Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of a more fish-tolerant turbine runner, advanced hydropower turbine project  

DOE Green Energy (OSTI)

Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Woburn, MA (United States)

1997-02-01T23:59:59.000Z

2

Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report  

DOE Green Energy (OSTI)

The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

1997-01-01T23:59:59.000Z

3

Demonstration Development Project: Solicitation and Selection of a Site to Test a Fish-Friendly Hydropower Turbine  

Science Conference Proceedings (OSTI)

With an increasing demand for renewable energy throughout the world, the ability to produce power while minimizing environmental impacts has become a driving force in the continued development of hydropower. A new hydropower turbine that has the potential to contribute to power demands while minimally impacting fish populations is the Alden turbine, which was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program and, more recently, Electric Power Research...

2011-01-03T23:59:59.000Z

4

21st century advanced hydropower turbine system  

DOE Green Energy (OSTI)

While hydropower turbine manufacturers have incrementally improved turbine technology to increase efficiency, the basic design concepts haven`t changed for decades. These late 19th and early 20th century designs did not consider environmental effects, since little was known about environmental effects of hydropower at the time. The U.S. Department of Energy (DOE) and the hydropower industry recognize that hydropower plants have an effect on the environment and there is a great need to bring turbine designs into the 21st century. DOE has issued a request for proposals (RFP) that requested proposers to discard conventional thinking, search out innovative solutions, and to visualize innovative turbines designed from a new perspective. This perspective would look at the {open_quotes}turbine system{close_quotes} (intake to tailrace) which will balance environmental, technical, and economic considerations. This paper describes the DOE Advanced Hydropower Turbine System Program.

Brookshier, P.A.; Flynn, J.V.; Loose, R.R.

1995-11-01T23:59:59.000Z

5

Inexpensive cross-flow hydropower turbine at Arbuckle Mountain Hydroelectric Project  

SciTech Connect

This report documents the first three and half years of operation and maintenance on the Arbuckle Mountain Hydroelectric Project. Located on a flashy mountain stream in northern California, the project was designed, built and tested through a Cooperative Agreement between the US DOE and OTT Engineering, Inc. (OTT). The purpose of the Agreement is to build and intensively test an inexpensive American-made cross-flow turbine and to provide information to the DOE on the cost, efficiency, operation, and maintenance of the unit. It requires that OTT document for DOE a summary of the complete operating statistics, operation and maintenance cost, and revenues from power sales for a two-year operating period. Several unique events occurred between the initial start-up (December 1986) and the beginning of the 1989 generation season (October 1988) that delayed the first year's full operation and provided unique information for a demonstration project of this type. Accordingly, this report will discuss certain major problems experienced with the design, operation and maintenance, and energy production, as well as the operation and maintenance costs and value of the power produced for the first three and half years of operation. 9 figs., 2 tabs.

1991-07-01T23:59:59.000Z

6

"Fish Friendly" Hydropower Turbine Development and Deployment: Alden Turbine Preliminary Engineering and Model Testing  

Science Conference Proceedings (OSTI)

This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a "fish-friendly" hydropower turbine called the Alden turbine. Earlier engineering and research that was started in 1995 and completed in 2008 established a viable conceptual design. Additional engineering completed in 2009 and ...

2011-10-07T23:59:59.000Z

7

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

8

EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers  

SciTech Connect

The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

None

2011-12-01T23:59:59.000Z

9

Development of environmentally advanced hydropower turbine system design concepts  

DOE Green Energy (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

10

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation 933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA SUMMARY DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

11

Los Alamos County Completes Abiquiu Hydropower Project, Bringing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean...

12

New Hydropower Turbines to Save Snake River Steelhead | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Turbines to Save Snake River Steelhead Hydropower Turbines to Save Snake River Steelhead New Hydropower Turbines to Save Snake River Steelhead May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Joshua DeLung Hydropower harnesses water power to create reliable, clean and plentiful renewable energy, but dams can have an unintended impact on wildlife --

13

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR HYDROPOWER PILOT PROJECT LICENSE Admiralty Inlet Pilot Tidal Project-FERC Project No. 12690-005 (DOE/EA-1949) Washington Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 1617 Cole Boulevard Golden, Colorado 80401 January 15, 2013 20130115-3035 FERC PDF (Unofficial) 01/15/2013 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

14

Idaho National Laboratory - Hydropower Program: Advanced Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

while essentially emission-free, can have undesirable environmental effects, such as fish injury and mortality from passage through turbines, as well as detrimental changes in...

15

16 R&D Projects Across 11 States to Advance Hydropower in U.S. | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 R&D Projects Across 11 States to Advance Hydropower in U.S. 6 R&D Projects Across 11 States to Advance Hydropower in U.S. 16 R&D Projects Across 11 States to Advance Hydropower in U.S. September 6, 2011 - 3:38pm Addthis Rajesh Dham Hydropower Technology Team Lead Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly. These research projects will help advance hydropower technologies - providing clean power to Americans while creating jobs. Hydropower technologies capture water's potential energy via a turbine to generate electricity. It is the nation's largest, most reliable, and least expensive source of renewable power generation. Companies, universities, national laboratories, and local governments

16

Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos County Completes Abiquiu Hydropower Project, Bringing Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on the completion and startup today of the Abiquiu Hydropower Project in New Mexico - the first hydropower project funded by the American Recovery and Reinvestment Act to be completed nationwide. "Today marks a major milestone in securing America's clean energy future as we celebrate the completion of the Department of Energy's first major Recovery Act-funded water power project. By increasing renewable energy output at existing hydropower facilities, we can create clean energy jobs,

17

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

18

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

19

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

Science Conference Proceedings (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

20

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Syngas Particulate Deposition and Erosion at the Leading Edge of a Turbine Blade with Film Cooling Virginia Tech Danesh Tafti Project Dates: 812007 - 9302010 Area of...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

22

Guide for Assessing Relicensing Risk for Hydropower Projects  

Science Conference Proceedings (OSTI)

Nearly two-thirds of hydropower projects relicensed between 1987 and 1991 lost both generating capacity and total annual energy; only one-tenth of relicensed projects showed any increase. This guide provides an overview of changes in relicensing and offers self-assessment guidelines for those utilities that are about to relicense their projects.

1993-11-01T23:59:59.000Z

23

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

24

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

25

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

is part of the Advanced Hydropower Turbine Project sponsored by the U.S. Department of Energy (DOE). The conceptual design phase of the program defined a new hydro-turbine...

26

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

27

Hydropower research and development  

DOE Green Energy (OSTI)

This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

NONE

1997-03-01T23:59:59.000Z

28

A progress report on DOE`s advanced hydropower turbine systems program  

DOE Green Energy (OSTI)

Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

1997-06-01T23:59:59.000Z

29

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

30

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

31

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

32

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

33

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

34

Research on Spatial Object-oriented Management Information System for Hydropower Station Project  

Science Conference Proceedings (OSTI)

In order to intuitive and meticulous manage the hydropower station project construction, in view of the current commonly-used project management systems of the contract-oriented system and the schedule-oriented system, a spatial object-oriented project ... Keywords: spatial object-oriented, hydropower station project, information management system

Cai Hualong; Zhang Qing; Hu Zhigen; Fan Jiming

2012-08-01T23:59:59.000Z

35

Microsoft Word - AR_2002 DOE Hydropower_Final_07_08.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water...

36

Fish behavior in relation to modeling fish passage through hydropower turbines: A review  

DOE Green Energy (OSTI)

We evaluated the literature on fish behavior as it relates to passage of fish near or through hydropower turbines. The goal was to foster compatibility of engineered systems with the normal behavior patterns of fish species and life stages such that entrainment into turbines and injury in passage are minimized. We focused on aspects of fish behavior that could be used for computational fluid dynamics (CFD) modeling of fish trajectories through turbine systems. Downstream-migrating salmon smolts are generally surface oriented and follow flow. Smolts orient to the ceilings of turbine intakes but are horizontally distributed more evenly, except as affected by intake-specific turbulence and vortices. Smolts often enter intakes oriented head-upstream. Non-salmonids are entrained episodically, suggesting accidental capture of schools (often of juveniles or in cold water) and little behavioral control during turbine passage. Models of fish trajectories should not assume neutral buoyancy throughout the time a fish passes through a turbine, largely because of pressure effects on swim bladders. Fish use their lateral line system to sense obstacles and change their orientation, but this sensory-response system may not be effective in the rapid passage times of turbine systems. A Effects of pre-existing stress levels on fish performance in turbine passage are not well known but may be important. There are practical limits of observation and measurement of fish and flows in the proximity of turbine runners that may inhibit development of information germane to developing a more fish-friendly turbine. We provide recommendations for CFD modelers of fish passage and for additional research. 20 refs., 2 figs.

Coutant, C.C. [Oak Ridge National Lab., TN (United States); Whitney, R.R.

1997-06-01T23:59:59.000Z

37

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

38

Idaho National Laboratory - Hydropower Program- Virtual Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Hydropower Prospector do Brasil Access the Virtual Hydropower Prospector do Brasil Disclaimers NOTICE TO USERS The water energy resource and potential project information...

39

Hydropower Appropriations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating...

40

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Turbulent Flame Speed Measurements and Modeling of Syngas Fuels Georgia Tech Jerry Seitzman Project Dates: 812007 - 9302010 Area of Research: Combusion Federal Project...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

This report provides a preliminary examination of the practices and problems associated with trash and debris at hydropower installations. The Hydropower Technology Roundup project surveyed the perspectives of multiple hydropower producers with respect to their management of trash and debris.

2007-03-26T23:59:59.000Z

42

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

43

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation Ohio State University Nitin Padture Project Dates: 1012008 - 9302011 Area of Research: Materials...

44

Data-Based Performance Assessments for the DOE Hydropower Advancement Project  

SciTech Connect

The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

March, Patrick [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.; Smith, Brennan T [ORNL; Zhang, Qin Fen [ORNL; Dham, Rajesh [U.S. Department of Energy

2012-01-01T23:59:59.000Z

45

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech 4 Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels Penn State University & Georgia Tech Dom Santavicca (PSU) & Tim Lieuwen (Georgia Tech) Project Dates: 10/1/2008 - 9/30/2011 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The objectives of this project are 1) to obtain fundamental understanding of the response of lean premixed multi-nozzle combustors operating on high hydrogen, coal derived fuels to both transverse and longitudinal fluctuations of the air flow rate and 2) to use this understanding to formulate and validate longitudinal and transverse flame response models that can be used to predict instability in multi-nozzle annular and can combustors. Such models are an essential tool

46

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Evaluating Coatings for Current and Future Service Univ of California Santa Barbara 5 Evaluating Coatings for Current and Future Service Univ of California Santa Barbara Ted Bennett Project Dates: 8/1/2007 - 3/31/2010 Area of Research: Materials Federal Project Manager: Mark Freeman Project Objective: This research provides a first-principle measurement for quantifying thermal properties of coatings without specialized sample preparation. The measurement carries sufficient quantitative value to make meaningful assessments and comparisons of different coating materials, and can be richly descriptive of the multifaceted nature of service-related change over the lifetime of a coating. Objectives are to provide quantitative nondestructive measurements of the thermal protection offered by coatings on serviceable engine parts, to understand how individual

47

Transportable Combustion Turbine Demonstration Project  

Science Conference Proceedings (OSTI)

New York State Electric and Gas Corporation (NYSEG) installed a 7.15-MW Solar® Taurus™ 70 (nominal 7 MW) gas combustion turbine (CT) at its State Street substation in Auburn, New York. As a demonstration project supported through EPRI's Tailored Collaboration (TC) program, it is intended to aid in better understanding the "complete picture" for siting this particular technology as a distributed resource (DR).

2001-12-14T23:59:59.000Z

48

DOE Hydropower Program Annual Report for FY 2002  

SciTech Connect

The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

Garold L. Sommers; R. T. Hunt

2003-07-01T23:59:59.000Z

49

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

Wind Powering America (EERE)

5 - January 2010 5 - January 2010 Two 600-kW wind turbines were installed on Deer Island in August 2009 next to the wastewater treatment facility's anaerobic digesters. Due to their proximity to Logan Airport, these generators were installed on unusually short 32-meter towers. WIND AND HYDROPOWER TECHNOLOGIES PROGRAM continued on page 2 > Kathryn Craddock, Sustainable Energy Advantage, LLC/PIX16710 Wind Projects Sprout Throughout New England NEWF is pleased to provide you with its fifth edition of the electronic NEWF newsletter. This newsletter provides updates on a broad range of project proposals and policy initiatives across New England during the funding hiatus...consider it a "catch-up" double issue. In past newsletters, we've relied on wind farm photo-simulations, photos of early construction

50

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

51

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

52

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

53

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

54

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

DOE Green Energy (OSTI)

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto; Zhang, Qin Fen [ORNL; Karney, Professor Byran W. [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia

2011-01-01T23:59:59.000Z

55

National Hydropower Association conference proceedings  

Science Conference Proceedings (OSTI)

These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

Not Available

1985-01-01T23:59:59.000Z

56

Small-Hydropower Development: The Process, Pitfalls, and Experience, Volume 3: Summary and Analysis of Technology Development Projects  

Science Conference Proceedings (OSTI)

With proper attention to specific site considerations, small hydropower development at existing dams and waterways is technically feasible. This conclusion, based on technical, economic, construction, and operations data from 23 small-hydro projects, represents the key finding in this third volume of a study conducted under the DOE National Small-Hydropower Program.

1987-09-25T23:59:59.000Z

57

EA-1923: Green Energy School Wind Turbine Project on Saipan,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the...

58

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Research and Development Engineering Research and Development 1997 Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation, 1997, Development of a More Fish-Tolerant Turbine Runner, Advanced Hydropower Turbine Project, ARL Report No. 13-97/M63F, DOE/ID-10571. Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. An existing pump impeller provided the starting point for developing the fish-tolerant turbine runner. The Hidrostal pump is a single-bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of this research project was to develop a new runner geometry which is effective in downstream fish passage and

59

2011 Grants for Advanced Hydropower Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

60

Idaho National Laboratory - Hydropower Program- Virtual Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

The water energy resource and potential project information provided by the Virtual Hydropower Prospector (VHP) is as accurate as possible within the limitations of the...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

62

NETL: Turbine Projects - Carbon Management (FutureGen)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Management (FutureGen) Turbine Projects Carbon Management (FutureGen) Hydrogen Turbines new solicitation in FY05 DataFact Sheets...

63

Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies  

Science Conference Proceedings (OSTI)

The potential for fish populations to be negatively impacted by hydrokinetic turbines is a major issue associated with the development and licensing of this type of renewable energy source. Such impacts may include habitat alteration, disruptions in migrations and movements, and injury and mortality to fish that encounter turbines. In particular, there is considerable concern for fish and other aquatic organisms to interact with hydrokinetic turbines in a manner that could lead to alterations in normal b...

