National Library of Energy BETA

Sample records for hydropower turbine project

  1. Types of Hydropower Turbines

    Broader source: Energy.gov [DOE]

    There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water—referred to as "head"—and the flow,...

  2. Hydropower Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  3. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  4. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    SciTech Connect (OSTI)

    Cook, T.C.; Hecker, G.E.; Faulkner, H.B.; Jansen, W.

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  5. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  6. Hydropower Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Hydropower Projects from 2008 to 2014.

  7. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect (OSTI)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  8. EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect (OSTI)

    2011-12-01

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

  9. Draft Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    Draft Environmental Assessment Sleeping Giant Hydropower Project Montana Area Office Great Plains Region October 2015 Draft Environmental Assessment Sleeping Giant Hydropower Project Table of Contents (Page 1 of 3) CHAPTER 1 - INTRODUCTION .................................................................................................................... 1 PROPOSED ACTION

  10. Hydropower Advancement Project (HAP): Audits and Feasibility...

    Broader source: Energy.gov (indexed) [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades Office presentation icon 64hapornlsmith.ppt More Documents & ...

  11. Laboratory Demonstration of a New American Low-Head Hydropower Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68b_hydrogreen_small_hydro_ch_11.ppt More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  12. Final Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    Environmental Assessment Sleeping Giant Hydropower Project Montana Area Office Great Plains Region November 2015 Adopted 1/11/2016 by Western Area Power Administration as DOE/EA-2022 Final Environmental Assessment Sleeping Giant Hydropower Project Table of Contents (Page 1 of 3) CHAPTER 1 - INTRODUCTION .................................................................................................................... 1 PROPOSED ACTION

  13. A Fish-eye View of Riverine Hydropower Systems: Understanding the Biological Response to Turbine Passage

    SciTech Connect (OSTI)

    Pracheil, Brenda M; DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-01-01

    Fish populations that have been traditionally thought of as completely fragmented by dams still maintain limited, one-way connectivity from upstream to downstream reaches via downstream turbine passage. This one-way connectivity may be important to population dynamics, but can also introduce a new and significant source of mortality due to turbine-induced fish injury and mortality. Mechanistically, fish injury and mortality associated with downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. The overarching goals of this project are two-fold: 1. To inform biological limitations of fish for use in creating and testing advanced turbine designs (e.g., research and development) and 2. To provide insight into locations that would be good initial locations for deploying advanced turbines (e.g., marketing). This report is an initial step in linking physical forces to injury and mortality rates to provide a better understanding turbine-associated injury and mortality rates for turbine designers and manufacturers and examine the spatial distribution of hydropower, turbines, and fishes across the U.S.A. to determine locations that may be good candidates for advanced turbine designs. We also use this report to present an initial approach for selecting species for further laboratory and field studies that examine the impacts of hydropower on fishes.

  14. Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resources to New Mexico | Department of Energy County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on the completion and startup today of the Abiquiu Hydropower Project in New Mexico - the first hydropower project funded by

  15. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  16. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  17. President Obama Signs Two Bills to Boost Small Hydropower Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy President Obama Signs Two Bills to Boost Small Hydropower Projects President Obama Signs Two Bills to Boost Small Hydropower Projects August 14, 2013 - 12:06pm Addthis President Obama on August 9 signed into law two bills aimed at boosting development of small U.S. hydropower projects. The bills, H.R. 267, the Hydropower Regulatory Efficiency Act, and H.R. 678, the Bureau of Reclamation Small Conduit Hydropower Development and Rural Jobs Act, are expected to help unlock

  18. Yakama Nation - Wapato Hydropower Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wapato Irrigation Project * Yakama received a transfer of vintage electrical equipment only from BIA in February 2008 including: - Transformers, generators, control systems, from ...

  19. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise

  20. President Obama Signs Two Bills to Boost Small Hydropower Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of certain other low-impact hydropower projects, such as projects that add power generation to the nation's existing non-powered dams and closed-loop pumped storage projects. ...

  1. A fish-eye view of riverine hydropower systems. Understanding the biological response to turbine passage

    SciTech Connect (OSTI)

    Pracheil, Brenda M.; DeRolph, Christopher R.; Schramm, Michael P.; Bevelhimer, Mark S.

    2016-01-01

    One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can introduce a new and significant source of mortality due to turbine-associated mortality. Sources of mortality during downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. We used a national hydropower database and conducted a systematic review of the literature to accomplish three goals: (1) report on the spatial distribution of turbine types and generation capacities in the USA, (2) determine fish mortality rates among turbine types and fish species and (3) examine relationships between physical forces similar to those encountered during fish turbine passage and fish injury and mortality. We found that while Francis turbines generate 56% of all US hydropower and have the highest associated fish mortality of any turbine type, these turbines are proportionally understudied compared to less-common and less injury-associated Kaplan turbines, particularly in the Pacific Northwest. While juvenile salmonid species in actual or simulated Kaplan turbine conditions were the most commonly studied, the highest mortality rates were reported in percid fishes passing through Francis turbines. Also, although there are several mechanisms of turbine-associated injury, barotrauma was the most commonly studied with swim bladder rupture, exopthalmia, eye gas bubbles, and prolapsed cloaca being the most serious symptoms associated with rapid pressure decreases. Future studies should focus on understanding which species are most at-risk to turbine passage mortality and, subsequently, increasing the diversity of taxonomy and turbine types in evaluations of turbine mortality.

  2. A fish-eye view of riverine hydropower systems. Understanding the biological response to turbine passage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pracheil, Brenda M.; DeRolph, Christopher R.; Schramm, Michael P.; Bevelhimer, Mark S.

    2016-01-01

    One-way connectivity maintained by fish passing through hydropower turbines in fragmented rivers can be important to population dynamics, but can introduce a new and significant source of mortality due to turbine-associated mortality. Sources of mortality during downstream turbine passage can come from several sources including blade strike, shear forces, cavitation, or pressure decreases, and parsing the contributions of these individual forces is important for advancing and deploying turbines that minimize these impacts to fishes. We used a national hydropower database and conducted a systematic review of the literature to accomplish three goals: (1) report on the spatial distribution of turbinemore » types and generation capacities in the USA, (2) determine fish mortality rates among turbine types and fish species and (3) examine relationships between physical forces similar to those encountered during fish turbine passage and fish injury and mortality. We found that while Francis turbines generate 56% of all US hydropower and have the highest associated fish mortality of any turbine type, these turbines are proportionally understudied compared to less-common and less injury-associated Kaplan turbines, particularly in the Pacific Northwest. While juvenile salmonid species in actual or simulated Kaplan turbine conditions were the most commonly studied, the highest mortality rates were reported in percid fishes passing through Francis turbines. Also, although there are several mechanisms of turbine-associated injury, barotrauma was the most commonly studied with swim bladder rupture, exopthalmia, eye gas bubbles, and prolapsed cloaca being the most serious symptoms associated with rapid pressure decreases. Future studies should focus on understanding which species are most at-risk to turbine passage mortality and, subsequently, increasing the diversity of taxonomy and turbine types in evaluations of turbine mortality.« less

  3. Development of biological criteria for the design of advanced hydropower turbines

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Coutant, Charles C.; Whitney, Richard R.

    1997-03-01

    A review of the literature related to turbine-passage injury mechanisms suggests the following biological criteria should be considered in the design of new turbines: (1) pressure; (2) cavitation; (3) shear and turbulence; and (4) mechanical injury. Based on the studys review of fish behavior in relation to hydropower facilities, it provides a number of recommendations to guide both turbine design and additional research.

  4. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

  5. Los Alamos County Completes Abiquiu Hydropower Project, Bringing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis ...

  6. Hydropower R&D: Recent Advances in Turbine Passage Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon hydroadvancesinturbinepassage.pdf More Documents & Publications Hydro Review: Computational Tools to Assess Turbine Biological Performance Environmental Effects of ...

  7. Hydropower R&D: Recent Advances in Turbine Passage Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the U.S. related to survival of fish entrained in hydroelectric turbines. ... This review focuses on the effects on fish of physical or operational modifications to ...

  8. Hydropower R&D: Recent advances in turbine passage technology

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Rinehart, Ben N.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that are often carried out in support of fish passage mitigation efforts.

  9. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  10. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  11. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  12. Hydropower research and development

    SciTech Connect (OSTI)

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  13. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  14. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  15. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  16. Hydropower Process Improvements

    Energy Savers [EERE]

    Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating technologies and methods to improve the performance of conventional hydropower plants. PDF icon Hydropower Appropriations More Documents & Publications Site Characterization Awards Water Power Program: 2011 Peer Review Report Marine and Hydrokinetic Energy Projects

    Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower Market Acceleration and Deployment

  17. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  18. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana

    Broader source: Energy.gov [DOE]

    The Bureau of Reclamation (Montana Area Office), with DOE’s Western Area Power Administration (Upper Great Plains Region) as a cooperating agency, is preparing an EA that will assess the potential environmental impacts of a proposal to develop a 9.4 megawatt hydroelectric project at the existing Helena Valley Pumping Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western’s transmission system at an existing transmission line originating at Canyon Ferry Dam.

  19. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of

  20. EA-2017: Real-World Demonstration of a New, American Low-Head Hydropower Turbine, Monongahela River, approximately ten miles east of Pittsburg, PA

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts associated with a DOE proposal to provide federal funding to Hydro Green Energy (HGE) to fabricate and install one (1) interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) and supporting civil infrastructure as part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system that would be integrated into the existing Braddock Locks and Dam.

  1. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  2. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana ...

    Broader source: Energy.gov (indexed) [DOE]

    Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western's transmission system at an existing...

  3. 16 R&D Projects Across 11 States to Advance Hydropower in U.S. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy R&D Projects Across 11 States to Advance Hydropower in U.S. 16 R&D Projects Across 11 States to Advance Hydropower in U.S. September 6, 2011 - 3:38pm Addthis Rajesh Dham Hydropower Technology Team Lead Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly. These research projects will help advance hydropower technologies - providing clean power to

  4. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico ... Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy ...

  5. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  6. DOE Hydropower Program Annual Report for FY 2002

    SciTech Connect (OSTI)

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  7. Capstone Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Project Capstone Turbine Project February 5, 2016 - 9:00am Addthis C370 Production Concept Layouts C370 Production Concept Layouts The standard small turbines currently on the market have little or no heat recovery capability and use conventional high temperature nickel alloys that limit engine efficiency. Significant amounts of energy could be saved if technologies were available to allow operation at higher temperatures with substantial heat recovery. To address this

  8. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  9. Data-Based Performance Assessments for the DOE Hydropower Advancement Project

    SciTech Connect (OSTI)

    March, Patrick; Wolff, Dr. Paul; Smith, Brennan T; Zhang, Qin Fen; Dham, Rajesh

    2012-01-01

    The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

  10. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  11. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Scaling Enables Projects to Reach New Heights Wind Turbine Scaling Enables Projects to Reach New Heights August 18, 2014 - 9:42am Addthis Turbines at the National Wind ...

  12. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab. December 16, 2014 Flexible hydropower: boosting energy Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy source when water levels are lower or higher than usual. Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful

  13. Glossary of Hydropower Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary of Hydropower Terms Glossary of Hydropower Terms The glossary of terms defines the components that make up hydro turbines and hydropower plants. Visit Types of Hydropower Plants to view hydropower plant illustrations. Alternating current (AC): Electric current that reverses direction many times per second. Ancillary services: Capacity and energy services provided by power plants that are able to respond on short notice, such as hydropower plants, and are used to ensure stable

  14. Hydropower Appropriations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating technologies and methods to improve the performance of conventional hydropower plants. PDF icon Hydropower Appropriations More Documents & Publications Site Characterization Awards Water Power Program: 2011 Peer Review Report Marine and Hydrokinetic Energy Projects

  15. Gansu Hongyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hongyuan Hydropower Co Ltd Jump to: navigation, search Name: Gansu Hongyuan Hydropower Co Ltd Place: Lanzhou, Gansu Province, China Sector: Hydro Product: A hydropower project...

  16. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.

  17. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  18. Furong Hydropower Plant | Open Energy Information

    Open Energy Info (EERE)

    Furong Hydropower Plant Jump to: navigation, search Name: Furong Hydropower Plant Place: Shaanxi Province, China Zip: 725400 Sector: Hydro Product: China-based small hydro project...

  19. Lac Courte Oreilles Band of Lake Superior Chippewa Indians- 2010 Hydropower Project

    Broader source: Energy.gov [DOE]

    The feasibility study of hydropower will answer three questions: 1) How can hydropower be developed to create a sustainable economic stream that contributes to the financial viability of the tribe? 2) How can this venture meet the energy needs of the community? 3) How can hydropower be developed without jeopardizing Mother Earth or the cultural beliefs of the tribe?

