OSTI)

A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

2014-06-17T23:59:59.000Z

371

Axial seal system for a gas turbine steam-cooled rotor  

DOE Patents [OSTI]

An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

372

Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation  

SciTech Connect (OSTI)

A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

Restrepo, Bernardo; Banta, Larry E.; Tucker, David

2012-10-01T23:59:59.000Z

373

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network [OSTI]

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

374

Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

2010-10-13T23:59:59.000Z

375

Single Rotor Turbine  

DOE Patents [OSTI]

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

376

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect (OSTI)

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

377

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents [OSTI]

A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-03-27T23:59:59.000Z

378

PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS  

SciTech Connect (OSTI)

Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-07-01T23:59:59.000Z

379

Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts  

E-Print Network [OSTI]

, Portes du Scex,!) and in the hydropower plants "If a risk of overflowing exists, the Decision Support System MINDS proposes the optimal hydropower plants management for flood peak reduction PREDICTING FLOODS! ...taking profit of the existing hydropower schemes for reducing flood damages ...warning authorities

380

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects To Advance Hydropower

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Hydropower Association Annual Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformationDepartment ofNational Hydropower Association Annual

382

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

383

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

384

Real World Demonstration of a New American Low-Head Hydropower...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unit Real World Demonstration of a New American Low-Head Hydropower Unit 69dhydrogreenhydrodemonstration12.ppt More Documents & Publications Laboratory Demonstration of a New...

385

Reference Model MHK Turbine Array Optimization Study within a Generic River System.  

SciTech Connect (OSTI)

Increasing interest in marine hydrokinetic (MHK) energy has spurred to significant research on optimal placement of emerging technologies to maximize energy conversion and minimize potential effects on the environment. However, these devices will be deployed as an array in order to reduce the cost of energy and little work has been done to understand the impact these arrays will have on the flow dynamics, sediment-bed transport and benthic habitats and how best to optimize these arrays for both performance and environmental considerations. An %22MHK-friendly%22 routine has been developed and implemented by Sandia National Laboratories (SNL) into the flow, sediment dynamics and water-quality code, SNL-EFDC. This routine has been verified and validated against three separate sets of experimental data. With SNL-EFDC, water quality and array optimization studies can be carried out to optimize an MHK array in a resource and study its effects on the environment. The present study examines the effect streamwise and spanwise spacing has on the array performance. Various hypothetical MHK array configurations are simulated within a trapezoidal river channel. Results show a non-linear increase in array-power efficiency as turbine spacing is increased in each direction, which matches the trends seen experimentally. While the sediment transport routines were not used in these simulations, the flow acceleration seen around the MHK arrays has the potential to significantly affect the sediment transport characteristics and benthic habitat of a resource. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

Johnson, Erick; Barco Mugg, Janet; James, Scott; Roberts, Jesse D.

2011-12-01T23:59:59.000Z

386

aviation turbine fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page Topic Index 141 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

387

advanced gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

388

aviation gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

389

advanced gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 63 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

390

aircraft turbine engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 48 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

391

aircraft gas turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

392

aircraft gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 62 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

393

aircraft turbine engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 48 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

394

aviation gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 55 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

395

axial flow turbines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carver, Jeffrey C. 176 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

396

axial flow turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carver, Jeffrey C. 176 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

397

automotive gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 56 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

398

aviation turbine fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page Topic Index 141 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

399

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Broader source: Energy.gov [DOE]

Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

400

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

402

36 AUGUST | 2011 EnhancEd TurbinE  

E-Print Network [OSTI]

36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

Kusiak, Andrew

403

Hydropower R&D: Recent Advances in Turbine Passage Technology | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochureProcessof

404

Laboratory Demonstration of a New American Low-Head Hydropower Turbine |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLabor Standards forDepartment of

405

Hydropower R&D: Recent Advances in Turbine Passage Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and theDepartmentDOE/ID-10753

406

Microsoft PowerPoint - 2014 HydroPower - Stockton Turbine Replacement June 2014 [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1Plan forNASEO 2006/07SanSh

407

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

408

2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)  

SciTech Connect (OSTI)

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

409

How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer  

E-Print Network [OSTI]

energy revenue. We tested these three assump- tions by reviewing hydropower projects with license. At the remaining projects, diurnal fluc- tuations actually increased because of operation of upstream storage feedback to decision makers. Keywords Ecologic valuation Á Hydropower generation Á In-stream flow

Jager, Henriette I.