2011-10-31T23:59:59.000Z

64

PowerJet Wind Turbine Project  

SciTech Connect

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

65

EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines: Technical Papers  

Science Conference Proceedings (OSTI)

This report presents the proceedings of a conference held to discuss developments in the field of environmentally friendly hydroturbines. The Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE), in cooperation with the U.S. Army Corps of Engineers (USACE), the U.S. Bureau of Reclamation (USBR), and the National Hydropower Association (NHA), conducted the conference May 19–20, 2011, in Washington, D.C., to disseminate information on the state of the art in environmentally enha...

2011-12-07T23:59:59.000Z

66

Large-Scale Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydropower projects can also be built as power storage facilities. During periods of peak electricity demand, these facilities operate much like a traditional hydropower...

67

Projects selected in todays announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in today's announcement will focus on updating technologies in today's announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants. The projects selected for negotiation of awards include: Dehlsen Associates, LLC (Carpinteria, CA) will further develop and validate the Aquantis Current Plane ocean current turbine technology. The project will validate analytical design tools and develop the technology's direct drive component. DOE share: up to $750,000; Duration: up to 2 years Dehlsen Associates, LLC (Carpinteria, CA) will first develop a bottom habitat survey methodology and siting study approach in accordance with all relevant regulatory agencies in the southeast Florida region; then they will determine the most suitable areas for mooring marine and hydrokinetic facilities based on the

68

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

69

Field test of ultra-low head hydropower package based on marine thrusters. Final report  

DOE Green Energy (OSTI)

The project includes the design, fabrication, assembly, installation, and field test of the first full-scale operating hydropower package (turbine, transmission, and generator) based on a design which incorporates a marine-thruster as the hydraulic prime mover. Included here are: the project overview; engineering design; ultra-low head hydropower package fabrication; component procurement, cost control, and scheduling; thruster hydraulic section installation; site modeling and resulting recommended modifications; testing; and baseline environmental conditions at Stone Drop. (MHR)

Not Available

1983-12-01T23:59:59.000Z

70

A study of a turbine-generator system for low-head hydropower  

Science Conference Proceedings (OSTI)

A method is outlined for determining the optimum operating conditions of a turbine-generator unit installed across a low-head irrigation structure for electrical power generation. For a given regulator's characteristic, the unit's rated power and design parameters are determined such that its cost-benefit ratio is minimum. The economical feasibility of the microhydro plant is studied by comparing its life-time cost to its lifetime benefit. The benefit is determined by the cost of the corresponding energy generated through a dieseldriven generator set. The microhydro plant was found to be economically feasible over a wide range of inflation and interest rates.

Mankbadi, R.R.; Mikhail, S.

1985-03-01T23:59:59.000Z

71

Mod 2 Wind Turbine Development Project  

Science Conference Proceedings (OSTI)

The primary objective in the development of Mod 2 was to design a wind turbine to produce energy for less than 5 cents/kWh based on 1980 cost forecasts. The pricing method used to project the Mod 2 energy costs is the levelized fixed charge rate approach, generally accepted in the electric utility industry as a basis for relative ranking of energy alternatives. This method derives a levelized energy price necessary to recover utility's purchasing, installing, owning, operating, and maintenance costs.

None

1980-10-01T23:59:59.000Z

72

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network (OSTI)

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines understanding of wind energy. Figure 1: Typical wind turbines Devices to harvest wind energy are available

Bahrami, Majid

73

Research and Practice of Hydropower Engineering Construction Project ERP System Based on B/S  

Science Conference Proceedings (OSTI)

This paper introduces the structural model and the operating principle of B/S model together with the notion of system concept and the architecture of ERP. According to the requirements of the Water Conservancy and Hydropower Engineering Construction ... Keywords: ERP, Hydropower Engineering, Thematic maps

Xuelian Yan; Changjun Zhu; Qing Yu Zhou

2009-12-01T23:59:59.000Z

74

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

75

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

76

Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Upgrades to Yield Added Generation at Average Costs Less Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower infrastructure by increasing efficiency and reducing environmental impacts at existing facilities. The expanded hydro generation projects have estimated incremental costs of less than 4 cents per kWh on average. The selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and

77

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network (OSTI)

a wind turbine's design phase, the power curve can be predicted using analytical techniques such as Blade using a single cup anemometer at the wind turbine's hub height and it is assumed that this measurementFast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s

78

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA  

Energy.gov (U.S. Department of Energy (DOE))

DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

79

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

80

Utility Scale Wind turbine Demonstration Project  

SciTech Connect

The purpose of the Three Affiliated Tribes proposing to Department of Energy was nothing new to Denmark. National Meteorological Studies have proved that North Dakota has some of the most consistence wind resources in the world. The Three Affiliated Tribes wanted to assess their potential and become knowledgeable to developing this new and upcoming resource now valuable. By the Tribe implementing the Utility-scale Wind Turbine Project on Fort Berthold, the tribe has proven the ability to complete a project, and has already proceeded in a feasibility studies to developing a large-scale wind farm on the reservation due to tribal knowledge learned, public awareness, and growing support of a Nation wanting clean renewable energy. The tribe is working through the various measures and regulations with the want to be self-sufficient, independent, and marketable with 17,000 times the wind energy needed to service Fort Berthold alone.

Terry Fredericks

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network (OSTI)

) Northern Power 100 (100 kW) Aeronautica 29-225 (225 kW) Polaris 500 (500 kW) The first four turbinesDanehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind the following five turbines for potential installation at Danehy Park: SkyStream 3.7 (2.4 kW) Polaris 20 (20 kW

82

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network (OSTI)

.0 100.0 120.0 0 10 20 30 40 Noise Level (dBA) Distance from Wind Turbine (m) SS P20, NP100, and P500 ACambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide

83

Large-Scale Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 MW in size, and there is more than 80,000 MW...

84

Hydropower Resources  

Energy.gov (U.S. Department of Energy (DOE))

Hydropower is used throughout the United States, but it is most common on the west coast—especially in the northwest. Although most of the best hydropower production sites have already been...

85

Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report  

DOE Green Energy (OSTI)

This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

NONE

1995-06-01T23:59:59.000Z

86

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

87

Energy Basics: Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

88

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager...

89

An introduction to the small wind turbine project  

DOE Green Energy (OSTI)

Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

Forsyth, T.L.

1997-07-01T23:59:59.000Z

90

Turbine Research Program Cold Weather Turbine Project: Period of Performance May 27, 1999 -- March 31, 2004  

DOE Green Energy (OSTI)

Northern Power Systems completed the Cold Weather Turbine (CWT) project, which was funded by the National Renewable Energy Laboratory (NREL), under subcontract XAT-9-29200-01. The project's primary goal is to develop a 100-kW wind turbine suited for deployment in remote villages in cold regions. The contract required testing and certification of the turbine to the International Electrotechnical Commission (IEC) 61400-1 international standard through Underwriters Laboratories (UL). The contract also required Northern Power Systems to study design considerations for operation in extreme cold (-80F at the South Pole, for example). The design was based on the successful proof of concept (POC) turbine (developed under NREL and NASA contracts), considered the prototype turbine that would be refined and manufactured to serve villages in cold regions around the world.

Lynch, J.; Bywaters, G.; Costin, D.; Hoskins, S.; Mattila, P.; Stowell, J.

2004-08-01T23:59:59.000Z

91

Hydropower Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than...

92

Historical Perspective on the U.S. Department of Energy's Hydropower Program  

Science Conference Proceedings (OSTI)

For 30 years, the U.S. Department of Energy supported unique research and development activities focused on improving the domestic hydropower industry. In the 1970s and early 1980s, DOE’s Hydropower Program focused on technology assessment and a Small Hydropower Demonstration Program. After a period of zero funding in the late 1980s, the Program restarted with the goal of developing new technology that would improve the environmental performance of hydropower projects. A unique partnership of industry and federal cost-sharing allowed the Advanced Hydropower Turbine Systems activity to be established in 1994 – this led to new fish-friendly turbine designs and testing. Interagency cooperation with organizations like the U.S. Army Corps of Engineers has been a consistent part of the Program, along with scientific leadership and technical expertise from three of DOE’s National Laboratories: INL, ORNL, and PNNL. Program accomplishments include several new turbine designs, biological design criteria, computational and physical modeling, and environmental sensors. In contrast to other R&D on fish passage at dams, the DOE-sponsored research has focused on making the path through the turbine safer.

Sale, Michael J.; Cada, G. F.; Dauble, Dennis D.

2006-08-01T23:59:59.000Z

93

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

Science Conference Proceedings (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

94

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

Science Conference Proceedings (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

95

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

EPRI's 2002 report, Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report (1005194) provided a comprehensive review of a wide range of techniques and technologies for improving the dissolved oxygen (DO) levels in releases from hydroelectric projects. This report supplements EPRI 1005194, focusing primarily on aerating turbine technologies for new turbine installations and for turbine upgrades.

2009-12-23T23:59:59.000Z

96

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

97

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

98

Lessons Learned: Milwaukees Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Milwaukee: City of Milwaukee: Wind Turbine Project Matt Howard, Environmental Sustainability Director Project Best Practices * Transparency and information * Find the most appropriate site - both wind profile and building load * Stay away from neighborhoods and iconic civic sites * No surprises for locally elected officials * Active public engagement * Know the facts; kill the myths; control the narrative * Tie to local economic development * Cost-benefit analysis, budgeting, payback, over and over and over... Project Basics * Proposal to site ONE, small-scale wind turbine on City-owned building on Port Authority property * 2323 S. Lincoln Memorial Dr., Port Administration Building * Turbine will power ALL of Port Admin. Bldg's needs * Best estimate of total cost of installation/operation: $550,000-$600,000

99

DOE Hydropower Program Biennial Report for FY 2005-2006  

DOE Green Energy (OSTI)

SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

2006-07-01T23:59:59.000Z

100

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network (OSTI)

Cogeneration project feasibility sometimes fails during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through steam injection, NOx control without selective catalytic reduction, (SCR), reduced down time during maintenance and dispatchability. Other factors influencing enhanced aeroderivative economics are complete generator set packaging at the factory and full string testing before the delivery. A wide variety of hosts, including institutions, utilities, municipalities and industrial factories are observing that their cogeneration projects move faster by implementing aeroderivative gas turbine generation packages.

King, J.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Learning - Pumped Hydropower  

NLE Websites -- All DOE Office Websites (Extended Search)

Pumped Hydropower Pumped Hydropower Pumped hydro facilities use off-peak electricity to pump water from a lower reservoir into one at a higher elevation. When the water stored in the upper reservoir is released, it is passed through hydraulic turbines to generate electricity. The off-peak electrical energy used to pump the water up hill can be stored indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can be used to store electrical energy for a long period of time, and in large quantities. Utilities generally prefer to operate large coal and nuclear power stations at full power all the time (referred to as "baseload generation"), so in the middle of the night, these plants often produce more power than is needed. Pumped hydro energy storage can be used to smooth out the demand

102

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

Science Conference Proceedings (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

103

U.S. Department of Energy Wind Turbine Development Projects  

DOE Green Energy (OSTI)

This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements.

Migliore, P. G. (National Renewable Energy Laboratory); Calvert, S. D. (U.S. Department of Energy)

1999-04-26T23:59:59.000Z

104

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

Kinetic Hydropower System KHPS Kinetic Hydropower System KHPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Verdantpower.jpg Technology Profile Primary Organization Verdant Power Project(s) where this technology is utilized *MHK Projects/Roosevelt Island Tidal Energy RITE *MHK Projects/Cornwall Ontario River Energy CORE Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Verdant Power's central technology is the Kinetic Hydropower System (KHPS), a water-to-wire system that consists of three main components: 1) KHPS TURBINE: a three-bladed horizontal-axis turbine with four major assemblies: a) Composite rotor with 3-fixed blades that rotate at the relatively slow and constant speed of approximately 40 RPM, with tip-speeds of 35 feet per second. This is well below normal water vessel propeller speeds and conventional hydropower turbine blade speeds. b) Sealed nacelle, pylon and passive yaw mechanism that is hydrodynamically designed to allow the turbine to self-rotate into the prevailing current (like a weathervane) so that the blades are optimally aligned to generate energy. c) Custom-designed drivetrain unit (with induction generator) enclosed within the nacelle that integrates the bearing housing with a special long-life planetary gearbox, with mechanical shaft seals and a minimum of sealed lubricants. d) Streambed mounting system that can vary depending on site conditions as a single drilled monopile, a single gravity-based structure, or a gravity-based triframe mount that supports 3 turbines. 2) UNDERWATER CABLING: low-voltage shielded cable of short distance; and shoreline switchgear vaults, control room, and interconnection point(s). 3) APPURTENANT FACILITIES: for navigation safety, such as Public Aides to Navigation (PATON) buoys and lighted warning signs, as well as instrumentation including Acoustic Doppler Current Profilers (ADCPs). In order to maximize the application of the KHPS within the global MHK resource, Verdant Power has designed the technology as a simple and uniquely scalable system that can be operated in tidal, river and ocean current settings. Possible KHPS installations range from distributed generation arrangements in near-shore urban and village settings to base power generation at offshore deepwater locales.

105

Hydropower Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technologies Hydropower Technologies August 14, 2013 - 3:03pm Addthis Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the...

106

Virtual Hydropower Prospecting – Searching for Hydropower Gold  

DOE Green Energy (OSTI)

The availability of geographic information system (GIS) tools and analytical modeling of natural streams has made it possible to perform virtual “river inventories” that were formerly done using topographic maps, stream flow estimates, and physical reconnaissance. The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) virtually assessed the gross power potential of all natural streams in the United States of America and identified feasible potential project sites and estimated their developable power potential. The results of this virtual prospecting have been incorporated into a GIS application called the Virtual Hydropower Prospector that is available for public use on the Internet.

Douglas G. Hall

2007-12-01T23:59:59.000Z

107

UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 [1] UMore Park Wind Turbine Project Loggerhead Shrike Survey Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 Project Area The University of Minnesota owns approximately 5,000 acres in Dakota County, known as the University of Minnesota Outreach, Research and Education (UMore) Park. A concept master plan was developed

108

Standardizing instream flow requirements at hydropower projects in the Cascade Mountains, Washington  

DOE Green Energy (OSTI)

Instream flow requirements are common mitigation measures instituted in the bypassed reaches of hydroelectric diversion projects. Currently, there are two extremes among the ways to determine instream flow requirements: generic standard-setting methods and detailed, habitat-based, impact assessment methods such as the Instream Flow Incremental Methodology (IFIM). Data from streams in Washington state show a consistent pattern in the instream flow requirements resulting from the IFIM. This pattern can be used to refine the simpler standard-setting approaches and thereby provide better estimates of flow needs during early stages of project design.