  20. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  1. Making Hydropower More Eco-Friendly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly October 22, 2014 - 4:06pm Addthis Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office MORE RESOURCES Learn more about the Sensor Fish project Subscribe to Water Power

  2. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  3. EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA

    Broader source: Energy.gov [DOE]

    DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

  4. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  5. The quality of Portuguese Environmental Impact Studies: The case of small hydropower projects

    SciTech Connect (OSTI)

    Pinho, Paulo . E-mail: pcpinho@fe.up.pt; Maia, Rodrigo . E-mail: rmaia@fe.up.pt; Monterroso, Ana . E-mail: anamonterroso@yahoo.com

    2007-04-15

    In most Environmental Impact Assessment (EIA) systems environmental authorities can stop an EIA process by refusing the respective EIA Report, on the grounds of technical or methodological insufficiencies identified in the review procedure. However, often times, it cannot be taken for granted that, once an EIA Report is formally accepted, as part of an EIA process, its quality standard is, consistently, of a satisfactory level. This paper summarises the results of a one-year research project aimed at assessing the quality of EIA studies carried out for small hydropower plants in Portugal. An extensive survey was carried out to analyse all EIA Reports that were the basis of successful EIA processes involving this kind of small scale projects, under the old and the new national EIA legislation, that is, over the last two decades. Often times unnoticeable to the general public and the media, located in isolated areas upstream secondary rivers, these projects are likely to generate some significant environmental impacts, in particular on the aesthetics value and character of local landscapes and on pristine ecological habitats. And yet, they are usually regarded as environmental friendly projects designed to produce emission free energy. The design of the evaluation criteria benefited from the literature review on similar research projects carried out in other EU countries. The evaluation exercise revealed a number of technical and methodological weaknesses in a significant percentage of cases. A set of simple and clear cut recommendations is proposed twofold: to improve the current standard of EIA practice and to strengthen the role of the so called EIA Commissions, at the crucial review stage of the EIA process.

  6. 2015 Forum on Hydropower

    Broader source: Energy.gov [DOE]

    Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

  7. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  8. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  9. International Center for Small Hydropower INSHP | Open Energy...

    Open Energy Info (EERE)

    Hydropower (INSHP) Place: Hangzhou, Zhejiang Province, China Sector: Hydro Product: NGO charged with developing small hydropower projects in China. Coordinates: 30.252501,...

  10. Shouning County Hongyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co. Ltd. Place: Fujian Province, China Sector: Hydro Product: China-based small hydro project developer. References: Shouning County Hongyuan Hydropower Co. Ltd.1...

  11. History of Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Hydropower History of Hydropower

  12. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  13. Laboratory Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68bhydrogreensmallhydroch11.ppt More Documents & Publications Real World ...

  14. Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    SciTech Connect (OSTI)

    Mikhail, A.

    2009-01-01

    This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

  15. Office of Wind and Hydropower Technologies Wind Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Comment Program Response EPRI-Alden Fish-Friendly Turbine 3.8 3.6 X Focuses on DOE ... improve turbine design and hydropower operations to minimize impact on fish. No response. ...

  16. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    SciTech Connect (OSTI)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  17. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J; Cada, Glenn F; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  18. DOE Hydropower Program Annual Report for FY 2001

    SciTech Connect (OSTI)

    Sale, M. J.; Cada, G. F.; Carlson, T. J.; Dauble, D. D.; Hunt, R. T.; Sommers, G. L.; Rinehart, B. N.; Flynn, J. V.; Brookshier, P. A.

    2002-04-01

    This annual report describes the various projects supported by the hydropower program in FY 2001. The program’s focus for FY 2002 was on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research was to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these were tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners (e.g., work by Alden Research Laboratory and Concepts NREC) to modifications to existing designs (e.g., Voith Siemens work on Minimum Gap Runners). Biological criteria have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria were combined with computational design tools to locate and eliminate damaging areas inside turbine systems.

  19. EERE Success Story-Hydropower Generators Will Deliver New Energy from an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Old Dam | Department of Energy Hydropower Generators Will Deliver New Energy from an Old Dam EERE Success Story-Hydropower Generators Will Deliver New Energy from an Old Dam April 18, 2013 - 12:00am Addthis The City of Tacoma, with EERE support, installed two Francis turbine/generator units to an existing dam, Cushman No. 2, which is part of the Cushman Hydroelectric Project owned by Tacoma Power. The new generating units added approximately 3.6 megawatts in generating capacity by using

  20. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE HYDROPOWER ACTION PLAN (PHASE II) March 2015 This page was intentionality left blank MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER i List of Acronyms ..........................................................................................................................1 Executive Summary .....................................................................................................................3 Introduction

  1. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  2. First-ever Hydropower Market Report Covers Hydropower Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure May 28, 2015 -...

  3. Small Hydropower in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Johnson, Kurt

    2015-09-01

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federal approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.

  4. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  5. MHK Projects/Contra Rotating Marine Turbine CoRMaT | Open Energy...

    Open Energy Info (EERE)

    Contra Rotating Marine Turbine CoRMaT < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps...

  6. Nine Projects Selected for Funding through University Turbine Systems Research Program

    Broader source: Energy.gov [DOE]

    The Department of Energy’s National Energy Technology Laboratory (NETL) has selected nine research and development projects to receive funding through the NETL-managed University Turbine Systems Research Program. The Program funds a portfolio of gas turbine-focused university projects to facilitate the development and demonstration of next-generation technology. The work will address technical challenges in turbine technology in support of the Energy Department’s strategic goals and program mission needs.

  7. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind

  8. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  9. Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation-2011 Hydropower Project

    Broader source: Energy.gov [DOE]

    This project is aimed at supporting one key component of a major multi-step undertaking on the part of the Confederated Salish and Kootenai Tribes (CSKT): the acquisition of the Kerr Hydroelectric project and its subsequent operation as a wholesale power generation facility.

  10. EA-2004: The Seneca Nation Wind Turbine Project, Cattaraugus...

    Broader source: Energy.gov (indexed) [DOE]

    Seneca Nation of Indians, to design, permit, and construct up to a 2.0-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine would be...

  11. EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...

    Broader source: Energy.gov (indexed) [DOE]

    funding to the Seneca Nation of Indians, to design, permit, and construct a 1.7-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine...

  12. New Stream-Reach Hydropower Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identifying and Evaluating New Hydropower Resources More than 65 GW of sustainable hydropower potential still exists in U.S. stream-reaches, according to a hydro- power resource assessment funded by the Department of Energy and executed by Oak Ridge National Laboratory. The New Stream-reach Development (NSD) project implemented an ad- vanced geo-spatial approach to analyze the potential for new hydropower development in U.S. stream-reaches that do not currently have hydroelectric facilities or

  13. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency, emissions, and ...

  14. Technologies for Evaluating Fish Passage Through Turbines

    Broader source: Energy.gov [DOE]

    This report evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines.

  15. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  16. 2014 Hydropower Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the front cover: Smithland Hydropower Project, Livingston County, KY (image courtesy of American Municipal Power). The plant-scheduled for completion in late 2015 or early 2016-will have an estimated rated capacity of 72 MW and an estimated annual production of 379 GWh. It is one of three projects being built by American Municipal Power at non-powered dams along the Ohio River. The photo was taken in November 2014. This report is being disseminated by the U.S. Department of Energy (DOE). As

  17. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. | Department of Energy Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating

  18. EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School.

  19. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  20. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  1. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Folga, S.; Poch, L.A.

    1995-03-01

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  2. Lessons Learned: Milwaukee’s Wind Turbine Project

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

  3. Yakama Nation Hydropower Projects

    Energy Savers [EERE]

     Established by Treaty of 1855  10,190 Enrolled Members; Descendents of the 14 Tribes and Bands of the Yakama Nation  Governed by a 14 Member Tribal Council; 3 Member General Council Executive Board  General Council membership resolution GC-04- 98, directed Tribal Council to research the opportunity of a tribal utility  Established tribal utility in 2006; Yakama Power,  Current Yakama Power load is 2.5 megawatts, services tribal operations  Yakama Power Board of Directors

  4. Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report

    SciTech Connect (OSTI)

    1993-12-01

    ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

  5. New Stream-Reach Hydropower Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New Stream-reach Development (NSD) project implemented an ad- vanced geo-spatial approach to analyze the potential for new hydropower development in U.S. stream-reaches that do ...

  6. Hydropower in the Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower produces no emissions. There are no gases or waste products that contribute to air pollution, acid rain or global warming. Hydropower is secure. Water from our rivers is...

  7. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  8. Energy 101: Hydropower

    SciTech Connect (OSTI)

    2013-04-01

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  9. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  10. Zhouning Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhouning Houlongxi Hydropower Co Ltd Place: Fujian Province, China Zip: 355400 Sector: Hydro Product: China-based small hydro project developer. References: Zhouning Houlongxi...

  11. Pingnan Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pingnan Houlongxi Hydropower Co., Ltd. Place: Fujian Province, China Zip: 352300 Sector: Hydro Product: Fujian-based developer of small hydro projects. References: Pingnan...

  12. Rongjiang County Sanjunyan Small Hydropower Station | Open Energy...

    Open Energy Info (EERE)

    Station Place: Guizhou Province, China Zip: 557200 Sector: Hydro Product: China-based small hydro project developer. References: Rongjiang County Sanjunyan Small Hydropower...

  13. Antu County 303 Hydropower Station Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co., Ltd. Place: Jilin Province, China Zip: 133613 Sector: Hydro Product: China-based small hydro CDM project developer. References: Antu County 303 Hydropower Station Co.,...

  14. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower Market Report Hydropower Market Report Hydropower Market Report Top 10 Things You Didn't Know about Hydropower An error occurred. Try watching this video on...

  15. Real World Demonstration of a New American Low-Head Hydropower Unit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Office presentation icon 69d_hydrogreen_hydro_demonstration_12.ppt More Documents & Publications Laboratory Demonstration of a New American Low-Head Hydropower Turbine Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  16. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  17. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  18. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  19. New Small Hydropower Technology to be Deployed in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Opsahl, Egil; Gordon, Jim; Bishop, Norm

    2012-01-01

    Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

  20. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms September 10, 2015 - 6:21pm Addthis More than 4,000 gigawatts of estimated gross offshore wind potential lies off the U.S. coastline-that's more than four times the current generation capacity of the United States. With the coastal and Great Lakes states consuming nearly 80% of our nation's electricity, offshore wind

  1. DOE Hydropower Program Annual Report for FY 2000

    SciTech Connect (OSTI)

    Sale, M. J.; Cada, G. F.; Dauble, D. D.; Rinehart, B. N.; Sommers, G. L.; Flynn, J. V.; Brookshier, P. A.

    2001-04-17

    This report describes the activities of the U.S. Department of Energy (DOE) Hydropower Program during Fiscal Year 2000 (October 1, 1999, to September 30, 2000). Background, current activities, and future plans are presented in the following sections for all components of the Program. Program focus for FY 2000 was on (1) advanced turbine development, (2) basic and applied R&D, (3) environmental mitigation, (4) low head/low power hydropower technology, and (5) technology transfer.

  2. Turbines Market is Expected to Reach USD 191.87 Billion by 2020...

    Open Energy Info (EERE)

    reaction turbines, the feed material e.g. air in case of wind turbines and rivers or dams in case of hydropower ones, goes 'through' the blades to drive the turbine. Currently,...

  3. 2014 Hydropower Market Report

    SciTech Connect (OSTI)

    Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  4. Commonwealth Hydropower Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Hydropower Initiative, the Massachusetts Clean Energy Center (MassCEC) offers grants for both feasibility studies and construction of hydroelectric facilities. Feasibility...

  5. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working to Ensure Environmental and Social Transparency The evaluation of opportunities for new hydropower development must include considerations of ecological and social ...

  6. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ensure Environmental and Social Transparency The evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability....

  7. Hydropower annual report 2003

    SciTech Connect (OSTI)

    Cada, Glenn F.; Carlson, Thomas J.; Dauble, Dennis D.; Hunt, Richard T.; Sale, Michael J.; Sommers, Garold L.

    2004-02-01

    This report describes hydropower activities supported by the U.S. Department of Energy (DOE) Wind and Hydropower Program during Fiscal Year 2003 (October 1, 2002 to September 30, 2003). Background on the program, FY03 accomplishments, and future plans are presented in the following sections.

  8. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  9. Xiaogushan Hydropower Company | Open Energy Information

    Open Energy Info (EERE)

    Xiaogushan Hydropower Company Jump to: navigation, search Name: Xiaogushan Hydropower Company Place: Zhangye, Gansu Province, China Sector: Hydro Product: Developer of Hydropower...