410

Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager  

E-Print Network [OSTI]

1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

Jager, Henriette I.

411

Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK  

E-Print Network [OSTI]

, Luytens Close, Chineham, Hants, UK Abstract: Hydropower on a small scale, or micro-hydro, is one productivity and lifetime. Hydropower on a small-scale, or micro-hydro, is the exploitation of a river's hydro. 1.1 Small-scale hydro Hydropower has various degrees of `smallness'. To date there is still

Kammen, Daniel M.

412

LQ Optimal Control of Wind Turbines in Hybrid Power Systems N.A. Cutululis1  

E-Print Network [OSTI]

taken into account for the design of a wind ­ diesel power system is the wind power penetration, which electrical load. However, the penetration of wind power into small diesel-based grids is limited because variations is well suited for operating in small wind ­ diesel power systems. The antagonistic demands

413

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect (OSTI)

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

414

Hydropower Resource Assessment and Characterization | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this»

415

Hydropower Still in the Mix | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on

416

A Boost for Hydropower (and the Economy) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost for Hydropower (and

417

Hydropower Still in the Mix | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel CellandVehicles & Fuels »EnergyProcessofHydropower

418

Hydropower, Wave and Tidal Technologies Available for Licensing - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower

419

Making Hydropower More Eco-Friendly | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMA EnergyMagna E-Car OpeningMaking Hydropower

420

Aleo Manali Hydropower Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01Alchem LtdAlden, NewManali Hydropower

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Federal Memorandum of Understanding for Hydropower/Federal Inland  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProjectExpress Jump to:Hydropower

422

Symbolic identification for fault detection in aircraft gas turbine engines  

E-Print Network [OSTI]

Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

Ray, Asok

423

Duration Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-12-01T23:59:59.000Z

424

Design of a Transonic Research Turbine Facility Ruolong Ma*  

E-Print Network [OSTI]

the power generated by the turbine to load-share with a motor to drive a centrifugal compressor whichHP drive motor, centrifugal compressor, and piping system, can be used with a wide range of turbine supplies the air to drive the turbine, and re-circulating most of the compressor discharge air

Morris, Scott C.

425

Disturbance Control of the Hydraulic Brake in a Wind Turbine  

E-Print Network [OSTI]

Disturbance Control of the Hydraulic Brake in a Wind Turbine Frank Jepsen, Anders Søborg brake in a wind turbine. Brake torque is determined by friction coefficient and clamp force; the latter brake is one1 of the two independent brake systems in a wind turbine. As a consequence of the gearing

Yang, Zhenyu

426

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

427

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

428

Michael Scholl, mss4@wustl.edu (A paper written under the guidance of Prof. Raj Jain) Download High availability is one of the major goals of smart grid systems. This paper examines the availability of wind turbines, a high voltage DC (HVDC)  

E-Print Network [OSTI]

the availability of wind turbines, a high voltage DC (HVDC) transmission system, and a supervisory control and data of a Wind Turbine 3.2 Availability Data 3.3 Sensitivity Analysis 4. HVDC Transmission System 4.1 Parts of a HVDC Transmission System 4.2 Availability Data 4.3 Sensitivity Analysis 5. Control System 5.1 Parts

Jain, Raj

429

Small Hydropower Research and Development Technology Project  

SciTech Connect (OSTI)

The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

2013-12-06T23:59:59.000Z

430

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

431

St h ti d i l i fStochastic dynamic analysis of offshore wind turbines  

E-Print Network [OSTI]

1 St h ti d i l i fStochastic dynamic analysis of offshore wind turbines ­ with emphasis on fatigue analysis of offshore bottom-fixed wind turbines · Modelling and dynamic analysis of floating wind turbines ­ Stochastic dynamic analysis of offshore wind turbines; mooring system for wave energy converters · 2010 8