Smith, I.M.; Sale, M.J.

1993-06-01T23:59:59.000Z

109

EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Green Energy School Wind Turbine Project on Saipan, 3: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands SUMMARY This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 15, 2013 EA-1923: Mitigation Action Plan Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands January 15, 2013 EA-1923: Mitigated Finding of No Significant Impact Green Energy School Wind Turbine Project on Saipan, Commonwealth of the

110

DOE Selects Ten Projects to Conduct Advanced Turbine Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

and barriers that must be overcome to enable the development of advanced gas turbines and gas turbine-based systems that will operate reliably, cleanly, efficiently, and cost...

111

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

112

Wind Turbine Verification Project Experience: 1999: U.S. Department of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

EPRI and the U.S. Department of Energy (DOE) initiated the Turbine Verification Program (TVP) in 1992 to evaluate prototype advanced wind turbines and to provide a bridge from development programs to commercial purchases. This report provides an overview and comparisons of site and operating experiences at the seven TVP projects in Ft. Davis, Texas; Searsburg, Vermont; Kotzebue, Alaska; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; and Big Spring, Texas. The lessons learned throughout the prog...

2000-12-12T23:59:59.000Z

113

Grid Services from Hydropower and Pumped Storage  

Science Conference Proceedings (OSTI)

This Technical Update provides a summary of progress for the first year of a two-year collaborative research project to determine the value of hydropower to the electric transmission grid. This project utilizes, enhances, and expands tools to apply and value hydropower assets in the changing electric grid. The project employs several industry analyses and modeling tools at the unit level, the plant level, the system level, and the regional/national level, for quantifying and maximizing the benefits provi...

2010-12-31T23:59:59.000Z

114

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

115

Pilot Scale Tests Alden/Concepts NREC Turbine  

DOE Green Energy (OSTI)

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

116

Idaho National Laboratory - Hydropower Program - Virtual Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy by Battelle Energy Alliance. Home Renewable Energy Hydropower ...

117

Idaho National Laboratory - Hydropower Program- Virtual Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sources Feature Set Source Vintage URL Water Energy Resource Sites (All) Idaho National Laboratory 2004 http:hydropower.inl.govresourceassessment Resource Assessment...

118

Factors hindering the development of small-scale municipal hydropower: a case study of the Black River project in Springfield, Vermont  

DOE Green Energy (OSTI)

There are many good reasons to use New England's small-scale hydropower resources to generate electricity. But current production capacity in the three northern states is only 1300 MW, just 35% of the 3710 MW estimated to be available to the states. Though the benefits of properly designed projects seem substantial, many factors combine to hinder their development. The Black River project in Springfield, Vermont, exemplifies the problem. Even after the two has invested over five years and $1 million in its effort to develop 30 MW of capacity, it still has not received either federal or state approval to proceed with construction. The first 4 years of the Springfield experience are described and factors that have greatly increased the cost and planning time for the project are identified. The purpose is to identify changes that could facilitate efforts to develop small-scale hydropower at other acceptable sites. On the basis of this experience it is recommended that: after issuance of a FERC permit, a preliminary determination of the project's impacts should be made by FERC officials; if environmental impacts are solely local or limited, environmental analysis/determination should be placed in the hands of the state; short-form licensing should be used for all run-of-river hydro projects that utilize and do not significantly modify existing water impoundment areas and do not significantly alter downstream flow patterns; and a hydro ombudsman with power at the state level should be established to facilitate governmental inter-agency coordination and project-related information transfer: one-stop licensing. (LCL)

Peters, E.; Berger, G.; Amlin, J.; Meadows, D.

1979-03-01T23:59:59.000Z

119

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These plants are more than 30 MW in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a...

120

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Launches First Grid-Connected Offshore Wind Turbine Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating platform wind turbine to be deployed in the world - strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy sources. "Developing America's vast renewable energy resources is an important part of the Energy Department's all-of-the-above strategy to pave the way

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Idaho National Laboratory - Hydropower Program - Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Evaluation Software State Resource Assessments Resource Assessments Reports Technology Transfer Virtual Hydropower Prospector Virtual Hydropower Prospector do Brasil...

122

Energy Basics: Large-Scale Hydropower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

123

Hydropower potential in Turkey  

Science Conference Proceedings (OSTI)

Turkey has a total hydropower potential of 433 GW that is equal to 1.2% of the total hydropower potential of the world and to 14% of European hydropower potential. Only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 34% of the economically usable potential of the country would be tapped. At the present, hydropower energy is an important energy source for Turkey due to its useful characteristics such as being renewable, clean, and less of an impact on the environment, and a cheap and domestic energy source.

Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry

1999-08-01T23:59:59.000Z

124

Better Buildings Showcase Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

125

$26.6 Million for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$26.6 Million for Hydropower $26.6 Million for Hydropower $26.6 Million for Hydropower April 5, 2011 - 4:52pm Addthis Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Today, the Department of Energy and the Department of Interior announced $26.6 million of available funding for companies and entrepreneurs looking to advance hydropower. "By improving hydropower technology, we can maximize America's biggest source of renewable energy in an environmentally responsible way," said Secretary Chu. Specifically, funding is available for projects in the following four areas: Sustainable small hydropower Environmental mitigation technologies for conventional hydropower

126

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

127

Wind Turbine Lightning Protection Project: 1999-2001  

DOE Green Energy (OSTI)

A lightning protection research and support program was instituted by NREL to help minimize lightning damage to wind turbines in the United States. This paper provides the results of a field test program, an evaluation of protection on selected turbines, and a literature search as well as the dissemination of the accumulated information.

McNiff, B.

2002-05-01T23:59:59.000Z

128

Comparison of Projections to Actual Performance in the DOE-EPRI Wind Turbine Verification Program  

DOE Green Energy (OSTI)

As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), Global Energy Concepts (GEC) worked with participating utilities to develop a set of performance projections for their projects based on historical site atmospheric conditions, turbine performance data, operation and maintenance (O and M) strategies, and assumptions about various energy losses. After a preliminary operation period at each project, GEC compared the actual performance to projections and evaluated the accuracy of the data and assumptions that formed the performance projections. This paper presents a comparison of 1999 power output, turbine availability, and other performance characteristics to the projections for TVP projects in Texas, Vermont, Iowa, Nebraska, Wisconsin, and Alaska. Factors that were overestimated or underestimated are quantified. Actual wind speeds are compared to projections based on long-term historical measurements. Turbine power curve measurements are compared with data provided by the manufacturers, and loss assumptions are evaluated for accuracy. Overall, the projects performed well, particularly new commercial turbines in the first few years of operation. However, some sites experienced below average wind resources and greater than expected losses. The TVP project owners successfully developed and constructed wind power plants that are now in full commercial operation, serving a total of approximately 12,000 households.

Rhoads, H.; VandenBosche, J.; McCoy, T.; Compton, A. (Global Energy Concepts, LLC); Smith, B. (National Renewable Energy Laboratory)

2000-09-11T23:59:59.000Z

129

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

130

Rehabilitating and Upgrading Hydropower Plants: A Hydropower Technology Round-Up Report, Volume 2  

Science Conference Proceedings (OSTI)

Owners of aging hydropower plants are confronted with an array of project and technology options for rehabilitating or upgrading their facilities and are making large capital investment decisions at a time of increasing competitive pressures. Ensuring that investments in plant are optimal requires a thorough understanding of the technologies, approaches and strategies available for rehab and upgrading -- as well as the risks associated with these projects. This volume of EPRI's Hydropower Technology Roun...

1999-10-28T23:59:59.000Z

131

Hydropower Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Resources Hydropower Resources August 16, 2013 - 4:06pm Addthis Hydropower is used throughout the United States, but it is most common on the west coast-especially in...

132

Lessons Learned: Milwaukee’s Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

133

New Small Hydropower Technology to be Deployed in the United States  

SciTech Connect

Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

2012-01-01T23:59:59.000Z

134

Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report  

DOE Green Energy (OSTI)

ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

NONE

1993-12-01T23:59:59.000Z

135

Quantifying the Value of Hydropower in the Electric Grid  

Science Conference Proceedings (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results ...

2013-03-01T23:59:59.000Z

136

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy by Battelle Energy Alliance. Home Renewable Energy Hydropower What's New New Features Virtual Hydropower Prospector do Basil, Version 1.0 A GIS...

137

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Evaluation Software To assess the hydropower potential in any area of the United States from a national perspective, a uniform set of criteria was developed and a...

138

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Army Corps of Engineers Bureau of Reclamation Bureau of Land Management National Hydropower Association Low Impact Hydropower Institute Conservation Biology Institute Tools &...

139

ARPA-e OPEN 2012 Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

140

Editorial: Time for green certification for all hydropower?  

Science Conference Proceedings (OSTI)

While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

Deng, Zhiqun; Carlson, Thomas J.

2012-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network (OSTI)

12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway

142

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010) The project area is located in a region of the state where Loggerhead Shrikes (Lanius ludovicianus) are consistently observed and known to be nesting. With populations steadily declining throughout its breeding range, the Loggerhead Shrike is officially listed as a state Threatened species in Minnesota; its status may be upgraded to Endangered during the current list review process. The shrike is also considered a Species of Special Concern in Minnesota and is a U.S. Fish and Wildlife Species of Regional Concern in the Midwest Region. Dakota County is believed to harbor the densest concentration of shrikes in Minnesota. As recently as 2009 a breeding pair

143

ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991  

DOE Green Energy (OSTI)

Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

Not Available

1992-12-01T23:59:59.000Z

144

Conventional Hydropower Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

145

DOE Recovery Act Field Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

146

DOE Recovery Field Projects and State Memos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

147

Recovery Act Smart Grid Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

148

Hydropower Technology Roundup Report: Hydropower Valuation: Appraising Hydro as a Provider of Energy, Ecocultural, and Socioeconomic Benefits  

Science Conference Proceedings (OSTI)

Hydro project owners and operators need improved methods for determining the total value that hydropower facilities deliver to the diverse communities they serve and affect. This Hydropower Technology Roundup report provides information about existing valuation methodologies and offers a new, comprehensive framework applicable to valuation activities.

2005-03-15T23:59:59.000Z

149

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Nuclear Energy by Battelle Energy Alliance. Home Renewable Energy Hydropower Hydropower Facts Hydropower: Partnership with the Environment...

150

Hydropower Reliability Study  

Science Conference Proceedings (OSTI)

Though hydroelectric plants are highly reliable, even a 1% improvement in their availability could save the U.S. utility industry $125 million per year. This comprehensive review of hydropower data and practices recommends ways to achieve such improvement.

1984-03-01T23:59:59.000Z

151

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on the west coast-especially in the northwest. Although most of the best hydropower production sites have already been developed, many more potential sites have not. Learn more...

152

Wisconsin Low Wind Speed Turbine Project Third-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine V erification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience at the 1.2-MW Low Wind Speed Turbine Project (LWSTP) in Glenmore, Wisconsin. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-12-06T23:59:59.000Z

153

Event:Hydropower Africa 2012 | Open Energy Information  

Open Energy Info (EERE)

2012 2012 Jump to: navigation, search Calendar.png Hydropower Africa 2012: on 2012/09/04 "Hydropower Africa 2012 is the largest hydropower event of its kind in Africa boasting over 450 visitors from across the globe. It looks at planned projects and tender prospects for hydropower development in Africa and innovative funding solutions for projects - big and small. Refurbishment and modernisation updates of major hydropower facilities as well as operation and maintenance best practices from across the continent will be presented and discussed. Infrastructure development and African-appropriate engineering solutions to provide power to villages, rural areas and urban communities and achieving operational objectives while addressing environment and social challenges will be examined through

154

Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i m p a c t s that would result from the jnstallation and operation of wind turbines in Nome, Alaska DOE'S role in the proposed action would be limited to providing ,$ding assistance for a portion of the construction and demonstration of wind energy technology in the

155

Power Quality of Distributed Wind Projects in the Turbine Verification Program  

DOE Green Energy (OSTI)

The Electric Power Research Institute/U.S. Department of Energy (EPRI/DOE) Turbine Verification Program (TVP) includes four distributed wind generation projects connected to utility distribution feeders located in Algona, Iowa; Springview, Nebraska; Glenmore, Wisconsin; and Kotzebue, Alaska. The TVP has undertaken power quality measurements at each project to assess the impact that power quality has on the local utility grids. The measurements and analysis were guided by the draft IEC 61400-21 standard for power quality testing of wind turbines. The power quality characteristics measured include maximum power, distribution feeder voltage regulation, reactive power, and harmonics. This paper describes the approach to the measurements, the unique electrical system features of the four projects, and an assessment of measured power quality relative to limits prescribed by standards. It also gives anecdotal stories from each project regarding the impact of power quality on the respective distribution feeders.

Green, J; VandenBosche, J.; Lettenmaier, T.; Randall, G; Wind, T

2001-09-13T23:59:59.000Z

156

Hydropower resources at risk: The status of hydropower regulation and development - 1997  

DOE Green Energy (OSTI)

This report documents today`s hydropower licensing and development status based on published data as follows: (a) Federal Energy Regulatory Commission (FERC) databases, maintained by FERC`s Office of Hydropower Licensing, of: (1) operating FERC-regulated projects, federal projects, and known unlicensed projects; (2) surrendered licenses; and, (3) recent licensing and relicensing actions; (b) Energy Information Administration (EIA) data on installed capacity and generation from 1949 through 1995 for the various resources used to produce electricity in the U.S.; and, (c) FERC licensing orders, and environmental assessments or environmental impact statements for each individual project relicensed since 1980. The analysis conducted to prepare this paper includes the effects of all FERC hydropower licensing actions since 1980, and applies those findings to estimate the costs of hydropower licensing and development activity for the next 15 years. It also quantifies the national cost of hydropower regulation. The future estimates are quite conservative. The are presented in 1996 dollars without speculating on the effects of future inflation, license surrenders, conditions imposed through open-ended license articles, license terms greater than 30 years, or low water years. Instead, they show the most directly predictable influences on licensing outcomes using actual experiences since ECPA (after 1986).

Hunt, R.T.; Hunt, J.A. [Richard Hunt Associates, Inc., Annapolis, MD (United States)

1997-09-01T23:59:59.000Z

157

National Hydropower Association | Open Energy Information  

Open Energy Info (EERE)

by expanding it. National Hydropower Association is a company located in Washington, DC . References "National Hydropower Association" Retrieved from "http:...

158

NREL: Technology Transfer - CEMEX Wind Turbine Project Case Study  

The company began negotiations with project developer Foundation Wind Power in July 2010 and subsequently completed a detailed review of various CEMEX ...

