National Library of Energy BETA

Sample records for hydropower system khps

  1. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  2. MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHKHydro Helix <<Kensington

  3. Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model

    E-Print Network [OSTI]

    Fath, Brian D.

    Assessing the cumulative environmental impact of hydropower construction on river systems based 2014 Keywords: Hydropower construction Sustainable energy development Environmental impact assessment Energy network model a b s t r a c t Hydropower is the major renewable energy source for many nations

  4. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  5. Modeling California's high-elevation hydropower systems in energy units

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    conditions, hydropower provides 5­10% of the electricity used in the United States [National Energy Education it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy

  6. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  7. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  8. First-ever Hydropower Market Report Covers Hydropower Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure May 28, 2015 -...

  9. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  10. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    to a test case integrated hydropower and wind generation system including five hydropower projects in a run-of-river using the RiverWare river system and hydropower modeling tool. The model represents both the physical

  11. EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Paquette, Joshua

    2010-08-01

    Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

  12. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  13. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab....

  14. Estimated impacts of climate warming on California’s high-elevation hydropower

    E-Print Network [OSTI]

    Madani, Kaveh; Lund, Jay R.

    2010-01-01

    on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

  15. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  16. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  17. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  18. Energy 101: Hydropower

    SciTech Connect (OSTI)

    2013-04-01

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  19. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  20. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  1. A progress report on DOE`s advanced hydropower turbine systems program

    SciTech Connect (OSTI)

    Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

    1997-06-01

    Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

  2. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower Market Report Hydropower Market Report Hydropower Market Report Top 10 Things You Didn't Know about Hydropower An error occurred. Try watching this video on...

  3. CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER

    E-Print Network [OSTI]

    CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER SYSTEM Energy Commission's California Climate Change Center JULY 2012 CEC5002012020 Prepared for: California with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may

  4. 2014 Hydropower Market Report

    SciTech Connect (OSTI)

    Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  5. 2015 Forum on Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

  6. Evaluating New Hydropower Resources

    Broader source: Energy.gov (indexed) [DOE]

    evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability. Although the NSD assessment did not make...

  7. National Hydropower Association conference proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

  8. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway Average Winter Temperature NORWAY kilotonsofoilmillibars°Cmmofrainfall Annual Heating Oil Consumption

  9. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  10. Summary Report of the 2010 Technology Summit Meeting on Small Hydropower Small Hydropower

    E-Print Network [OSTI]

    Post, Wilfred M.

    Summary Report of the 2010 Technology Summit Meeting on Small Hydropower Small Hydropower Hydropower Association, and the Hydropower Research Foundation Washington, DC April 78, 2010 1 #12;Summary Report of the 2010 Technology Summit Meeting on Small Hydropower Introduction

  11. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  12. Hydropower research and development

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  13. Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization

    E-Print Network [OSTI]

    and developed a data post-processing method to reduce the cost of flow and turbulence measurements at MHKAdvanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

  14. Developing hydropower overseas

    SciTech Connect (OSTI)

    Smith, W.B. (Benham-Holway Power Group, Tulsa, OK (United States))

    1991-10-01

    This article examines how the National Hydropower Association (NHA) has found ways to support its members who desire to expand their business programs to foreign markets through participation in a wide range of government programs. The topics of the article include the market in developing countries, the certificate of review, products and services, and domestic and international competition.

  15. National Hydropower Association Annual Conference

    Broader source: Energy.gov [DOE]

    Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

  16. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  17. A New Vision for United States Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE)

    Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range National Hydropower Vision.

  18. U.S. Hydropower presented by

    E-Print Network [OSTI]

    Post, Wilfred M.

    U.S. Hydropower presented by Brennan T. Smith, Ph.D., P.E. Fleet and Resource Assessments National Hydropower Association Annual Conference April 5, 2011 Capital Hilton Washington, D.C. #12;2 Managed by UT-Battelle for the U.S. Department of Energy U.S. Hydropower Assessment ­ NHA Annual Meeting 2011 National Hydropower

  19. Hydropower Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Hydropower Projects from 2008 to 2014.

  20. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  1. Interim survey report, Wailua River hydropower, Kauai, Hawaii

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Installation of hydroelectric facilities on the South Fork Wailua River three and five miles upstream of Wailua Falls on the Island of Kauai, Hawaii is proposed. The hydroelectric facilities would provide an additional source of energy for the island, effectively utilizing available waters. Addition of hydropower to the island's power system, which is primarily reliant on fuel and diesel oils, would diversify the system's base. Hydropower diversion would reduce flows downstream of the structures, affecting fishery, recreational, and aesthetic resources. Construction activities would disturb approximately 2.7 acres of cropland and create temporary turbidity downstream of the sites.

  2. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  3. DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

    1997-06-01

    This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  4. US hydropower resource assessment for Hawaii

    SciTech Connect (OSTI)

    Francfort, J.E.

    1996-09-01

    US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

  5. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J.; Cada, Glenn F.; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  6. Conventional Hydropower Technologies Fact Sheet

    SciTech Connect (OSTI)

    2011-07-01

    This factsheet gives a description of the U.S. Department of Energy Water Power Program's efforts to increase generating capacity and efficiency at existing hydroelectric facilities, add hydroelectric generating capacity to non-powered dams, and reduce the environmental effects of hydropower.

  7. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  8. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J; Cada, Glenn F; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  9. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect (OSTI)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  10. Hydropower Advancement Project (HAP): Audits and Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrades Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades 64hapornlsmith.ppt More Documents & Publications 2014...

  11. Vermont Small Hydropower Assistance Program Screening Criteria...

    Open Energy Info (EERE)

    Vermont Small Hydropower Assistance Program Screening Criteria Summary and Application Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  12. Relicensing and Environmental Issues Affecting Hydropower

    Reports and Publications (EIA)

    1998-01-01

    This article presents an overview of the hydropower industry and summarizes two recent events that have greatly influenced relicensing and environmental issues.

  13. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  14. Laboratory Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

  15. Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower Report (June 2012) Comparison The rehab study is compared to the 11th Circuit Hydropower Report for capacity...

  16. Los Alamos County Completes Abiquiu Hydropower Project, Bringing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy...

  17. Puge County Gongdefang Hydropower Station Investment and Development...

    Open Energy Info (EERE)

    Puge County Gongdefang Hydropower Station Investment and Development Co Ltd Jump to: navigation, search Name: Puge County Gongdefang Hydropower Station Investment and Development...

  18. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies March 18, 2015 - 11:27am...

  19. Hydropower Licensing and Endangered Species A Guide for Applicants...

    Open Energy Info (EERE)

    Hydropower Licensing and Endangered Species A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Hydropower...

  20. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  1. Assessment of the Effects of Climate Change on Federal Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Effects of Climate Change on Federal Hydropower Assessment of the Effects of Climate Change on Federal Hydropower This Oak Ridge National Laboratory TM report,...

  2. Considering Climate Change in Hydropower Relicensing

    E-Print Network [OSTI]

    Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

  3. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  4. US hydropower resource assessment for Colorado

    SciTech Connect (OSTI)

    Francfort, J.E.

    1994-05-01

    The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

  5. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  6. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  7. US hydropower resource assessment for New Jersey

    SciTech Connect (OSTI)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  8. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  9. US hydropower resource assessment for Washington

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  10. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  11. Disappearing rivers — The limits of environmental assessment for hydropower in India

    SciTech Connect (OSTI)

    Erlewein, Alexander

    2013-11-15

    The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

  12. GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly

    E-Print Network [OSTI]

    GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing from tropical and boreal reservoirs are significant. In light of hydropower's potential role as a green to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US Southeast

  13. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    E-Print Network [OSTI]

    Muller, Marc Francois

    2015-01-01

    iv List of Tables vi 1 Introduction 1.1 Mico-hydropower insize . . . . . . . . . hydropower schemes. 88 Micro hydroof run-of-river hydropower cases in Nepal . . . . . . . . .

  14. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food DrivevehĂ­culosStudents

  15. Hydropower Resource Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Water Power Technologies Office. Addthis Related Articles Hydropower Technology Basics Glossary of Energy-Related Terms DOE Launches High-Tech Research Buoys to Advance U.S....

  16. Estimated impacts of climate warming on California’s high-elevation hydropower

    E-Print Network [OSTI]

    Madani, Kaveh; Lund, Jay R.

    2010-01-01

    Cubed M (2005) Potential changes in hydropower productionpotential effects of climate warming on high-elevation hydropower

  17. New Stream-Reach Hydropower Development (NSD) Fact Sheet

    SciTech Connect (OSTI)

    2014-04-25

    This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

  18. A New Vision for U.S. Hydropower

    SciTech Connect (OSTI)

    2014-04-30

    The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision.