  10. Mandan, Hidatsa, and Arikara Nation - Utility Scale Wind Turbine Demonstration Project

    Energy Savers [EERE]

    MANDAN, HIDATSA, & ARIKARA NATION Utility Wind Scale Turbine Demonstration Project on the Fort Berthold Reservation in North Dakota DE-FC36-99GO10472/M001 August 13,1999 to September 30, 2005 VISION To empower the MHA Nation to become self-sufficient, while honoring our heritage and taking responsibility for our future, and promoting our sovereign nation by linking our cultural values with modern business practices for a strong and stable Tribal Government. MISSION The Renewable Energy

  11. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect (OSTI)

    Erickson, Wally

    2004-09-01

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  12. Coal air turbine ``CAT`` program, invention 604. Fifth quarter project report, October--December 1995

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1995-12-31

    The primary objective of this ``CAT`` (Coal Air Turbine) project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the CAT system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a CAT plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a commercial plant before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept. The major components of CAT plants are an air turbine, a heater of compressed air, a coal combustion system, means to recover waste heat and a steam turbine when appropriate. The plant burns raw coal in a fluid bed at atmospheric pressure. The air turbine operates on clean compressed air heated inside tubes immersed in the fluid bed. Progress during the fifth quarter is described.

  13. Hydropower Vision Text Version

    Broader source: Energy.gov [DOE]

    Linda Church Ciocci: Hydropower is woven in the very fabric of our nation. It is our largest source of renewable energy, provides the backbone of our electric system, has an incredible history....

  14. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  15. Xishuangbanna Tianshengqiao Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Tianshengqiao Hydropower Development Co Ltd Jump to: navigation, search Name: Xishuangbanna Tianshengqiao Hydropower Development Co., Ltd. Place: Xishuangbanna City, Yunnan...

  16. First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The Energy Departments 2014 Hydropower Market Report was released last month in an effort to provide taxpayers and industry professionals with a snapshot of the growing hydropower industry in the...

  17. Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower Conference, 10 June 2010, rev 1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager BUILDING STRONG ® 1 What are Hydrokinetic Projects? Hydrokinetic hydropower projects convert the kinetic energy of flowing water into electrical energy. Applications are where adequate velocity of flowing water to generate electricity exists. This can be from tidal currents, wave energy, or in our case...the

  18. Microsoft Word - FINAL 2012HydropowerCouncilAgenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGENDA 2012 Southwestern Federal Hydropower Council BLAKELY MOUNTAIN DAM PROJECT OFFICE Mountain Pine, Arkansas June 12 - 13, 2012 Tuesday, June 12 1:00 p.m. Welcome Vicksburg ...

  19. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

  20. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  1. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J.; Cada, Glenn F.; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  2. DOE Hydropower Program Annual Report for FY 2004

    SciTech Connect (OSTI)

    Sommers, Garold L.; Hunt, Richard T.; Cada, Glenn F.; Sale, Michael J.; Dauble, Dennis D.; Carlson, Thomas; Ahlgrimm, James; Acker, Tomas L.

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  3. Benefits of Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics » Benefits of Hydropower Benefits of Hydropower Benefits of Hydropower Water power offers a number of advantages to the communities that they serve. Below are just some of the benefits that hydropower has over other methods of providing energy. Advantages of Hydropower: Hydropower is fueled by water, so it's a clean fuel source, meaning it won't pollute the air like power plants that burn fossil fuels, such as coal or natural gas. Hydroelectric power

  4. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.; Mohanpurkar, M.; Havsapian, R.; Koritarov, V.

    2015-04-06

    Hydropower is the largest producer of renewable energy in the U.S. More than 60% of the total renewable generation comes from hydropower. There is also approximately 22 GW of pumped storage hydropower (PSH). Conventional PSH uses a synchronous generator, and thus the rotational speed is constant at synchronous speed. This work details a hydrodynamic model and generator/power converter dynamic model. The optimization of the hydrodynamic model is executed by the hydro-turbine controller, and the electrical output real/reactive power is controlled by the power converter. All essential controllers to perform grid-interface functions and provide ancillary services are included in the model.

  5. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  6. National Hydropower Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower Association - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Hydropower Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Market Report Top 10 Things You Didn't Know about Hydropower Test your energy knowledge by checking out these surprising facts about hydropower. Get Pumped about Pumped ...

  8. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  9. National Hydropower Association Annual Conference

    Broader source: Energy.gov [DOE]

    Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

  10. Coal air turbine {open_quotes}CAT{close_quotes} program invention 604. Fourth quarter project report, July 1995--September 1995

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1995-10-31

    A coal air turbine `CAT` generates electric power and heat from coal combustion. The purpose of this project is the conceptual design of a `CAT` plant, and to make a comparison of the capital cost and and cost of power and steam from the `CAT` plant with power produced by alternate plants at the same site. Three configurations investigated include: condensing plant utilizing coal fuel and a condenser tower, or river, for cooling; a cogeneration plant utilizing coal and a steam turbine; and a cogeneration plant utilizing steam export and injection with waste coal fuel.

  11. Huadian Hongli Hydropower Investment Development Company | Open...

    Open Energy Info (EERE)

    Hongli Hydropower Investment Development Company Jump to: navigation, search Name: Huadian Hongli Hydropower Investment Development Company Place: Huadian City, Jilin Province,...

  12. International Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    International Hydropower Association Place: United Kingdom Zip: SM1 4JH Sector: Hydro Product: The International Hydropower Association is a non-governmental mutual association of...

  13. British Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    British Hydropower Association Place: Wimborne, Dorset, United Kingdom Zip: BH21 1QU Sector: Hydro Product: The British Hydropower Association (BHA) is a trade association which...

  14. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Dagoutou Hydropower Station Jump to: navigation, search Name: Shimian Dagoutou Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product:...

  15. Huitong County Gaoyongdong Hydropower Development | Open Energy...

    Open Energy Info (EERE)

    Huitong County Gaoyongdong Hydropower Development Jump to: navigation, search Name: Huitong County Gaoyongdong Hydropower Development Place: Huaihua city, Hunan Province, China...

  16. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Liuyang Hedong Hydropower Station Jump to: navigation, search Name: Liuyang Hedong Hydropower Station Place: Liuyang, Hunan Province, China Zip: 410305 Sector: Hydro Product:...

  17. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Eryuan Huian Hydropower Station Jump to: navigation, search Name: Eryuan Huian Hydropower Station Place: Dali Bai Autonomous Prefecture, Yunnan Province, China Zip: 671200 Sector:...

  18. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Baxin Hydropower Station Jump to: navigation, search Name: Tianlin Baxin Hydropower Station Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  19. Jiulong Wanbao Hydropower Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wanbao Hydropower Corporation Jump to: navigation, search Name: Jiulong Wanbao Hydropower Corporation Place: Garze Tibetan Autonomous Prefecture, Sichuan Province, China Zip:...

  20. National Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Association Jump to: navigation, search Name: National Hydropower Association Place: Washington, DC Zip: 20001 Sector: Hydro Product: NHA is a non-profit national...

  1. Diebu Kababanjiu Hydropower Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kababanjiu Hydropower Ltd Jump to: navigation, search Name: Diebu Kababanjiu Hydropower Ltd. Place: Gansu Province, China Zip: 747400 Sector: Hydro Product: China-based small hydro...

  2. Jintai Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jintai Hydropower Co Ltd Jump to: navigation, search Name: Jintai Hydropower Co. Ltd. Place: Gansu Province, China Zip: 747000 Sector: Hydro Product: China-based small hydro...

  3. Ebian Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ebian Hydropower Co Ltd Jump to: navigation, search Name: Ebian Hydropower Co., Ltd Place: Leshan, Sichuan Province, China Zip: 614300 Sector: Hydro Product: China based small...

  4. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Danihe Hydropower Station Jump to: navigation, search Name: Shimian Danihe Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product: China-based...

  5. Qinghai Huanghe Zhongxing Hydropower Construction Development...

    Open Energy Info (EERE)

    Zhongxing Hydropower Construction Development Co Ltd Jump to: navigation, search Name: Qinghai Huanghe Zhongxing Hydropower Construction Development Co., Ltd Place: Qinghai...

  6. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado ...

  7. Types of Hydropower Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drawing showing a cross section of an impoundment dam and hydropower plant. Transmission ... Drawing shows a micro hydropower plant. Intake gates allow water to flow through the ...

  8. EERE Success Story-First-ever Hydropower Market Report Covers Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Infrastructure | Department of Energy First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure EERE Success Story-First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure May 28, 2015 - 2:41pm Addthis EERE Success Story—First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure The Energy Department's 2014 Hydropower Market Report was released last month in an effort to provide taxpayers and industry

  9. Assessing Hydropower in the West

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Megan M.; Uria Martinez, Rocio

    2015-06-01

    On April 27, the U.S. Department of Energy (DOE) released the 2014 Hydropower Market Report, which provides a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States. Although the report shows many interesting trends and figures, this article focuses on those related to the western region.

  10. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    SciTech Connect (OSTI)

    Cada, Glenn F; Schweizer, Peter E

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

  11. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  12. Hydropower Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2014, and about 48% of all renewable electricity generated in the United

  13. Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less,"

  14. Sichuan Minjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Sichuan Minjiang Hydropower Co Ltd Place: Sichuan Province, China Zip: 623007 Sector: Hydro Product: A hydropower developer in...

  15. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    Property Name PotentialHydropowerSites Property Type Number Description The number of potential hydropower sites in a place. Pages using the property "PotentialHydropowerSites"...

  16. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T; Zhang, Qin Fen; March, Patrick; Cones, Marvin; Dham, Rajesh; Spray, Michael

    2012-01-01

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  17. Built-Environment Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Built-environment wind turbine projects are wind energy projects that are constructed on, in, or near buildings. These projects present an...

  18. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  19. EA-2004: The Seneca Nation Wind Turbine Project, Cattaraugus Territory, Erie County, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to the Seneca Nation of Indians, to design, permit, and construct up to a 2.0-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine would be located near Lucky Lane and Gil Lay Arena. An Environmental Assessment (EA) has been prepared by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

  20. Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report

    SciTech Connect (OSTI)

    Harpman, D.A.

    1997-06-01

    In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

  1. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  2. An overview of the NREL/SNL flexible turbine characterization project

    SciTech Connect (OSTI)

    Bir, Gunjit; Kelley, Neil; McKenna, Ed; Osgood, Richard; Sutherland, Herbert; Wright, Alan

    1998-09-01

    There has been a desire to increase the generating capacity of the latest generation of wind turbine designs. In order to achieve these larger capacities, the dimensions of the turbine rotors are also increasing significantly. These larger structures are often much more flexible than their smaller predecessors. This higher degree of structural flexibility has placed increased demands on available analytical models to accurately predict the dynamic response to turbulence excitation, In this paper we present an overview and our progress to date of a joint effort of the National Renewable Energy Laboratory (NREL) and the Sandia National Laboratory (SNL). In this paper we present an overview and status of an ongoing program to characterize and analytically model the dynamics associated with the operation of one of the most flexible turbine designs currently available, the Cannon Wind Eagle 300 (CWE-300). The effort includes extensive measurements involving a detailed inventory of the turbine's physical properties, establishing the turbine component and fill-system vibrational modes, and documenting the dynamic deformations of the rotor system and support tower while in operation.

  3. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy Fiscal Years 2006 - 2014 WIND PROGRAM 1 The Wind Program's research and development (R&D) projects are financed through several primary sources of funding: Congressional appropriations and Congressionally Directed Projects (CDPs). Congressional appropriations determine the operat- ing budgets for each EERE program. Program-funded R&D projects are typically awarded to recipients as

  4. DOE Hydropower Program Annual Report for FY 2003

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Carlson, Thomas J.; Dauble, Dennis D.; Hunt, Richard T.; Sale, Michael J.; Sommers, Garold L.

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  5. Hydropower Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Hydropower Research & Development Hydropower Research & Development The Water Power Program's hydropower research and development (R&D) efforts focus on advancing technologies that produce electricity from elevation differences in falling or flowing water. For more than 100 years, hydropower has been an important source of flexible, low-cost, and emissions-friendly renewable energy. The program is currently leading efforts to increase the generating

  6. EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE’s Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and stimulate revitalization of key sectors of the economy.

  7. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  8. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Projects Report Fiscal Years 2006 - 2015 WIND PROGRAM 1 Types of Funding Sources WWPTO's research and development (R&D) proj- ects are financed through two primary sources of funding: Congressional Appropriations and Congressionally Directed Projects (CDPs). Congressional Appropriations determine the operating budgets for each EERE office. WWPTO- funded R&D projects are typically awarded to recipients as cooperative agree- ments through competitive Funding Opportunity

  9. How to Build a Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  10. Turbine Imaging Technology Assessment

    SciTech Connect (OSTI)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  11. 2014 Hydropower Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Hydropower Market Report 2014 Hydropower Market Report A screenshot of the 2014 hydropower market report showing a dam under construction at sunset. The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the

  12. US hydropower resource assessment for Hawaii

    SciTech Connect (OSTI)

    Francfort, J.E.