159

Huaneng Lancang River Hydropower | Open Energy Information  

Open Energy Info (EERE)

Lancang River Hydropower Lancang River Hydropower Jump to: navigation, search Name Huaneng Lancang River Hydropower Place Kunming, Yunnan Province, China Zip 650214 Sector Hydro, Solar Product Developer of hydro and solar power projects. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about Hydropower about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

162

Microsoft Word - FINAL 2012HydropowerCouncilAgenda  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Southwestern Federal Hydropower Council BLAKELY MOUNTAIN DAM PROJECT OFFICE Mountain Pine, Arkansas June 12 - 13, 2012 Tuesday, June 12 1:00 p.m. Welcome Vicksburg District...

163

Wisconsin Low Wind Speed Turbine Project First- and Second-Year Operating Experience: 1998-2000: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The 1.2 MW Low Wind Speed Turbine Project (LWSTP) -- installed in Glenmore, Wisconsin, in early 1998 -- was the first commercial-scale wind project in Wisconsin. This report describes the first- and second-year operating experience at the LWSTP. The lessons learned in the project will be valuable to other utilities planning similar wind power projects, particularly in cold-weather, moderate wind resource areas.

2000-12-15T23:59:59.000Z

164

Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report  

DOE Green Energy (OSTI)

This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

NONE

1996-12-31T23:59:59.000Z

165

Hydropower computerized reconnaissance package version 2. 0. [HYDRO-CAL, PAPER-ECON, and HYDRO-ECON  

DOE Green Energy (OSTI)

The Hydropower Computerized Reconnaissance (HCR) Package is a computerized preliminary engineering and economic study package for small hydroelectric projects which consists of three programs developed at the Idaho National Engineering Laboratory. One engineering program evaluates the flow characteristics of a site and determines the energy generated for various turbine configurations and two economic programs provide two levels of economic studies depending upon the amount of site-specific information available. An Apple II computer is utilized to provide a quick-turnaround capability. The models and methods used in the HCR package are described, and information is provided on program application, sample run sessions, program outputs, and listings of the main programs.

Broadus, C.R.

1981-04-01T23:59:59.000Z

166

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

DOE Green Energy (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

167

hydropower | OpenEI  

Open Energy Info (EERE)

hydropower hydropower Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

168

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Businesses Key in Hydropower Tech Advancement Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business that handles hydroelectric power generation and power and communication line construction. The company, which has eight employees currently, has been awarded funding for two projects. Near Space Systems, a Colorado Springs-based company, is a service-disabled veteran-owned business with a manufacturing focus that's

169

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

This report provides a round up of the background, development, discussions, and results from an EPRI-sponsored industry workshop, Hydropower in a Carbon-Constrained FutureOpportunities and Challenges. The workshop was held on January 30 31, 2008, at EPRI's Knoxville, Tennessee, offices.

2008-03-27T23:59:59.000Z

170

Session: Monitoring wind turbine project sites for avian impacts  

DOE Green Energy (OSTI)

This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

Erickson, Wally

2004-09-01T23:59:59.000Z

171

Republic of Bulgaria Sreden Iskar Cascade hydropower development. Application for participation under the United States Initiative on Joint Implementation  

DOE Green Energy (OSTI)

Interest in water resources and hydropower has been low in Bulgaria for over 20 years and only about 33% of the potential hydropower available to the Country are currently being utilized. This is due in part to past design practices that utilized large reservoirs to regulate runoff and create the necessary head. The Iskar River does not allow for the typical design. However, in recent years, technical advancement in machinery design and more efficient turbine-generators has led to the development of low-head hydro projects. Studies determined that the Iskar Cascade can support low-head hydro development and could provide as much as 93 MW of capacity. This project will initially consist of the construction of three hydroelectric facilities along a 120-km section of the Iskar river in western Bulgaria. Each facility will consist of a powerhouse (housing a turbine and generator), an embankment dam, a concrete spillway with regulating gates, a fish passage, and associated transformers and switchgear. This report gives a description of the project, its sources of funding for specific measures to reduce greenhouse gas emissions, forecasts of greenhouse gas emissions with and without these specific measures, and other environmental considerations.

NONE

1998-11-01T23:59:59.000Z

172

Coal air turbine ``CAT`` program, invention 604. Fifth quarter project report, October--December 1995  

SciTech Connect

The primary objective of this ``CAT`` (Coal Air Turbine) project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the CAT system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a CAT plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a commercial plant before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept. The major components of CAT plants are an air turbine, a heater of compressed air, a coal combustion system, means to recover waste heat and a steam turbine when appropriate. The plant burns raw coal in a fluid bed at atmospheric pressure. The air turbine operates on clean compressed air heated inside tubes immersed in the fluid bed. Progress during the fifth quarter is described.

Foster-Pegg, R.W.

1995-12-31T23:59:59.000Z

173

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

174

DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)  

DOE Green Energy (OSTI)

This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1997-06-01T23:59:59.000Z

175

MHK Projects/Contra Rotating Marine Turbine CoRMaT | Open Energy  

Open Energy Info (EERE)

Contra Rotating Marine Turbine CoRMaT Contra Rotating Marine Turbine CoRMaT < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6655,"lon":-4.93682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

176

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Report test Resource Assessment report (main) - PDF format Appendix A - Summary Report Appendix B - RIver Basins Report Appendix C - Site List Appendix D - Individual...

177

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect

The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

2010-07-01T23:59:59.000Z

178

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

upon it's completion. If a state resource assessment report is needed please contact INL through the "Send Email" link. Contact: Hydropower, Send E-mail Last Updated: Tuesday,...

179

A Boost for Hydropower (and the Economy) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) September 20, 2010 - 5:29pm Addthis The 91-year old Cheoah Dam in Robbinsville, North Carolina. The 91-year old Cheoah Dam in Robbinsville, North Carolina. Jacques Beaudry-Losique Director, Wind & Water Program There are approximately 2,400 hydropower dams in the U.S., many of which have not undergone a significant upgrade in decades. These older dams present a great opportunity to expand clean energy across the country, allowing us to rapidly increase generation capacity through the installation of new high-efficiency equipment. I recently got a firsthand look at one such effort when I helped kick off a project to modernize the 91-year old Cheoah Dam in Robbinsville, North

180

“Sustainable development of hydropower in third countries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

&8220;Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development,...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Idaho National Laboratory - Hydropower Program: Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy by Battelle Energy Alliance. Home Renewable Energy Hydropower Hydropower Document Archive The following reports, articles, and publications are...

182

Fact Sheet: Sustainable Development of Hydropower Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Development of Hydropower Initiative Fact Sheet: Sustainable Development of Hydropower Initiative A fact sheet detailling the mission behind the Clean Energy...

183

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Undeveloped Hydropower Potential by State The Department of Energy is performing a resource assessment of the undeveloped conventional hydropower potential in the U.S. (Undeveloped...

184

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report  

DOE Green Energy (OSTI)

Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

Griffin, Dayton A.

2005-09-29T23:59:59.000Z

185

Low head simple reaction water turbine.  

E-Print Network (OSTI)

?? Global warming, climate change, rising fuel prices and sustainable future environment are the main motivations behind this research project. Hydropower is a very good example… (more)

Date, A

2009-01-01T23:59:59.000Z

186

Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998  

DOE Green Energy (OSTI)

The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

Gorlov, A.

1998-08-01T23:59:59.000Z

187

Microsoft Word - FINAL Hydropower Conference Agenda 2009 060209...  

NLE Websites -- All DOE Office Websites (Extended Search)

Update Ted Coombes, SPRA - WRDA 2009 - Direct Funding - Federal Hydropower Appropriations - Wind Power Leveraging of Federal Hydropower Assets - Federal Hydropower's Place...

188

Best Practices Implementation for Hydropower Efficiency and Utilization Improvement  

SciTech Connect

By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

Smith, Brennan T [ORNL; Zhang, Qin Fen [ORNL; March, Patrick [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

189

Low Head/Low Power Hydropower Resource Assessment of the Pacific Northwest Hydrologic Region  

E-Print Network (OSTI)

An analytical assessment of the hydropower potential of the Pacific Northwest Hydrologic Region was performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was the amount of low head (less than 30 ft)/low power (less than 1 MW) potential in the region and the fractions of this potential that corresponded to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW) technologies. To obtain these estimates, the hydropower potential of all the stream segments in the region, which averaged 2 miles in length, were calculated. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation developed specifically for the region. Stream segments excluded from development and developed hydropower in the

Power Hydropower; Douglas G. Hall; Gregory R. Carroll; Shane J. Cherry; Y D. Lee; Garold L. Sommers

2002-01-01T23:59:59.000Z

190

Falls Creek Hydroelectric Project  

DOE Green Energy (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

191

Helical Turbine and Fish Safety By Alexander Gorlov, August, 2010  

E-Print Network (OSTI)

1 Helical Turbine and Fish Safety By Alexander Gorlov, August, 2010 Abstract The objective of this paper is to describe research using the Helical Turbine for hydropower with particular focus on fish). Correspondingly, the following two conclusions are formulated. Probability of fish kill by kinetic turbines

Gorban, Alexander N.

192

Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report  

Science Conference Proceedings (OSTI)

In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

Harpman, D.A.

1997-06-01T23:59:59.000Z

193

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

194

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

195

Coal air turbine {open_quotes}CAT{close_quotes} program invention 604. Fourth quarter project report, July 1995--September 1995  

SciTech Connect

A coal air turbine `CAT` generates electric power and heat from coal combustion. The purpose of this project is the conceptual design of a `CAT` plant, and to make a comparison of the capital cost and and cost of power and steam from the `CAT` plant with power produced by alternate plants at the same site. Three configurations investigated include: condensing plant utilizing coal fuel and a condenser tower, or river, for cooling; a cogeneration plant utilizing coal and a steam turbine; and a cogeneration plant utilizing steam export and injection with waste coal fuel.

Foster-Pegg, R.W.

1995-10-31T23:59:59.000Z

196

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

197

Characterization of Bead Trajectories Through the Draft Tube of a Turbine Physical Model.  

DOE Green Energy (OSTI)

Using high-speed video imaging, trajectories, and kinematics of beads passing below the turbine runner and through the draft tube region of the 1:25 scale model of a single turbine unit from Bonneville Dam powerhouse 1 were collected from May 6-9, 2003 at U.S. Army Corps of Engineers (USACE) Environmental Research and Development Center (ERDC) in Vicksburg, MS. An individual camera was used to produce 2-dimensional trajectories and paired cameras with overlapping fields of view were used to produce 3-dimension trajectories of near neutrally buoyant beads as they passed through the draft tube region of the turbine model. Image data was collected at two turbine operating levels, lower 1% efficiency and maximum rated output for beads released mid-depth into the turbine intake from each of the three gatewell slots. The purpose of this study was to determine the feasibility of using video imaging to track the trajectories of beads through the draft tube of turbine physical models and from the trajectories calculate the kinematics of the bead trajectory and the beads response to turbulence in the model. This project is part of a research program supported by the U.S. Department of Energy Advanced Hydropower Turbine System Program (AHTS) who's goal is to increase the operating potential of hydroelectric facilities while also reducing the reducing the risk of injury and death to fish as they pass through the turbines.

Weiland, Mark A.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiquan; McKinstry, Craig A.

2005-02-18T23:59:59.000Z

198

Aleo Manali Hydropower Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Manali Hydropower Pvt Ltd Manali Hydropower Pvt Ltd Jump to: navigation, search Name Aleo Manali Hydropower Pvt Ltd Place Kullu, Himachal Pradesh, India Zip 203001 Sector Hydro Product Himachal-based small hydro project developer. Coordinates 23.42796°, 84.91112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.42796,"lon":84.91112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Quantifying the Value of Hydropower in the Electric Grid  

Science Conference Proceedings (OSTI)

Work reported in this Technical Update is part of a larger project that is made up of multiple components and intends to utilize and enhance tools that can apply and value hydropower assets in the changing electric grid. The project employs several industry analyses and modeling tools at the unit level, the plant level, the system level, and the regional/national level for quantifying the benefits provided to transmission grids by conventional and pumped storage hydroelectric projects. The research proje...

2011-05-24T23:59:59.000Z

200

Fatigue reliability of wind turbine fleets: The effect of uncertainty of projected costs  

DOE Green Energy (OSTI)

The cost of repairing or replacing failed components depends on the number and timing of failures. Although the total probability of individual component failure is sometimes interpreted as the percentage of components likely to fail, this perception is often far from correct. Different amounts of common versus independent uncertainty can cause different numbers of components to be at risk of failure. The FAROW tool for fatigue and reliability analysis of wind turbines makes it possible for the first time to conduct a detailed economic analysis of the effects of uncertainty on fleet costs. By dividing the uncertainty into common and independent parts, the percentage of components expected to fail in each year of operation is estimated. Costs are assigned to the failures and the yearly costs and present values are computed. If replacement cost is simply a constant multiple of the number of failures, the average, or expected cost is the same as would be calculated by multiplying by the probability of individual component failure. However, more complicated cost models require a break down of how many components are likely to fail. This break down enables the calculation of costs associated with various probability of occurrence levels, illustrating the variability in projected costs. Estimating how the numbers of components expected to fail evolves over time is also useful in calculating the present value of projected costs and in understanding the nature of the financial risk.

Veers, P.S.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Big Spring Wind Power Project Third- Through Fifth-Year Operating Experience: 2001-2004: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-, fourth-, and fifth-year operating experience at the 34-MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-m (213-ft) towers and four Vestas V66 wind turbines installed on 80-m (262-ft) towers. Lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2004-10-25T23:59:59.000Z

202

Big Spring Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine Verificatio n Program  

Science Conference Proceedings (OSTI)

This report describes second-year operating experience at the 34 MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-meter (213-foot) towers and 4 Vestas V66 wind turbines installed on 80-meter (262-foot) towers. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2001-12-06T23:59:59.000Z

203

Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse (EREC) Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

you're considering building a small you're considering building a small hydropower system on water flowing through your property, you have a long tradition from which to draw your inspi- ration. Two thousand years ago, the Greeks learned to harness the power of running water to turn the massive wheels that rotated the shafts of their wheat flour grinders. And in the hydropower heyday of the 18th century, thousands of towns and cities worldwide were located around small hydropower sites. Today, small hydropower projects offer emissions-free power solutions for many remote communities throughout the world-such as those in Nepal, India, China, and Peru-as well as for highly industrialized countries, like the United States. This fact sheet will help you determine whether a small hydropower system will

204

Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector  

DOE Data Explorer (OSTI)

The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

205

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

Aspects General Environmental Research Hydrokinetic & Wave Technologies Hydropower Facts Research and Development Resource Assessment Technology Transfer Virtual...