  19. ORNL/TM-2012/501 Small Hydropower Cost Reference

    E-Print Network [OSTI]

    Post, Wilfred M.

    ORNL/TM-2012/501 Small Hydropower Cost Reference Model October 2012 Prepared by Qin Fen (Katherine Government or any agency thereof. #12;ORNL/TM-2012/501 Small Hydropower Cost Reference Model Final Project

  20. Research Article Effects of alpine hydropower operations on primary production

    E-Print Network [OSTI]

    Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

  1. User's Guide Virtual Hydropower Prospector Version 1.1

    SciTech Connect (OSTI)

    Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

    2005-11-01

    The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.

  2. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

  3. Microsoft Word - Canadian Hydropower Association QER Submission...

    Broader source: Energy.gov (indexed) [DOE]

    arious s tages o f d evelopment. T here a re m ore t han 2 0,000 m egawatts o f n ew hydropower g eneration t hat h ave e ither b een a nnounced o r a re c urrently b eing b uilt a...

  4. Cumulative biophysical impact of small and large hydropower development, Nu River, China

    E-Print Network [OSTI]

    Tullos, Desiree

    Cumulative biophysical impact of small and large hydropower development, Nu River, China Authors hydropower facilities. This support is manifested in national and international energy and development policies designed to incentivize growth in the small hydropower sector while curtailing large dam

  5. Hydropower Technology Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdateof Energy Hydropower

  6. Laboratory Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration of a New American Low-Head Hydropower Turbine 68bhydrogreensmallhydroch11.ppt More Documents & Publications Real World Demonstration of a New American...

  7. Power Builds Ships Northwest Hydropower Helps Win World War II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nancy Mitman Cathy Ehli Administrators of BPA Mary Jensen Mission Vision Values History Film Vault Film Collection Volume One Film Collection Volume Two 75th Anniversary Hydropower...

  8. Conventional Hydropower Technologies, Wind And Water Power Program...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional...

  9. FERC Hydropower Licensing and Endangered Species - A Guide for...

    Open Energy Info (EERE)

    FERC Hydropower Licensing and Endangered Species - A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  10. Vermont Small Hydropower Assistance Program Site-Specific Determinatio...

    Open Energy Info (EERE)

    Vermont Small Hydropower Assistance Program Site-Specific Determinations Summary Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  11. forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoirO nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S. SANDOVAL-SOLISa *, H. E. DAHLKEa AND B. A. LANEa a Department of Land

  12. U.S. hydropower resource assessment for Oregon

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-03-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

  13. U.S. hydropower resource assessment for Connecticut

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  14. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  15. Virtual Hydropower Prospector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) JumpWinside, NebraskaVirginiaVirtual Hydropower

  16. National Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergyTexas:NGEN8ModelingGypsum JumpHydropower

  17. Hydropower Technology Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch & Development HydropowerRenewable

  18. Hydropower Appropriations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-PacHydronic Systems: Designing for

  19. Summary Report of the 2010 Technology Summit Meeting on Pumped Storage Hydropower Pumped Storage

    E-Print Network [OSTI]

    Post, Wilfred M.

    Summary Report of the 2010 Technology Summit Meeting on Pumped Storage Hydropower 1 Pumped Storage Hydropower Summary Report on a Summit Meeting Convened by Oak Ridge National Laboratory, the National Hydropower Association, and the Hydropower Research Foundation Washington, DC September 20-21, 2010 #12

  20. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

  1. Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses.

  2. Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.

    E-Print Network [OSTI]

    Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

  3. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  4. The Brazilian electricity market : small hydropower strategic planning

    E-Print Network [OSTI]

    Rodriguez Gonzalez Cortes, Thomaz

    2015-01-01

    In 2013, Brazil had the 9th largest electricity generation in the planet, while having the 3rd largest hydroelectric generation (BP Global, 2015). Having more than 70% of its installed capacity coming from hydropower puts ...

  5. Huge Potential for Hydropower: Assessment Highlights New Possible...

    Broader source: Energy.gov (indexed) [DOE]

    by Oak Ridge National Laboratory has identified more than 65 gigawatts of untapped hydropower potential in U.S. rivers and streams. A new assessment conducted by Oak Ridge...

  6. New Hydropower Turbines to Save Snake River Steelhead | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Turbines to Save Snake River Steelhead May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles...

  7. Microhydropower Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have water flowing through your property, you might consider building a small hydropower system to generate electricity. Microhydropower systems usually generate up...

  8. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    E-Print Network [OSTI]

    Muller, Marc Francois

    2015-01-01

    Design and production of run-of-river hydropower cases inoptimal capacity of run-of-river hydropower plants. WATERoptimisation of run-of-river power plants. Proceedings of

  9. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  10. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

  11. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  12. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    SciTech Connect (OSTI)

    Key, T.

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  13. Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,

    E-Print Network [OSTI]

    Butler, David R. - Department of Geography, Texas State University

    Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a, , Franco H I G H L I G H T S · Impact of climate change on hydropower in the Italian and Swiss alpine regions October 2013 Available online 14 November 2013 Keywords: Climate change Hydropower management Electricity

  14. Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,

    E-Print Network [OSTI]

    Asselin, Hugo

    Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

  15. Water Power Technologies The most widespread environmental constraints to the development of hydropower are interference

    E-Print Network [OSTI]

    to the development of hydropower are interference with fish passage, provision of adequate environmental flows to address these issues and to help ensure environmentally sound hydropower development in the following through hydropower turbines, remains a serious problem at many sites. The fish passage task focuses

  16. Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations

    E-Print Network [OSTI]

    Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations In mountainous areas, high-head-storage hydropower plants produce peak load energy. The resulting unsteady water habitat improvement. This method was applied to an Alpine river downstream of a complex storage hydropower

  17. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  18. Research Article Effects of Alpine hydropower dams on particle transport and

    E-Print Network [OSTI]

    Gilli, Adrian

    Research Article Effects of Alpine hydropower dams on particle transport and lacustrine December 2006 Abstract. The effects of high-alpine hydropower damming on lacustrine sedimentation impact, such as by hydropower dam construction that form artifi- cial sediment sinks acting as manmade

  19. How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer

    E-Print Network [OSTI]

    Jager, Henriette I.

    How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Ć Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

  20. SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994

    E-Print Network [OSTI]

    SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

  1. Memorandum of Understanding for Hydropower Two-Year Progress Report

    SciTech Connect (OSTI)

    None

    2012-04-01

    On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts.” This report documents efforts so far.

  2. Zhangye Longhui Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi HydropowerHydropower Co Ltd

  3. Zhangye Longqu Stage III Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi HydropowerHydropower Co

  4. Zhanyi County Tingzitang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi HydropowerHydropower

  5. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  6. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5 GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.

  7. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  8. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  9. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy Cha-Ching!ChapterHydropower

  10. 16 R&D Projects Across 11 States to Advance Hydropower in U.S.

    Broader source: Energy.gov [DOE]

    Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly.

  11. Real World Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    World Demonstration of a New American Low-Head Hydropower Unit 69dhydrogreenhydrodemonstration12.ppt More Documents & Publications Laboratory Demonstration of a New American...

  12. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Office of Energy Efficiency and Renewable Energy (EERE)

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  13. Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager

    E-Print Network [OSTI]

    Jager, Henriette I.