Nørvåg, Kjetil

432

58:164 Fundamentals of Wind Turbines (ME:4164:0001)  

E-Print Network [OSTI]

58:164 ­ Fundamentals of Wind Turbines (ME:4164:0001) Syllabus P. Barry Butler 111 Jessup Hall The University of Iowa Iowa City, IA January, 2012 #12;2 Spring 2012 58:164 ­ Fundamentals of Wind Turbines mechanics and mechanical systems to wind turbine engineering. Fundamentals of horizontal-axis wind turbines

Kusiak, Andrew

433

A Fault-Tolerant Multiphase Permanent Magnet Generator for Marine Current Turbine Applications  

E-Print Network [OSTI]

A Fault-Tolerant Multiphase Permanent Magnet Generator for Marine Current Turbine Applications on offshore wind turbine systems. Marine current turbines are characterized by a very difficult access feature. This paper deals with the use of a PM multiphase marine current turbine generator. With this kind

Boyer, Edmond

434

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions  

E-Print Network [OSTI]

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions Morten D. Pedersen 1 / 26 #12;This talk 1 Background 2 Understanding the Wind Turbine 3 Nonlinear Turbine Modeling 4;Background The Problem Previously stable wind turbine systems began exhibiting resonant behavior when put

Nørvåg, Kjetil

435

Sparkr Blade Test Centre Wind turbines with a rotor diameter exceed-  

E-Print Network [OSTI]

Sparkćr Blade Test Centre Wind turbines with a rotor diameter exceed- ing 2 metres must have a type of a wind turbine. Failure of a rotor blade in service often involves damage of the entire turbine operating type cer- tification systems for wind turbines. Reg. no. 427 The Sparkćr Blade Test Centre became

436

How hard can it be to pitch a wind turbine blade? Moment of inertia approximately  

E-Print Network [OSTI]

How hard can it be to pitch a wind turbine blade? Moment of inertia approximately as a small car (1 a wind turbine blade? Hydraulic pitch actuator for the virtual NREL 5 MW turbine · Motivation · Actuator a wind turbine blade? Motivation · How to model a hydraulic pitch actuator? · Second order system

437

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

438

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

439

Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise at the Institute of Sound and Vibration Research  

E-Print Network [OSTI]

Report Title: A brief history of the Rolls-Royce University Technology Centre in Gas Turbine Noise and systems engineering, gas turbine transmission systems and gas turbine noise. The UTC in gas turbine noise to generation and propagation of noise from gas turbine engines. Aircraft noise is a critical technical issue

Sóbester, András

440

The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations  

SciTech Connect (OSTI)

One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

Hoen, Ben

2010-01-01T23:59:59.000Z

442

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract is to investigate the removal of So{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for So{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% So{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

Quimby, J.M.

1992-02-01T23:59:59.000Z

443

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

Quimby, J.M.; Kumar, K.S.

1992-01-01T23:59:59.000Z

444

Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)  

SciTech Connect (OSTI)

The objective of this contract is to investigate the removal of SO[sub x] and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO[sub x] removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO[sub x] removal efficiency. This research project is now in the second of a 3 phase (phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: design, procurement, and installation, shakedown and startup, and reporting.

Quimby, J.M.

1992-05-01T23:59:59.000Z

445

DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)  

SciTech Connect (OSTI)

This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

1991-07-01T23:59:59.000Z

446

DOE Hydropower Program biennial report 1994--1995 with an updated annotated bibliography  

SciTech Connect (OSTI)

This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1994 and 1995. The report discusses the activities in the four areas of the hydropower program: Environmental Research; Resource Assessment; Research Cost-Shared with Industry; and Technology Transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1995-05-01T23:59:59.000Z

447

DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)  

SciTech Connect (OSTI)

This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-07-01T23:59:59.000Z

448

Combined Cycle Combustion Turbines  

E-Print Network [OSTI]

Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

449

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect (OSTI)

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

450

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

50 Effluent Hydropower- Kilowatt Output as Function of HeadDepartment of Energy (2003). Hydropower Setting a Course forEnergy Commission). Hydropower: Hydropower turbines for low-

Lekov, Alex

2010-01-01T23:59:59.000Z

451

Power Performance Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

Mendoza, I.; Hur, J.