206

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

207

Regional Field Verification Project--Operational Results from Four Small Wind Turbines (Poster)  

SciTech Connect

A poster describing two years of operating data for four Bergey, 10-kW wind turbines on different host sites in the Pacific Northwest.

Sinclair, K.; Raker, J.

2006-06-01T23:59:59.000Z

208

Hydropower Resource Assessment Modeling Results  

DOE Green Energy (OSTI)

The Hydropower Evaluation Software uses the Federal Energy Regulatory Commission?s Hydroelectric Power Resource Assessment database to identify sites with undeveloped hydropower capacity and the estimated megawatts of undeveloped capacity at each site. The software integrates this information with environmental values from the National Park Service?s National Rivers Inventory database. Other constraints to development that are modeled include Federal and state legislative protection for river segments that have been identified as being wild and scenic river segments. River segments containing threatened and/or endangered wildlife and fish are also modeled for their influence on hydropower development. The amount that each attribute affects the likelihood of development is dependent on the prior development of a site.

A. M. Conner; J. E. Francfort

1999-07-06T23:59:59.000Z

209

The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations  

DOE Green Energy (OSTI)

One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

Cada, Glenn F [ORNL; Schweizer, Peter E [ORNL

2012-04-01T23:59:59.000Z

210

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

211

US hydropower resource assessment for Hawaii  

DOE Green Energy (OSTI)

US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

Francfort, J.E.

1996-09-01T23:59:59.000Z

212

DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)  

DOE Green Energy (OSTI)

This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

1991-07-01T23:59:59.000Z

213

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

214

Federal Memorandum of Understanding for Hydropower/Resources | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower/Resources Memorandum of Understanding for Hydropower/Resources < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered Dams in the United States Assessment of Potential Capacity Increases at Existing Hydropower Plants Site Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits Potential Hydroelectric Development at Existing Federal Facilities Advanced Conventional Hydropower Planning and Operation Analysis Tools The Integrated Basin-Scale Opportunity Assessment Initiative, FY

215

Methodology and Process for Condition Assessment at Existing Hydropower Plants  

SciTech Connect

Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

Zhang, Qin Fen [ORNL; Smith, Brennan T [ORNL; Cones, Marvin [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

216

Steel Penstock Coating and Lining Rehabilitation: A Hydropower Technology Roundup Report, Volume 3  

Science Conference Proceedings (OSTI)

Steel penstocks and the coating and lining systems that enhance their structural integrity and serviceability are part of the infrastructure for a majority of the world's hydroelectric projects. This Hydropower Technology Roundup report aims to provide managers and technical staff responsible for hydropower plants with up-to-date information to enable them to assess the need for and implement the cost-effective rehabilitation of steel penstock coatings and linings.

2000-08-04T23:59:59.000Z

217

Quantifying the Value of Hydropower in the Electric Grid: Modeling Results for Future Scenarios  

Science Conference Proceedings (OSTI)

Work reported in this Technical Report is part of a larger study that is made up of multiple components and intends to utilize and enhance tools that can value hydropower assets in a changing electric grid. The study’s main objective is to develop a methodology to facilitate improved valuation and resource planning for pumped storage and conventional hydropower projects in the future electric transmission grid.This report covers Modeling Results for Future Electricity Market ...

2012-12-31T23:59:59.000Z

218

US hydropower resource assessment for South Dakota  

SciTech Connect

A total of 33 sites have been identified and assessed for their hydropower potential. Information as to the potential megawatts of capacity for 4 of the sites was not available; however, these sites have been identified as having hydropower potential and are included in the group of 33. The Hydropower Evaluation Software results for site capacities range from 35 kilowatts to 234 megawatts. Most of the sites have potential capacities of under 1 megawatts. The unadjusted hydropower potential for South Dakota was identified as being 1,124 megawatts. The Hydropower Evaluation Software results lower this estimate 38% to 695 megawatts. The greatest reduction in undeveloped potential occurs at developed sites with current power production. These sites have a Hydropower Evaluation Software estimated capacity of 285 megawatts, a 50% reduction in capacity. The number of sites does not change, only the identified capacity is reassessed.

Francfort, J.E.

1993-12-01T23:59:59.000Z

219

An overview of the NREL/SNL flexible turbine characterization project  

DOE Green Energy (OSTI)

There has been a desire to increase the generating capacity of the latest generation of wind turbine designs. In order to achieve these larger capacities, the dimensions of the turbine rotors are also increasing significantly. These larger structures are often much more flexible than their smaller predecessors. This higher degree of structural flexibility has placed increased demands on available analytical models to accurately predict the dynamic response to turbulence excitation, In this paper we present an overview and our progress to date of a joint effort of the National Renewable Energy Laboratory (NREL) and the Sandia National Laboratory (SNL). In this paper we present an overview and status of an ongoing program to characterize and analytically model the dynamics associated with the operation of one of the most flexible turbine designs currently available, the Cannon Wind Eagle 300 (CWE-300). The effort includes extensive measurements involving a detailed inventory of the turbine's physical properties, establishing the turbine component and fill-system vibrational modes, and documenting the dynamic deformations of the rotor system and support tower while in operation.

Bir, Gunjit; Kelley, Neil; McKenna, Ed; Osgood, Richard; Sutherland, Herbert; Wright, Alan

1998-09-01T23:59:59.000Z

220

Natural Gas - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes hydropower, solar, ... comparisons, analysis, and projections integrated across all energy ... such as system design and pipeline ...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fish passage mitigation of impacts from hydroelectric power projects in the United States  

DOE Green Energy (OSTI)

Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.

Cada, G.F. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1996-10-01T23:59:59.000Z

222

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

This case study documents the performance best practices experience of Ketchikan Public Utilities (KPU), an Alaskan utility that operates four hydroelectric plants 4.2 MW at Ketchikan, 5 MW at Beaver Falls, 2.1 MW at Silvis, and 22.6 MW at Swan Lake. KPU has increased the performance of its hydroplants through assessment of performance best practices and implementation of performance improvement projects, resulting in increased generation and profitability.

2008-12-22T23:59:59.000Z

223

Pole-Zero Placement Technique Based Hydro Turbine Speed Governor Design  

Science Conference Proceedings (OSTI)

According to different structure of hydraulic systems combined with hydro-turbine for hydropower plant, the 5order nonlinear control model of hydro turbine speed governor system for hydraulic system which composed of reservoir-tunnel-surge-penstock-generator ... Keywords: Hydro turbine speed governor system, pole-zero placement, Nonlinear control, PID

Fan-Nie Kong; Xiao-Cong Li

2012-04-01T23:59:59.000Z

224

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Click image to enlarge Picture: Top Hydroelectric Generating Countries Contact: Hydropower, Send E-mail Last Updated: Tuesday, December 05, 2006 Copyright 2013 Idaho...

225

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hydropower Works The Hydrologic Cycle: Water constantly moves through a vast global cycle, in which it evaporates from lakes and oceans, forms clouds, precipitates as rain or...

226

Idaho National Laboratory - Hydropower Program - Annotated Bibliograph...  

NLE Websites -- All DOE Office Websites (Extended Search)

policy actions might be undertaken to address the needs discussed here. Contact: Hydropower, Send E-mail Last Updated: Monday, July 18, 2005 Copyright 2013 Idaho National...

227

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

NTIS Ordering Info The following are reports of interest to the hydropower industry, arranged by topic and chronologically with newest publications first. The reports with NTIS...

228

Idaho National Laboratory - Hydropower Program: Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental problems associated with hydropower operations, such as providing safe fish passage and improved water quality, have received considerable attention in the past...

229

Idaho National Laboratory - Hydropower Program - Annotated Bibliograph...  

NLE Websites -- All DOE Office Websites (Extended Search)

mitigation and other issues that affect hydropower development Development of unconventional technologies, such as low-headlow-power generating equipment that can be...

230

Relicensing and Environmental Issues Affecting Hydropower  

Reports and Publications (EIA)

This article presents an overview of the hydropower industry and summarizes two recent events that have greatly influenced relicensing and environmental issues.

Ronald S. Hankey

1998-04-01T23:59:59.000Z

231

Hydropower Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

potential from the EERE Wind and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms Microhydropower Basics...

232

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

233

Federal Memorandum of Understanding for Hydropower/Federal Inland  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Federal Memorandum of Understanding for Hydropower/Federal Inland Hydropower Working Group < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Inland Hydropower Working Group The Federal Inland Hydropower Working Group is made up of 15 federal entities involved in the regulation, management, or development of hydropower resources (including hydrokinetics) in rivers and streams of the

234

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

235

Investments in Existing Hydropower Unlock More Clean Energy ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments in Existing Hydropower Unlock More Clean Energy Investments in Existing Hydropower Unlock More Clean Energy August 14, 2013 - 2:21pm Addthis Tacoma Power's Cushman...

236

Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse  

DOE Green Energy (OSTI)

This fact sheet introduces consumers to small hydropower systems, and includes information on how the systems work and how to assess a stream site for hydropower suitability.

Nachman-Hunt, N.

2001-07-05T23:59:59.000Z

237

Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Anfu Guanshan Hydropower Development Co Ltd Jump to: navigation, search Name Anfu Guanshan Hydropower Development Co.,Ltd Place Jiangxi Province, China Zip 343009 Sector Hydro...

238

Microsoft Word - FINAL 2010 Hydropower Conference Agenda 052610...  

NLE Websites -- All DOE Office Websites (Extended Search)

Update Ted Coombes, SPRA - WRDA 2010 - Direct Funding - Federal Hydropower Appropriations - Federal Hydropower's Place in Climate Change Legislation 3:15 p.m. BREAK 3:30...

239

Microsoft Word - Hydropower Conference Agenda 2007 053007.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Update Ted Coombes, SPRA - WRDA 2007 - Direct Funding - Federal Hydropower Appropriations - Federal Hydropower's Place in Climate Change Legislation 2:05 p.m. Southwestern...

240

Microsoft PowerPoint - Sadiki - SW Regional Hydropower Conference...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operation Division Operation Division SOUTHWESTERN FEDERAL SOUTHWESTERN FEDERAL HYDROPOWER CONFERENCE HYDROPOWER CONFERENCE 12 June 2008 12 June 2008 USACE Cost Benchmarking...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Structural health monitoring of wind turbine blades : SE 265 Final Project.  

DOE Green Energy (OSTI)

ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

Barkley, W. C. (Walter C.); Jacobs, Laura D.; Rutherford, A. C. (Amanda C.); Puckett, Anthony

2006-03-23T23:59:59.000Z

242

Structural health monitoring of wind turbine blades : SE 265 Final Project.  

SciTech Connect

ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

Barkley, W. C.(Walter C.); Jacobs, Laura D.; Rutherford, A. C.(Amanda C.); Puckett, Anthony

2006-03-23T23:59:59.000Z

243

PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS  

DOE Green Energy (OSTI)

Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-07-01T23:59:59.000Z

244

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

245

US hydropower resource assessment for New Jersey  

Science Conference Proceedings (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

Connor, A.M.; Francfort, J.E.

1996-03-01T23:59:59.000Z

246

U.S. Hydropower Resource Assessment - California  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

247

US hydropower resource assessment for Colorado  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

Francfort, J.E.

1994-05-01T23:59:59.000Z

248

US hydropower resource assessment for Oklahoma  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose, The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Oklahoma.

Francfort, J.E.

1993-12-01T23:59:59.000Z

249

US Hydropower Resource Assessment for Massachusetts  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the Commonwealth of Massachusetts.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

250

US hydropower resource assessment for New Hampshire  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Hampshire.

Francfort, J.E.

1995-07-01T23:59:59.000Z

251

US hydropower resource assessment for Texas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Texas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

252

US hydropower resource assessment for Kansas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

253

US hydropower resource assessment for Rhode Island  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Rhode Island.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

254

US hydropower resource assessment for Vermont  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Vermont.

Conner, A.M.; Francfort, J.E.

1996-02-01T23:59:59.000Z

255

US hydropower resource assessment for Wyoming  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

Francfort, J.E.

1993-12-01T23:59:59.000Z

256

US hydropower resource assessment for Montana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

Francfort, J.E.

1993-12-01T23:59:59.000Z

257

US hydropower resource assessment for Indiana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Indiana.

Francfort, J.E.

1995-12-01T23:59:59.000Z

258

US hydropower resource assessment for Iowa  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

Francfort, J.E.

1995-12-01T23:59:59.000Z

259

US hydropower resource assessment for Arkansas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Arkansas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

260

US hydropower resource assessment for North Dakota  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of North Dakota.

Francfort, J.E.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

US hydropower resource assessment for Louisiana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Louisiana.

Francfort, J.E.

1993-12-01T23:59:59.000Z

262

US hydropower resource assessment for Missouri  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Missouri.

Francfort, J.E.

1993-12-01T23:59:59.000Z

263

US hydropower resource assessment for Washington  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

264

U.S. Hydropower Resource Assessment - Georgia  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

265

US hydropower resource assessment for Wisconsin  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

Conner, A.M.; Francfort, J.E.

1996-05-01T23:59:59.000Z

266

US hydropower resource assessment for Utah  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

267

Maintenance and Insurance Options for Managing Technical Risks in Combustion Turbine Projects  

Science Conference Proceedings (OSTI)

Costs for combustion turbine maintenance typically represent over half of the total non-fuel operation and maintenance (O&M) costs for combined-cycle power plants. Technical risks in component durability and integrity expose owners/operators to higher costs for maintaining units in operating condition. Potentially catastrophic events have occurred that have required significant maintenance expenditures to cover costs of component repair and replacement. This report looks at aspects of insurance and long-...

2010-12-02T23:59:59.000Z

268

The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations  

DOE Green Energy (OSTI)

technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-20T23:59:59.000Z

269

Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight against glo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: SUSTAINABLE DEVELOPMENT OF HYDROPOWER INITIATIVE At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers pledged to establish the Sustainable Development of Hydropower Initiative to promote the sustainable use of hydropower in developing countries in regions such as Africa, Asia, and Central America, and to identify potential financial resources from multilateral organizations to advance such projects.

270

Hydropower: Setting a Course for Our Energy Future  

DOE Green Energy (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

271

Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.  

DOE Green Energy (OSTI)

The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

McCoy, Gilbert A.

1992-12-01T23:59:59.000Z

272

Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.  

DOE Green Energy (OSTI)

The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

McCoy, Gilbert A.