    1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

  14. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  15. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  16. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Introduction For centuries, man has modified running waters [51]. In alpine rivers, production of hydropower of power plants are commonly in use: (1) run-of-river power plants that continuously pro- cessHydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber

  17. Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development

    SciTech Connect (OSTI)

    Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

    2014-11-04

    Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

  18. Assessment of the Effects of Climate Change on Federal Hydropower

    SciTech Connect (OSTI)

    Sale, Michael J.; Shih-Chieh, Kao; Ashfaq, Moetasim; Kaiser, Dale P.; Martinez, Rocio; Webb, Cindy; Wei, Yaxing

    2012-10-01

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  19. Effects of Climate Change on Federal Hydropower. Report to Congress

    SciTech Connect (OSTI)

    2013-08-01

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  20. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 JumpPotentialHydropowerGeneration Jump to: navigation,

  1. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 JumpPotentialHydropowerGeneration Jump to:

  2. Datian Xinyuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler EvonikDatian Xinyuan Hydropower

  3. Chaling Lianguan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation,CauveryGasCesOnChaling Lianguan Hydropower

  4. Longnan Huixin Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixin Hydropower Co Ltd Jump to:

  5. Longshan County Wuyahe Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixin Hydropower Co Ltd JumpLongshan

  6. Longsheng County Yulong Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixin Hydropower Co Ltd

  7. Longsheng Ge autonomous county Hongshuihe Hydropower Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixin Hydropower Co

  8. Longsheng Gezu Autonomous County Dayun Hydropower Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixin Hydropower CoInformation

  9. Lushui Huili Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-PacificInformation CountyHuili Hydropower

  10. Mabian Shichuang Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name: Lyon-LincolnShichuang Hydropower Investment

  11. Miyi Chengnan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH JumpLLC JumpMissouriMiyi Chengnan Hydropower

  12. Ningyuan County Jiuyi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy ResourcesJiuyi Hydropower Co Ltd Jump to:

  13. Pingnan County Hengli Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMauna Loa |Hengli Hydropower Co

  14. Pingnan Daixi Liyudang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMauna Loa |Hengli Hydropower

  15. Qinghai Yulong Hydropower Construction Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvTHuapengYulong Hydropower

  16. Fugong Hengda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|Hengda Hydropower Development

  17. Fugong Hongda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|Hengda Hydropower

  18. Fugong Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|Hengda HydropowerFugong

  19. Gansu Ansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarket Jump to:Ansheng Hydropower

  20. Gansu Hezuo Anguo Hydropower Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuo Anguo Hydropower

  1. Gansu Mingzhu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuoMingzhu Hydropower

  2. Guangxi Baise Dongsun Hydropower Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd Jump to: navigation,Dongsun Hydropower

  3. Guangxi Dachuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd Jump to: navigation,DongsunHydropower

  4. Heishui Jinyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckert BXT Solar GmbHJinyuan Hydropower

  5. Hengyuan Xiaojianghe Hydropower Generating Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckert BXTHengyuan Xiaojianghe Hydropower

  6. Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool Jump to: navigation,Hongyuan Hydropower

  7. Hua an Xipi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool Jump to:EthanolHua an Xipi Hydropower

  8. Hubei Huaying Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaning XinHuaying Hydropower

  9. Hubei Province Enshi City Maweigou River Hydropower Development Co Ltd |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaning XinHuaying HydropowerOpen

  10. Jian Gongge Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEAPvtJian Gongge Hydropower

  11. Jianghua Jianqiao Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEAPvtJianJianqiao Hydropower

  12. Jianyang Longjiang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiang Hydropower Development

  13. Jianyang Xinghu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiang Hydropower

  14. Rongjiang County Sanjunyan Small Hydropower Station | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast JumpInformation Sanjunyan Small Hydropower

  15. Shidiaolou Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio: EnergyIndustryCoShidiaolou Hydropower

  16. Sichuan Ebian Wanping Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower Co Ltd Jump to: navigation,

  17. Sichuan Gulin Minshu Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower Co Ltd Jump

  18. Sichuan Jiarong Dayu Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower Co LtdInformation

  19. Sichuan Jiulong Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower Co LtdInformationJiulong

  20. Sichuan Minjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe Power Co

  1. Sichuan Miyi Shixia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe Power CoShixia

  2. Sichuan Yuantong Baixi Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping HydropowerYongxiang Polysilicon Co

  3. Songtao Guanghe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:Solkar SolarSongtao Guanghe Hydropower

  4. Tianquan County Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstituteTedaTianquan County Hydropower Co

  5. Tiantai County Chayuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstituteTedaTianquan County Hydropower

  6. Wudu Xiangyu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: navigation, searchWorldWudu Xiangyu Hydropower

  7. Xining Chengxiyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: WyomingMinruiOpenChengxiyuan Hydropower

  8. Yanling Xinsheng Hydropower Plant Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPuping ElectricXinsheng Hydropower

  9. Yanyuan Lujiang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuan Lujiang Hydropower

  10. Yingjiang Nandihe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:Sanming Lianfa Co LtdHongfuNandihe Hydropower Co

  11. Yunlong Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:SanmingYunlong Liyuan Hydropower Development Co

  12. Yunnan Baoshan Supahe Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:SanmingYunlong Liyuan Hydropower

  13. Yunnan Cangyuan Huatong Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:SanmingYunlong Liyuan HydropowerInformation

  14. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi Hydropower Plant Co Ltd Jump

  15. Zhangjiakou Jianghe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi Hydropower Plant Co Ltd

  16. Zhangye City Baolong Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi Hydropower Plant

  17. Zhangye Heihe Hyaulic and Hydropower Construction Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxi Hydropower

  18. Zhaoping I Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxiHydropower Development Co Ltd

  19. Zhaotong Jili Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxiHydropower Development Co

  20. Zhaotong Lijing Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuan ElectricTumuxiHydropower Development

  1. Hydropower, Wave and Tidal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and Tidal » Technology

  2. ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality'Lean' System09ENERGYPlants

  3. DOE/PSU Graduate Student Fellowship Program for Hydropower

    SciTech Connect (OSTI)

    Cimbala, John M.

    2014-03-30

    The primary objective of this project is to stimulate academic interest in the conventional hydropower field by supplying research support for at least eight individual Master of Science (MS) or Doctoral (PhD) level research projects, each consisting of a graduate student supervised by a faculty member. We have completed many of the individual student research projects: 2 PhD students have finished, and 4 are still working towards their PhD degree. 4 MS students have finished, and 2 are still working towards their MS degree, one of which is due to finish this April. In addition, 4 undergraduate student projects have been completed, and one is to be completed this April. These projects were supervised by 7 faculty members and an Advisory/Review Panel. Our students and faculty have presented their work at national or international conferences and have submitted several journal publications. Three of our graduate students (Keith Martin, Dan Leonard and Hosein Foroutan) have received HRF Fellowships during the course of this project. All of the remaining students are anticipated to be graduated by the end of Fall Semester 2014. All of the tasks for this project will have been completed once all the students have been graduated, although it will be another year or two until all the journal publications have been finalized based on the work performed as part of this DOE Hydropower project.

  4. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  5. EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect (OSTI)

    2011-12-01

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

  6. DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)

    SciTech Connect (OSTI)

    Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-07-01

    This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

  7. Decision Support System for Adaptive Water Supply Management

    E-Print Network [OSTI]

    Vogel, Richard M.

    levels, 3 optimum reservoir balancing, and 4 maximum hydropower revenues. Case studies document the value for potential floods require adaptive management of the system as climatic and hydrologic events occur, and the maximization of revenues from three hydropower facilities. It is normally assumed that the water supply system

  8. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect (OSTI)

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

  9. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Title 43 CFR Part 45 Conditions and Prescriptions in FERC Hydropower...

    Open Energy Info (EERE)

    to mandatory conditions and prescriptions developed for inclusion in a hydropower license. Published NA Year Signed or Took Effect 2005 Legal Citation 43 CFR 45.1 et seq....

  11. Reforming Small Power Systems under Political Volatility: The Case of Nepal

    E-Print Network [OSTI]

    Nepal, Rabindra; Jamasb, Tooraj

    , electrification and engineering services. The major objectives of the Water Resource Development Policy are to develop hydropower resources at economically efficient costs, to harmonise electrification with economic activities and to develop hydropower... -richest country in hydropower after Brazil (Joshi and Khadka, 2009) and has a further 40 GW potential of technically and economically viable resources (EIA, 2010). However, the vertically-integrated system has developed only around 0.72 GW of generation...

  12. A multi-scale approach to address environmental impacts of small hydropower development

    SciTech Connect (OSTI)

    McManamay, Ryan A; Samu, Nicole M; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine L

    2014-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  13. Hydropower Vision: Task Force Charter V2 06/09/2014 U.S. Department of Energy Wind and Water Power Technologies Office - Hydropower Vision Project 1

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdateof Energy HydropowerHydropower Vision:

  14. Population Recovery and Conservation Habitat Restoration Water Use and Hydropower Forests and Fish EAST FORK OWYHEE RIVER SALMON AND

    E-Print Network [OSTI]

    Population Recovery and Conservation · Habitat Restoration · Water Use and Hydropower · Forests........................................................................................................................................... 18 Water Quality Analysis ....................................................................................................................... 18 Nevada Division of Environmental Protection Water Quality Sampling

  15. Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.

    SciTech Connect (OSTI)

    Loose, Verne W.

    2011-01-01

    The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints on hydro-electric resources, and production cost simulations aimed at quantifying the increased role of hydro.

  16. Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing

    SciTech Connect (OSTI)

    Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

    2011-01-01

    The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

  17. The impacts of `run-of-river' hydropower on the physical and ecological condition of rivers Anderson et al, 2014 (Water and Environment Journal)

    E-Print Network [OSTI]

    Hinch, Scott G.