    1996-09-01

    US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

  13. 2014 Water Power Program Peer Review Compiled Presentations: Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on hydropower technologies February 25-27. The compiled 2014 Hydropower Technologies Peer Review Presentations listed below are available for download. Existing Hydropower Existing Hydropower-Michael Reed, U.S. Department of Energy National Hydropower Asset

  14. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  15. Hydropower Baseline Cost Modeling, Version 2

    SciTech Connect (OSTI)

    O'Connor, Patrick W.

    2015-09-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.

  16. Conventional Hydropower Technologies Fact Sheet

    SciTech Connect (OSTI)

    2011-07-01

    This factsheet gives a description of the U.S. Department of Energy Water Power Program's efforts to increase generating capacity and efficiency at existing hydroelectric facilities, add hydroelectric generating capacity to non-powered dams, and reduce the environmental effects of hydropower.

  17. DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)

    SciTech Connect (OSTI)

    Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. ); Sale, M.J. )

    1991-07-01

    This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

  18. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  19. Fish-Friendly Turbine Making a Splash in Water Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden Fish-Friendly Turbine. A computer simulation of the Alden Fish-Friendly Turbine. Rajesh Dham Hydropower Technology Team Lead How does it work? The Alden turbine has three blades, no gaps, is bigger and rotates more slowly than typical hydro turbines. At peak performance, an Alden turbine should convert about 94 percent of

  20. Methodology and Process for Condition Assessment at Existing Hydropower Plants

    SciTech Connect (OSTI)

    Zhang, Qin Fen; Smith, Brennan T; Cones, Marvin; March, Patrick; Dham, Rajesh; Spray, Michael

    2012-01-01

    Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

  1. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Development Projects Report Fiscal Years 2008 - 2014 WIND PROGRAM 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power technologies. WWPTO works with a variety of stakeholders to identify and support research and development (R&D) efforts

  2. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects Fiscal Years 2006 - 2014 WIND PROGRAM 1 Photo from NREL Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercial- ization of wind and water power technologies. WWPTO works with a variety of stakeholders to

  3. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2016 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power technologies. WWPTO works with a

  4. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 2 WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power

  5. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Energy Savers [EERE]

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects Fiscal Years 2006 - 2014 WIND PROGRAM 1 Photo from NREL Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercial- ization of wind and water power technologies. WWPTO works with a variety of stakeholders to

  6. Hydropower Modernization Initiative Proposed Implementation Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office eere.energy.gov 1 Mike Reed, Program Lead September 23, 2013 Hydropower Market Report May 2016 Update Rocio Uria-Martinez Megan Johnson Patrick O'Connor Oak Ridge National Laboratory Water Power Technologies Office eere.energy.gov 2 Introduction These slides provide updates to some of the key metrics included in the 2014 Hydropower Market Report, which was published in April 2015. The Hydropower Market Report aims to fill the existing gap regarding publicly available, comprehensive

  7. Hydropower Memorandum of Understanding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding Hydropower Memorandum of Understanding The Department of Energy, the Department of the Interior, and the Department of the Army through the U.S. Army Corps of Engineers (collectively the "Agencies") signed the Memorandum of Understanding (MOU) for Hydropower on March 24, 2010, and extended it on March 24, 2015 for another five years. The MOU is helping meet the nation's needs for reliable, affordable, and environmentally sustainable hydropower by

  8. Hydropower Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Hydropower Technology Development Hydropower Technology Development Hydroelectric power is the largest source of renewable electricity in the United States, producing about 6.3% of the nation's total electricity throughout the last decade. Even after a century of proven experience with this reliable renewable resource, significant opportunities still exist to expand the nation's hydropower resources through non-powered dams, water conveyance systems, pumped storage

  9. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect (OSTI)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  10. Virtual Hydropower Prospector | Open Energy Information

    Open Energy Info (EERE)

    Website Website: hydropower.inl.govprospectorindex.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024, -95.712891 Show Map Loading map......

  11. Vermont Small Hydropower Assistance Program Screening Criteria...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Small Hydropower Assistance Program Screening Criteria Summary and Application InstructionsPermitting...

  12. Vermont Small Hydropower Assistance Program Application | Open...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Vermont Small Hydropower Assistance Program ApplicationLegal Abstract Application form for the Small...

  13. Relicensing and Environmental Issues Affecting Hydropower

    Reports and Publications (EIA)

    1998-01-01

    This article presents an overview of the hydropower industry and summarizes two recent events that have greatly influenced relicensing and environmental issues.

  14. Recreational Technical Assistance in Hydropower Licensing | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Recreational Technical Assistance in Hydropower LicensingPermittingRegulatory...

  15. Colorado Energy Office: Colorado Small Hydropower Handbook |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado Energy Office: Colorado Small Hydropower HandbookPermitting...

  16. Jingning County Baihe II Station Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Baihe II Station Hydropower Co Ltd Jump to: navigation, search Name: Jingning County Baihe II Station Hydropower Co. Ltd. Place: Hangzhou, Zhejiang Province, China Zip: 310002...

  17. Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse

    SciTech Connect (OSTI)

    Nachman-Hunt, N.

    2001-07-05

    This fact sheet introduces consumers to small hydropower systems, and includes information on how the systems work and how to assess a stream site for hydropower suitability.

  18. Mabian Shichuang Hydropower Investment Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Shichuang Hydropower Investment Co Ltd Jump to: navigation, search Name: Mabian Shichuang Hydropower Investment Co., Ltd. Place: Leshan, Sichuan Province, China Zip: 614603 Sector:...

  19. Changde Taohuayuan Hydropower Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Changde Taohuayuan Hydropower Investment Co Ltd Jump to: navigation, search Name: Changde Taohuayuan Hydropower Investment Co., Ltd. Place: Hunan Province, China Zip: 415001...

  20. Gansu Linhai Water Resource and Hydropower Investment Co Ltd...

    Open Energy Info (EERE)

    Water Resource and Hydropower Investment Co Ltd Jump to: navigation, search Name: Gansu Linhai Water Resource and Hydropower Investment Co., Ltd. Place: Lanzhou, Gansu Province,...

  1. Datian Xinyuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datian Xinyuan Hydropower Investment Co Ltd Jump to: navigation, search Name: Datian Xinyuan Hydropower Investment Co. Ltd. Place: Sanming, Fujian Province, China Zip: 366105...

  2. Wuyishan City Xiangrun Hydropower Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wuyishan City Xiangrun Hydropower Investment Co Ltd Jump to: navigation, search Name: Wuyishan City Xiangrun Hydropower Investment Co Ltd Place: Wuyishan, Fujian Province, China...

  3. Puge County Gongdefang Hydropower Station Investment and Development...

    Open Energy Info (EERE)

    Puge County Gongdefang Hydropower Station Investment and Development Co Ltd Jump to: navigation, search Name: Puge County Gongdefang Hydropower Station Investment and Development...

  4. Lin Cang Lin Jiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lin Cang Lin Jiang Hydropower Development Co Ltd Jump to: navigation, search Name: Lin Cang Lin Jiang Hydropower Development Co., Ltd Place: Lincang City, China Zip: 677000 Sector:...

  5. Dali Yang er Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yang er Hydropower Development Co Ltd Jump to: navigation, search Name: Dali Yanger Hydropower Development Co Ltd Place: Dali Prefecture, Dali, Yunnan Province, China Zip: 625000...

  6. Hydropower and the Environment - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...PublicInvolvementCommunityEducationValueoftheRiverPagesHydropower.aspx Hydropower Video - http:www.bpa.govPublicInvolvementCommunityEducationValueoftheRiverPages...

  7. Tianlin Baile River Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baile River Hydropower Co Ltd Jump to: navigation, search Name: Tianlin Baile River Hydropower Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533300 Sector: Hydro...

  8. Title 50 CFR Part 221 Prescriptions in FERC Hydropower Licenses...

    Open Energy Info (EERE)

    in FERC Hydropower LicensesLegal Abstract Regulations governing Department of Commerce review of FERC hydropower license conditions under Federal Power Act. Published NA...

  9. Wenshan Xinhuiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xinhuiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Wenshan Xinhuiyuan Hydropower Development Co., Ltd Place: Wenshan Chuang-Miao Autonomous, Yunnan...

  10. Zhaotong Lijing Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Lijing Hydropower Development Co Ltd Jump to: navigation, search Name: Zhaotong Lijing Hydropower Development Co. Ltd. Place: Yunnan Province, China Zip: 657400 Sector: Hydro...

  11. Lushui Jiansheng Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiansheng Hydropower Development Co Ltd Jump to: navigation, search Name: Lushui Jiansheng Hydropower Development Co. Ltd Place: Yunnan Province, China Zip: 673100 Sector: Hydro...

  12. Sanheyuan Hydropower Development Co Ltd in Sunan Yugur Autonomous...

    Open Energy Info (EERE)

    Sanheyuan Hydropower Development Co Ltd in Sunan Yugur Autonomous County Jump to: navigation, search Name: Sanheyuan Hydropower Development Co., Ltd. in Sunan Yugur Autonomous...

  13. Jiangxi Wugongshan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wugongshan Hydropower Co Ltd Jump to: navigation, search Name: Jiangxi Wugongshan Hydropower Co., Ltd. Place: Jian City, Jiangxi Province, China Zip: 3314011 Sector: Hydro Product:...

  14. Diebu Niaojiaga Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Niaojiaga Hydropower Development Co Ltd Jump to: navigation, search Name: Diebu Niaojiaga Hydropower Development Co., Ltd. Place: Lanzhou, Gansu Province, China Zip: 730050 Sector:...

  15. Heishui Jinyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jinyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Heishui Jinyuan Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 623500 Sector: Hydro...

  16. Xuanen Shiziguan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xuanen Shiziguan Hydropower Co Ltd Jump to: navigation, search Name: Xuanen Shiziguan Hydropower Co. Ltd. Place: Enshi Tujia-Miao Autonomous Prefecture, China Zip: 445500 Sector:...

  17. Hunan Bolian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunan Bolian Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Bolian Hydropower Development Co. Ltd. Place: Zhangjiajie, Hunan Province, China Zip: 427200...

  18. Wutai Gengzhen Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wutai Gengzhen Hydropower Co Ltd Jump to: navigation, search Name: Wutai Gengzhen Hydropower Co., Ltd. Place: Shanxi Province, China Zip: 35512 Sector: Hydro Product: China-based...

  19. Gansu Tiangong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tiangong Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Tiangong Hydropower Development Co. Ltd. Place: Dianxi City, Gansu Province, China Zip: 730500...

  20. Longshan County Wuyahe Hydropower Plant Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longshan County Wuyahe Hydropower Plant Co Ltd Jump to: navigation, search Name: Longshan County Wuyahe Hydropower Plant Co. Ltd Place: Xinjiang Autonomous Region, China Zip:...

  1. Chongqing Pengshui Sanjiangkou Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sanjiangkou Hydropower Co Ltd Jump to: navigation, search Name: Chongqing Pengshui Sanjiangkou Hydropower Co., Ltd. Place: Chongqing, Chongqing Municipality, China Zip: 400060...

  2. Tanchang County Hongtu Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Tanchang County Hongtu Hydropower Development Co Ltd Jump to: navigation, search Name: Tanchang County Hongtu Hydropower Development Co. Ltd. Place: Longnan City, Gansu Province,...

  3. Zhangjiakou Jianghe Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhangjiakou Jianghe Hydropower Development Co Ltd Jump to: navigation, search Name: Zhangjiakou Jianghe Hydropower Development Co Ltd Place: Zhangjiakou, Hebei Province, China Zip:...

  4. Yangxian Longsheng Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yangxian Longsheng Hydropower Development Co Ltd Jump to: navigation, search Name: Yangxian Longsheng Hydropower Development Co., Ltd. Place: Hanzhong, Jiangxi Province, China Zip:...

  5. Jian Gongge Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jian Gongge Hydropower Co Ltd Jump to: navigation, search Name: Jian Gongge Hydropower Co., Ltd. Place: Jian, Jiangxi Province, China Zip: 343100 Sector: Hydro Product: China-based...

  6. Fugong Hongda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Hongda Hydropower Development Co. Ltd Place: Yunnan Province, China Sector: Hydro Product: Yunnan-based...

  7. Shidiaolou Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shidiaolou Hydropower Development Co Ltd Jump to: navigation, search Name: Shidiaolou Hydropower Development Co., Ltd Place: Aaba Tibetan and Qiang nationality Autonomous...

  8. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yuliangwan Hydropower of Hongjiang District Co Ltd Jump to: navigation, search Name: Yuliangwan Hydropower of Hongjiang District Co Ltd Place: Huaihua, Hunan Province, China Zip:...

  9. Jianghua Dalinjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dalinjiang Hydropower Co Ltd Jump to: navigation, search Name: Jianghua Dalinjiang Hydropower Co. Ltd. Place: Jianghua County, Hunan Province, China Zip: 418000 Sector: Hydro...

  10. Pingnan County Hengli Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengli Hydropower Co Ltd Jump to: navigation, search Name: Pingnan County Hengli Hydropower Co Ltd Place: Fujian Province, China Zip: 352300 Sector: Hydro Product: China-based...