1992-12-01T23:59:59.000Z

273

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

274

Lessons Learned at the Iowa and Nebraska Public Power Wind Projects: U.S. Department of Energy - EPRI Wind Turbine Verification Prog ram, American Public Power Association DEED Program  

Science Conference Proceedings (OSTI)

This report describes lessons learned during project development and initial operation of three wind projects owned by public utilities in Iowa and Nebraska. Two are distributed wind generation projects installed in the fall of 1998 as part of the U.S. Department of Energy - EPRI Wind Turbine Verification Program (TVP) in Algona, Iowa, and Springview, Nebraska. The third is Waverly Light and Power's (WLP) Wind Energy Deployment Project installed in early 1999 as part of the 259-turbine Storm Lake Wind Po...

2000-11-30T23:59:59.000Z

275

Uniform criteria for US Hydropower Resource Assessment. Hydropower evaluation software status report  

SciTech Connect

The Department of Energy is estimating the hydropower development potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a DBASE, menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report details Hydropower Evaluation Software`s development, its data requirements, and its application to the 12 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. One is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 12 states (Arkansas, Colorado, Kansas, Louisiana, Missouri, Montana, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming) extracted into the software to date, and plans for future assessments.

Francfort, J.E.; Rinehart, B.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Moore, K.M. [Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

276

Uniform criteria for U.S. hydropower resource assessment: Hydropower Evaluation Software status report -- 2  

SciTech Connect

The US Department of Energy is estimating the undeveloped hydropower potential in the US. The Hydropower Evaluation software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report describes Hydropower Evaluation Software`s development, its data requirements, and its application to the 20 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. The reader is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 20 states (Arkansas, Missouri, Montana, New Hampshire, North Dakota, Oklahoma, Rhode Island, South Dakota, Texas, Utah, Vermont, and Wyoming) assessed to date, and plans for future assessments.

Conner, A.M.; Francfort, J.E.; Rinehart, B.N.

1996-02-01T23:59:59.000Z

277

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

278

Brainpower for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

279

Brainpower for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

280

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose or Benefit of U.S. Dams National Inventory of Dams Statistic Contact: Hydropower, Send E-mail Last Updated: Monday, July 18, 2005 Copyright 2013 Idaho National...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

Rinehart, U.S. Hydropower Resource Assessment Final Report (182 KB PDF), DOEID-10430.2, U.S. Department of Energy, December 1998. To provide a more accurate assessment of the...

282

Microsoft Word - 2011 Hydropower Conference Agenda 053111  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome KCD 1:15 p.m. Introductory Remarks KCD SWPA Ted Coombes, SPRA 1:45 p.m. COE Hydropower Modernization Kamau Sadiki, COE HQ Initiative - Study Results and Southwestern...

283

Microsoft Word - FINAL 2012 Hydropower Conference Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Introductory Remarks MVD Colonel Masset, SWL SWPA Ted Coombes, SPRA 1:45 p.m. COE Hydropower Modernization Kamau Sadiki, COE HQ Initiative - Study Results and Marshall Boyken,...

284

Hydropower Resource Assessment of Brazilian Streams  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

285

Improved Governing of Kaplan Turbine Hydropower Plants Operating Island Grids.  

E-Print Network (OSTI)

?? To reduce the consequences of a major fault in the electric power grid, functioning parts of the grid can be divided into smaller grid… (more)

Gustafsson, Martin

2013-01-01T23:59:59.000Z

286

Microsoft Word - hydropower_annual_report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

to install and test a minimum gap runner turbine. Evaluated technologies to observe fish and near neutrally buoyant drogues moving through turbines (Weiland et al. 2003). ...

287

Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

2011-01-01T23:59:59.000Z

288

Iowa / Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001: U.S. Department of Energ y - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The Wind Turbine Verification Program (TVP) is a collaborative effort of the U.S. Department of Energy (DOE), EPRI, and host utilities to develop, construct, and operate wind power plants. This report describes the first- and second-year operating experience at the 2.25-MW Iowa Distributed Wind Generation Project (IDWGP) in Algona, Iowa, and the 1.5-MW Nebraska Distributed Wind Generation Project (NDWGP) in Springview, Nebraska. The lessons learned in both projects will be valuable to other utilities pla...

2001-12-03T23:59:59.000Z

289

Modern Control System Design for Hydro-power Plant.  

E-Print Network (OSTI)

??This thesis addresses dynamic model and advance controller design for entire Hydro-power plant. Although hydro-power has the best payback ratio and the highest efficiency in… (more)

Ding, Xibei

2011-01-01T23:59:59.000Z

290

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

291

Hydropower: Setting a Course for Our Energy Future. Wind and...  

NLE Websites -- All DOE Office Websites (Extended Search)

aim to identify potential sites and partners . . . . . . . . . . . . . . . . . . . . 17 Wind & Hydropower Technologies Program - Harnessing America's abundant natural resources...

292

Commonwealth Hydropower Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Hydropower Program Commonwealth Hydropower Program Commonwealth Hydropower Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Water Buying & Making Electricity Home Weatherization Maximum Rebate Design and Construction: $600,000 Feasibility study: $40,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 09/2009 State Massachusetts Program Type State Grant Program Rebate Amount Design and Construction: 50% of costs or $1.00 per incremental kWh per year Feasibility study: 80% of costs Provider Massachusetts Clean Energy Center Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding

293

Coal Air Turbine ``CAT`` program invention 604. Eighth quarter project report and final for the project, August--September 1996  

SciTech Connect

The primary objective of this ``CAT`` project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the ``CAT`` system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a ``CAT`` plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a ``commercial plant`` before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept.

Foster-Pegg, R.W.

1996-09-30T23:59:59.000Z

294

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

295

A new opportunity for hydro: Using air turbines for generating electricity  

SciTech Connect

A concept that uses hydropower to compress air could increase the number of locations where hydro is economically and environmentally feasible. The idea is being tested in a demonstration project in the northeastern U.S. The hydroelectric industry could experience substantial growth in low-head hydro facilities if a concept now being developed proves successful. This concept aims to enable power developers to generate electricity economically at sites currently not feasible for hydropower because water heads are too low. Many areas of North America are studded with low-head dams that could provide considerable hydro capacity if low-head generation were economically feasible. The six New England states in the US, for example, contain approximately 15,000 dams that have never been used to generate electric power because they impound water with heads ranging from 3 to 13 feet. Conventional facilities are not economically practical for generating electricity at these low heads. However, a promising alternative approach is to use water at these low-head dams to compress air, and then to use the air to power an air turbine-generator that produces electricity. The concept, called hydropneumatic generation, can be visualized by imagining a container, such as a large teacup, inverted and submerged in tidal waters. As the tide rises, the water compresses the air trapped inside the container. When the tide ebbs, the pressure decreases, putting the air into a partial vacuum. If a vent pipe were installed from the container to the atmosphere, air would flow out of the container as the water depth increased, and flow back in as the water depth decreased. Hydropneumatic energy is generated by installing an air-powered turbine to harness the energy of this airflow through the vent pipe. The turbine can be installed to rotate in the same direction at all times, even though the airflow reverses direction.

Gorlov, A.M. (Northeastern Univ., Boston, MA (United States))

1992-09-01T23:59:59.000Z

296

NWTC AWT-26 research and retrofit project-summary of AWT-26/27 turbine research and development  

DOE Green Energy (OSTI)

This report summarizes the AWT design, the testing and modeling completed on the design, the operating history of AWT turbines, and the additional work required to commercialize the design.

Poore, R.

2000-01-19T23:59:59.000Z

297

Virtual Hydropower Prospector | Open Energy Information  

Open Energy Info (EERE)

Virtual Hydropower Prospector Virtual Hydropower Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Virtual Hydropower Prospector Agency/Company /Organization: Idaho National Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Website Website: hydropower.inl.gov/prospector/index.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Idaho National Laboratory - Hydropower Program: Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Part 16 (9.6MB PDF) Part 17 ( 11MB PDF) Part 18 (6.9MB PDF) Part 19 (8.2MB PDF) Micro-Hydro Power Reviewing an old Concept, January 1979 (2.6MB PDF) Contact: Hydropower, Send...

299

&#8220;Sustainable development of hydropower in third countries: The  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable development of hydropower in third countries: Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight against glo

300

Federal Memorandum of Understanding for Hydropower | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Memorandum of Understanding for Hydropower On March 24, 2010, the Department of the Army through the U.S. Army Corps of Engineers, the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to "help meet the nation's needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts." Additionally, the MOU aims to

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. hydropower resource assessment for Virginia  

DOE Green Energy (OSTI)

In June 1989, the US Department of Energy initiated the development of a National Energy Strategy to identify the energy resources available to support the expanding demand for energy in the US. Public hearings conducted as part of the strategy development process indicated that undeveloped hydropower resources were not well defined. As a result, the Department of Energy established an interagency Hydropower Resource Assessment Team to ascertain the undeveloped hydropower potential. In connection with these efforts by the Department of Energy, the Idaho National Engineering Laboratory designed the Hydropower Evaluation Software (HES), which has been used to perform a resource assessment of the undeveloped conventional hydropower potential in over 30 states. This report presents the results of the hydropower resource assessment for the State of Virginia. Undeveloped pumped storage hydropower potential is not included.

Conner, A.M.; Francfort, J.E.

1997-12-01T23:59:59.000Z

302

TURBINE THERMAL MANAGEMENT NETL Team Technical Coordinator: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

TURBINE THERMAL MANAGEMENT NETL Team Technical Coordinator: Maryanne Alvin Name Project Role Affiliation University Project Title Gleeson, Brian M PI Pitt Bond Coat and Extreme...

303

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

304

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report  

DOE Green Energy (OSTI)

To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

2011-11-01T23:59:59.000Z

305

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

306

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

307

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

308

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and hydrogen fuels. This research focuses on the areas of combustion, aerodynamicsheat transfer, and materials, in support of the Department of Energy (DOE) Office of...

309

Tennessee Valley Authority Buffalo Mountain Wind Power Project First- and Second-Year Operating Experience: 2001-2003: U.S. Departme nt of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the turbine performance and operating experience from July 2001 through June 2003 at the Tennessee Valley Authority (TVA) Buffalo Mountain Wind Power Project, located near Oliver Springs, Tennessee. The report summarizes the project's wind resource data, energy production, availability, operation and maintenance experience, and power curve performance measurements. Lessons learned from the project will be valuable to other utilities or companies planning similar wind power projects.

2003-12-22T23:59:59.000Z

310

NETL: Turbines Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

311

The Role of Hydropower Reservoirs in Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Recent publications of measurements and analyses of reservoir greenhouse gas (GHG) emissions have sparked debate about the carbon neutrality of hydropower. This report describes the results of two initial tasks of a multiyear study to assess the importance of carbon cycling and GHG emissions from hydropower reservoirs and operations in the United States. The risks this issue presents to the U.S. hydropower industry are discussed, and a plan to resolve uncertainties is presented. Throughout this report, r...

2010-05-20T23:59:59.000Z

312

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Army. 1880, Michigan's Grand Rapids Electric Light and Power Company, generating electricity by dynamo, belted to a water turbine at the Wolverine Chair Factory, lit up 16...

313

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies of the Effects of Pressure on Turbine-Passed Fish - Test Protocol Submitted By Pacific Northwest National Laboratory, Richland, Washington Background Changes in...

314

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Effects of Shear Strain on Fish Submitted By Pacific Northwest National Laboratory, Richland, Washington Introduction: Fish passing through hydroelectric turbines are...

315

File:Federal Hydropower - Southeastern Power Administration.pdf...  

Open Energy Info (EERE)

Login | Sign Up Search File Edit History Facebook icon Twitter icon File:Federal Hydropower - Southeastern Power Administration.pdf Jump to: navigation, search File File...

316

NREL: Energy Analysis - Hydropower Results - Life Cycle Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Report on Renewable Energy Sources and Climate Change Mitigation: Hydropower OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas...

317

The Next Generation of Hydropower Engineers and Scientists |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation...

318

Investments in Existing Hydropower Unlock More Clean Energy ...  

NLE Websites -- All DOE Office Websites (Extended Search)

to upgrade the nation's existing hydropower facilities -- helping to increase our supply of clean, renewable energy and provide more communities with affordable, reliable...

319

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

320

Microsoft PowerPoint - Hydropower conf SDOX June 2008 final ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Osborn, Chief Technology Officer Clay Thompson, Senior Engineer Southwestern Federal Hydropower Conference June 12, 2008 BlueInGreen, LLC 535 W. Research Blvd. Fayetteville, AR...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

322

Demonstration Development Project - Combustion Turbine Low Power Turndown Technologies: A Review of Current and Emerging Technologies for Combined Cycle Gas Turbines  

Science Conference Proceedings (OSTI)

EPRI has established a Demonstration Development Program that supports projects that evaluate developing technologies which will potentially decrease cost and increase performance of power generating assets.  This report provides a review of recent developments in combined cycle technologies that provide improved performance in the areas of response time (start-up and ramp time), power turndown while maintaining low emissions, and fuel flexibility.A review of technologies either ...

2012-11-30T23:59:59.000Z

323

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

DOE Green Energy (OSTI)

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL; Hadjerioua, Boualem [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

324

Low Wind Speed Turbine Project Conceptual Design Study: Advanced Independent Pitch Control; July 30, 2002--July 31, 2004 (Revised)  

DOE Green Energy (OSTI)

AES conducted a conceptual study of independent pitch control using inflow angle sensors. The control strategy combined input from turbine states (rotor speed, rotor azimuth, each blade pitch) with inflow angle measurements (each blade angle of attack at station 11 of 15) to derive blade pitch demand signals. The controller reduced loads sufficiently to allow a 10% rotor extension and reduce COE by 6.3%.

Olsen, T.; Lang, E.; Hansen, A.C.; Cheney, M. C.; Quandt, G.; VandenBosche, J.; Meyer, T.

2004-12-01T23:59:59.000Z

325

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

326

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Water Conveyance &...

327

Short-term hydropower production planning by stochastic programming  

Science Conference Proceedings (OSTI)

Within the framework of multi-stage mixed-integer linear stochastic programming we develop a short-term production plan for a price-taking hydropower plant operating under uncertainty. Current production must comply with the day-ahead commitments of ... Keywords: Hydropower, OR in energy, Scenarios, Stochastic programming

Stein-Erik Fleten; Trine Krogh Kristoffersen

2008-08-01T23:59:59.000Z

328

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

329

Property:PotentialHydropowerSites | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerSites PotentialHydropowerSites Jump to: navigation, search Property Name PotentialHydropowerSites Property Type Number Description The number of potential hydropower sites in a place. Pages using the property "PotentialHydropowerSites" Showing 25 pages using this property. (previous 25) (next 25) A Alabama + 2,435 + Alaska + 3,053 + Arizona + 1,958 + Arkansas + 3,268 + C California + 9,692 + Colorado + 5,060 + Connecticut + 659 + D Delaware + 25 + F Florida + 493 + G Georgia + 2,100 + H Hawaii + 437 + I Idaho + 6,706 + Illinois + 1,330 + Indiana + 1,142 + Iowa + 2,398 + K Kansas + 3,201 + Kentucky + 1,394 + L Louisiana + 934 + M Maine + 1,373 + Maryland + 491 + Massachusetts + 560 + Michigan + 1,942 + Minnesota + 1,391 + Mississippi + 1,536 + Missouri + 5,089 +

330

U.S. hydropower resource assessment for Alaska  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alaska.