    The impacts of `run-of-river' hydropower on the physical and ecological condition of rivers Anderson et al, 2014 (Water and Environment Journal) OF HYDROPOWER AND STREAMS A tale of run-of-river hydropower facilities and their possible impacts on fish populations #12;2 #12;3 IPCC, 2014 #12;4 From left

  18. i i h i ffMeasures to mitigate the Negative Effects of Complex Hydropower Schemes on River Systemsp y p y

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    i i h i ffMeasures to mitigate the Negative Effects of Complex Hydropower Schemes on River Systemsp Temperature pp High-head storage hydropower Temperature Temperature Modelling plants in Alpine areas are able mental conditions downstream of hydropower schemes taken into account for producing the dominant

  19. This booklet explains how hydropower is a part of the nation's energy base and how the U.S. Army Corps of Engineers helps develop this

    E-Print Network [OSTI]

    US Army Corps of Engineers

    #12;This booklet explains how hydropower is a part of the nation's energy base and how the U by building and operating hydropower plants in connection with its large multiple-purpose dams. Hydroelectric Hydropower Our supply of fossil fuel is limited; we still buy a substantial portion of the oil we use from

  20. Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  1. Hydropower : A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    McCoy, Gilbert A.

    1992-12-01

    The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

  2. EA-2017: Real-World Demonstration of a New, American Low-Head Hydropower Turbine, Monongahela River, approximately ten miles east of Pittsburg, PA

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts associated with a DOE proposal to provide federal funding to Hydro Green Energy (HGE) to fabricate and install one (1) interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) and supporting civil infrastructure as part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system that would be integrated into the existing Braddock Locks and Dam.

  3. Summary Report of the 2010 Summit Meeting on Environmental Mitigation Technology for Hydropower

    E-Print Network [OSTI]

    Post, Wilfred M.

    Technology for Hydropower 2 Introduction Hydroelectric power production is largely free of several major plants, hydroelectric generation does not emit toxic contaminants (e.g., mercury) or sulfur and nitrogen of vegetation and soil carbon flooded. Hydroelectric power provides an opportunity to reduce the production

  4. SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE G. P. Harrison, H. W. Whittington

    E-Print Network [OSTI]

    Harrison, Gareth

    and electricity sales price and that, importantly, it showed a similar sensitivity to precipitation change-fuelled electricity generation with renewable sources including hydropower. However, simultaneous changes in climate the impact, the overall financial impact remained significant. Comparison with (non-climate) project

  5. A new challenge for hydropower in Europe: Rehabilitation what to rehabilitate and when to rehabilitate

    SciTech Connect (OSTI)

    Denis, B.; Piron, V.

    1998-07-01

    Most of the hydropower plants today in operation in Europe were built between the beginning of the century and the sixties. Many of them need to be rehabilitated with the aim of extending their working life, increasing global efficiency and reducing operating and maintenance costs. The required rehabilitation could cover a large diversity of activities ranging from simple rewinding of a stator to the complete refurbishment of a scheme including replacement of all the electromechanical equipment in the plant or even refurbishment or raising of the dam. The main objectives of rehabilitation are generally relative to: Safety--particularly important for dams and appurtenant structures; Availability--limitation of chronic loss of potential output; Extending life-time--restore the equipment to a second life, practically equivalent to the initial life-time; Improvement of operating and maintenance conditions; Improvement of plant performance--increase efficiency or upgrading. The key issues for the owner of the plant are therefore what to rehabilitate and when to rehabilitate. To answer this question, a detailed feasibility study is necessary including expert evaluation with inspections and specific measurements, analysis of rehabilitation options, and economic study with a comparison of the benefits and costs of the various alternatives. The benefits are generally calculated from long term marginal costs (LRMC) for the power system in the country in question, simulating power station operation and optimizing generation to maximize benefits for each option. The costs shall take into account investment cost for each piece of rehabilitation equipment or structure and modification of operating costs due to the new operating and maintenance conditions. After the feasibility study, the owner should be in a position to choose the most appropriate rehabilitation project for his needs and requirements.

  6. Development of a Low-Carbon Indicator System for China

    E-Print Network [OSTI]

    Price, Lynn

    2012-01-01

    provides rich sources for hydropower, Hubei Province hasapproach favors large hydropower producers and exporters

  7. The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú

    E-Print Network [OSTI]

    Zambrano-Barragán, Patricio Xavier

    2012-01-01

    In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

  8. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  9. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect (OSTI)

    Pasha, M. Fayzul K. [California State University, Fresno; Yeasmin, Dilruba [ORNL; Kao, Shih-Chieh [ORNL; Hadjerioua, Boualem [ORNL; Wei, Yaxing [ORNL; Smith, Brennan T [ORNL

    2014-01-01

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  10. Off-Grid or Stand-Alone Renewable Energy Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    small hydropower system, you will need to invest in some additional equipment (called "balance-of-system") to condition and safely transmit the electricity to the load that will...

  11. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  12. Hydropower Upgrades to Yield Added Generation at Average Costs...

    Broader source: Energy.gov (indexed) [DOE]

    selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and advanced control systems in order to...

  13. Hydropower Generators Will Deliver New Energy from an Old Dam...

    Energy Savers [EERE]

    2,000 homes for a year. The project also developed and installed an innovative fish collection and passage system that is reintroducing Washington's endangered steelhead...

  14. Hydropower R&D: Recent Advances in Turbine Passage Technology | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdateof Energy Hydropower R&D: Recent

  15. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-PacHydronic Systems:

  16. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  17. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    SciTech Connect (OSTI)

    Kao, Shih-Chieh

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  18. Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK

    E-Print Network [OSTI]

    Kammen, Daniel M.

    the oceans. It is this solar energy, converted into the latent heat of evaporation of water, that powers the hydrological cycle on which hydro- power depends. Hydro-electricity is usually associated with the buildingMicro-hydropower: status and prospects O Paish IT Power Limited, The Manor House, Chineham Court

  19. New Small Hydropower Technology to be Deployed in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Opsahl, Egil; Gordon, Jim; Bishop, Norm

    2012-01-01

    Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

  20. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  1. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    E-Print Network [OSTI]

    Coughlin, Katie

    2008-01-01

    on high-elevation hydropower generation in California’sCO2 [58] Solar Irradiance Hydropower Hadley et al. Franco &summer flows decrease hydropower production in summer and

  2. Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction

    SciTech Connect (OSTI)

    Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

    2010-09-15

    In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

  3. RETURN TO THE RIVER -2000 Chapter 6 Hydroelectric System Development187

    E-Print Network [OSTI]

    RETURN TO THE RIVER - 2000 Chapter 6 Hydroelectric System Development187 Return to Table of Contents Go to Next Chapter CHAPTER 6. HYDROELECTRIC SYSTEM DEVELOPMENT: EFFECTS ON JUVENILE AND ADULT of the Hydroelectric System Development of the hydropower system in the Columbia River basin began in the late

  4. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    E-Print Network [OSTI]

    Coughlin, Katie

    2008-01-01

    on wind power potential and on hydropower production.reduce hydropower; no clear trend in wind potential More

  5. Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population

    SciTech Connect (OSTI)

    Coutant, Charles C; Mann, Roger; Sale, Michael J

    2006-09-01

    This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

  6. Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    ENAC/ Flood management in a complex river basin with a real-time decision support system based System MINDS proposes the optimal hydropower plants management for flood peak reduction PREDICTING FLOODS for population safety and! Computational program: Routing System MINERVE Run-off model Infiltration model

  7. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

  8. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  9. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    electricity by heat power plants, hydropower plants and nuclear plants, which are all centralized large system and would have a low cost of every kWh of electricity. However, traditional generation method electricity management method for this topology is of great demand to be developed. 2. Model Formulation

  10. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Broader source: Energy.gov (indexed) [DOE]

    Assessment Initiative ...16 CONTINUING: Validation and Analysis of Alden Fish-Friendly Turbine ...17 NEW: Advanced...

  11. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3 ofMARVIN 1

  12. Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in Data-Scarce Regions

    E-Print Network [OSTI]

    Muller, Marc Francois

    2015-01-01

    The costs of small- scale hydro power production: Impact onsystems analysis of hydro power potential in south africa.sup- port system for micro-hydro power plants in the amazon

  13. EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA

    Broader source: Energy.gov [DOE]

    DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

  14. Lin Cang Lin Jiang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp.Lilliputian SystemsLin Cang

  15. LinCang Yun Tou Yue Dian Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp.Lilliputian SystemsLin

  16. Reliability analysis of electric power systems including time dependent sources 

    E-Print Network [OSTI]

    Kim, Younjong

    1987-01-01

    Chairman of Advisory Committee: Chanan Singh A method for reliability analysis of electric power systems with time dependent sources, such as photovoltaic and wind generation, is introduced. The fluctuating characteristic of unconventional generation... and active solar. wind, geothermal, and hydropower. Of all the renewable energy technologies that have been the focus of encouraging government and private R k D efforts, photovoltaic generation and wind turbine generation appear to be the leading...