  11. Jiangxi Quannan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Quannan Hydropower Development Co Ltd Jump to: navigation, search Name: Jiangxi Quannan Hydropower Development Co. Ltd Place: Ganzhou, Jiangxi Province, China Zip: 334000 Sector:...

  12. Dazhou Xiangyue Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Dazhou Xiangyue Hydropower Development Co Ltd Jump to: navigation, search Name: Dazhou Xiangyue Hydropower Development Co. Ltd. Place: Dazhou, Sichuan Province, China Zip: 635000...

  13. Zhaotong Jili Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jili Hydropower Co Ltd Jump to: navigation, search Name: Zhaotong Jili Hydropower Co. Ltd. Place: Zhaotong City, Yunnan Province, China Zip: 657400 Sector: Hydro Product:...

  14. Heishui Shuangyuan Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shuangyuan Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Heishui Shuangyuan Hydropower Exploitation Co., Ltd Place: Chengdu City, Sichuan Province, China Zip:...

  15. Fugong Baihe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fugong Baihe Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Baihe Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  16. Lijiang Nengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nengda Hydropower Co Ltd Jump to: navigation, search Name: Lijiang Nengda Hydropower Co., Ltd. Place: Lijiang, Yunnan Province, China Zip: 674100 Sector: Hydro Product:...

  17. Zhouning Qianping Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Qianping Hydropower Development Co Ltd Jump to: navigation, search Name: Zhouning Qianping Hydropower Development Co., Ltd. Place: Fujian Province, China Sector: Hydro Product:...

  18. Fugong Hengda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengda Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Hengda Hydropower Development Co., Ltd. Place: Nujiang Lisu Autonomous Prefecture, Yunnan Province,...

  19. Qinghai Yulong Hydropower Construction Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yulong Hydropower Construction Co Ltd Jump to: navigation, search Name: Qinghai Yulong Hydropower Construction Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810001 Sector:...

  20. Zhaoping I Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Zhaoping I Hydropower Development Co., Ltd. Place: Hezhou, Guangxi Autonomous Region, China Sector: Hydro Product:...

  1. Yunxi Yuhuangtan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yunxi Yuhuangtan Hydropower Development Co Ltd Jump to: navigation, search Name: Yunxi Yuhuangtan Hydropower Development Co., Ltd. Place: Wuhan, Hubei Province, China Zip: 430071...

  2. Baoshan Xineng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoshan Xineng Hydropower Development Co Ltd Jump to: navigation, search Name: Baoshan Xineng Hydropower Development Co Ltd Place: Yunnan Province, China Zip: 672711 Sector: Hydro...

  3. Shaanxi Wenjing Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wenjing Hydropower Co Ltd Jump to: navigation, search Name: Shaanxi Wenjing Hydropower Co., Ltd. Place: Xianyang City, Shaanxi Province, China Zip: 713700 Sector: Hydro Product:...

  4. Jinzhu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jinzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Jinzhu Hydropower Development Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 425508 Sector: Hydro...

  5. Quanzhou Liupu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quanzhou Liupu Hydropower Co Ltd Jump to: navigation, search Name: Quanzhou Liupu Hydropower Co. Ltd Place: Beijing, Beijing Municipality, China Sector: Hydro Product:...

  6. Tianquan County Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianquan County Hydropower Co Ltd Jump to: navigation, search Name: Tianquan County Hydropower Co., Ltd Place: Chengdu, Sichuan Province, China Zip: 610017 Sector: Hydro Product:...

  7. Langao Lanjiang Hydropower Construction and Development Co Ltd...

    Open Energy Info (EERE)

    Lanjiang Hydropower Construction and Development Co Ltd Jump to: navigation, search Name: Langao Lanjiang Hydropower Construction and Development Co., Ltd. Place: Xi'an, Shaanxi...

  8. Jiangxi Changjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiangxi Changjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Jiangxi Changjiang Hydropower Development Co., Ltd. Place: Jingdezhen, Jiangxi Province, China...

  9. Lianghe Dayingjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lianghe Dayingjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Lianghe Dayingjiang Hydropower Development Co., Ltd. Place: Dehong Dai-Jingpo Autonomous...

  10. Yanshan Leqing Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Leqing Hydropower Development Co Ltd Jump to: navigation, search Name: Yanshan Leqing Hydropower Development Co., Ltd. Place: Shangrao City, Jiangsu Province, China Zip: 334500...

  11. Guangdong Dapu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dapu Hydropower Co Ltd Jump to: navigation, search Name: Guangdong Dapu Hydropower Co., Ltd. Place: Meizhou, Guangdong Province, China Zip: 514223 Sector: Hydro Product:...

  12. Xinhua Chengyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xinhua Chengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Xinhua Chengyuan Hydropower Development Co. Ltd Place: Xinhua County, Loudi City, Hunan Province,...

  13. Hainan Runda Hydropower Plant Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Runda Hydropower Plant Development Co Ltd Jump to: navigation, search Name: Hainan Runda Hydropower Plant Development Co.Ltd. Place: Hainan Province, China Zip: 572700 Sector:...

  14. Yunlong Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yunlong Liyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Yunlong Liyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  15. Fuan Fucheng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuan Fucheng Hydropower Co Ltd Jump to: navigation, search Name: Fuan Fucheng Hydropower Co., Ltd Place: Fuan City, Fujian Province, China Zip: 355000 Sector: Hydro Product:...

  16. Yumen Jiqianfeng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiqianfeng Hydropower Co Ltd Jump to: navigation, search Name: Yumen Jiqianfeng Hydropower Co., Ltd. Place: Yumen, Gansu Province, China Zip: 732850 Sector: Hydro Product:...

  17. Lanping Maohe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lanping Maohe Hydropower Development Co Ltd Jump to: navigation, search Name: Lanping Maohe Hydropower Development Co. Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  18. Hengyuan Xiaojianghe Hydropower Generating Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hengyuan Xiaojianghe Hydropower Generating Co Ltd Jump to: navigation, search Name: Hengyuan Xiaojianghe Hydropower Generating Co. Ltd. Place: Yunnan Province, China Zip: 652400...

  19. Lijiang Xingneng Small Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xingneng Small Hydropower Development Co Ltd Jump to: navigation, search Name: Lijiang Xingneng Small Hydropower Development Co., Ltd. Place: Lijiang, Yunnan Province, China Zip:...

  20. Qinghai Ruifa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ruifa Hydropower Co Ltd Jump to: navigation, search Name: Qinghai Ruifa Hydropower Co., Ltd Place: Minhe County, Qinghai Province, China Zip: 810800 Sector: Hydro Product:...

  1. Yanling Xinsheng Hydropower Plant Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinsheng Hydropower Plant Ltd Jump to: navigation, search Name: Yanling Xinsheng Hydropower Plant Ltd Place: Zhuzhou, Hunan Province, China Zip: 412500 Sector: Hydro Product:...

  2. Sichuan Jiulong Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiulong Hydropower Co Ltd Jump to: navigation, search Name: Sichuan Jiulong Hydropower Co., Ltd. Place: Chengdu City, Sichuan Province, China Zip: 610072 Sector: Hydro Product:...

  3. Yingjiang Menglang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Menglang Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Menglang Hydropower Co., Ltd. Place: Yunnan Province, China Zip: 679300 Sector: Hydro Product: China-based...

  4. Wufeng Yiye Hydropower Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yiye Hydropower Generation Co Ltd Jump to: navigation, search Name: Wufeng Yiye Hydropower Generation Co Ltd Place: Yichang, Hubei Province, China Sector: Hydro Product:...

  5. Fugong Fangyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Fangyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro Product:...

  6. Yanyuan Lujiang Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yanyuan Lujiang Hydropower Development Co Ltd Jump to: navigation, search Name: Yanyuan Lujiang Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 615700 Sector:...

  7. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tumuxi Hydropower Plant Co Ltd Jump to: navigation, search Name: Zhangjiajie Tumuxi Hydropower Plant Co. Ltd Place: Zhangjiajie city, Hunan Province, China Zip: 416600 Sector:...

  8. Wufeng Nanhe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nanhe Hydropower Development Co Ltd Jump to: navigation, search Name: Wufeng Nanhe Hydropower Development Co Ltd Place: Yichang, Hubei Province, China Zip: 443415 Sector: Hydro...

  9. Guangxi Dongba Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongba Hydropower Co Ltd Jump to: navigation, search Name: Guangxi Dongba Hydropower Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  10. Longsheng County Yulong Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Longsheng County Yulong Hydropower Development Co Ltd Jump to: navigation, search Name: Longsheng County Yulong Hydropower Development Co. Ltd. Place: Guilin, Guangxi Autonomous...

  11. Taohe Shangyou Mingzhu Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Taohe Shangyou Mingzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Taohe Shangyou Mingzhu Hydropower Development Co Ltd Place: Lanzhou, Gansu Province, China...

  12. Longnan Huixin Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huixin Hydropower Co Ltd Jump to: navigation, search Name: Longnan Huixin Hydropower Co. Ltd. Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Hydro Product: Gansu-based...

  13. Lijiang Heen Jinzhuang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Heen Jinzhuang Hydropower Co Ltd Jump to: navigation, search Name: Lijiang Heen Jinzhuang Hydropower Co.,Ltd Place: Lijiang, Yunnan Province, China Zip: 674100 Sector: Hydro...

  14. Xiangtang Xia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xiangtang Xia Hydropower Development Co Ltd Jump to: navigation, search Name: Xiangtang Xia Hydropower Development Co.,Ltd. Place: Qinghai Province, China Zip: 810800 Sector: Hydro...

  15. Songpan County Songchuan Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Songchuan Hydropower Development Co Ltd Jump to: navigation, search Name: Songpan County Songchuan Hydropower Development Co., Ltd Place: Chengdu, Sichuan Province, China Zip:...

  16. Hubei Huaying Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huaying Hydropower Development Co Ltd Jump to: navigation, search Name: Hubei Huaying Hydropower Development Co., Ltd. Place: Hubei Province, China Zip: 445810 Product: Hubei-based...

  17. Vermont Small Hydropower Assistance Program Website | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Small Hydropower Assistance Program Website Abstract The Vermont Small Hydropower Assistance Program...

  18. Hefeng Taoyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hefeng Taoyuan Hydropower Co Ltd Jump to: navigation, search Name: Hefeng Taoyuan Hydropower Co., Ltd Place: Hubei Province, China Zip: 445800 Sector: Hydro Product: China-based...

  19. Lincang City Xinshui Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lincang City Xinshui Hydropower Development Co Ltd Jump to: navigation, search Name: Lincang City Xinshui Hydropower Development Co. Ltd. Place: Lincang, Yunnan Province, China...

  20. Shaowu Jintang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jintang Hydropower Co Ltd Jump to: navigation, search Name: Shaowu Jintang Hydropower Co., Ltd. Place: Shaowu City, Fujian Province, China Zip: 354003 Sector: Hydro Product:...

  1. Yingjiang Huimin Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huimin Hydropower Development Co Ltd Jump to: navigation, search Name: Yingjiang Huimin Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 679300 Sector: Hydro...

  2. Erpu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Erpu Hydropower Development Co Ltd Jump to: navigation, search Name: Erpu Hydropower Development Co.Ltd Place: Liangshan Yi Autonomous Prefecture, Sichuan Province, China Zip:...

  3. Gongshan Juyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Gongshan Juyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Gongshan Juyuan Hydropower Development Co., Ltd. Place: Yunnan Nujiang Lisu Autonomous Prefecture,...

  4. Pingwu County Yetang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yetang Hydropower Development Co Ltd Jump to: navigation, search Name: Pingwu County Yetang Hydropower Development Co. Ltd. Place: Mianyang, Sichuan Province, China Zip: 622564...

  5. Jianghua Jianqiao Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jianqiao Hydropower Plant Co Ltd Jump to: navigation, search Name: Jianghua Jianqiao Hydropower Plant Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 425500 Sector: Hydro...

  6. Jianchuan Yundian Industry Hydropower Exploitation Co Ltd | Open...

    Open Energy Info (EERE)

    Jianchuan Yundian Industry Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Jianchuan Yundian Industry Hydropower Exploitation Co., Ltd. Place: Dali Bai Autonomous...

  7. Xining Chengxiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chengxiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Xining Chengxiyuan Hydropower Development Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810000...

  8. Kangding Jineng Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Kangding Jineng Hydropower Exploitation Co., Ltd. Place: Ganzi Tibetan Autonomous Prefecture, Sichuan Province,...

  9. Songpan Baichuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Songpan Baichuan Hydropower Development Co Ltd Jump to: navigation, search Name: Songpan Baichuan Hydropower Development Co. Ltd. Place: Sichuan Province, China Zip: 623300 Sector:...

  10. Guangxi Dachuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Guangxi Dachuan Hydropower Co. Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533300 Sector: Hydro Product: China...

  11. Fuan Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fuan Liyuan Hydropower Development Co., Ltd. Place: Fuan, Fujian Province, China Sector: Hydro Product: China-based...