2012-12-01T23:59:59.000Z

452

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

453

Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal  

E-Print Network [OSTI]

The current energy crisis in Nepal clearly indicates that the future energy-demand cannot be met by traditional energy-sources. Community-based micro-hydropower operations are considered to be one of the most feasible options for energy development. However, the power plant capacity factor remains very low due to limited commercial and business opportunities. Generation of hydrogen (H2) from the unutilized power could eradicate this problem. This new energy carrier is clean, can save foreign currency and increases the energy-security. The aim of this study is to determine the potential of H2 production from excess energy of a micro-hydro project in rural Nepal using “HOMER ” from NREL.

M. S. Zaman; A. B. Chhetri; M. S. Tango

2010-01-01T23:59:59.000Z

454

Flexible dynamics of floating wind turbines  

E-Print Network [OSTI]

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

455

Consider Steam Turbine Drives for Rotating Equipment  

SciTech Connect (OSTI)

This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

456

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

457

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y  

E-Print Network [OSTI]

and to quantify these relationships, (2) develop valuation methods to assess the total value of river health operation; hydropower; sustainability; riverine ecosystems; ecological valuation; natural flow regime, influence the health of the downstream ecosystem. Healthy riverine ecosystems provide ecosystem services

Jager, Henriette I.

458

A Wood-Fired Gas Turbine Plant  

E-Print Network [OSTI]

A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

Powell, S. H.; Hamrick, J. T.

459

Hydropower at flood control reservoirs - the variable speed option  

SciTech Connect (OSTI)

Application of hydroelectric turbine-generators to flood control has been limited due to the inability of a single turbine to operate efficiently over the wide head and flow ranges encountered. Multiple and different unit combinations have been applied to this problem, but the cost of the additional unit(s), powerhouse, and supporting facilities typically causes the project to become unfeasible. Variable speed operation can increase the operating range of a single turbine, and significantly improve efficiency over single speed units. This can make hydroelectric generation at flood control projects feasible. This paper presents a comparison of the application of variable speed units, two speed units, and single speed units at the Blue River Dam Hydroelectric Project. The project consists of the addition of a powerhouse to an existing Army Corps of Engineers flood control project. Efficiency data for the different types of units are compared and historical flow and release data are used in a computer model to simulate plant operation.

Laurence, K.; Yale, J. [Stone & Webster Engineering Corp., Denver, CO (United States)

1995-12-31T23:59:59.000Z

460

Sandia National Laboratories: Siting: Wind Turbine/Radar Interference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and MIT Lincoln Laboratory). The goal is to overcome interference caused by wind turbines on civilian and military radar systems by developing site planning tools,...

Note: This page contains sample records for the topic "hydropower turbine system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

462

Operational behavior of a double-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

Reddy, Sivananda Kumjula

2005-01-01T23:59:59.000Z

463

A multi-scale approach to address environmental impacts of small hydropower development  

SciTech Connect (OSTI)

Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

McManamay, Ryan A [ORNL; Samu, Nicole M [ORNL; Kao, Shih-Chieh [ORNL; Bevelhimer, Mark S [ORNL; Hetrick, Shelaine L [ORNL

2014-01-01T23:59:59.000Z

464

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

465

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

466

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVE < MHKKESCKHPS <

467

Generic turbine design study. Final report  

SciTech Connect (OSTI)

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

Not Available

1993-06-01T23:59:59.000Z

468

Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River  

SciTech Connect (OSTI)

High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ?0.96 and ?0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ? 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

2014-07-11T23:59:59.000Z

469

Pitch-controlled variable-speed wind turbine generation  

SciTech Connect (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

Muljadi, E.; Butterfield, C.P.

2000-03-01T23:59:59.000Z

470

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z