  17. Hydropower and the environment: A case study at Glen Canyon Dam

    SciTech Connect (OSTI)

    Wegner, D.L. [Denver Technical Service Center, Flagstaff, AZ (United States)

    1995-12-31

    The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

  18. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.

  19. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  20. Brainpower for Hydropower

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced the 2012 selections for the Hydro Fellowship Program in cooperation with the Hydro Research Foundation.

  1. Hydropower major rehabilitation projects

    SciTech Connect (OSTI)

    Norlin, J.A. [Army Corps of Engineers, Portland, OR (United States)

    1995-12-31

    The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.

  2. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  3. History of Hydropower

    Broader source: Energy.gov [DOE]

    Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour more than 2,000 years ago. The evolution of the modern...

  4. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast FactsEMC2Flexible

  5. 2014 Hydropower Market Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof Energy determined2014front cover:

  6. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new measures forand

  7. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new measures forandpotential

  8. Hydropower Process Improvements

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate WebinarProductionStorageHydrogenProcess

  9. Hydropower in the Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food

  10. Sandia Energy - Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & DrillingNanomaterials HongyouHydrogen

  11. Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Folga, S.; Poch, L.A. [and others

    1995-03-01

    This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

  12. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix B HYDROPOWER AVAILABILITY IN RESPONSE TO SALMON RECOVERY

    E-Print Network [OSTI]

    addresses only those measures that affect the operation of the Northwest's hydroelectric power system of the hydroelectric power system. Some energy is lost when it is spilled and some energy is shifted out of winter suggested operation is different and affects the hydroelectric system's capability to produce electricity

  13. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 729 N.E. Oregon, Suite 200, Portland, Oregon 97232

    E-Print Network [OSTI]

    .................................................................................................... 7 A. The Columbia River Basin Hydropower System Associated with Using the Hydropower System to Serve Hourly and Seasonal Peak Loads

  14. 1110-2-3600 Department of the Army

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1110-2-3600 30 Nov 87 Subject Hydroelectric Power . . . Historical Background. Hydropower Evaluation. Types of Projects ... Integration and Control of Federal Hydropower Systems . . . . . . . Non-Federal Development of Hydropower at Corps of Engineers Projects Water Supply . . . . . . . . Irrigation

  15. Supplemental Recovery Plan Module for Snake River Salmon and Steelhead

    E-Print Network [OSTI]

    River Hydropower Projects June 2014 Prepared by the: National Marine Fisheries Service West Coast Region............................................................................................................................... 3 2. Hydropower System Overview Hydropower Projects (Hydro Module, dated September 24, 2008) for Snake River anadromous fish species listed

  16. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    4.3 Hydropower and Pumped Hydro Storage . . 4.4 Thermal24 Integration of Wind and Hydropower Systems; Volume 1:and Economics of Wind and Hydropower Integration. Technical

  17. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    and M. Milligan. Wind energy and power system operations: AEnergy Efficiency and Renewable Energy Wind and HydropowerEnergy Efficiency and Renewable Energy (Wind and Hydropower

  18. Summary of the Midwest conference on small-scale hydropower in the Midwest: an old technology whose time has come

    SciTech Connect (OSTI)

    1980-05-01

    A variety of decision makers convened to examine and discuss certain significant problems associated with small-scale hydroelectric development in the Midwestern region, comprised of Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin. The conference opened with an introductory panel of resource persons who outlined the objectives of the conference, presented information on small-scale hydro, and described the materials available to conference participants. A series of workshop sessions followed. Two of the workshop sessions discussed problems and policy responses raised by state and Federal regulation. The remaining two workshops dealt with economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model developed by the Thayer School of Engineering at Dartmouth College. A plenary session and recommendations completed the workshop.

  19. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    electricity. thermal and hydro-power are used almost to thecoal. power, coal and hydro-power. On-site solar componentsthe levels used here. Hydro power is included at roughly

  20. Distributed Energy Systems in California's Future: A Preliminary Report Volume 2

    E-Print Network [OSTI]

    Balderston, F.

    2010-01-01

    the limited. potential of hydropower in absolute magnitudehydropower with long-distance transmission to load centers, there is a potential

  1. Region Qinghai Dangshun Hydropower Development Co Ltd Qinghai Dangshun Hydropower

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) Jump to:|OpenRegenesis Power

  2. First-ever Hydropower Market Report Covers Hydropower Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPP |Department ofElectric

  3. Regulatory and Hydropower Policy (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes establish the State's authority to “control and supervise activity that changes or will change the course, current, or cross section of public waters, including the construction,...

  4. Council's Regional Hydropower Potential Scoping

    E-Print Network [OSTI]

    Hydroelectric Association Lisa Larson, HDR Rick Miller, HDR Discussion of analysis Reaction? 2 #12;Objective Northwest Hydroelectric Association HDR, Inc. MWH Global Black & Veatch Bonneville Environmental

  5. Hydropower Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil HusseinH2FASTCELLHydrogenation ofBasics

  6. Hydropower Projects | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil

  7. Reach Survival Estimates, 2008 Bill Muir, Steve Smith, Doug Marsh,

    E-Print Network [OSTI]

    through the hydropower system #12;Outline · Juvenile travel time and survival through the hydropower the hydropower system · Data problem in lower river in 2008? · Percentage transported #12;Outline · Juvenile travel time and survival through the hydropower system · Data problem in lower river in 2008

  8. Message from the Council The Columbia River Basin Fish and Wildlife Program of the Northwest Power and

    E-Print Network [OSTI]

    billion of electricity revenues to improve fish passage at hydropower dams, acquire and improve fish hydropower system improvements for ocean-going fish, including water management and fish passage at dams of the hydropower system. Key stream reaches were protected from hydropower development, and the Council promoted

  9. Highline Pacific Northwests High-Voltage Transmission System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nancy Mitman Cathy Ehli Administrators of BPA Mary Jensen Mission Vision Values History Film Vault Film Collection Volume One Film Collection Volume Two 75th Anniversary Hydropower...

  10. Local Option- Property Tax Exemption for Renewable Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Beginning in October 2013, a municipality may also adopt an ordinance to exempt commercial or industrial Class I renewable resources*, certain hydropower facilities**, or solar thermal or geother...

  11. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  12. CARL J. BAUER* Dams and Markets: Rivers and

    E-Print Network [OSTI]

    hydropower in Chile as an example of the water-energy nexus: that is, analyzing hydropower along the two in both water and electricity sectors, and the national electricity system depends heavily on hydropower. Because hydropower is both a use of water and a source of electricity, it plays a different yet essential

  13. SCHEDULING TVA'S RESERVOIRS WITH RIVERWARE Timothy M. Magee, Operations Research Analyst, Center for Advanced Decision Support

    E-Print Network [OSTI]

    Ware's capabilities with TVA's daily operations scheduling models which optimize hydropower value while meeting non and operates 29 conventional hydropower plants and one pumped storage hydropower plant in the Tennessee Valley to hydropower generation, the reservoir system provides other beneficial services throughout the Tennessee

  14. Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

  15. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    potential for surface and subsurface storage to limit the adverse impacts of drought and snowpack reduction on water supply and hydropower

  16. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  17. BITTERROOT RIVER SUBBASIN ASSESSMENT FOR FISH AND

    E-Print Network [OSTI]

    that respond to impacts from the development and operation of the Columbia River hydropower system. Nothing hydropower system. Nothing in this Plan or the participation in its development is intended to, and shall

  18. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    of the Columbia River hydropower system. Nothing in this Plan, or the participation in its development, or related to, the development and operation of the Columbia River hydropower system. Nothing in this Plan

  19. October 19, 2007 Tom Karier, Chairman

    E-Print Network [OSTI]

    with the existing hydropower system in a way that maintains system reliability. 1 #12;2 (Table 1 is a good when corrected for actual hydropower generation in that year. From 2005 levels of CO2 production

  20. Scale variability of water, land, and energy resource interactions and their influence on the food system in Uganda

    E-Print Network [OSTI]

    Mukuve, Feriha Mugisha; Fenner, Richard A.

    2015-08-04

    hand, and policies to spur economic growth on the other such as increased energy production (hydropower and biofuels) and industrialisation, which may conflict with the overarching food security objective. Crucially however, policies to address... competition between water-use for agricultural purposes versus hydropower production to meet energy objectives. McCartney & Girma (2012) investigated the trade- offs between hydropower production and irrigation water use for the Nile’s riparian countries...