  12. Geermu Nanshankou Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Geermu Nanshankou Hydropower Development Co Ltd Jump to: navigation, search Name: Geermu Nanshankou Hydropower Development Co.,Ltd Place: Geermu, Qinghai Province, China Zip:...

  13. Pailou Hydropower of Zhongfang County Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pailou Hydropower of Zhongfang County Co Ltd Jump to: navigation, search Name: Pailou Hydropower of Zhongfang County Co., Ltd. Place: Huaihua, Hunan Province, China Zip: 418000...

  14. Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anfu Guanshan Hydropower Development Co Ltd Jump to: navigation, search Name: Anfu Guanshan Hydropower Development Co.,Ltd Place: Jiangxi Province, China Zip: 343009 Sector: Hydro...

  15. Nujiang Guoli Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoli Hydropower Development Co Ltd Jump to: navigation, search Name: Nujiang Guoli Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  16. Jianyang Longjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Jianyang Longjiang Hydropower Development Co., Ltd. Place: China Zip: 354208 Sector: Hydro Product:...

  17. Huihua Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huihua Hydropower Development Co Ltd Jump to: navigation, search Name: Huihua Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 677700 Sector: Hydro Product:...

  18. Sanming Taijiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sanming Taijiang Hydropower Co Ltd Jump to: navigation, search Name: Sanming Taijiang Hydropower Co., Ltd. Place: Sanming, Fujian Province, China Zip: 365001 Sector: Hydro Product:...

  19. Jinping County Kaiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Kaiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Jinping County Kaiyuan Hydropower Development Co.,Ltd. Place: Guizhou Province, China Zip: 556700 Sector:...

  20. Federal Memorandum of Understanding for Hydropower | Open Energy...

    Open Energy Info (EERE)

    Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland...

  1. Nujiang Zhedian Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhedian Hydropower Development Co Ltd Jump to: navigation, search Name: Nujiang Zhedian Hydropower Development Co., Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  2. Diebu Donglian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Diebu Donglian Hydropower Development Co Ltd Jump to: navigation, search Name: Diebu Donglian Hydropower Development Co.,Ltd. Place: Gansu Province, China Zip: 747400 Sector: Hydro...

  3. Fugong Jiacheng Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiacheng Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Jiacheng Hydropower Development Co. Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  4. Sanmenxia Luohe hydropower development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Sanmenxia Luohe hydropower development Co Ltd Jump to: navigation, search Name: Sanmenxia Luohe hydropower development Co. Ltd. Place: Sanmenxia, Henan Province, China Zip: 472200...

  5. Hanzhong Hengfa Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Hanzhong Hengfa Hydropower Development Co Ltd Jump to: navigation, search Name: Hanzhong Hengfa Hydropower Development Co. Ltd. Place: Hanzhong, Shaanxi Province, China Zip: 723200...

  6. Ziyang Dengxinqiao Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dengxinqiao Hydropower Co Ltd Jump to: navigation, search Name: Ziyang Dengxinqiao Hydropower Co., Ltd. Place: Shaanxi Province, China Zip: 725300 Sector: Hydro Product:...

  7. Aleo Manali Hydropower Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manali Hydropower Pvt Ltd Jump to: navigation, search Name: Aleo Manali Hydropower Pvt Ltd Place: Kullu, Himachal Pradesh, India Zip: 203001 Sector: Hydro Product: Himachal-based...

  8. Xiahe Hengsheng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengsheng Hydropower Co Ltd Jump to: navigation, search Name: Xiahe Hengsheng Hydropower Co, Ltd Place: Lanzhou, Gansu Province, China Zip: 700030 Sector: Hydro Product:...

  9. Zixi Sanjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zixi Sanjiang Hydropower Co Ltd Jump to: navigation, search Name: Zixi Sanjiang Hydropower Co Ltd Place: Fuzhou, Jiangxi Province, China Zip: 335300 Sector: Hydro Product:...

  10. Luquan Yunhong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yunhong Hydropower Development Co Ltd Jump to: navigation, search Name: Luquan Yunhong Hydropower Development Co., Ltd Place: Yunnan Province, China Zip: 651500 Sector: Hydro...

  11. Jincheng Dongjiaohe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jincheng Dongjiaohe Hydropower Co Ltd Jump to: navigation, search Name: Jincheng Dongjiaohe Hydropower Co., Ltd. Place: Jincheng City, Shaanxi Province, China Zip: 48000 Sector:...

  12. Jianyang Xinghu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinghu Hydropower Co Ltd Jump to: navigation, search Name: Jianyang Xinghu Hydropower Co., Ltd. Place: Jianyang City, Fujian Province, China Zip: 354211 Sector: Hydro Product:...

  13. Heishui Sanlian Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Heishui Sanlian Hydropower Development Co Ltd Jump to: navigation, search Name: Heishui Sanlian Hydropower Development Co. Ltd. Place: Aba Tibetan and Qiang Autonomous Prefecture,...

  14. Fugong Fengyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Fengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Fengyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  15. Qinghai Dangshun Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dangshun Hydropower Development Co Ltd Jump to: navigation, search Name: Qinghai Dangshun Hydropower Development Co., Ltd. Place: Qinghai Province, China Zip: 811200 Sector: Hydro...

  16. Subei Chengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Subei Chengda Hydropower Co Ltd Jump to: navigation, search Name: Subei Chengda Hydropower Co., Ltd. Place: Gansu Province, China Zip: 736300 Sector: Hydro Product: Gansu-based...

  17. Yuexi Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yuexi Liyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Yuexi Liyuan Hydropower Development Co. Ltd Place: Banqiao town, Sichuan Province, China Zip: 616650...

  18. Huanghe Hydropower Development Co Ltd Yellow River Group | Open...

    Open Energy Info (EERE)

    Huanghe Hydropower Development Co Ltd Yellow River Group Jump to: navigation, search Name: Huanghe Hydropower Development Co Ltd (Yellow River Group) Place: Xining, Qinghai...

  19. Yunnan Yingjiang Quanfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quanfa Hydropower Co Ltd Jump to: navigation, search Name: Yunnan Yingjiang Quanfa Hydropower Co., Ltd. Place: Dehong Dai-Jingpo Autonomous Prefecture, Yunnan Province, China Zip:...

  20. Gansu Mingzhu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mingzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Mingzhu Hydropower Development Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730070 Sector: Hydro...

  1. Yangcheng Motan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yangcheng Motan Hydropower Development Co Ltd Jump to: navigation, search Name: Yangcheng Motan Hydropower Development Co., Ltd. Place: Shanxi Province, China Zip: 48100 Sector:...

  2. Longnan Huayu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huayu Hydropower Co Ltd Jump to: navigation, search Name: Longnan Huayu Hydropower Co., Ltd. Place: Longnan, Gansu Province, China Zip: 746000 Sector: Hydro Product: Gansu-based...

  3. Daguan Shun an Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    an Hydropower Development Co Ltd Jump to: navigation, search Name: Daguan Shun'an Hydropower Development Co. Ltd. Place: Yunnan Province, China Zip: 657400 Sector: Hydro Product:...

  4. Yingjiang Nandihe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nandihe Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Nandihe Hydropower Co., Ltd Place: Yunnan Province, China Zip: 679300 Sector: Hydro Product: Yunnan-based...

  5. Yongzhou Zhongxin Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongxin Hydropower Development Co Ltd Jump to: navigation, search Name: Yongzhou Zhongxin Hydropower Development Co., Ltd. Place: Yongzhou, Hunan Province, China Zip: 425800...

  6. Songtao Guanghe Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Songtao Guanghe Hydropower Development Co Ltd Jump to: navigation, search Name: Songtao Guanghe Hydropower Development Co., Ltd. Place: Tongren District, Guizhou Province, China...

  7. Xinjiang Heneng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Heneng Hydropower Co Ltd Jump to: navigation, search Name: Xinjiang Heneng Hydropower Co., Ltd Place: Shawan County, Tacheng Prefecture, Xinjiang Autonomous Region, China Zip:...

  8. Fujian Fuyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Fujian Fuyuan Hydropower Co., Ltd Place: Shouning County, Fujian Province, China Zip: 355000 Sector: Hydro Product: Fujian-based...

  9. Gansu Huatang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huatang Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Huatang Hydropower Development Co., Ltd. Place: China Sector: Hydro Product: China-based small hydro...

  10. Chaling Lianguan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chaling Lianguan Hydropower Development Co Ltd Jump to: navigation, search Name: Chaling Lianguan Hydropower Development Co. Ltd Place: Zhuzhou, Hunan Province, China Sector: Hydro...

  11. Jinggangshan Longgan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinggangshan Longgan Hydropower Development Co Ltd Jump to: navigation, search Name: Jinggangshan Longgan Hydropower Development Co., Ltd. Place: Jian, Jiangxi Province, China Zip:...

  12. Wuyishan Jinning Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinning Hydropower Development Co Ltd Jump to: navigation, search Name: Wuyishan Jinning Hydropower Development Co., Ltd. Place: Wuyishan, Fujian Province, China Zip: 354300...

  13. Sichuan Yuantong Baixi Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yuantong Baixi Hydropower Development Co Ltd Jump to: navigation, search Name: Sichuan Yuantong Baixi Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 623200...

  14. Guangdong Meiyan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Meiyan Hydropower Co Ltd Jump to: navigation, search Name: Guangdong Meiyan Hydropower Co Ltd Place: Meizhou, Guangdong Province, China Zip: 514011 Sector: Hydro Product:...

  15. Qinghai Datonghe Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Datonghe Hydropower Development Co Ltd Jump to: navigation, search Name: Qinghai Datonghe Hydropower Development Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810008...

  16. Lushui Huili Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huili Hydropower Development Co Ltd Jump to: navigation, search Name: Lushui Huili Hydropower Development Co. Ltd Place: Yunnan Province, China Zip: 673100 Sector: Hydro Product:...

  17. Wudu Xiangyu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wudu Xiangyu Hydropower Development Co Ltd Jump to: navigation, search Name: Wudu Xiangyu Hydropower Development Co., Ltd. Place: Longnan, Gansu Province, China Zip: 74600 Sector:...

  18. Hunan Zhongzhou Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongzhou Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Zhongzhou Hydropower Development Co., Ltd. Place: Shaoyang, Hunan Province, China Zip: 422200...

  19. Yumen Changyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Changyuan Hydropower Co Ltd Jump to: navigation, search Name: Yumen Changyuan Hydropower Co., Ltd. Place: Yumen City, Gansu Province, China Zip: 735211 Sector: Hydro Product:...

  20. Dodson Lindblom Hydropower Pvt Ltd DLHPPL | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Pvt Ltd DLHPPL Jump to: navigation, search Name: Dodson-Lindblom Hydropower Pvt. Ltd. (DLHPPL) Place: Mumbai, Maharashtra, India Zip: 400057 Sector: Hydro Product:...

  1. Yingjiang Rongfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rongfa Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Rongfa Hydropower Co., Ltd. Place: Dehong Dai-Jingpo Autonomous Prefecture, Yunnan Province, China Zip: 679300...

  2. Dingxiang Lingzidi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dingxiang Lingzidi Hydropower Co Ltd Jump to: navigation, search Name: Dingxiang Lingzidi Hydropower Co., Ltd. Place: Shanxi Province, China Zip: 35407 Sector: Hydro Product:...

  3. Shimen Tiande Hydropower Exploitation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tiande Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Shimen Tiande Hydropower Exploitation Co., Ltd. Place: Changde, Hunan Province, China Zip: 415300 Sector:...

  4. Minhou County Xingyuan Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Minhou County Xingyuan Hydropower Generation Co Ltd Jump to: navigation, search Name: Minhou County Xingyuan Hydropower Generation Co. Ltd Place: Fujian Province, China Zip: 350100...

  5. Miyi Chengnan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Miyi Chengnan Hydropower Development Co Ltd Jump to: navigation, search Name: Miyi Chengnan Hydropower Development Co.,Ltd Place: Panzhihua, Sichuan Province, China Zip: 323000...

  6. Jingning County Jinkengyuan Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Jinkengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Jingning County Jinkengyuan Hydropower Development Co., Ltd Place: Lishui, Zhejiang Province, China Zip:...

  7. Linjiawu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Linjiawu Hydropower Development Co Ltd Jump to: navigation, search Name: Linjiawu Hydropower Development Co., Ltd. Place: Hangzhou city, Zhejiang Province, China Zip: 311700...

  8. Tongren Jiuzhou Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tongren Jiuzhou Hydropower Co Ltd Jump to: navigation, search Name: Tongren Jiuzhou Hydropower Co., Ltd. Place: Xining City, Qinghai Province, China Zip: 810000 Sector: Hydro...

  9. Zhangye Longhui Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Zhangye Longhui Hydropower Co., Ltd Place: Zhangye, Gansu Province, China Zip: 734000 Sector: Hydro Product: China-based small...