Conner, A.M.; Francfort, J.E.

1997-11-01T23:59:59.000Z

331

U.S. hydropower resource assessment for Minnesota  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Minnesota.

Francfort, J.E.

1996-07-01T23:59:59.000Z

332

U.S. hydropower resource assessment for Michigan  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

Conner, A.M.; Francfort, J.E.

1998-02-01T23:59:59.000Z

333

U.S. hydropower resource assessment for Idaho  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

334

U.S. hydropower resource assessment for Illinois  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Illinois.

Conner, A.M.; Francfort, J.E.

1997-01-01T23:59:59.000Z

335

U.S. hydropower resource assessment for Alabama  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

Conner, A.M.; Francfort, J.E.

1998-02-01T23:59:59.000Z

336

U.S. hydropower resource assessment for Oregon  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

Conner, A.M.; Francfort, J.E.

1998-03-01T23:59:59.000Z

337

U.S. hydropower resource assessment for Mississippi  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Mississippi.

Conner, A.M.; Francfort, J.E.

1997-11-01T23:59:59.000Z

338

U.S. hydropower resource assessment for Connecticut  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

339

U.S. hydropower resource assessment for New Mexico  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New Mexico.

Conner, A.M.; Francfort, J.E.

1997-03-01T23:59:59.000Z

340

U.S. hydropower resource assessment for Florida  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Florida.

Conner, A.M.; Francfort, J.E.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. hydropower resource assessment for Kentucky  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Kentucky.

Conner, A.M.; Francfort, J.E.

1998-07-01T23:59:59.000Z

342

U.S. hydropower resource assessment for Maine  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

343

U.S. hydropower resource assessment for North Carolina  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of North Carolina.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

344

U.S. hydropower resource assessment for Tennessee  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Tennessee.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

345

U.S. hydropower resource assessment for Pennsylvania  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Pennsylvania.

Conner, A.M.; Francfort, J.E.

1997-12-01T23:59:59.000Z

346

U.S. hydropower resource assessment for Maryland  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Maryland.

Conner, A.M.; Francfort, J.E.

1997-11-01T23:59:59.000Z

347

U.S. hydropower resource assessment for West Virginia  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of West Virginia.

Conner, A.M.; Francfort, J.E.

1998-02-01T23:59:59.000Z

348

U.S. hydropower resource assessment for Arizona  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

349

U.S. hydropower resource assessment for Nebraska  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nebraska.

Conner, A.M.; Francfort, J.E.

1997-04-01T23:59:59.000Z

350

U.S. hydropower resource assessment for Ohio  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

Conner, A.M.; Francfort, J.E.

1997-12-01T23:59:59.000Z

351

U.S. Hydropower Resource Assessment Final Report  

DOE Green Energy (OSTI)

To provide a more accurate assessment of the domestic undeveloped hydropower capacity, the US Department of Energy's Hydropower Program developed a computer model, Hydropower Evaluation Software (HES). HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental, legal, and institutional attributes present, and generate reports based on these suitability factors. This report describes the development of HES, its data requirements, and its application to each state assessment; in addition, it summarizes the data derivation process and data for the states. Modeling of the undeveloped hydropower resources in the US, based on environmental, legal, and institutional constraints, has identified 5,677 sites that have a total undeveloped capacity of about 30,000 megawatts.

A. M. Conner; J. E. Francfort; B. N. Rinehart

1998-12-01T23:59:59.000Z

352

U.S. hydropower resource assessment for Nevada  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

353

U.S. hydropower resource assessment for New York  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

354

U.S. hydropower resource assessment for South Carolina  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. To assist in providing this estimate, the Idaho National Engineering Laboratory developed the Hydropower Evaluation Software (HES) computer model. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of South Carolina.

Conner, A.M.; Francfort, J.E.

1997-06-01T23:59:59.000Z

355

The Next Generation of Hydropower Engineers and Scientists | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to help meet its energy needs, a new generation of engineers and scientists is finding ways to make hydropower technologies more efficient, environmentally friendly and cost effective. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE), in cooperation with the Hydro Research

356

Establishment of Small Wind Turbine Regional Test Centers (Presentation)  

DOE Green Energy (OSTI)

This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

Sinclair, K.

2011-09-16T23:59:59.000Z

357

Wind Turbine Productivity Improvement and Procurement Guidelines  

Science Conference Proceedings (OSTI)

Proper selection of equipment specifications during wind turbine procurement and careful operation and maintenance procedures are keys to maximizing wind project availability and annual energy generation and revenues.

2002-03-28T23:59:59.000Z

358

Production test IP-466-A test of the 190 turbine pumps at KE(KW) Rector (Project CGI-844)  

SciTech Connect

The purpose of this test is to provide for adequate testing of the new steam turbine pumps. This will cover the tests required for the acceptance of these new items as per ATP-2588 and for any additional testing required to ensure reactor emergency cooling adequacy and reliability. A further objective is to provide the safety requiring by which the objectives of the ATP-2588 may be accomplished. A steam pump is being installed in each of the 190-K buildings to provide an additional secondary supply of reactor coolant. The basis for this test is presented in ATP-2588. Briefly, it is to authorize the required reactor down time and to assure reactor safety in the performance of the required testing procedures. These tests will develop the necessary and pertinent information concerning the cooling adequacy of this new system. At the same time, information will be obtained concerning the in situ characteristics of the steam turbine pump and the flow to the reactor when one side of the process lines is closed.

Jones, S.S.

1962-02-01T23:59:59.000Z

359

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

360

Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality  

DOE Green Energy (OSTI)

Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world?s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, ?environmentally friendly? turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

1999-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modelling and Control of an Inverted Pendulum Turbine  

E-Print Network (OSTI)

. In this project the feasibility of a new kind of wind turbine is studied. This thesis deals with the achievement of getting a proper mathematical model of a new kind of wind turbine, called the inverted pendulum turbine is inherently unstable system. In order to control this wind turbine an optimal control has been investigated

362

EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems  

Science Conference Proceedings (OSTI)

Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

Nguyen, Ba Nghiep; Paquette, Joshua

2010-08-01T23:59:59.000Z

363

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

364

Federal Memorandum of Understanding for Hydropower/Participating Agencies |  

Open Energy Info (EERE)

Participating Agencies Participating Agencies < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Bonneville Power Administration: caption:Bonneville Power Administration Bonneville Power Administration Factsheet Bonneville Power Administration Publications Conservation Resource Energy Data - The Red Book Bureau of Indian Affairs: caption:Bureau of Indian Affairs Bureau of Indian Affairs Factsheet Tribal Energy and Environmental Clearinghouse (TEEIC) Office of Indian Energy and Economic Development (IEED) Division of Irrigation, Power and Safety of Dams Bureau of Reclamation: caption:Bureau of Reclamation Factsheet

365

ATP Project Brief - 00-00-7647  

Science Conference Proceedings (OSTI)

Project Brief. Technical Innovations Enabling a New Direct Drive Wind Turbine Generator. Develop high temperature superconducting ...

366

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

367

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

368

P:\\2009 Projects\\09085_Cuy_County_Fairgrnds_Energy_Bldg\\Construction...  

NLE Websites -- All DOE Office Websites (Extended Search)

TRG Project Name: Cuyahoga County Fairgrounds Wind Turbine Source Information: USGS, TRG Survey Figure Name: Turbine Location Notes: Turbine Location Cuyahoga County Fairgrounds...

369

MHK Technologies/Tidal Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s) where this technology is utilized *MHK Projects/Race Rocks Demonstration Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Turbine is positioned by anchoring and cabling Energy extraction from flow that is transverse to the rotation axis Turbines utilize both lift and drag Mooring Configuration Gravity base although other options are currently being explored Technology Dimensions Device Testing Date Submitted 10/8/2010

370

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

371

Solar Energy and Small Hydropower Tax Credit (Personal) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Personal Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

372

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

373

Solar Energy and Small Hydropower Tax Credit (Corporate) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Corporate Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

374

Microsoft Word - FINAL 2013 Hydropower Meeting Agenda 060713  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTHWESTERN FEDERAL HYDROPOWER MEETING The Earl Cabell Federal Building 1100 Commerce Street Red River Room Floor 7, Room 752A Dallas, Texas June 12 - 13, 2013 Wednesday, June 12...

375

Microsoft Word - FINAL 2013 HydropowerCouncilAgenda 060513  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern Federal Hydropower Council The Earl Cabell Federal Building 1100 Commerce Street Red River Room Floor 7, Room 752A Dallas, Texas June 11 - 12, 2013 Monday, June 10...

376

Microsoft Word - FINAL 2010 Hydropower Council Agenda 052510...  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA Southwestern Federal Hydropower Council Hilton Promenade at Branson Landing Branson, Missouri June 8 - 9, 2010 Tuesday, June 8 1:00 p.m. Welcome Little Rock District 1:05...

377

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

378

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

379

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

AL05205018 - Analysis of Gas Turbine Thermal Performance FACT SHEET I. PROJECT PARTICIPANTS Ames National Laboratory Oak Ridge National Laboratory (funded separately) II. PROJECT...

380

Quantifying the Value of Hydropower in the Electric Grid  

Science Conference Proceedings (OSTI)

In an effort to quantify the full value of hydropower assets in a future electric grid, a team of researchers has looked at energy futures, regional markets, plant technologies, and operations. This report addresses the cost-side of the cost-benefit equation to be used when considering hydropower facility investments. It identifies construction and modification elements and estimates associated with costs for pumped storage, conventional hydro, and non-powered facilities. Cost data from original plant co...

2011-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2011 Grants for Advanced Hydropower Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act Field Projects DOE Recovery Act Field Projects DOE National Laboratories DOE National Laboratories eGallon eGallon...

382

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

383

Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005  

DOE Green Energy (OSTI)

Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

Erdman, W.; Behnke, M.

2005-11-01T23:59:59.000Z

384

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

385

Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival  

DOE Green Energy (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation.

Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

2005-10-14T23:59:59.000Z

386

Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival  

SciTech Connect

This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation.

Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

2005-10-14T23:59:59.000Z

387

Using Environmental Solutions to Lubrication at Hydropower Plants: A Hydropower Technology Round-Up Report, Volume 1  

Science Conference Proceedings (OSTI)

Hydropower owners and operators are confronted with the dual challenge of compliance with continually-developing environmental regulations and increasingly vigorous competition in the electric generation market. Managing this challenge requires consideration and selected application of new and emerging strategies and technologies. This volume of EPRI's Hydropower Technology Roundup Report presents an overview of research, practices, lessons learned, and some examples regarding the use of self-lubricating...

1999-10-28T23:59:59.000Z

388

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

389

Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam  

SciTech Connect

Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

2010-10-13T23:59:59.000Z

390

Electric Power Research Institute Utility Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report provides an overview of the DOE EPRI Wind Turbine Verification Program (TVP) and the Turbine Verification and Technology Transfer Projects funded by the program between 1994 and 2004.

2008-12-22T23:59:59.000Z

391

First wind turbine blade delivered to Pantex | National Nuclear...  

National Nuclear Security Administration (NNSA)

Work crews began to erect the first of five wind turbines that will make up the Pantex Renewable Energy Project (PREP). The first wind turbine blade was delivered to the site...

392

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

393

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

394

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extension—the operation of an asset beyond the nominal design life—is just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

395

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

this project is to design and develop a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC and FutureGen type applications that meets DOE turbine performance...

396

Cumulative biophysical impact of small and large hydropower development, Nu River, China  

E-Print Network (OSTI)

Cumulative biophysical impact of small and large hydropower development, Nu River, China Authors biophysical effects of small (China's Nu River basin, and compare effects The hydropower sector currently comprises eighty percent of global capacity for renewable energy generation

Tullos, Desiree

397

Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy  

DOE Green Energy (OSTI)

This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

Gagnon, L.

2004-10-03T23:59:59.000Z

398

Shaken, not stirred: The recipe for a fish-friendly turbine  

SciTech Connect

It is generally agreed that injuries and mortalities among turbine-passed fish can result from several mechanisms, including rapid and extreme water pressure changes, cavitation, shear, turbulence, and mechanical injuries (strike and grinding). Advances in the instrumentation available for monitoring hydraulic conditions and Computational Fluid Dynamics (CFD) techniques now make it possible both to estimate accurately the levels of these potential injury mechanisms in operating turbines and to predict the levels in new turbine designs. This knowledge can be used to {open_quotes}design-out{close_quotes} the most significant injury mechanisms in the next generation of turbines. However, further improvements in turbine design are limited by a poor understanding of the levels of mechanical and hydraulic stresses that can be tolerated by turbine-passed fish. The turbine designers need numbers (biological criteria) that define a safety zone for fish within which pressures, shear forces, cavitation, and chance of mechanical strike are all at acceptable levels for survival. This paper presents the results of a literature review of fish responses to the types of biological stresses associated with turbine passage, as studied separately under controlled conditions in the laboratory rather than in combination at field sites. Some of the controlled laboratory and field studies reviewed here were bioassays carried out for reasons unrelated to hydropower production. Analysis of this literature was used to develop provisional biological criteria for hydroelectric turbine designers. These biological criteria have been utilized in the U.S. Department of Energy`s Advanced Hydropower Turbine System (AHTS) Program to evaluate the results of conceptual engineering designs and the potential value of future turbine models and prototypes.

Cada, G.F.

1997-03-01T23:59:59.000Z

399

Small Wind Research Turbine: Final Report  

DOE Green Energy (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

400

Evaluating functional displays for hydropower system: model-based guidance of scenario design  

Science Conference Proceedings (OSTI)

We discuss the human role in hydropower system control, noting how it is different from other supervisory control environments and noting the typical shortcomings in current displays provided to hydropower system controllers. We describe steps towards ... Keywords: Evaluation, Functional displays, Human control model, Human supervisory control, Hydropower system control, Scenario design, Situation awareness, Trust

Xilin Li; Penelope Sanderson; Rizah Memisevic; William Wong; Sanjib Choudhury

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research on Fault Diagnosis of Hydropower Unit Based on Expert System and Hybrid Reasoning  

Science Conference Proceedings (OSTI)

With the rapid development of computer and monitoring technologies in recent years, more and more online monitoring equipment of hydropower units have been installed and applied in hydropower plants, and so began the long-term accumulation of data. Although ... Keywords: fault diagnosis, hydropower unit, expert system, hybrid reasoning

Ye Zhou; Luoping Pan

2012-05-01T23:59:59.000Z

402

Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population  

DOE Green Energy (OSTI)

This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

2006-09-01T23:59:59.000Z

403

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

404

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

405

Coal air turbine {open_quotes}CAT{close_quotes} program, Invention 604. Third quarter project report, April 1995--June 1995  

DOE Green Energy (OSTI)

The primary objective of this {open_quotes}CAT{close_quotes} project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the {open_quotes}CAT{close_quotes} system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a {open_quotes}CAT{close_quotes} plant are proven, and the integration of the components into a complete plant is the only new development activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a {open_quotes}commercial plant{close_quotes} before the viability of a new concept is accepted. To satisfy this requirement and construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept.