  1. Departments of Energy and Interior Award Nearly $17 Million for...

    Office of Environmental Management (EM)

    enhance environmental performance while increasing electricity generation, mitigating fish and habitat impacts and enhancing downstream water quality. Advanced Hydropower System...

  2. Real-Time and Interactive Attacks on DNP3 Critical Infrastructure Using Scapy

    E-Print Network [OSTI]

    Boyd, Colin

    testbed. The testbed simulated actuators and sensors of a hydro-power system. The attacks using DNP3 were

  3. 2 Executive Summary 2.1 Purpose and Scope

    E-Print Network [OSTI]

    by the development and operation of the Columbia River hydropower system. The primary goal of subbasin planning): The development of the hydropower system in the Columbia River Basin has affected many species of wildlife as well of the hydropower system was not just land,

  4. BITTERROOT RIVER SUBBASIN MANAGEMENT PLAN FOR FISH

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  5. BITTERROOT RIVER SUBBASIN PLAN FOR FISH AND WILDLIFE

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  6. NORTHWEST POWER AND CONSERVATION COUNCIL BRIEFING BOOK

    E-Print Network [OSTI]

    ......................................................................................................................................................................................4 1. Columbia River hydropower development as the construction of the hydropower system itself had seemed during the New Deal two generations before. -- Joseph, 1996, Page 216. ... the Northwest Power Act forged a link between regional energy development and fish

  7. Imnaha Subbasin Assessment May 2004259 1.2.10.3 Key Environmental Correlates

    E-Print Network [OSTI]

    It is generally accepted that hydropower development on the lower Snake River and Columbia River is the primary). However, less agreement exists about whether the hydropower system is the primary factor limiting recovery by the Columbia River hydropower system. 1.3.1.2 Estuary Habitat losses in estuarine environments have also

  8. Supplement to The Snake Hells Canyon Subbasin Plan Introduction

    E-Print Network [OSTI]

    of subbasin impacts. Aquatics (See Assessment 193-195) Impacts from the hydropower system combined survival to a level that ensures recovery of anadromous populations. The hydropower system keeps yearly. The hydrosystem causes direct, indirect, or delayed mortality, mainly to emigrating juveniles. Hydropower

  9. Bruce A. Measure Dick Wallace

    E-Print Network [OSTI]

    of Snake River migrants that were collected and transported from mainstem Snake River hydropower dams survival for Snake River yearling Chinook salmon and steelhead through the hydropower system (Snake River hydropower system survival for yearling Chinook was 54.8%, which is higher than the average of 49

  10. John G. Williams Gene M. Matthews

    E-Print Network [OSTI]

    to the hydropower system to stem the decline ofpopulations recently listed under the Endangered Species Act. However, a review of the 1970's data found that estimated fish survivals through the hydropower system reflected through turbines at mainstem hydropower projects was expressed even before construction of Bonneville Dam

  11. Hydropower Potential Studies Reviewed for Scoping Study

    E-Print Network [OSTI]

    Feasibility Study on Five Potential Hydroelectric Power Generation Locations, North Unit Irrigation District B/ENERGY STORAGE PROJECTS C1 Assessment of Opportunities for New US Pumped Storage Hydroelectric Plants Using Hydroelectric Pumped Storage for Enabling Variable Energy Resources within the FCRPS C4 Technical Analysis

  12. Hydropower Analysis Center List of Mandatory Services

    E-Print Network [OSTI]

    US Army Corps of Engineers

    closely with the Corps of Engineers Hydroelectric Design Center (HDC) on studies involving the evaluation project #12;outputs and economic benefit evaluations of all existing and new hydroelectric plants. Types. These values are combined with energy and capacity data to determine power benefits. (f) Hydroelectric Design

  13. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to find out about financial incentives in your area. Addthis Related Articles Use solar power to heat water and more Today's solar power is highly efficient. You can buy...

  14. Pumped Storage and Potential Hydropower from Conduits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Switzerland, in 1882, where a pump and turbine operated with a small reservoir as a hydro-mechanical storage syst em for nearly a decade. The first unit in North America was...

  15. WIND AND HYDROPOWER TECHNOLOGIES December 2009

    E-Print Network [OSTI]

    Post, Wilfred M.

    to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e of environmental effects that may occur and describes how monitoring and adaptive management principles might

  16. Draft Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    (APLIC 2012) raptor protection. These standards are considered by the United States Fish and Wildlife Service ("USFWS") as preferred to minimize the potential for raptor...

  17. New Stream-Reach Hydropower Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resource that could be available for development, and using present-day assumptions about hydro- power technology. The methodol-ogy alone does not produce estimates of generation,...

  18. Mapping Scotland’s hydropower resource 

    E-Print Network [OSTI]

    Duncan, Niall James

    2014-06-30

    Increased renewable electricity generation is key to the reduction of carbon emissions and has the added benefit of reducing reliance on imported gas and coal while increasing diversity of the generation mix. To encourage ...

  19. Ohio Hydropower Potential Inventory Phase I report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The dams researched in the Ohio Department of Natural Resources (ODNR) files were those contained in a list of Ohio dams provided by the ODNR. The result of this file research is a list of 997 dams contained herein that tabulates information on hydraulic head, stream flow, drainage area, and usage. This listing indicated that all but 137 of the 997 dams can be eliminated from consideration for Phase II research. The second phase would be required to further identify which of the 137 dams might have viable hydroelectric potential and define their basic hydroelectric parameters.

  20. Types of Hydropower Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGEDepartmentfanVehicleLLCIllness at the Y-12

  1. Huaneng Lancang River Hydropower | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville,AdvancedHowellHualalai Northwest

  2. Pumped Storage and Potential Hydropower from Conduits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-StakeholdersProtocol forSecretaryEnergy

  3. RAPID/Hydropower/Overview | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <Utah < RAPID‎ |

  4. RAPID/Hydropower/Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <Utah < RAPID‎ |source History View

  5. Boosting America's Hydropower Output | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBerylliumBiomimetic(cousinDataTalks

  6. Hydropower Resource Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergyHughfuelRSS Thehas releasedused

  7. Microsoft Word - Hydropower Council Agenda 2007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal CERTIFIED MAIL43 PART56 0 20 40 6087

  8. Microsoft Word - Hydropower Council Agenda 2008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal CERTIFIED MAIL43 PART56 0 20 40

  9. Diebu Kababanjiu Hydropower Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie JumpDiebu

  10. Ebian Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|Elec PwrElectric CoopEbian

  11. British Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJerseyEconomyBridger Valley

  12. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite On TechnologyCorn

  13. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA Jump to:Energy TechLtda JumpErik

  14. Furong Hydropower Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd Jump to:

  15. Heilongjiang Province Linhai Hydropower Development | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckert BXT Solar GmbH Jump to:Heidrich

  16. International Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMakingBiofuels JumpIntermountainEnergyInc

  17. Jintai Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:HuilunWaterInformation Zhongtai

  18. Jiulong Wanbao Hydropower Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon Material Co Ltd JumpEnergyWanbao

  19. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu Hydro Power Co Ltd

  20. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu Hydro Power Co LtdDanihe

  1. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstituteTeda EnvironmentalTianjin,Baxin

  2. RAPID/Hydropower | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url JumpTechnologyGeothermal/Roadmap/Flowcharts <

  3. Xiaogushan Hydropower Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: WyomingMinrui InvestmentOpenXiangtang

  4. Commonwealth Hydropower Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercial Grade Dedicationa newState Government Federal

  5. Leveraging Untapped U.S. Hydropower Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u tMr.Leveraging Untapped U.S.