  10. Pingnan Daixi Liyudang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Daixi Liyudang Hydropower Development Co Ltd Jump to: navigation, search Name: Pingnan Daixi Liyudang Hydropower Development Co., Ltd. Place: Fujian Province, China Zip: 352300...

  11. Zhenghe Hydropower Development of Zhijiang County Co Ltd | Open...

    Open Energy Info (EERE)

    Zhenghe Hydropower Development of Zhijiang County Co Ltd Jump to: navigation, search Name: Zhenghe Hydropower Development of Zhijiang County Co Ltd Place: Hunan Province, China...

  12. Sangzhi South Hydropower Exploitation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    South Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Sangzhi South Hydropower Exploitation Co., Ltd Place: Sangzhi, Hunan Province, China Zip: 427100 Sector:...

  13. Hunan Jintaiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jintaiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Jintaiyuan Hydropower Development Co. Ltd Place: Hunan Province, China Zip: 419400 Sector: Hydro...

  14. Gansu Ansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ansheng Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Ansheng Hydropower Development Co., Ltd. Place: Lanzhou, Gansu Province, China Zip: 730070 Sector:...

  15. Xiaojin County Xinghua Water Resource and Hydropower Development...

    Open Energy Info (EERE)

    Xinghua Water Resource and Hydropower Development Co Ltd Jump to: navigation, search Name: Xiaojin County Xinghua Water Resource and Hydropower Development Co., Ltd. Place: Aba...

  16. FERC Division of Hydropower Administration and Compliance | Open...

    Open Energy Info (EERE)

    Division of Hydropower Administration and Compliance Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Division of Hydropower Administration and...

  17. File:Federal Hydropower - Southwestern Power Administration.pdf...

    Open Energy Info (EERE)

    Federal Hydropower - Southwestern Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Southwestern Power...

  18. File:Federal Hydropower - Western Area Power Administration.pdf...

    Open Energy Info (EERE)

    Hydropower - Western Area Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Western Area Power Administration.pdf...

  19. Hydropower Licensing and Endangered Species A Guide for Applicants...

    Open Energy Info (EERE)

    Hydropower Licensing and Endangered Species A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Hydropower...

  20. Inner Mongolia Yellow River Sanshenggong Hydropower Co Ltd |...

    Open Energy Info (EERE)

    Sanshenggong Hydropower Co Ltd Jump to: navigation, search Name: Inner Mongolia Yellow River Sanshenggong Hydropower Co. Ltd Place: Dengkou County, Inner Mongolia Autonomous...

  1. Shangri La Green energy Hydropower development Co Ltd | Open...

    Open Energy Info (EERE)

    energy Hydropower development Co Ltd Jump to: navigation, search Name: Shangri-La Green-energy Hydropower development Co. Ltd. Place: Yunnan Province, China Zip: 674403 Sector:...

  2. Colorado Energy Office - Hydropower Website | Open Energy Information

    Open Energy Info (EERE)

    - Hydropower Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Energy Office - Hydropower Website Author Colorado Energy Office...

  3. Zhangye Heihe Hyaulic and Hydropower Construction Co Ltd | Open...

    Open Energy Info (EERE)

    Heihe Hyaulic and Hydropower Construction Co Ltd Jump to: navigation, search Name: Zhangye Heihe Hyaulic and Hydropower Construction Co., Ltd Place: Gansu Province, China Zip:...

  4. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydropower drivetrain and civil works technologies for low-impact hydropower development. ... innovations in areas such as low-impact civil structures, alternative construction ...

  5. Debao V Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Debao V Hydropower Development Co Ltd Jump to: navigation, search Name: Debao V Hydropower Development Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Sector: Hydro...

  6. Guangxi Baise Sanyuan Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sanyuan Hydropower Generation Co Ltd Jump to: navigation, search Name: Guangxi Baise Sanyuan Hydropower Generation Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip:...

  7. Gansu Hezuo Anguo Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hezuo Anguo Hydropower Generation Co Ltd Jump to: navigation, search Name: Gansu Hezuo Anguo Hydropower Generation Co. Ltd. Place: Hezuo City, Gansu Province, China Zip: 747000...

  8. Nandan County Qiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Nandan County Qiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Nandan County Qiyuan Hydropower Development Co., Ltd. Place: Hechi, Guangxi Autonomous Region,...

  9. EERE Success Story-First-ever Hydropower Market Report Covers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Hydropower Market Report filled the gap and provided industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the ...

  10. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  11. DOE/PSU Graduate Student Fellowship Program for Hydropower

    SciTech Connect (OSTI)

    Cimbala, John M.

    2014-03-30

    The primary objective of this project is to stimulate academic interest in the conventional hydropower field by supplying research support for at least eight individual Master of Science (MS) or Doctoral (PhD) level research projects, each consisting of a graduate student supervised by a faculty member. We have completed many of the individual student research projects: 2 PhD students have finished, and 4 are still working towards their PhD degree. 4 MS students have finished, and 2 are still working towards their MS degree, one of which is due to finish this April. In addition, 4 undergraduate student projects have been completed, and one is to be completed this April. These projects were supervised by 7 faculty members and an Advisory/Review Panel. Our students and faculty have presented their work at national or international conferences and have submitted several journal publications. Three of our graduate students (Keith Martin, Dan Leonard and Hosein Foroutan) have received HRF Fellowships during the course of this project. All of the remaining students are anticipated to be graduated by the end of Fall Semester 2014. All of the tasks for this project will have been completed once all the students have been graduated, although it will be another year or two until all the journal publications have been finalized based on the work performed as part of this DOE Hydropower project.

  12. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  13. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  14. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  15. US hydropower resource assessment for Montana

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  16. US hydropower resource assessment for Colorado

    SciTech Connect (OSTI)

    Francfort, J.E.

    1994-05-01

    The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

  17. US hydropower resource assessment for New Jersey

    SciTech Connect (OSTI)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  18. US hydropower resource assessment for Washington

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  19. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  20. UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010)

    Broader source: Energy.gov [DOE]

    The project area is located in a region of the state where Loggerhead Shrikes (Lanius ludovicianus) are consistently observed and known to be nesting. With populations steadily declining throughout...

  1. Disappearing rivers — The limits of environmental assessment for hydropower in India

    SciTech Connect (OSTI)

    Erlewein, Alexander

    2013-11-15

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

  2. ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... 175 5.4 FISH AND WILDLIFE AGENCY RECOMMENDATIONS ... Table 10. Analysis of fish and wildlife agency recommendations for the Admiralty Inlet ...

  3. Draft Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    ... that lived below the poverty level for Lewis and Clark County was 10.4% compared to 15.2% for Montana (Table 13). Table 13. Population and Poverty Level for Lewis and Clark County. ...

  4. Hydropower, adaptive management, and biodiversity

    SciTech Connect (OSTI)

    Wieringa, M.J.; Morton, A.G.

    1996-11-01

    Adaptive management is a policy framework within which an iterative process of decision making is allowed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man`s activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity. 10 refs., 2 figs.

  5. New Hydropower Turbines to Save Snake River Steelhead | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam ... more advanced. | Photo Courtesy of Voith Hydro Voith Hydro installed machines at the ...

  6. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  7. Microsoft PowerPoint - Ozark and WEbbers Hydropower conference1 15 June 2015 15.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWT Project Manager Lee Beverly -SWL Project Manager 18 June 2015 Ozark and Webbers Falls Powerhouse Major Rehabilitation BUILDING STRONG ® * Project Scope: Replace three turbines, rewind three generators and rehabilitate all cranes, tailrace and intake gates and bulkheads. * Total Project cost: $84.7M ($79.9M customer funded) * Turbine Contract Awarded: February 2008 * Awarded Turbine Contract Amount: $39.3M * Current Turbine Contract Amount: $47.1M * Current Required Completion Date : 5

  8. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  9. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  10. Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  11. Fact Sheet: Sustainable Development of Hydropower Initiative | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sustainable Development of Hydropower Initiative Fact Sheet: Sustainable Development of Hydropower Initiative A fact sheet detailling the mission behind the Clean Energy Ministerial in Washington D.C on July 19th and July 20th where ministers pledged to establish the Sustainable Development of Hydropower Initiative. PDF icon Fact Sheet: Sustainable Development of Hydropower Initiative More Documents & Publications &#8220;Sustainable development of hydropower in third

  12. Hydropower Market Acceleration and Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower significantly contributes to the nation's renewable energy portfolio. In fact, over the last decade, the United States obtained over 6% of its electricity from hydropower sources. As the largest source of renewable electricity in the United States, there remains vast untapped resource potential in hydropower. The Water Power Program works to do the following:

  13. New Hydropower, Hidden in Plain Sight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower, Hidden in Plain Sight New Hydropower, Hidden in Plain Sight December 16, 2015 - 10:04am Addthis New Hydropower, Hidden in Plain Sight Timothy J. Welch Hydropower Program Manager, Wind and Water Power Technologies Office What You Need to Know About Section 242 Funding The Energy Department began accepting applications today from hydropower owners and operators that produced hydroelectric power in 2014 from new equipment added to an existing dam or conduit since 2005. Applications for

  14. Project Reports for Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  15. Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development

    SciTech Connect (OSTI)

    Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

    2014-11-04

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

  16. Coal Air Turbine ``CAT`` program invention 604. Eighth quarter project report and final for the project, August--September 1996

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1996-09-30

    The primary objective of this ``CAT`` project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the ``CAT`` system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a ``CAT`` plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a ``commercial plant`` before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept.

  17. Microsoft Word - Hydropower Council Agenda 2007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Hydropower Council Vicksburg, Mississippi June 12, 2007 Tuesday, June 12 1:00 p.m. Welcome Vicksburg District 1:05 p.m. Introductions All 1:15 p.m. Presentation of the...

  18. Hydropower Market Report May 2016 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Technologies Office eere.energy.gov 1 Mike Reed, Program Lead September 23, 2013 Hydropower Market Report May 2016 Update Rocio Uria-Martinez Megan Johnson Patrick ...

  19. Brainpower for Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today

  20. Pumped Storage and Potential Hydropower from Conduits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY United States Department of Energy Washington, DC 20585 Message from the Secretary Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation . This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability

  1. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  2. Turbine FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine FAQs faq-header-big.jpg TURBINES - BASICS Q: What is a turbine? A: A turbine is a mechanical device that extracts energy from a fluid flow and turns it into useful work. A combustion turbine is a type of turbine that converts the chemical energy in fossil fuels into mechanical energy by extracting energy from the hot combustion gases. The mechanical energy can then be used to generate electricity or as a power source for industrial processes. For further information, see: - The Gas

  3. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur during passage through a Welka UPG turbine at ambient current velocities less than about 2.5 m/s. Survival and Behavior of Juvenile Atlantic Salmon and Adult American Shad on Exposure to a Hydrokinetic Turbine This report describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon and upstream migrating adult American shad. Studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded in the presence of the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine the extent to which observed effects are likely to influence fish in riverine environments. Analysis is needed to assess the potential for multiple units to lead to greater mortality rates or impacts on fish movements and migrations. Additionally, future research should focus on expanding the existing data by developing better estimates of encounter and avoidance probabilities.

  4. Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  5. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Mandell, John; Agastra, Pancasatya

    2011-11-01

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  6. Individual developer | Open Energy Information

    Open Energy Info (EERE)

    Zip 97402 Country United States Sector Hydropower Product Suction Augmented Hydropower Turbine Company Ownership Private Small Business Yes Technology See Patent 9097233 Project...

  7. MHK Technologies/SmarTurbine | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage SmarTurbine.jpg Technology Profile Primary Organization Free Flow Power Corporation Project(s) where this technology is utilized *MHK Projects...

  8. New Stream-Reach Hydropower Development (NSD) Fact Sheet

    SciTech Connect (OSTI)

    2014-04-25

    This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

  9. Memorandum of Understanding for Hydropower Two-Year Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TWO-YEAR PROGRESS REPORT April 2012 Energy Efficiency & Renewable Energy MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER 2 TABLE OF CONTENTSCONTENTS Hydropower Memorandum of Understanding .................................................................................1 Two-Year Progress Report ...............................................................................................................1 List of Acronyms

  10. A New Vision for U.S. Hydropower

    SciTech Connect (OSTI)

    2014-04-30

    The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision.

  11. Xiahe Hengfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xiahe Hengfa Hydropower Co Ltd Jump to: navigation, search Name: Xiahe Hengfa Hydropower Co.Ltd Place: Lanzhou, Gansu Province, China Zip: 700030 Sector: Hydro Product: Gansu-based...

  12. Quantifying the Value of Hydropower in the Electric Grid: Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Quantifying Fl Value of Hydro in ...

  13. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    SciTech Connect (OSTI)

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  14. NOAA Hydropower and Fish Passage webpage | Open Energy Information

    Open Energy Info (EERE)

    NOAA Hydropower and Fish Passage webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NOAA Hydropower and Fish Passage webpage Author National...