Foster-Pegg, R.W.

1995-07-31T23:59:59.000Z

406

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

structure). Picture of Run-of-River Projects Microhydropower Projects - produce 100 kilowatts (kW) or less. Microhydro plants can utilize low heads or high heads. Picture of...

407

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

408

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

409

Understanding Trends in Wind Turbine Prices  

E-Print Network (OSTI)

~on California Energy Commission requesting approvalto upgrade three combustion turbines at the Procter'rHORIN (SCA) PETITIONTO UPGRADE THREE COMBUSTION GAS TURBINE FOR THE PROCTERAND GAMBLE COGENERATION PROJEC and Fruitridge Road in Sacramento County. The P&G project was certified by the Energy Commission on November 16

410

Gas Turbine Recuperators: Benefits and Status  

Science Conference Proceedings (OSTI)

Distributed resources (DR) are projected to be an expanding part of the power generation mix in the future -- with conventional industrial and aeroderivative gas turbines as well as emerging microturbine products playing an important role. This report assesses the role of recuperators in improving the power generation efficiency of simple-cycle gas turbines and microturbines.

2000-01-19T23:59:59.000Z

411

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

412

MHK Technologies/SmarTurbine | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » MHK Technologies/SmarTurbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SmarTurbine.jpg Technology Profile Primary Organization Free Flow Power Corporation Project(s) where this technology is utilized *MHK Projects/Algiers Light Project *MHK Projects/Anconia Point Project *MHK Projects/Ashley Point Project *MHK Projects/Avondale Bend Project *MHK Projects/Bar Field Bend *MHK Projects/Barfield Point *MHK Projects/Bayou Latenache *MHK Projects/Bondurant Chute *MHK Projects/Breeze Point *MHK Projects/Brilliant Point Project *MHK Projects/Burke Landing *MHK Projects/Carrolton Bend Project *MHK Projects/Cat Island Project *MHK Projects/Claiborne Island Project

413

MHK Technologies/EnCurrent Turbine | Open Energy Information  

Open Energy Info (EERE)

EnCurrent Turbine EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy Corporation Project(s) where this technology is utilized *MHK Projects/Bonnybrook Wastewater Facility Project 1 *MHK Projects/Bonnybrook Wastewater Facility Project 2 *MHK Projects/Canoe Pass *MHK Projects/Great River Journey *MHK Projects/Miette River *MHK Projects/Pointe du Bois *MHK Projects/Ruby ABS Alaskan *MHK Projects/Western Irrigation District Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering

414

Idaho National Laboratory - Hydropower Program: Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

The final operation and maintenance report on the city of Gonzales Hydroelectric project summarizes operation, maintenance activities, and costs for 2 years of operation....

415

2011 Grants for Advanced Hydropower Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPEN 2012 Projects Clean Cities Coalition Regions Clean Cities Coalition Regions Google Crisis Map for Hurricane Sandy Google Crisis Map for Hurricane Sandy Alternative...

416

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

417

Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system  

Science Conference Proceedings (OSTI)

This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-12-01T23:59:59.000Z

418

Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants  

Science Conference Proceedings (OSTI)

This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

1995-12-01T23:59:59.000Z

419

Understanding and Control of Combustion Dynamics In Gas Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

result could have significant implications on the development of future high hydrogen turbine systems. 7 5. PROJECT DESCRIPTION Under the DOENETL program, Georgia Institute of...

420

NREL: Wind Research - Case Study: Burke Mountain Wind Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

composting program, and encouraging visitors to recycle whenever possible. Wind Powering America verified the following wind turbine project facts with Hannah Collins from...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbo Machinery FACT SHEET (42646) Oct. 2006 I. PROJECT PARTICIPANTS A. Siemens Power Generation, Inc. B. Florida Turbine Technologies, Inc. C. Clean Energy Systems, Inc....

422

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

generation is from hydropower, but the majority of new power capacity is expected to use natural gas.generation that would be avoided by projects to be roughly 50% from natural gas combined cycle power

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

423

Combustion Turbine Experience and Intelligence Reports: 2006  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and intelligence Reports (...

2007-03-27T23:59:59.000Z

424

Combustion Turbine Experience and Intelligence Report: 2010  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and Intelligence Reports (...

2010-12-14T23:59:59.000Z

425

Combustion Turbine Experience and Intelligence Report: 2005  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and Intelligence Reports (...

2006-03-06T23:59:59.000Z

426

Single Rotor Turbine  

DOE Patents (OSTI)

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

427

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

428

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-05-01T23:59:59.000Z

429

Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-02-01T23:59:59.000Z

430

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

431

Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

Huskey, A.; van Dam, J.

2010-11-01T23:59:59.000Z

432

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

433

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

434

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

435

Analysis of potential impacts of Flaming Gorge Dam hydropower operations on archaeological sites  

DOE Green Energy (OSTI)

An archaeological field study was conducted along the Green River in the areas of Little Hole and Browns Park in Utah and Colorado. The purpose of the study was to measure the potential for hydropower operations at Flaming Gorge Dam to directly or indirectly affect archaeological sites in the study area. Thirty-four known sites were relocated, and six new sites were recorded. Information was collected at each site regarding location, description, geomorphic setting, sedimentary context, vegetation, slope, distance from river, elevation above river level, and site condition. Matching the hydrologic projections of river level and sediment load with the geomorphic and sedimentary context at specific site locations indicated that eight sites were in areas with a high potential for erosion.

Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.

1955-12-01T23:59:59.000Z

436

A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity September 14, 2010 - 10:52am Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? With better forecasting, utilities can more reliably connect variable power sources such as wind energy with electricity grids, and can decrease their need for back-up energy sources such as natural gas and hydropower. Last week's Geek-Up talked about the Energy Department's Wind for Schools program and how it is helping schools use wind turbines to power their classrooms. Yesterday, U.S. Energy Secretary Steven Chu announced more than $5 million in funding to help bring wind-generated power to not only more

437

Hydropower Potential in the Western U.S. | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Potential in the Western U.S. Hydropower Potential in the Western U.S. Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Hydropower Potential in the Western U.S. Dataset Summary Description The dataset includes design elements, installed capacity, production capability, associated costs and cost -to-benefit ratios for nearly 200 water storing and conveying structures currently maintained by the Bureau of Reclamation. These data were used to support the internal study and report for assessing hydropower capability at 70 of Reclamation's existing facilities where hydropower has not been developed. The dataset can further be leveraged to support applications designed to provide a better understanding of our hydropower production potential and resource utilization.

438

Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage  

DOE Green Energy (OSTI)

This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner) has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.

Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

1981-01-01T23:59:59.000Z

439

Tennessee Valley Authority Buffalo Mountain Wind Power Project Development: U.S. Department of Energy - EPRI Wind Turbine Verificati on Program  

Science Conference Proceedings (OSTI)

This report describes the development experience at the Tennessee Valley Authority (TVA) Buffalo Mountain Wind Power Project located near Oliver Springs, Tennessee. The lessons learned from the project will be valuable to other utilities or companies planning similar wind projects.

2003-03-24T23:59:59.000Z

440

Microsoft Word - DOE Hydropower FY03 Annual Report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

were completed (Cook et al. 2003). A series of laboratory studies of the effects on fish of turbine-induced pressure changes and dissolved gas supersaturation were completed...

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Verdant-Kinetic Hydropower System | Open Energy Information  

Open Energy Info (EERE)

Island Tidal Energy Technology Resource CurrentTidal Technology Type Axial Flow Turbine Technology Readiness Level TRL 78: Open Water System Testing & Demonstration &...

442

Specialized power-electronic apparatus for harnessing electrical power from kinetic hydropower plants.  

E-Print Network (OSTI)

??This thesis introduces a power electronic interface for a kinetic hydropower generation platform that enables extraction of electric power from a free-flowing water source such… (more)

Mosallat, Farid

2012-01-01T23:59:59.000Z

443

Real Options in Small Hydropower Investments: An Empirical Study from Norway.  

E-Print Network (OSTI)

?? This empirical study examines investment behavior in small hydropower investments under uncertain electricity prices and revenues from selling so-called green certificates. We assess 73… (more)

Gravdehaug, Guro

2011-01-01T23:59:59.000Z

444

Microsoft PowerPoint - ACOE Regional HydroPower Conference Presentatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

FEDERAL HYDROPOWER CONFERENCE Tulsa, Oklahoma June 10 - 11, 2009 NERC Requirements for Generator Owner and Operator Sarah M. Blankenship, NERC Compliance Officer How do we create a...

445

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

446

Condition health monitoring and its application to cavitation detection/characterization within hydropower turbines.  

E-Print Network (OSTI)

??Hydroelectric power has been the number one renewable energy source in the U.S. since the beginning of the industrial revolution and continues to be today.… (more)

Dyas, Samuel J.

2013-01-01T23:59:59.000Z

447

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

448

Capps et al. Wind Power Sensitivity to Turbine Characteristics Sensitivity of Southern California Wind Power to Turbine  

E-Print Network (OSTI)

functions. However, for the installation of a single or small cluster of turbines, a wind developer may find phase of a wind project includes monitoring and evaluating the local wind resource, determining possible turbine locations, and estimating the economic feasibility of a wind project. It may also include

Hall, Alex

449

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2010-05-01T23:59:59.000Z

450

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

451

Field verification program for small wind turbines  

DOE Green Energy (OSTI)

In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as the findings from the post-test inspection of the turbine.

Windward Engineering, LLC

2003-11-30T23:59:59.000Z

452

Annual Report: Turbines (30 September 2012)  

SciTech Connect

The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

Alvin, Mary Anne [NETL] [NETL; Richards, George [NETL] [NETL

2012-09-30T23:59:59.000Z

453

Green Mountain Power Wind Power Project Third-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Veri fication Program  

Science Conference Proceedings (OSTI)

The 6.05-MW Green Mountain Power (GMP) wind power project is located on top of a wooded ridge in the Green Mountains of southern Vermont near the town of Searsburg. This report describes the third-year operating experience at the GMP wind project. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2000-12-07T23:59:59.000Z

454

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

455

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

456

Impact of aerothermal modeling on the estimation of turbine blade life  

E-Print Network (OSTI)

The impact of aerothermal modeling on estimates of turbine blade heat transfer and life was assessed for three high pressure turbine blades. The work was conducted as part of a project aimed at the evaluation of the effect ...

Collin, Jean E., 1978-

2004-01-01T23:59:59.000Z

457

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

458

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

459

Microsoft Word - DOE-10992_formatted.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water...

460

Real-time optimization of a cascaded reservoirs hydropower plant based on fuzzy logic  

Science Conference Proceedings (OSTI)

One of the important industrial areas that involve complex nonlinear dynamics, control problems, and difficult optimization tasks is that of cascaded reservoirs hydropower plants. For the purpose of minimizing the non-hydraulic power production expenses ... Keywords: cascaded reservoirs, fuzzy logic, hydropower, nonlinear control, optimization

M. Mahmoud; K. Dutton

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower turbine project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Decentralized-coordinated model predictive control for a hydro-power valley  

Science Conference Proceedings (OSTI)

This paper aims at improving control systems for hydro-power production, by combining model predictive control techniques with decomposition-coordination methods for a global optimization over a whole hydro-power valley. It first recalls the model predictive ... Keywords: Case-study validation, Control optimization, Decomposition-coordination, Hydroelectricity, Model predictive control

J. ZáRate FlóRez, J. Martinez, G. BesançOn, D. Faille

2013-05-01T23:59:59.000Z

462

OPAH a model for optimal design of multipurpose small hydropower plants  

Science Conference Proceedings (OSTI)

The investment in small hydropower plants requires the analysis of hydrological, technical, operational, budgetary, economical and financial aspects. The analysis of each possible configuration demands the joint action of several technicians, consuming ... Keywords: Design optimization, Economical and financial risk analysis, Multipurpose NLP optimization, Small hydropower

J. P. P. G. Lopes de Almeida; A. G. Henri Lejeune; J. A. A. Sá Marques; M. Conceição Cunha

2006-04-01T23:59:59.000Z

463

Integrating Green Hydropower Certification with Strategy Environment Assessment: Towards Sustainable River Basin Development in Yunnan, China  

Science Conference Proceedings (OSTI)

China currently put the development of its western region as one of the most important goals. This greatly stimulated the initiative of hydropower development in its ecological sensitive Yunnan Province. Yet the use of a single tool, like strategy environment ... Keywords: strategic environmental assessment (SEA), green hydropower certification, sustainable river basin development, Yunnan Province

Peng Shengjing; Sun Zhenhua; Ou Xiaokun

2012-07-01T23:59:59.000Z

464

Optimal Scheduling of Cascade Hydropower System Using Grouping Differential Evolution Algorithm  

Science Conference Proceedings (OSTI)

For the complex problem of cascade hydropower system optimal scheduling, a novel grouping differential evolution algorithm (GDE) is proposed in this paper by hybridizing differential evolution (DE) and shuffled frog leaping (SFL). In the proposed algorithm, ... Keywords: cascade hydropower system, optimal scheduling, differential evolution, shuffled frog leaping

Yinghai Li; Jian Zuo

2012-03-01T23:59:59.000Z

465

Effect Analysis of Regulation Mode on Small Disturbance Stability in Hydropower Stations  

Science Conference Proceedings (OSTI)

In the previous stability analysis under small disturbance of the hydropower stations, there are some different regulation modes to be used. In order to analyze the regulation performance accurately and the effect of different regulation modes on system ... Keywords: hydropower station, power regulation, frequency regulation, small disturbance, regulation performance

Zhou Jianxu; Hu Rong; Cao Qing

2009-10-01T23:59:59.000Z

466

Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

Curtis, A.; Gevorgian, V.

2011-07-01T23:59:59.000Z

467

User's Guide Virtual Hydropower Prospector Version 1.1  

Science Conference Proceedings (OSTI)

The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.

Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

2005-11-01T23:59:59.000Z

468

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...