  6. Draft Environmental Assessment Sleeping Giant Hydropower Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal Register /1 PiotrDraft3:Draft

  7. Types of Hydropower Plants | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: April 15, 2014Twodimensional timeKurt'sFuel Cells

  8. Glossary of Hydropower Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current: SwitchGlennPast ProjectsGlossary

  9. How Hydropower Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartment of EnergyDepartmentHow

  10. 2014 Hydropower Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofApplianceU.S. Department ofIn 2014, the U.S.ofEnergyA

  11. History of Hydropower | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school4-TP59.01 C5;44 4 oEnergyBasics »

  12. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil HusseinH2FASTCELLHydrogenation

  13. Hydropower Modernization Initiative Proposed Implementation Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil HusseinH2FASTCELLHydrogenationMemorandum

  14. Benefits of Hydropower | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energy Advisor the fish ladder on the Ice Harbor

  15. Hydropower Memorandum of Understanding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement »Hydrogen and Fuel CellCoal

  16. Hydropower Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial OpportunitiesDepartment ofScienceHow MuchResearch &

  17. MULTI-OBJECTIVE MODELING IN RIVERWARE FOR USACE-SWD Allen Avance, Hydraulic Engineer, U.S. Army Corp of Engineers, Fort Worth, TX,

    E-Print Network [OSTI]

    supply, hydropower, navigation, recreation and water quality. They have developed several models in River balancing reservoir storage; and hydropower releases to meet system load. The integration of the SWD-federal reservoirs. Regulation requires management for flood control, hydropower, navigation, municipal

  18. Staff summary of Issues & Recommendations Renewable Energy

    E-Print Network [OSTI]

    or protected areas, as was done for hydropower; 3. Explicit evaluation of transmission system expansion and its areas protected from wind power generation as was done with protected areas for hydropower development Species Council ( ) a) Renewable Energy Recommendation: Provide guidance to hydropower producers

  19. Network Stochastic Programming for Valuing Reservoir Storage

    E-Print Network [OSTI]

    complicates the simultaneous optimization of hydropower for a multi-stage, multi-reservoir system. The expected value of hydropower must be simultaneously optimized over all time steps and scenarios. Previous stochastic programming model of the Tennessee River Basin converged rapidly to an upper bound on hydropower

  20. July 10, 2009 Bill Booth, Chairman

    E-Print Network [OSTI]

    and operation of the federal hydropower system. It is also significant that revenues lost due to changes in hydropower operations (flow and spill) represent 58 percent of the total investment. RiverPartners is aware to a substantial reduction in renewable hydropower production. This reduction not only can resu

  1. fac as ranite the e 0 compared with an estimated survival rate during the

    E-Print Network [OSTI]

    the hydropower system was completed and only 1.2% from 1977 to 1994 (Petrosky et al. 2001) (Figure 48 are impacted to some degree by the effects of hydropower develop the Snake River both upstream and downstream of the Hells Canyon reach. Those impac ted to downstream hydropower development are considered to be "out

  2. Santee Cooper- Renewable Energy Resource Loans

    Broader source: Energy.gov [DOE]

    Santee Cooper offers low-interest loans to residential customers who have a licensed contractor install photovoltaic (PV) systems, wind energy systems, micro-hydropower systems, biomass energy...

  3. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  4. BIBLIOGRAPHY ON INSTITUTIONAL BARRIERS TO ENERGY CONSERVATION

    E-Print Network [OSTI]

    York, C.M.

    2011-01-01

    hydropower, geother- mal energy, solar energy, and wind1976. The Public Utility and Solar Energy Interface: An As­utility industry and solar energy systems for buildings.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,... Eligibility: State Government Savings Category: Geothermal...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems Exemption Recognized forms of energy generation include solar photovoltaics, passive solar, wind, solid waste, decomposition of organic wastes, geothermal, small hydropower...

  7. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    Resources System; - Water Resources Sector National Assessment of the Potential Consequences of Climate (for rainfall estimation, rainfall-runoff, agricultural planning, hydropower scheduling, and lake

  8. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01

    Sequestration, Hydrogen and Clean Coal Fuels FE-24 GTN, Roomand Community Systems (ECBCS)* Clean Coal Sciences* ClimateHydrogen* Hydropower IEA Clean Coal Centre* Industrial

  9. Energy Department Accepting Small Business Grant Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accepting Small Business Grant Applications for Low-Head Hydropower Turbines and MHK Monitoring Systems Energy Department Accepting Small Business Grant Applications for Low-Head...

  10. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

  11. Library System Library System

    E-Print Network [OSTI]

    Cinabro, David

    Library System #12;Library System 5150 Anthony Wayne Drive David Adamany Undergraduate Library that for the current fiscal year, we've been given an additional $600,000 for our library materials budget. We're very subscriptions. The Wayne State University Libraries are deeply committed to providing our faculty and students

  12. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    SciTech Connect (OSTI)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

    2013-07-15

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a single suture for surgical implantation of transmitters with incisions that are approximately 5 1/2 mm long after tag insertion.

  13. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  14. RESERVATION OF RIGHTS A number of governments and agencies participated in the development of this Kootenai Subbasin Plan,

    E-Print Network [OSTI]

    of this Kootenai Subbasin Plan, Part I (Assessment Volume), Part II (Inventory Volume), and Part III (Management that respond to impacts from the development and operation of the Columbia River hydropower system. Nothing hydropower system. Nothing in this Plan or the participation in its development is intended to, and shall

  15. RESERVATION OF RIGHTS A number of governments and agencies participated in the development of this Flathead Subbasin Plan, Part

    E-Print Network [OSTI]

    of this Flathead Subbasin Plan, Part I (Assessment Volume), Part II (Inventory Volume), and Part III (Management that respond to impacts from the development and operation of the Columbia River hydropower system. Nothing hydropower system. Nothing in this Plan or the participation in its development is intended to, and shall

  16. Vermont Small Hydropower Assistance Program Application | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorAct RulesInformation Application

  17. Vermont Small Hydropower Assistance Program Overview | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorAct RulesInformation

  18. Vermont Small Hydropower Assistance Program Screening Criteria Summary and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorAct RulesInformationApplication

  19. Vermont Small Hydropower Assistance Program Site-Specific Determinations

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorAct

  20. Vermont Small Hydropower Assistance Program Summary | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorActInformation Summary Jump to:

  1. Vermont Small Hydropower Assistance Program Website | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnorActInformation Summary Jump

  2. US Fish and Wildlife Service Hydropower Licensing webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA Regionfor

  3. Federal Memorandum of Understanding for Hydropower/Federal Inland...

    Open Energy Info (EERE)

    Bureau of Reclamation Department of Energy Environmental Protection Agency Federal Energy Regulatory Commission Fish and Wildlife Service Forest Service National Oceanic and...

  4. Energy Department Announces $4.4 Million to Advance Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    advanced materials and advanced manufacturing techniques such as laser-assisted welding, surface treatments, and processing. The turbine will be designed to deliver a...

  5. Solar Energy and Small Hydropower Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum credit a taxpayer may take in any one tax year is $3,500 for each facility or 50% of the taxpayer's tax liability for that taxable year, whichever is less. Unused credit, or credit th...

  6. Memorandum of Understanding for Hydropower Two-Year Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...33 Initiative F.1-Feasibility Analysis of New Pumped Storage Hydro ...33 Initiative F.2-Assessment of Energy...

  7. The Next Generation of Hydropower Engineers and Scientists

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hydro Research Foundation Fellowship Program is currently providing up to two years of financial assistance to 23 graduate students.

  8. 16 Projects To Advance Hydropower Technology | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR 1,500,000 This project...

  9. Climate change impacts on financial risk in hydropower projects 

    E-Print Network [OSTI]

    Harrison, Gareth P; Whittington, Bert; Wallace, Robin

    Limiting the emissions of greenhouse gases from power generation will depend, among other things, on the continuing and increased use of hydroelectric power. However, climate change itself may alter rainfall patterns, ...

  10. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    73modeanlkoritarov20111027.ppt More Documents & Publications Quantifying Fl Value of Hydro in Transmission Grid 2014 Water Power Program Peer Review Compiled Presentations:...

  11. Region Qinghai Dangshun Hydropower Development Co Ltd Qinghai...

    Open Energy Info (EERE)

    Industries GmbH SunCoal Industries GmbH K nigs Wusterhausen Germany Producer of bio coal SunConnex International BV SunConnex International BV Amsterdam Netherlands Solar Dutch...

  12. Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal

    E-Print Network [OSTI]

    R. Cathcart; A. Bolonkin

    2007-03-19

    Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

  13. Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal

    E-Print Network [OSTI]

    Cathcart, R

    2007-01-01

    Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

  14. Hydropower cities : a new candidate for eco-utopia

    E-Print Network [OSTI]

    Akbarzadeh, Masoud, S.M. Massachusetts Institute of Technology

    2011-01-01

    The increasing need for water due to incessant growth of population of the world makes it imperative to build water reservoirs in different location of the world. Water reservoirs most of the time are used as a mean to ...

  15. Microsoft PowerPoint - Ozark and WEbbers Hydropower conference1...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWT Project Manager Lee Beverly -SWL Project Manager 18 June 2015 Ozark and Webbers Falls Powerhouse Major Rehabilitation BUILDING STRONG * Project Scope: Replace three...

  16. Spatial design principles for sustainable hydropower development in river basins

    E-Print Network [OSTI]

    Jager, Henriette I.