  15. US Fish and Wildlife Service Hydropower Licensing webpage | Open...

    Open Energy Info (EERE)

    US Fish and Wildlife Service Hydropower Licensing webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: US Fish and Wildlife Service Hydropower...

  16. Oregon Department of Energy Small, Low-Impact Hydropower Website...

    Open Energy Info (EERE)

    Hydropower Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Energy Small, Low-Impact Hydropower Website Abstract The...

  17. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Hydropower has the potential to increase the flexibility and stability of the U.S. ... By modeling and analyzing the value of hydropower assets and pumped storage in power system ...

  18. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. PDF icon Conventional Hydropower Technologies More Documents & Publications Water Power for a Clean Energy Future

  19. EERE Success Story- Hydropower Fellowship Program Leading Students to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Careers | Department of Energy Hydropower Fellowship Program Leading Students to Industry Careers EERE Success Story- Hydropower Fellowship Program Leading Students to Industry Careers April 20, 2016 - 12:15pm Addthis EERE Success Story— Hydropower Fellowship Program Leading Students to Industry Careers The Hydro Research Foundation's (HRF) Hydro Fellowship Program allowed outstanding up-and-coming student fellows to conduct hydropower-related research-all made possible by a

  20. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Hydropower Resource Assessment and Characterization Hydropower Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically recoverable energy available in the nation's powered dams, non-powered dams, and untapped stream-reaches. These resource assessments are pivotal to understanding hydropower's potential for future electricity production. Hydropower already provides 6-8% of the nation's electricity, but more potential

  1. Pumped Storage and Potential Hydropower from Conduits | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pumped Storage and Potential Hydropower from Conduits Pumped Storage and Potential Hydropower from Conduits This U.S. Department of Energy Report to Congress, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new

  2. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compiled Presentations: Hydropower Technologies Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  3. Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine

    Broader source: Energy.gov [DOE]

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  4. Seneca Nation of Indians Leverages DOE Support for Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seneca Nation of Indians Leverages DOE Support for Wind Turbine Project Seneca Nation of Indians Leverages DOE Support for Wind Turbine Project April 28, 2016 - 11:19am Addthis ...

  5. Establishment of Small Wind Turbine Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.

    2011-09-16

    This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

  6. Hydroxyapatite Barriers for Radionuclide Containment - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Hydropower Projects This report covers the Wind and Water Power Technologies Office's hydropower projects from fiscal years 2008 to 2015. PDF icon Hydropower Projects 2008-2015 More Documents & Publications Laboratory Demonstration of a New American Low-Head Hydropower Turbine Real World Demonstration of a New American Low-Head Hydropower Unit Marine and Hydrokinetic Energy Projects

    Research & Development Hydropower Research & Development Hydropower Research &

  7. A New Vision for United States Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Vision for United States Hydropower A New Vision for United States Hydropower The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision. This landmark vision will establish the analytical basis for an ambitious roadmap to usher in a new era of growth in sustainable domestic hydropower over the next half century. Included in this effort will be: A close examination

  8. Wanapum Dam Advanced Hydro Turbine Upgrade Project: Part 2 - Evaluation of Fish Passage Test Results Using Computational Fluid Dynamics

    SciTech Connect (OSTI)

    Dresser, Thomas J.; Dotson, Curtis L.; Fisher, Richard K.; Graf, Michael J.; Richmond, Marshall C.; Rakowski, Cynthia L.; Carlson, Thomas J.; Mathur, Dilip; Heisey, Paul G.

    2007-10-10

    This paper, the second part of a 2 part paper, discusses the use of Computational Fluid Dynamics (CFD) to gain further insight into the results of fish release testing conducted to evaluate the modifications made to upgrade Unit 8 at Wanapum Dam. Part 1 discusses the testing procedures and fish passage survival. Grant PUD is working with Voith Siemens Hydro (VSH) and the Pacific Northwest National Laboratory (PNNL) of DOE and Normandeau Associates in this evaluation. VSH has prepared the geometry for the CFD analysis corresponding to the four operating conditions tested with Unit 9, and the 5 operating conditions tested with Unit 8. Both VSH and PNNL have conducting CFD simulations of the turbine intakes, stay vanes, wicket gates, turbine blades and draft tube of the units. Primary objectives of the analyses were: determine estimates of where the inserted fish passed the turbine components determine the characteristics of the flow field along the paths calculated for pressure, velocity gradients and acceleration associated with fish sized bodies determine the velocity gradients at the structures where fish to structure interaction is predicted. correlate the estimated fish location of passage with observed injuries correlate the calculated pressure and acceleration with the information recorded with the sensor fish utilize the results of the analysis to further interpret the results of the testing. This paper discusses the results of the CFD analyses made to assist the interpretation of the fish test results.

  9. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Witt, Adam M.; Stewart, Kevin M.; Bonnet Acosta, Marisol; Mobley, Miles

    2015-09-01

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one of many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee Valley Authority, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. Together these three agencies own and operate 157 powered dams which account for almost half of the total installed hydropower capacity in the U.S. Future work will include engaging publicly-owned utilities and the private sector in order to quantify the benefits of all multipurpose hydropower reservoirs in the U.S.

  10. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

  11. How Hydropower Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    There are several types of hydroelectric facilities; they are all powered by the kinetic energy of flowing water as it moves downstream. Turbines and generators convert the energy ...

  12. GE Partners on Microgrid Project | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project will also help utilities, like National Grid, better leverage distributed energy resources (DER), such as solar, hydropower, and thermal, in a microgrid scenario. "The ...

  13. Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...

    Open Energy Info (EERE)

    Hydro Kinetic Turbines from Smart Hydro Power Jump to: navigation, search << Return to the MHK database homepage Tauchturbine.jpg Technology Profile Project(s) where this...

  14. Classification of US hydropower dams by their modes of operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; Bevelhimer, Mark S.

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  15. Innovative Hydropower Technology Now Powering an Apple Data Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydropower Technology Now Powering an Apple Data Center Innovative Hydropower Technology Now Powering an Apple Data Center November 24, 2015 - 9:43am Addthis Innovative Hydropower Technology Now Powering an Apple Data Center Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Above: Completed Intake Structure. Water from the irrigation canal is divided in two as it approaches the plant. The existing drop structure (foreground)

  16. Effects of Climate Change on Federal Hydropower (Report to Congress) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effects of Climate Change on Federal Hydropower (Report to Congress) Effects of Climate Change on Federal Hydropower (Report to Congress) The U.S. Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from

  17. U.S. Hydropower Potential from Existing Non-powered Dams | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams

  18. National Park Service Hydropower Assistance webpage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: National Park Service Hydropower Assistance webpage Abstract This webpage provides information on the...

  19. Wencheng County Baiwanshan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Wenzhou City, Zhejiang Province, China Zip: 325304 Sector: Hydro Product: Chinese developer of mini hydro plants. References: Wencheng County Baiwanshan Hydropower Co...

  20. Yunnan Dianneng Chuxiong Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Development Co., Ltd. Place: Chuxiong City, China Zip: 675000 Sector: Hydro Product: Chinese developer of small hydro plants. References: Yunnan Dianneng Chuxiong Hydropower...

  1. Hydropower, Wave and Tidal Technologies Available for Licensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower, Wave and Tidal Marketing Summaries TAG CLOUD TAG CLOUD TAG CLOUD rotor surface erosion icing powder patent flow coated substrate oil real actuated ...

  2. Rucheng County Yuzaikou Hydropower Company Limited | Open Energy...

    Open Energy Info (EERE)

    Place: Nandong Town, Hunan Province, China Zip: 423000 Sector: Hydro Product: Hydroelectric developer References: Rucheng County Yuzaikou Hydropower Company Limited1 This...

  3. Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic...

    Open Energy Info (EERE)

    "Energy supplies generated by mini-hydropower to selected rural areas in Sulawesi, Java and Sumatra are improved. Local economic cycles triggered by this are able to generate...

  4. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  5. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy ...

  6. Successfully Streamlining Low-Impact Hydropower Permitting: Colorado...

    Open Energy Info (EERE)

    for the Entire Country Jump to: navigation, search OpenEI Reference LibraryAdd to library Case Study: Successfully Streamlining Low-Impact Hydropower Permitting: Colorado's Model...

  7. Federal Memorandum of Understanding for Hydropower/Resources...

    Open Energy Info (EERE)

    Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered...

  8. Nandan Hongyuan Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Exploitation Co Ltd Jump to: navigation, search Name: Nandan Hongyuan Hydropower Exploitation Co., Ltd. Place: Hechi, Guangxi Autonomous Region, China Zip: 547200 Sector: Hydro...

  9. Vermont Small Hydropower Assistance Program Summary | Open Energy...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - Supplemental Material: Vermont Small Hydropower Assistance Program SummaryPermittingRegulatory GuidanceSupplemental Material...

  10. Fugong Hongyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Fugong Hongyuan Hydropower Development Co., Ltd. Place: Nujiang Lisu Autonomous Prefecture, Yunnan Province, China Sector: Hydro Product: Yunnan-based developer of a CDM-registered...

  11. Hydropower Regulatory Efficiency Act of 2013 | Open Energy Information

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- BillBill: Hydropower Regulatory Efficiency Act of 2013Legal Abstract Amends statutory provisions related...

  12. Yongchang Dongfang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Yongchang Dongfang Hydropower Development Co. Ltd. Place: Gansu Province, China Zip: 737100 Sector: Hydro Product: China-based...

  13. Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hongyuan Hydropower Development Co. Ltd Place: Ankang City, Shaanxi Province, China Zip: 725300 Sector: Hydro Product: Akang City-based developer of CDM small hydro plants....

  14. Vermont Small Hydropower Assistance Program Site-Specific Determinatio...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - Supplemental Material: Vermont Small Hydropower Assistance Program Site-Specific Determinations SummaryPermittingRegulatory...

  15. EERE Success Story- Hydropower Fellowship Program Leading Students...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Success Story Hydropower Fellowship Program Leading Students to Industry Careers The Hydro Research Foundation's (HRF) Hydro Fellowship Program allowed outstanding ...

  16. The Next Generation of Hydropower Engineers and Scientists |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation ...

  17. Power Builds Ships Northwest Hydropower Helps Win World War II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  18. FERC Hydropower Licensing and Endangered Species - A Guide for...

    Open Energy Info (EERE)

    FERC Hydropower Licensing and Endangered Species - A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  19. Vermont Small Hydropower Assistance Program Overview | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Small Hydropower Assistance Program OverviewPermittingRegulatory...

  20. Colorado Energy Office, Small Hydropower Handbook | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado Energy Office, Small Hydropower HandbookPermittingRegulatory...

  1. Category:Hydropower Regulatory Roadmap Sections | Open Energy...

    Open Energy Info (EERE)

    Community Login | Sign Up Search Category Edit History Category:Hydropower Regulatory Roadmap Sections Jump to: navigation, search RAPID Toolkit Add.png Add a Section Pages in...

  2. FERC Hydropower Licensing Guidelines webpage | Open Energy Information

    Open Energy Info (EERE)

    Guidelines webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Hydropower Licensing Guidelines webpage Abstract This webpage provides...

  3. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    through upgrades to make aging hydropower units more efficient, more flexible, more fish-friendly, and capable of aeration to improve water quality. Some facilities have...

  4. Huge Potential for Hydropower: Assessment Highlights New Possible...

    Broader source: Energy.gov (indexed) [DOE]

    Researchers used new advancements in geospatial analysis to provide a first-of-its-kind look at the nation's developable hydropower potential. Several environmental, technical and ...

  5. Hydropower Vision Task Force Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Hydropower Vision Task Force Charter.pdf More Documents & Publications State Energy Advisory Board November 2011 Meeting Guide to Community Energy Strategic Planning State ...

  6. NREL: Water Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power technologies and to better understand the value and potential of conventional hydropower generation and pumped storage hydropower facilities. Here are some examples of current R&D projects focused on achieving these objectives: Testing and Standards Computer-Aided Engineering Resource Characterization Economic and Power System Modeling and Analysis Printable Version Water

  7. Annual Report: Turbines (30 September 2012) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    2012) The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of ... The Turbine Thermal Management project consists of four tasks that focus on a critical ...

  8. Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia

    SciTech Connect (OSTI)

    Pasha, MD Fayzul K; Hadjerioua, Boualem; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-01-01

    The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

  9. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  11. Energy Department Invests $17 Million in Small Businesses to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies from the 17 projects include: * Hydropower: Based in Keokuk, Iowa, Amjet Turbine Systems, LLC will develop lightweight, low-cost hydro turbines that can generate ...

  12. Hydropower Resource Basics | Department of Energy

    Energy Savers [EERE]

    Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or micro

  13. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  14. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  15. U.S. hydropower resource assessment for Oregon

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-03-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

  16. U.S. hydropower resource assessment for Connecticut

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  17. U.S. hydropower resource assessment for Arizona

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

  18. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  19. Aero Turbine | Open Energy Information

    Open Energy Info (EERE)

    Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine...

  20. EMTAs Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.