    : Freshwater reserve design Hydroelectric power Network theory Optimization Regulated rivers River portfolio

  17. Hydropower R&D: Recent Advances in Turbine Passage Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that...

  18. Office of Wind and Hydropower Technologies Wind Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score Final Score Cont Dis- Cont Other Summary Comment Program Response EPRI-Alden Fish-Friendly Turbine 3.8 3.6 X Focuses on DOE objectives to bring new conventional...

  19. Hydropower Upgrades to Yield Added Generation at Average Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures...

  20. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  1. Successfully Streamlining Low-Impact Hydropower Permitting: Colorado's

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire Country | Open Energy Information

  2. Solar Energy and Small Hydropower Tax Credit (Corporate) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000radiation, often called the

  3. Hydropower Licensing and Endangered Species A Guide for Applicants,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergy DataHydrophen

  4. Hydropower Regulatory Efficiency Act of 2013 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergy

  5. FERC Division of Hydropower Administration and Compliance | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative

  6. FERC Hydropower Licensing Guidelines webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative| Open Energy

  7. FERC Hydropower Licensing and Endangered Species - A Guide for Applicants,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative| Open EnergyContractors, and Staff |

  8. FERC Small, Low-Impact Hydropower Projects Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative| OpenEnergy Information

  9. Federal Memorandum of Understanding for Hydropower | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | Open EnergyFederal Loan

  10. Federal Memorandum of Understanding for Hydropower/Participating Agencies |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | Open EnergyFederal LoanOpen

  11. Property:PotentialHydropowerCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3 Jump

  12. Recreational Technical Assistance in Hydropower Licensing | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpen EnergyReclamationInformation

  13. NOAA Hydropower and Fish Passage webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI|Forms12StateNNG FinancialNOAA

  14. National Park Service Hydropower Assistance webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLease Financing

  15. Energy Department Announces $4.4 Million to Advance Hydropower

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJuly 8, 2015in Medium-Manufacturing |

  16. Microsoft PowerPoint - SW HydropowerCouncil-060910.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM Science TeamBudget Concept

  17. Microsoft Word - 2011HydropowerCouncilAgenda051211.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal information is revealed23,Crowne Plaza

  18. Hydropower Vision Task Force Charter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergyHughfuelRSSVision Task Force

  19. Microsoft Word - FINAL 2010 Hydropower Council Agenda 052510.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4 5 6 7 8 9

  20. Microsoft Word - FINAL 2012HydropowerCouncilAgenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4 5 6 7 8

  1. Microsoft Word - FINAL 2013 Hydropower Meeting Agenda 060713

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4 5 6 7

  2. Microsoft Word - FINAL 2013 HydropowerCouncilAgenda 060513

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4 5 6

  3. Microsoft Word - FINAL 2014 Hydropower Meeting Agenda 061114

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4 5

  4. Microsoft Word - FINAL 2014 HydropowerCouncilAgenda 060914

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4

  5. Microsoft Word - FINAL Hydropower Council Agenda 2009.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2 3 4MayMarriott

  6. Microsoft Word - FINAL_2015_Hydropower_Council_Agenda_061215.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2

  7. Microsoft Word - FINAL_2015_Hydropower_Meeting_Agenda_061215.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1,Event I 2SOUTHWESTERN

  8. National Laboratories Shine at World's Largest Hydropower Event |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoftPolicy, on May 28, 2014,

  9. Large-Scale Hydropower Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine blades beingLM Executive2014) | Departmentscale

  10. Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbineProcesses toDepartment

  11. Daguan Shun an Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, search NEPA20-2010-0042-EAoriginalDaguan

  12. Dali Yang er Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JV Jump to:Daizy AgroYang

  13. Dazhou Xiangyue Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimlerDayton Power & Light Co

  14. Debao V Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimlerDayton Power & LightDebao V

  15. Diebu Donglian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie JumpDiebu Donglian

  16. Diebu Niaojiaga Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie JumpDiebuLazikou

  17. Dingxiang Lingzidi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize Home There

  18. Dodson Lindblom Hydropower Pvt Ltd DLHPPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,DepartmentCalculatordocuments en MHK

  19. Enshi City Yuefeng Yunlonghe Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA Jump to: navigation, search Name:

  20. Chongqing Pengshui Sanjiangkou Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa ValleyEnergyLanxi

  1. Chongqing Wanzhou Jianghe Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewaInformation Wanzhou Jianghe

  2. Chun an Yunxi Tongda Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE

  3. Baoshan Xineng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono, MexicoBanham PoultryBlade Co

  4. Changde Taohuayuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation,CauveryGasCesOnChalingPennsylvania)

  5. Lijiang Heen Jinzhuang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place:dayLightway Green

  6. Lijiang Nengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place:dayLightway

  7. Lijiang Xingneng Small Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp.

  8. Lincang City Xinshui Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp.Lilliputian

  9. Linjiawu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty PowerLine Extension AnalysisLinjiawu

  10. Lintan County Taohe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty PowerLine ExtensionLinn County Rural

  11. Longnan Huayu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite

  12. Luoning County Yellow River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific DevelopingLowerLuminus Devices

  13. Luquan County Xiaopengzu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific DevelopingLowerLuminusXiaopengzu

  14. Luquan Yunhong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific

  15. Lushui Jiansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-PacificInformation CountyHuili

  16. Lushui Jinman River Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-PacificInformation CountyHuiliJinman River

  17. Mian county Jiangyuan Hydropower developmemnt Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH Jump to:EC-LEDS in theIAEAOpenInformation

  18. Mianning Beiji River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH Jump to:EC-LEDS in

  19. Min County Longwangtai Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH JumpLLC Jump to: navigation, searchMin County

  20. Minhou County Xingyuan Hydropower Generation Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH JumpLLC Jump to: navigation,

  1. Nandan County Qiyuan Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinning Mills Ltd NSML

  2. Nandan Hongyuan Hydropower Exploitation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinning Mills Ltd NSMLExploitation Co Ltd Jump

  3. Napo Baisheng Sanyou Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinning Mills LtdNanotecture LtdUniversity

  4. Napo County Naen Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinning Mills LtdNanotecture LtdUniversityNaen

  5. Ningde City Xianjian Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to:IncVekenInformation

  6. Ninglang Yongli Mudiqing Secondary Hydropower Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources JumpInformation Ninglang Yongli

  7. Nujiang Guoli Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L TGuoli

  8. Nujiang Zhedian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishiCleanAlincaUK LtdCorp L TGuoliZhedian

  9. Pailou Hydropower of Zhongfang County Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of Mason CountyEnergy Jump

  10. Pingnan Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMauna Loa |Hengli

  11. Pingwu County Yetang Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMauna LoaGuangyao Power Co

  12. Puge County Gongdefang Hydropower Station Investment and Development Co Ltd

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmian JumpOpen EnergyElec| Open

  13. Qiandongnan Autonomous Region Ziteng Hydropower Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT Capital GmbhQ

  14. Qiaojia Liuhe Drainage Area Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT Capital

  15. Qinghai Dangshun Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT CapitalCo LtdDangshun

  16. Qinghai Datonghe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT CapitalCo

  17. Qinghai Henan Fuqiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT CapitalCoInvestmentFuqiang

  18. Qinghai Huanghe Zhongxing Hydropower Construction Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT

  19. Qinghai Ruifa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvTHuapeng EnergyRuifa

  20. Qiubei County Qingshui River Basin Hydropower Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE IncScience and Technology Co Ltd JumpEnergy

  1. Quanzhou Liupu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE IncScience and TechnologyQuanzhou Liupu

  2. Erpu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA Jump to:Energy TechLtda JumpErik DamgaardErpu

  3. Federal Memorandum of Understanding for Hydropower/Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbH EFCFBAInformation Management

  4. Fuan Fucheng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMA Tech GmbH Jump

  5. Fuan Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMA Tech GmbH

  6. Fugong Baihe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMAFugong Baihe

  7. Fugong Fangyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMAFugong

  8. Fugong Fengyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMAFugongFengyuan

  9. Fugong Jiacheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|Hengda

  10. Fujian Fuyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|HengdaXineng

  11. Fujian Longyan Tingzhou Hydropower Development Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|HengdaXinengJinhu Power

  12. Fujian Shanghang Tingjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|HengdaXinengJinhu

  13. Fujian Zhangping Yilong Hydropower Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc|HengdaXinengJinhuChangYilong

  14. Funing County Fudong Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd Jump to: navigation,Norte sFudong

  15. Gansu Gongjiaotou Lijie Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarket

  16. Gansu Hongyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuo Anguo

  17. Gansu Huatang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuo AnguoHuanzhou Info

  18. Gansu Tiangong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuoMingzhuTiangong

  19. Gansu Yinlong Water Resources and Hydropower Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarketHezuoMingzhuTiangongEnergy

  20. Gansu Zhangye Erlongshan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock