Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

User's Guide Virtual Hydropower Prospector Version 1.1  

SciTech Connect (OSTI)

The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.

Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

2005-11-01T23:59:59.000Z

2

Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

3

Hydropower Resource Assessment of Brazilian Streams  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

4

Virtual Hydropower Prospector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, Nebraska (UtilityVirginiaNo

5

Virtual Hydropower Prospecting – Searching for Hydropower Gold  

SciTech Connect (OSTI)

The availability of geographic information system (GIS) tools and analytical modeling of natural streams has made it possible to perform virtual “river inventories” that were formerly done using topographic maps, stream flow estimates, and physical reconnaissance. The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) virtually assessed the gross power potential of all natural streams in the United States of America and identified feasible potential project sites and estimated their developable power potential. The results of this virtual prospecting have been incorporated into a GIS application called the Virtual Hydropower Prospector that is available for public use on the Internet.

Douglas G. Hall

2007-12-01T23:59:59.000Z

6

Geothermal Prospector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligenceGainSpanRate-MakingGeothermal power) JumpProspector

7

Flexible hydropower: boosting energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab....

8

Solar Power Prospector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginner Jump to:Prospector

9

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network [OSTI]

ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

10

Hydropower Potential Screening Study  

E-Print Network [OSTI]

Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

11

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

12

Energy 101: Hydropower  

SciTech Connect (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-01T23:59:59.000Z

13

Energy 101: Hydropower  

ScienceCinema (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-24T23:59:59.000Z

14

National Hydropower Association conference proceedings  

SciTech Connect (OSTI)

These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

Not Available

1985-01-01T23:59:59.000Z

15

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

16

DOE Hydropower Program Biennial Report for FY 2005-2006  

SciTech Connect (OSTI)

SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

2006-07-01T23:59:59.000Z

17

The Solar Prospector (United States) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the Nature ofMine Jump to:Prospector

18

“Sustainable development of hydropower in third countries...  

Broader source: Energy.gov (indexed) [DOE]

&8220;Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development,...

19

Hydropower in the Northwest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content

20

Hydropower Potential Scoping Study Gauging Interest  

E-Print Network [OSTI]

6/19/2013 1 Hydropower Potential Scoping Study ­ Gauging Interest Generating Resources Advisory and associated technologies. ­ Hydropower upgrades, new hydropower projects 2 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2  

E-Print Network [OSTI]

HYDROPOWER RELICENSING AND CLIMATE CHANGE1 Joshua H. Viers2 ABSTRACT: Hydropower represents impacts to natural and human communities, future long-term fixed licenses of hydropower operation. (KEY TERMS: climate change; environmental regulations; hydropower; relicensing; water law; water policy

Schladow, S. Geoffrey

22

Challenges and Progress Toward a Commercial Kinetic Hydropower System  

E-Print Network [OSTI]

Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

Walter, M.Todd

23

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

24

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect (OSTI)

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01T23:59:59.000Z

25

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network [OSTI]

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

26

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network [OSTI]

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

27

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

28

Laboratory Demonstration of a New American Low-Head Hydropower...  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

29

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization  

E-Print Network [OSTI]

Advanced Turbulence Measurements and Signal Processing for Hydropower Flow Characterization and flow characterization within full scale conventional hydropower systems, at marine and hydrokinetic

30

Considering Climate Change in Hydropower Relicensing  

E-Print Network [OSTI]

Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

31

U.S. Hydropower Resource Assessment - Georgia  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

32

US hydropower resource assessment for Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

33

US hydropower resource assessment for Utah  

SciTech Connect (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

34

U.S. Hydropower Resource Assessment - California  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

35

Hydropower Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this page

36

Hydropower: Setting a Course for Our Energy Future  

SciTech Connect (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

37

Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's  

E-Print Network [OSTI]

Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

Harrison, Gareth

38

Hydropower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC

39

Web-Prospector An Automatic, Site-Wide Wrapper Induction Approach for Scientific Deep-Web Databases  

E-Print Network [OSTI]

Web-Prospector ­ An Automatic, Site-Wide Wrapper Induction Approach for Scientific Deep-Web of the additional clues commonly available in scientific deep Web databases. The solution consists of a sequence across an entire Web site. We test our algorithm against three real-world biochemical deep Web sources

Staab, Steffen

40

1 INTRODUCTION High-head storage hydropower plants operate  

E-Print Network [OSTI]

1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

Floreano, Dario

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Research Article Effects of alpine hydropower operations on primary production  

E-Print Network [OSTI]

Research Article Effects of alpine hydropower operations on primary production in a downstream lake the past century, the construction of hydropower dams in the watershed of Lake Brienz has significantly. According to model calculations, hydropower operations have significantly altered the seasonal dynamics

42

Vulnerability of Hydropower Projects to Climate Change Revision: 20th  

E-Print Network [OSTI]

Vulnerability of Hydropower Projects to Climate Change Revision: 20th December 2001 Dr Gareth P and increased use of renewable sources including hydropower. Paradoxically, climate change itself may alter role in whether emissions cuts are achieved. 2. Climate Change and Hydropower A rising demand

Harrison, Gareth

43

forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE  

E-Print Network [OSTI]

O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

Pasternack, Gregory B.

44

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

to characterize carbon dioxide (CO2) and methane (CH4) emissions from hydropower reservoirs in the US SoutheastGHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions

45

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-Print Network [OSTI]

of climate warming on energy prices. California's EnergyBased Hydropower Optimization Model (EBHOM to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generat WITH CONSIDERATION OF WARMING IMPACTS ON ELECTRICITY DEMAND AND PRICING A White Paper from the California

46

Estimated impacts of climate warming on California’s high-elevation hydropower  

E-Print Network [OSTI]

on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

47

Energy Department Announces $4.4 Million to Advance Hydropower...  

Office of Environmental Management (EM)

low-head hydropower turbine and generator system prototype that combines lightweight, corrosion-resistant metallic components that can be produced through an additive manufacturing...

48

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

49

Power Builds Ships Northwest Hydropower Helps Win World War II  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power-Builds-Ships-Northwest-Hydropower-Helps-Win-World-War-II Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

50

Memorandum of Understanding for Hydropower Two-Year Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additionally, the MOU aims to "(1) support the maintenance and sustainable optimization of existing federal and non-federal hydropower projects, (2) elevate the goal of...

51

Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam  

E-Print Network [OSTI]

Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing Consumers Protection Act (1986), which instructs federal regulators to ``balance'' hydropower

Kotchen, Matthew J.

52

E-Print Network 3.0 - assessment hydropower evaluation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

functional displays for hydropower systems: Model-based guidance of scenario design... Work Domain Analysis and Ecological Interface Design for Hydropower System Monitoring and...

53

Editorial: Time for green certification for all hydropower?  

SciTech Connect (OSTI)

While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

Deng, Zhiqun; Carlson, Thomas J.

2012-04-10T23:59:59.000Z

54

Modeling California's high-elevation hydropower systems in energy units  

E-Print Network [OSTI]

conditions, hydropower provides 5­10% of the electricity used in the United States [National Energy Education it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy

Pasternack, Gregory B.

55

U.S. hydropower resource assessment for Maine  

SciTech Connect (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

56

U.S. hydropower resource assessment for Idaho  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

57

U.S. hydropower resource assessment for Oregon  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

Conner, A.M.; Francfort, J.E.

1998-03-01T23:59:59.000Z

58

U.S. hydropower resource assessment for Nevada  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

59

Hydropower Research & Development | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this

60

Hydropower Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageisHydropower is used

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydropower Technology Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageisHydropower is

62

National Hydropower Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatEl JumpGypsum JumpHydropower

63

Hydropower Modernization Initiative Proposed Implementation Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof theCoalMarketHydropower

64

Hydropower Market Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower Market

65

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Broader source: Energy.gov [DOE]

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

66

Low Head/Low Power Hydropower Resource Assessment of the Pacific Northwest Hydrologic Region  

E-Print Network [OSTI]

three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro

Power Hydropower; Douglas G. Hall; Gregory R. Carroll; Shane J. Cherry; Y D. Lee; Garold L. Sommers

2002-01-01T23:59:59.000Z

67

DOE Hydropower Program Annual Report for FY 2002  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

Garold L. Sommers; R. T. Hunt

2003-07-01T23:59:59.000Z

68

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

69

Optimal sequencing site of hydro-power stations  

SciTech Connect (OSTI)

At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

1995-06-01T23:59:59.000Z

70

Climate change impacts on financial risk in hydropower projects   

E-Print Network [OSTI]

the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

Harrison, Gareth P; Whittington, Bert; Wallace, Robin

71

Solar Energy and Small Hydropower Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

72

Solar Energy and Small Hydropower Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system for heating water, space heating, air cooling,...

73

Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.  

E-Print Network [OSTI]

Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

74

Memorandum of Understanding for Hydropower Two Year Progress Report  

Broader source: Energy.gov [DOE]

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

75

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

76

Best Practices Implementation for Hydropower Efficiency and Utilization Improvement  

SciTech Connect (OSTI)

By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

77

Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy  

SciTech Connect (OSTI)

This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

Gagnon, L.

2004-10-03T23:59:59.000Z

78

Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,  

E-Print Network [OSTI]

1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

Harrison, Gareth

79

Research Article Effects of Alpine hydropower dams on particle transport and  

E-Print Network [OSTI]

Research Article Effects of Alpine hydropower dams on particle transport and lacustrine December 2006 Abstract. The effects of high-alpine hydropower damming on lacustrine sedimentation impact, such as by hydropower dam construction that form artifi- cial sediment sinks acting as manmade

Gilli, Adrian

80

Climate Warming and Adaptability of High-Elevation Hydropower Generation in California  

E-Print Network [OSTI]

Climate Warming and Adaptability of High-Elevation Hydropower Generation in California Kaveh Madani's high-elevation hydropower system is composed of more than 150 power plants. Most of the associated to winter, the adaptability of high-elevation hydropower system to new climatic conditions is in question

Keller, Arturo A.

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A Methodology to Assess the Value of Integrated Hydropower and Wind Generation  

E-Print Network [OSTI]

A Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement entitled: A Methodology to Assess the Value of Integrated Hydropower and Wind Generation written by Mitch A) A Methodology to Assess the Value of Integrated Hydropower and Wind Generation Thesis directed by Professor

82

EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations  

E-Print Network [OSTI]

EIFAC 2006: DAMS, WEIRS AND FISH Long-term effects of hydropower installations and associated river on stocking lakes with elvers and fingerling eels. These were trapped at the hydropower facilities.) stocks is a matter of great concern and Guest editors: R. L. Welcomme & G. Marmulla Hydropower, Flood

McCarthy, T.K.

83

Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology  

E-Print Network [OSTI]

Eawag: Swiss Federal Institute of Aquatic Science and Technology Factsheet: Hydropower and ecology to gross final energy consumption is only about 2% ­ hydropower plays a vital role. This is largely due be stored in reservoirs. Hydropower supplies around 56% of Switzerland's electricity needs. Worldwide

Wehrli, Bernhard

84

Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming  

E-Print Network [OSTI]

i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

Lund, Jay R.

85

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994  

E-Print Network [OSTI]

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

86

RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN  

E-Print Network [OSTI]

RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE LEISHUI RIVER BASIN X. S. AIa,b , S of California at Davis, Davis, California, USA b State Key Laboratory of Water Resources and Hydropower alternative policies to improve the water supply for two conflicting uses, hydropower and environmental, using

Pasternack, Gregory B.

87

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network [OSTI]

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

88

Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,  

E-Print Network [OSTI]

Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

Asselin, Hugo

89

Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI  

E-Print Network [OSTI]

i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

Lund, Jay R.

90

Climate change -a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert Whittington  

E-Print Network [OSTI]

Climate change - a drying up of hydropower investment? Dr Gareth Harrison and Professor Bert capital may not favour hydropower given that hydro capital costs are relatively high and payback periods financial return than the public sector, traditionally the main source of funds for hydropower development

Harrison, Gareth

91

Water Power Technologies The most widespread environmental constraints to the development of hydropower are interference  

E-Print Network [OSTI]

to the development of hydropower are interference with fish passage, provision of adequate environmental flows to address these issues and to help ensure environmentally sound hydropower development in the following through hydropower turbines, remains a serious problem at many sites. The fish passage task focuses

92

SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE G. P. Harrison, H. W. Whittington  

E-Print Network [OSTI]

1 SENSITIVITY OF HYDROPOWER PERFORMANCE TO CLIMATE CHANGE G. P. Harrison, H. W. Whittington and A-fuelled electricity generation with renewable sources including hydropower. However, simultaneous changes in climate may alter the available hydropower resource, threatening the financial viability of schemes

Harrison, Gareth

93

A Holistic Framework for Environmental Flows Determination in Hydropower Contexts  

SciTech Connect (OSTI)

Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

McManamay, Ryan A [ORNL; Bevelhimer, Mark S [ORNL

2013-05-01T23:59:59.000Z

94

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics ContentHydropower, Wave

95

Methodology and Process for Condition Assessment at Existing Hydropower Plants  

SciTech Connect (OSTI)

Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

Zhang, Qin Fen [ORNL] [ORNL; Smith, Brennan T [ORNL] [ORNL; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

2012-01-01T23:59:59.000Z

96

Extreme Methane Emissions from a Swiss Hydropower Reservoir  

E-Print Network [OSTI]

Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments manuscript received February 3, 2010. Accepted February 15, 2010. Methane emission pathways.Methanediffusionfromthesediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane

Wehrli, Bernhard

97

PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS  

SciTech Connect (OSTI)

Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-07-01T23:59:59.000Z

98

Review of Pump as Turbine (PAT) for Micro-Hydropower  

E-Print Network [OSTI]

Abstract — Micro-hydropower projects are the excellent alternative for electricity generation in remote areas. These projects can be installed on small streams, rivers, and channels without any recognizable effect on environment. The only problem in micro-hydro projects is the high cost of turbine, for which Pump as Turbine (PAT) is a successful solution. An objective of the present study is to review the selection criteria of PAT for various hydropower sites having different potential. Since no general model has been developed which can be used to calculate the conversion factors for PAT, so this paper focuses on the research that have been carried out in this field. The limitations of the various available models and other selection criteria have also been discussed in this paper.

Tarang Agarwal

99

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 Projects To Advance Hydropower

100

National Hydropower Association Annual Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformationDepartment ofNational Hydropower Association Annual

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Hydropower Turbines to Save Snake River Steelhead | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformationDepartment ofNational HydropowerNationalofEnergy

102

Real World Demonstration of a New American Low-Head Hydropower...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unit Real World Demonstration of a New American Low-Head Hydropower Unit 69dhydrogreenhydrodemonstration12.ppt More Documents & Publications Laboratory Demonstration of a New...

103

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

104

2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)  

SciTech Connect (OSTI)

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

105

How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer  

E-Print Network [OSTI]

energy revenue. We tested these three assump- tions by reviewing hydropower projects with license. At the remaining projects, diurnal fluc- tuations actually increased because of operation of upstream storage feedback to decision makers. Keywords Ecologic valuation Á Hydropower generation Á In-stream flow

Jager, Henriette I.

106

Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager  

E-Print Network [OSTI]

1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

Jager, Henriette I.

107

Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK  

E-Print Network [OSTI]

, Luytens Close, Chineham, Hants, UK Abstract: Hydropower on a small scale, or micro-hydro, is one productivity and lifetime. Hydropower on a small-scale, or micro-hydro, is the exploitation of a river's hydro. 1.1 Small-scale hydro Hydropower has various degrees of `smallness'. To date there is still

Kammen, Daniel M.

108

DOE Hydropower Program biennial report 1996-1997 (with an updated annotated bibliography)  

SciTech Connect (OSTI)

This report, the latest in a series of biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1996 and 1997. The report discusses the activities in the six areas of the hydropower program: advanced hydropower turbine systems; environmental research; hydropower research and development; renewable Indian energy resources; resource assessment; and technology transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering and Environmental Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1997-06-01T23:59:59.000Z

109

Hydropower Resource Assessment and Characterization | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on this»

110

Hydropower Still in the Mix | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasics Hydropower Basics Content on

111

A Boost for Hydropower (and the Economy) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost for Hydropower (and

112

Hydropower Still in the Mix | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel CellandVehicles & Fuels »EnergyProcessofHydropower

113

Hydropower, Wave and Tidal Technologies Available for Licensing - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAboutSeparationsRelevantHydropower

114

Making Hydropower More Eco-Friendly | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMA EnergyMagna E-Car OpeningMaking Hydropower

115

Aleo Manali Hydropower Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01Alchem LtdAlden, NewManali Hydropower

116

Federal Memorandum of Understanding for Hydropower/Federal Inland  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProjectExpress Jump to:Hydropower

117

EPRI-DOE Conference on Environmentally- Enhanced Hydropower Turbines: Technical Papers  

SciTech Connect (OSTI)

The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world

None

2011-12-01T23:59:59.000Z

118

DOE Hydropower Program biennial report 1990--1991 (with updated annotated bibliography)  

SciTech Connect (OSTI)

This report summarizes the activities of the US Department of Energy's (DOE) Hydropower Program for fiscal years 1990 and 1991, and provides an annotated bibliography of research, engineering, operations, regulations, and costs of projects pertinent to hydropower development. The Hydropower Program is organized as follows: background (including Technology Development and Engineering Research and Development); Resource Assessment; National Energy Strategy; Technology Transfer; Environmental Research; and, the bibliography discusses reports written by both private and non-Federal Government sectors. Most reports are available from the National Technical Information Service. 5 figs., 2 tabs.

Chappell, J.R.; Rinehart, B.N.; Sommers, G.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Sale, M.J. (Oak Ridge National Lab., TN (United States))

1991-07-01T23:59:59.000Z

119

DOE Hydropower Program biennial report 1994--1995 with an updated annotated bibliography  

SciTech Connect (OSTI)

This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1994 and 1995. The report discusses the activities in the four areas of the hydropower program: Environmental Research; Resource Assessment; Research Cost-Shared with Industry; and Technology Transfer. The report also includes an annotated bibliography of reports pertinent to hydropower, written by the staff of the Idaho National Engineering Laboratory, Oak Ridge National Laboratory, Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Rinehart, B.N.; Francfort, J.E.; Sommers, G.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States)

1995-05-01T23:59:59.000Z

120

DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)  

SciTech Connect (OSTI)

This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal  

E-Print Network [OSTI]

The current energy crisis in Nepal clearly indicates that the future energy-demand cannot be met by traditional energy-sources. Community-based micro-hydropower operations are considered to be one of the most feasible options for energy development. However, the power plant capacity factor remains very low due to limited commercial and business opportunities. Generation of hydrogen (H2) from the unutilized power could eradicate this problem. This new energy carrier is clean, can save foreign currency and increases the energy-security. The aim of this study is to determine the potential of H2 production from excess energy of a micro-hydro project in rural Nepal using “HOMER ” from NREL.

M. S. Zaman; A. B. Chhetri; M. S. Tango

2010-01-01T23:59:59.000Z

122

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

123

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

124

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y  

E-Print Network [OSTI]

and to quantify these relationships, (2) develop valuation methods to assess the total value of river health operation; hydropower; sustainability; riverine ecosystems; ecological valuation; natural flow regime, influence the health of the downstream ecosystem. Healthy riverine ecosystems provide ecosystem services

Jager, Henriette I.

125

Data-Based Performance Assessments for the DOE Hydropower Advancement Project  

SciTech Connect (OSTI)

The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.] [WolffWare Ltd.; Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy

2012-01-01T23:59:59.000Z

126

Disappearing rivers — The limits of environmental assessment for hydropower in India  

SciTech Connect (OSTI)

The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

2013-11-15T23:59:59.000Z

127

A multi-scale approach to address environmental impacts of small hydropower development  

SciTech Connect (OSTI)

Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

McManamay, Ryan A [ORNL; Samu, Nicole M [ORNL; Kao, Shih-Chieh [ORNL; Bevelhimer, Mark S [ORNL; Hetrick, Shelaine L [ORNL

2014-01-01T23:59:59.000Z

128

Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin .  

E-Print Network [OSTI]

??Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States… (more)

Foley, Rachel (Rachel L.)

2013-01-01T23:59:59.000Z

129

Historical Perspective on the U.S. Department of Energy's Hydropower Program  

SciTech Connect (OSTI)

For 30 years, the U.S. Department of Energy supported unique research and development activities focused on improving the domestic hydropower industry. In the 1970s and early 1980s, DOE’s Hydropower Program focused on technology assessment and a Small Hydropower Demonstration Program. After a period of zero funding in the late 1980s, the Program restarted with the goal of developing new technology that would improve the environmental performance of hydropower projects. A unique partnership of industry and federal cost-sharing allowed the Advanced Hydropower Turbine Systems activity to be established in 1994 – this led to new fish-friendly turbine designs and testing. Interagency cooperation with organizations like the U.S. Army Corps of Engineers has been a consistent part of the Program, along with scientific leadership and technical expertise from three of DOE’s National Laboratories: INL, ORNL, and PNNL. Program accomplishments include several new turbine designs, biological design criteria, computational and physical modeling, and environmental sensors. In contrast to other R&D on fish passage at dams, the DOE-sponsored research has focused on making the path through the turbine safer.

Sale, Michael J.; Cada, G. F.; Dauble, Dennis D.

2006-08-01T23:59:59.000Z

130

Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing  

SciTech Connect (OSTI)

The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

2011-01-01T23:59:59.000Z

131

Hydropower: A Regulatory Guide to Permitting and Licensing in Idaho, Montana, Oregon, and Washington.  

SciTech Connect (OSTI)

The design, construction and operation of a hydropower project can result in many potential impacts. These potential impacts are of concern to a host of federal, state, and local authorities. Early consultation with land and water management, fish and wildlife resource protection, and health and human safety-oriented agencies should occur to determine specific concerns and study requirements for each proposed project. This Guide to Permitting and Licensing outlines the characteristic features of attractive hydropower sites; summarizes an array of developmental constraints; illustrates potential environmental impacts and concerns; and summarizes all federal, state, and local permitting and licensing requirements.

McCoy, Gilbert A.

1992-12-01T23:59:59.000Z

132

IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration  

SciTech Connect (OSTI)

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

Acker, T.

2011-12-01T23:59:59.000Z

133

Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization  

E-Print Network [OSTI]

1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Resources Planning and Management, 2012, in press ABSTRACT Representing peak and off-peak energy prices and examines the reliability of an existing approximate method to incorporate hourly energy price information

Pasternack, Gregory B.

134

Cumulative biophysical impact of small and large hydropower development, Nu River, China  

E-Print Network [OSTI]

; Latin America and Caribbean: Benstead et al., 1999]. New national-level regulations, as well The hydropower sector currently comprises eighty percent of global capacity for renewable energy generation of fostering renewable energy development, allowing realization of low-carbon energy potential in developing

Tullos, Desiree

135

Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin  

E-Print Network [OSTI]

Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

Foley, Rachel (Rachel L.)

2013-01-01T23:59:59.000Z

136

The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú  

E-Print Network [OSTI]

In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

Zambrano-Barragán, Patricio Xavier

2012-01-01T23:59:59.000Z

137

Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm  

SciTech Connect (OSTI)

Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

Pasha, M. Fayzul K. [California State University, Fresno; Yeasmin, Dilruba [ORNL; Kao, Shih-Chieh [ORNL; Hadjerioua, Boualem [ORNL; Wei, Yaxing [ORNL; Smith, Brennan T [ORNL

2014-01-01T23:59:59.000Z

138

IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies  

SciTech Connect (OSTI)

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

Acker, T.

2011-12-01T23:59:59.000Z

139

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

SciTech Connect (OSTI)

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

140

Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report  

SciTech Connect (OSTI)

The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development  

Broader source: Energy.gov [DOE]

Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

143

Climate change and hydropower production in the Swiss Alps:potential impacts and modelling uncertainties Hydrol. Earth Syst. Sci., 11(3), 11911205, 2007  

E-Print Network [OSTI]

Climate change and hydropower production in the Swiss Alps:potential impacts and modelling/1191/2007 © Author(s) 2007. This work is licensed under a Creative Commons License. Climate change and hydropower Improvement Laboratory, CH-1015 Lausanne, Switzerland 2 Ouranos, Consortium on Regional Climate Change

Paris-Sud XI, Université de

144

Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducationHydropower Still

145

A progress report on DOE`s advanced hydropower turbine systems program  

SciTech Connect (OSTI)

Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

1997-06-01T23:59:59.000Z

146

Waukesha VHP5108GL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:CoopWaspa|Wattner and Scheuten JVVGF

147

Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development  

SciTech Connect (OSTI)

Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.

Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; Martinez, Jayson J.; Tian, Chuan; Morris, Scott J.; Carlson, Thomas J.; Zhou, Da; Hou, Hongfei

2014-11-04T23:59:59.000Z

148

New Small Hydropower Technology to be Deployed in the United States  

SciTech Connect (OSTI)

Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

Hadjerioua, Boualem [ORNL; Opsahl, Egil [CleanPower AS; Gordon, Jim [Earth By Design Inc., EBD; Bishop, Norm [Knigth Piesold Co.

2012-01-01T23:59:59.000Z

149

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

SciTech Connect (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

150

EMTA’s Evaluation of the Elastic Properties for Fiber Polymer Composites Potentially Used in Hydropower Systems  

SciTech Connect (OSTI)

Fiber-reinforced polymer composites can offer important advantages over metals where lightweight, cost-effective manufacturing and high mechanical performance can be achieved. To date, these materials have not been used in hydropower systems. In view of the possibility to tailor their mechanical properties to specific applications, they now have become a subject of research for potential use in hydropower systems. The first step in any structural design that uses composite materials consists of evaluating the basic composite mechanical properties as a function of the as-formed composite microstructure. These basic properties are the elastic stiffness, stress-strain response, and strength. This report describes the evaluation of the elastic stiffness for a series of common discontinuous fiber polymer composites processed by injection molding and compression molding in order to preliminarily estimate whether these composites could be used in hydropower systems for load-carrying components such as turbine blades. To this end, the EMTA (Copyright © Battelle 2010) predictive modeling tool developed at the Pacific Northwest National Laboratory (PNNL) has been applied to predict the elastic properties of these composites as a function of three key microstructural parameters: fiber volume fraction, fiber orientation distribution, and fiber length distribution. These parameters strongly control the composite mechanical performance and can be tailored to achieve property enhancement. EMTA uses the standard and enhanced Mori-Tanaka type models combined with the Eshelby equivalent inclusion method to predict the thermoelastic properties of the composite based on its microstructure.

Nguyen, Ba Nghiep; Paquette, Joshua

2010-08-01T23:59:59.000Z

151

Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction  

SciTech Connect (OSTI)

In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

2010-09-15T23:59:59.000Z

152

Solar Power Prospector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,

153

Geothermal Prospector Web App | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) |(Ward,|

154

Reduced Spill at Hydropower Dams: Opportunities for More Generation and Increased Fish Population  

SciTech Connect (OSTI)

This report indicates that reduction of managed spill at hydropower dams can speed implementation of technologies for fish protection and achieve economic goals. Spill of water over spillways is managed in the Columbia River basin to assist downstream-migrating juvenile salmon, and is generally believed to be the most similar to natural migration, benign and effective passage route; other routes include turbines, intake screens with bypasses, and surface bypasses. However, this belief may be misguided, because spill is becoming recognized as less than natural, with deep intakes below normal migration depths, and likely causing physical damages from severe shear on spillways, high turbulence in tail waters, and collisions with baffle blocks that lead to disorientation and predation. Some spillways induce mortalities comparable to turbines. Spill is expensive in lost generation, and controversial. Fish-passage research is leading to more fish-friendly turbines, screens and bypasses that are more effective and less damaging, and surface bypasses that offer passage of more fish per unit water volume than does spill (leaving more water for generation). Analyses by independent economists demonstrated that goals of increased fish survival over the long term and net gain to the economy can be obtained by selectively reducing spill and diverting some of the income from added power generation to research, development, and installation of fish-passage technologies. Such a plan would selectively reduce spill when and where least damaging to fish, increase electricity generation using the water not spilled and use innovative financing to direct monetary gains to improving fish passage.

Coutant, Charles C [ORNL; Mann, Roger [RMecon, Davis, California; Sale, Michael J [ORNL

2006-09-01T23:59:59.000Z

155

Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model  

SciTech Connect (OSTI)

Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used to assess whether a prescribed mitigation is likely to meet intended objectives from both a water quality and a biological resource perspective. These techniques can be used to assess the tradeoffs between hydropower operations, power generation, and environmental quality.

Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

2006-07-01T23:59:59.000Z

156

Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River  

SciTech Connect (OSTI)

High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ?0.96 and ?0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ? 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

2014-07-11T23:59:59.000Z

157

Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control the flow of water in hydropower developments, urban  

E-Print Network [OSTI]

Numerical and physical modeling of hydraulic structures Hydraulic structures are used to control, their solution is found either by physical hydraulic modeling or, more recently, by numerical modeling significantly reduce turbine efficiency and cause premature mechanical failure when they occur at hydropower

Barthelat, Francois

158

Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington  

SciTech Connect (OSTI)

Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

2013-03-15T23:59:59.000Z

159

MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment Initiative ...16 CONTINUING: Validation and Analysis of Alden Fish-Friendly Turbine ...17 NEW: Advanced...

160

MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents & Publications LumensState ofAugust 1,EXAmong THE

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

162

Commonwealth Hydropower Program  

Broader source: Energy.gov [DOE]

Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding is exhausted. See the program web site for...

163

Hydropower Process Improvements  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochureProcess

164

2014 Hydropower Market Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon Storage R&Dfront cover:

165

Evaluating New Hydropower Resources  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSaltDecember

166

Evaluating New Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy Environmental RestorationErikand Existing Homes

167

Flexible hydropower: boosting energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified|NorthMathematicianNuclearFlexible

168

Relationships between Western Area Power Administration`s power marketing program and hydropower operations at Salt Lake City area integrated projects  

SciTech Connect (OSTI)

This technical memorandum provides background information on the Western Area Power Administration (Western) and the physical characteristics of the Salt Lake City Area Integrated Projects (SLCA/IP) hydropower plants, which include the Colorado River Storage Project, the Rio Grande Project, and the Collbran Project. In addition, the history, electrical capacity, storage capacity, and flow restrictions at each dam are presented. An overview of Western`s current programs and services, including a review of statutory authorities, agency discretion, and obligations, is also provided. The variability of SLCA/IP hourly generation under various alternative marketing strategies and purchasing programs is discussed. The effects of Western`s services, such as area load control, outage assistance, and transmission, on SLCA/IP power plant operations are analyzed.

Veselka, T.D.; Folga, S.; Poch, L.A. [and others

1995-03-01T23:59:59.000Z

169

Remote sensing for wind power potential: a prospector's handbook  

SciTech Connect (OSTI)

Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

1983-02-01T23:59:59.000Z

170

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Prospector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two Continuum is theBookmarkGeothermal

171

Council's Regional Hydropower Potential Scoping  

E-Print Network [OSTI]

Hydroelectric Association Lisa Larson, HDR Rick Miller, HDR Discussion of analysis Reaction? 2 #12;Objective Northwest Hydroelectric Association HDR, Inc. MWH Global Black & Veatch Bonneville Environmental

172

Regulatory and Hydropower Policy (Minnesota)  

Broader source: Energy.gov [DOE]

These statutes establish the State's authority to “control and supervise activity that changes or will change the course, current, or cross section of public waters, including the construction,...

173

Hydropower Appropriations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochure outlinesList

174

Hydropower Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageis

175

Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants  

SciTech Connect (OSTI)

Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

Douglas G. Hall

2006-01-01T23:59:59.000Z

176

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve  

SciTech Connect (OSTI)

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

Jager, Yetta [ORNL; Smith, Brennan T [ORNL

2008-02-01T23:59:59.000Z

177

Microbial Genomes Have Over 72% Structure Assignment by the Threading Algorithm PROSPECTOR_Q  

E-Print Network [OSTI]

of the relationship between protein fold and function. The fold distribution of the genomes and the effect iterations; a prototypical example is PSI-BLAST.14 More recent innovations include profile of such approaches that now significantly outperform PSI- BLAST.14 In this respect, this paper describes the applica

Kihara, Daisuke

178

Hydropower Potential Studies Reviewed for Scoping Study  

E-Print Network [OSTI]

Feasibility Study on Five Potential Hydroelectric Power Generation Locations, North Unit Irrigation District B/ENERGY STORAGE PROJECTS C1 Assessment of Opportunities for New US Pumped Storage Hydroelectric Plants Using Hydroelectric Pumped Storage for Enabling Variable Energy Resources within the FCRPS C4 Technical Analysis

179

New Stream-Reach Hydropower Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy Potential from New Stream-reach Development in the United States and the data are publicly available at nhaap. ornl.govnsd. The highest potential among states was...

180

Mapping Scotland’s hydropower resource   

E-Print Network [OSTI]

Increased renewable electricity generation is key to the reduction of carbon emissions and has the added benefit of reducing reliance on imported gas and coal while increasing diversity of the generation mix. To encourage ...

Duncan, Niall James

2014-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

How Hydropower Works | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeterans | UpdatesHowGetDoes aBasics »

182

History of Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many|Humans have been harnessing water to

183

Hydropower Memorandum of Understanding | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageis anEnergyadvancedThe

184

Benefits of Hydropower | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField ExperimentInformation

185

2015 Forum on Hydropower | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment

186

Huaneng Lancang River Hydropower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal|227.

187

New Stream-Reach Hydropower Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets withCohenNewReportsDepartmentpotetial

188

Small Hydropower Research and Development Technology Project  

SciTech Connect (OSTI)

The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

2013-12-06T23:59:59.000Z

189

Glossary of Hydropower Terms | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George WaldmannAnnualGilbert BindewaldGlobal ScienceGlossary

190

2014 Hydropower Market Report | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief Freedom of Information2014 Housing

191

Hydropower Technology Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof

192

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord of DecisionDraftDepartmentofEnergy ENERGY STAR forASSESSMENT FOR

193

Leveraging Untapped U.S. Hydropower Potential  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJuly 28, 2010of EnergyMarketingLeveraging

194

Types of Hydropower Plants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of EnergyDepartment ofUraniumPlants

195

Types of Hydropower Turbines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of EnergyDepartment

196

Microsoft Word - Hydropower Council Agenda 2007.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruary 2004 Winter86Impact

197

Microsoft Word - Hydropower Council Agenda 2008.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruary 2004 Winter86ImpactEmbassy Suites

198

Boosting America's Hydropower Output | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011Department ofBoltonEmissions |

199

Brainpower for Hydropower | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011DepartmentBoschBradys EGS

200

Quantifying the value of hydropower in the electric grid : role of hydropower in existing markets.  

SciTech Connect (OSTI)

The electrical power industry is facing the prospect of integrating a significant addition of variable generation technologies in the next several decades, primarily from wind and solar facilities. Overall, transmission and generation reserve levels are decreasing and power system infrastructure in general is aging. To maintain grid reliability modernization and expansion of the power system as well as more optimized use of existing resources will be required. Conventional and pumped storage hydroelectric facilities can provide an increasingly significant contribution to power system reliability by providing energy, capacity and other ancillary services. However, the potential role of hydroelectric power will be affected by another transition that the industry currently experiences - the evolution and expansion of electricity markets. This evolution to market-based acquisition of generation resources and grid management is taking place in a heterogeneous manner. Some North American regions are moving toward full-featured markets while other regions operate without formal markets. Yet other U.S. regions are partially evolved. This report examines the current structure of electric industry acquisition of energy and ancillary services in different regions organized along different structures, reports on the current role of hydroelectric facilities in various regions, and attempts to identify features of market and scheduling areas that either promote or thwart the increased role that hydroelectric power can play in the future. This report is part of a larger effort led by the Electric Power Research Institute with purpose of examining the potential for hydroelectric facilities to play a greater role in balancing the grid in an era of greater penetration of variable renewable energy technologies. Other topics that will be addressed in this larger effort include industry case studies of specific conventional and hydro-electric facilities, systemic operating constraints on hydro-electric resources, and production cost simulations aimed at quantifying the increased role of hydro.

Loose, Verne W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydropower cities : a new candidate for eco-utopia  

E-Print Network [OSTI]

The increasing need for water due to incessant growth of population of the world makes it imperative to build water reservoirs in different location of the world. Water reservoirs most of the time are used as a mean to ...

Akbarzadeh, Masoud, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

202

President Obama Signs Two Bills to Boost Small Hydropower Projects...  

Energy Savers [EERE]

150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Energy Department Seeks Feedback on Draft Guidance for the Hydroelectric Production Incentive Program...

203

Los Alamos County Completes Abiquiu Hydropower Project, Bringing...  

Energy Savers [EERE]

installed by the Los Alamos County Department of Public Utilities at the Abiquiu Hydroelectric Facility on the Rio Chama River in New Mexico. DOE's Wind and Water Power Program...

204

Hydropower and Ocean Energy Resources and Technologies | Department...  

Energy Savers [EERE]

is typically not cost-effective unless the site has ready access to an existing hydroelectric dam. However, it is important for Federal energy managers to be knowledgeable...

205

Hydropower R&D: Recent Advances in Turbine Passage Technology  

SciTech Connect (OSTI)

The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

Rinehart, Bennie Nelson; Cada, G. F.

2000-04-01T23:59:59.000Z

206

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...  

Broader source: Energy.gov (indexed) [DOE]

3modeanlkoritarov20111027.ppt More Documents & Publications Quantifying Fl Value of Hydro in Transmission Grid 2014 Water Power Program Peer Review Compiled Presentations:...

207

Hydropower at flood control reservoirs - the variable speed option  

SciTech Connect (OSTI)

Application of hydroelectric turbine-generators to flood control has been limited due to the inability of a single turbine to operate efficiently over the wide head and flow ranges encountered. Multiple and different unit combinations have been applied to this problem, but the cost of the additional unit(s), powerhouse, and supporting facilities typically causes the project to become unfeasible. Variable speed operation can increase the operating range of a single turbine, and significantly improve efficiency over single speed units. This can make hydroelectric generation at flood control projects feasible. This paper presents a comparison of the application of variable speed units, two speed units, and single speed units at the Blue River Dam Hydroelectric Project. The project consists of the addition of a powerhouse to an existing Army Corps of Engineers flood control project. Efficiency data for the different types of units are compared and historical flow and release data are used in a computer model to simulate plant operation.

Laurence, K.; Yale, J. [Stone & Webster Engineering Corp., Denver, CO (United States)

1995-12-31T23:59:59.000Z

208

Western Wind and Solar Integration Study: Hydropower Analysis  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

Acker, T.; Pete, C.

2012-03-01T23:59:59.000Z

209

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network [OSTI]

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

R. Cathcart; A. Bolonkin

2007-03-19T23:59:59.000Z

210

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network [OSTI]

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

Cathcart, R

2007-01-01T23:59:59.000Z

211

Federal Memorandum of Understanding for Hydropower/Federal Inland...  

Open Energy Info (EERE)

of Energy Environmental Protection Agency Federal Energy Regulatory Commission Fish and Wildlife Service Forest Service National Oceanic and Atmospheric Administration...

212

Hydropower Generators Will Deliver New Energy from an Old Dam...  

Energy Savers [EERE]

2,000 homes for a year. The project also developed and installed an innovative fish collection and passage system that is reintroducing Washington's endangered steelhead...

213

Hydropower Upgrades to Yield Added Generation at Average Costs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and advanced control systems in order to...

214

Huge Potential for Hydropower: Assessment Highlights New Possible...  

Energy Savers [EERE]

Asset Assessment database indicates the region is home to numerous endangered fish and wildlife species, has nearly 1,500 boat ramps, almost 800 fish access locations, 96...

215

Huge Potential for Hydropower: Assessment Highlights New Possible Clean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteransto get a NERSCHowardEnergy

216

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeatingof

217

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWECHelix <IWAVE < MHKKESCKHPS <

218

Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAX (For3 Meeting of1National|

219

Hydropower Market Acceleration and Deployment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemorandaTammaraImageis anEnergyadvanced

220

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co Ltd Jump to:Summaries |

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Large-Scale Hydropower Basics | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNGLakeLand2014)

222

QER - Comment of Canadian Hydropower Association | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and DevelopmentDepartmentin Design Guidance QA in

223

The Next Generation of Hydropower Engineers and Scientists | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,Industrial Sector,T T

224

2014 Water Power Program Peer Review Compiled Presentations: Hydropower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.Carbon StorageInstitute4

225

A New Vision for United States Hydropower | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-ResearchNew Method andA NewAA NewA New

226

Power Builds Ships Northwest Hydropower Helps Win World War II  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,

227

Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenTheInformation TexasAndroscogginAnfu

228

Fact Sheet: Sustainable Development of Hydropower Initiative | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof Energy CleanProtectingAquionof

229

Assessment of the Effects of Climate Change on Federal Hydropower |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access toEnergy 5 BTOoftheA Case Study

230

Effects of Climate Change on Federal Hydropower (Report to Congress) |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday,Department of

231

Hydropower and Ocean Energy Resources and Technologies | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof EnergyHydrogen-Powered Buses Brochure -Energy

232

Investments in Existing Hydropower Unlock More Clean Energy | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,Introducing theAmerica's

233

Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative Operations ContactsStatement ofConvention(Fact

234

A Holistic Framework for Environmental Flows Determination in Hydropower Contexts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder LaserNational Laboratory

235

Energy Department Announces $4.4 Million to Advance Hydropower  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OFCaliforniaNext Generation

236

Effects of Climate Change on Federal Hydropower (Report to Congress)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECMWear |Characteristics |and NOX Control

237

2011 Grants for Advanced Hydropower Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWindDay 12: DriveGrants for Advanced

238

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0Commercial andStrength

239

$26.6 Million for Hydropower | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOE Office:|

240

ORNL scientists generate landmark DOE hydropower report | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships, Scholarships andUNIRIB ResearchNewsSearchRon

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorIt seemsReportP RDOEEarlier today,

242

Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1Increase ProfitsLorettaEnergy

243

Microsoft PowerPoint - SW HydropowerCouncil-060910.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.OnlineTank ClosureProjects ImpactingBudget

244

Energy Department Making Hydropower More Eco-Friendly | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdfAnnualAssessor-Award Competition |Cleanfor Innovative Renewable

245

Federal Memorandum of Understanding for Hydropower/Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHome Kyoung'sTechnologiesInformation

246

Microsoft Word - 2011HydropowerCouncilAgenda051211.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater308:UFC 2300.00Crowne Plaza Kansas City

247

Microsoft Word - FINAL 2010 Hydropower Council Agenda 052510.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved:GEORGEICReducedITER37 ENVIRONMENTAL

248

Microsoft Word - FINAL 2012HydropowerCouncilAgenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved:GEORGEICReducedITER37

249

Microsoft Word - FINAL 2013 Hydropower Meeting Agenda 060713  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL IMPACTApproved:GEORGEICReducedITER37SOUTHWESTERN

250

Microsoft Word - FINAL 2013 HydropowerCouncilAgenda 060513  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTAL

251

Microsoft Word - FINAL 2014 Hydropower Meeting Agenda 061114  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWER MEETING Tulsa District Headquarters 1605 S

252

Microsoft Word - FINAL 2014 HydropowerCouncilAgenda 060914  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWER MEETING Tulsa District Headquarters 1605

253

Microsoft Word - FINAL Hydropower Council Agenda 2009.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWER MEETING Tulsa DistrictMarriott Hotel

254

File:Federal Hydropower - Southwestern Power Administration.pdf | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf JumpEnergy Information Southwestern

255

Memorandum of Understanding for Hydropower Two-Year Progress Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011 DOETheNational Radioactive Waste

256

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation MaxPotentialGeothermalHydrothermalCapacity Jump

257

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation MaxPotentialGeothermalHydrothermalCapacity

258

Property:PotentialHydropowerSites | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation

259

Federal Memorandum of Understanding for Hydropower | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrant ProgramInformation

260

Federal Memorandum of Understanding for Hydropower/Participating Agencies |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrant

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A cyber-infrastructure for the measurement and estimation of large-scale hydrologic processes  

E-Print Network [OSTI]

Potential Changes in hydropower production from globalirrigation, recreation, hydropower generation, and otheris also generated via hydropower. The major hydrologic

Kerkez, Branko

2012-01-01T23:59:59.000Z

262

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

geothermal, biomass, and hydropower). Finally, Olson etthe contributions of hydropower, biomass, and geothermal dothe contribution of hydropower, biomass, and geothermal

Mills, Andrew D

2011-01-01T23:59:59.000Z

263

THE CHEMICAL COMPOSITION OF REGOLITH AT THE MOON'S SOUTH POLE, ACCORDING TO DATA OF LUNAR PROSPECTOR AND LUNAR RECONNAISSANCE ORBITER MISSIONS. S. G.  

E-Print Network [OSTI]

craters. The most difference is observed in thorium and hydro- gen contents. The concentration of Fe of the Cabeus crater is resulted from high irregularity of the surface micro- relief. In our articles published of irregularity of the surface micro-relief [5, 6]. The histogram in Figure 3 shows the distribution

Pugacheva, Svetlana G.

264

The transnational diffusion of global environmental concerns via INGOs in China : a new framework for understanding diffusion in authoritarian contexts  

E-Print Network [OSTI]

over the Nujiang hydropower dam project in Yunnan broughtare highly concentrated on hydropower development and waterRiver are the two major hydropower projects. Hydropower

Matsuzawa, Setsuko

2007-01-01T23:59:59.000Z

265

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network [OSTI]

GW, predominantly from hydropower plants (Table 2). This isIf one excludes large hydropower, however, this figure dropsGeneration Technology Large Hydropower Small Hydropower Wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

266

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

50 Effluent Hydropower- Kilowatt Output as Function of HeadDepartment of Energy (2003). Hydropower Setting a Course forEnergy Commission). Hydropower: Hydropower turbines for low-

Lekov, Alex

2010-01-01T23:59:59.000Z

267

Natural Recruitment of Salmonids in the Muskegon River, Michigan Primary Investigator: Doran Mason -NOAA GLERL  

E-Print Network [OSTI]

mandated changes in hydropower operations that have improved salmonid nursery habitat below hydropower dams

268

300-04-001R 2003CALIFORNIAPOWERMIX  

E-Print Network [OSTI]

, hydropower is abundant during wet years and scarce during dry years. These swings in hydropower typically

269

Development of a Low-Carbon Indicator System for China  

E-Print Network [OSTI]

provides rich sources for hydropower, Hubei Province hasapproach favors large hydropower producers and exporters

Price, Lynn

2012-01-01T23:59:59.000Z

270

Water and Energy Interactions  

E-Print Network [OSTI]

Energy Essentials: Hydropower. IEA, Paris, Fr. http://thermoelectric power (and hydropower, not shown in the1990. In 2008, global hydropower plants generated 3,288

McMahon, James E.

2013-01-01T23:59:59.000Z

271

Renewables Portfolio Standards: A Factual Introduction to Experience from the United States  

E-Print Network [OSTI]

funded by the Wind and Hydropower Technologies Program offunded by the Wind and Hydropower Technologies Program offuel types, for example, while hydropower may be subject to

Wiser, R.; Namovicz, C.; Gielecki, M.; Smith, R.

2008-01-01T23:59:59.000Z

272

China's post-reform policy implementation gaps and governmental vs. non-governmental fire alarm solutions  

E-Print Network [OSTI]

Ibid. Walker (2008). planned hydropower projects in Yunnanlands are expropriated for hydropower developments. In 2004to lose their lands for a hydropower project on the Nujiang

Hart, Melanie M.

2010-01-01T23:59:59.000Z

273

Explaining the Price of Voluntary Carbon Offsets  

E-Print Network [OSTI]

on fuel efficiency, hydropower, fuel substitution, solarbiomass methane, wind, hydropower, solar, and other. 8 OECDtypes of biomass methane, hydropower, so- lar, and wind. All

Conte, Marc N.; Kotchen, Matthew

2009-01-01T23:59:59.000Z

274

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

journals (wind power and hydropower); and own- estimates (increase in nuclear, hydropower and renewable generation.and higher renewable and hydropower capacity each contribute

Zhou, Nan

2011-01-01T23:59:59.000Z

275

Alternative Energy Development and China's Energy Future  

E-Print Network [OSTI]

32 Table 13. Total Resource Requirements for Hydropower23 Figure 12. China's Hydropower Installed Capacity, 1980-and costs of China’s hydropower: Development or slowdown? ”

Zheng, Nina

2012-01-01T23:59:59.000Z

276

Opportunities to change development pathways toward lower greenhouse gas emissions through energy efficiency  

E-Print Network [OSTI]

2005). Assessment of small hydropower potential using remoteSustainable development of hydropower and biomass energy inface reduced exports Hydropower plants may displace local

Sathaye, Jayant

2010-01-01T23:59:59.000Z

277

Reservoir Management in Mediterranean Climates through the European Water Framework Directive  

E-Print Network [OSTI]

Ecological Impacts of Hydropower Schemes; Flood ProtectionVassolo, S. 2001. “Europe’s Hydropower Potential Today Andproduction is operated by hydropower, compared to 16% in

O'Reilly, Clare; Silberblatt, Rafael

2009-01-01T23:59:59.000Z

278

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

impact statement for hydropower license. Upper Americanand permitted for hydropower generation and flood control.1):257–268 Hunter MA (1992) Hydropower flow fluctuations and

2010-01-01T23:59:59.000Z

279

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network [OSTI]

Renewable Energy (Wind & Hydropower Technologies Program) ofEnergy and the Wind & Hydropower Technologies Program OfficeRenewable Energy (Wind & Hydropower Technologies Program) of

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

280

Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study  

E-Print Network [OSTI]

on high-elevation hydropower generation in California’sCO2 [58] Solar Irradiance Hydropower Hadley et al. Franco &summer flows decrease hydropower production in summer and

Coughlin, Katie

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network [OSTI]

improvements along with hydropower, renewable and nuclearreport are: Power Sector Hydropower in particular has theEfficiency Expanded Hydropower Generation Capacity

Zhou, Nan

2013-01-01T23:59:59.000Z

282

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

E-Print Network [OSTI]

2005. Potential Changes in Hydropower Production from Globalon high elevation hydropower generation in California'ssources include imports (hydropower from the north, thermal

Sathaye, Jayant

2011-01-01T23:59:59.000Z

283

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

energy sources including hydropower and nuclear power. InElectricity includes hydropower, wind, solar and otherefficiency of nuclear, hydropower and renewable energy

G. Fridley, David

2010-01-01T23:59:59.000Z

284

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

285

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

Hoen, Ben

2010-01-01T23:59:59.000Z

286

China Energy and Emissions Paths to 2030  

E-Print Network [OSTI]

In the model, nuclear, wind, hydropower and other non-fossilelectricity includes hydropower, wind, solar and otherCombined with nuclear and hydropower, the total share of

Fridley, David

2012-01-01T23:59:59.000Z

287

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

share). Coal Oil Gas Hydropower Biomass Figure 5 ResidentialRenewables Oil Nuclear Gas Hydropower Figure 6 ResidentialCoal Oil Nuclear Gas Hydropower Figure 10 Commercial Primary

2008-01-01T23:59:59.000Z

288

Essays on Resource Allocation and Management, Price Volatility and Applied Nonparametrics  

E-Print Network [OSTI]

2.3.2.2 Hydropower Production Constraints . . . . . . . .water for irrigation and hydropower sectors, taking intom 3 per month), HP D dt = hydropower water demand (m 3 per

Nigatu, Getchew Sisay

2012-01-01T23:59:59.000Z

289

Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007  

E-Print Network [OSTI]

solid waste (MSW), and hydropower vary considerably acrossconsisting of existing hydropower, biomass, and MSWthese sources, may use hydropower to qualify for up to 30%

Wiser, Ryan

2008-01-01T23:59:59.000Z

290

Multifunctional Riverscapes: Stream restoration, Capability Brown’s water features, and artificial whitewater  

E-Print Network [OSTI]

for river professionals, Hydropower Reform Coalition andNational Park Service- Hydropower Recreation Assistance.for river professionals. Hydropower Reform Coalition and

Podolak, Kristen

2012-01-01T23:59:59.000Z

291

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

292

Carbon Offsetting: An Efficient Way to Reduce Emissions or to Avoid Reducing Emissions? An Investigation and Analysis of Offsetting Design and Practice in India and China  

E-Print Network [OSTI]

for wind, biomass and hydropower projects in India, Iat wind power, biomass energy and hydropower projects inassumptions 43 Hydropower projects: inappropriate

Haya, Barbara

2010-01-01T23:59:59.000Z

293

On the Effectiveness of Global Private Regulation: The Implementation of the Equator Principles by Multinational Banks  

E-Print Network [OSTI]

site of a controversial hydropower project sponsored by abilateral funding for hydropower, is included. $1.5 billionits relationship to hydropower in particular. See Leslie

Meyerstein, Ariel

2011-01-01T23:59:59.000Z

294

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network [OSTI]

supply, flood control, hydropower, and recreation. However,as changes induced by hydropower, flood control, or waterFERC requires private hydropower dams to provide “equal

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

295

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

to raise pumped storage hydropower capacity. ? Industrialto raise pumped storage hydropower capacity,? Industrialin regions of China without hydropower resources, coal-fired

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

296

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network [OSTI]

of Loss in the Ertan Hydropower Project). ? In Yingxiang17 Due to sensitivity of hydropower performance to seasonalwater resources for future hydropower development. Among 156

Tsai, Chung-min

2010-01-01T23:59:59.000Z

297

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

consists of biomass and hydropower resources. The technologyBiomass, geothermal, and hydropower are found to represent acost of Washington (WA) hydropower under the competitive

Mills, Andrew

2010-01-01T23:59:59.000Z

298

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network [OSTI]

Oil Industry Press. Hydropower Planning General Institute.consulting report. Beijing: Hydropower Planning GeneralEditorial Board of the China Hydropower Yearbook. 1995-1997.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

299

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

open-loop biomass, eligible hydropower, landfill gas, andexisting and new non-hydropower renewable resources werewas included. In contrast, hydropower and municipal solid

Blair, N.

2010-01-01T23:59:59.000Z

300

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

place, as would our existing hydropower resources. Thereforeconventional geothermal and hydropower resources are alreadyelectricity is that only hydropower and biomass are “

Yang, Christopher

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multifunctional Riverscapes: Stream restoration, Capability Brown's water features, and artificial whitewater  

E-Print Network [OSTI]

for river professionals, Hydropower Reform Coalition andNational Park Service- Hydropower Recreation Assistance.for river professionals. Hydropower Reform Coalition and

Podolak, Kristen

2012-01-01T23:59:59.000Z

302

AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS  

E-Print Network [OSTI]

BIO Wind; WIN Hydropower; HYD Energy Storagefrransfer; ESTBiomass = B I 0 Wind= WIN Hydropower= HYD Energy Storage!= SOL Biomass= BIO Wind=WIN Hydropower= HYD Energy Storage/

Lucarelli, Bart

2013-01-01T23:59:59.000Z

303

Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California  

E-Print Network [OSTI]

releases into the river from a hydropower project. Data fromSymposium on small hydropower and fisheries; Bethesda,instream flow needs in hydropower licensing. Palo Alto, CA:

Williams, John G.

2006-01-01T23:59:59.000Z

304

The Challenges of Dynamic Water Management in the American West  

E-Print Network [OSTI]

increased the value of hydropower. California now requiresenergy production, and hydropower is, for now at least,leading to litigation. 2 3 Hydropower licenses have the same

Doremus, Holly; Hanemann, Michael

2008-01-01T23:59:59.000Z

305

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

place, as would our existing hydropower resources. Thereforeconventional geothermal and hydropower resources are alreadyelectricity is that only hydropower and biomass are “

2011-01-01T23:59:59.000Z

306

Climate change risk and response  

E-Print Network [OSTI]

Potential Changes in Hydropower Production from Globalon high elevation hydropower generation in California’s7 reduction in the state’s hydropower resources, which last

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

307

Peak CO2? China's Emissions Trajectories to 2050  

E-Print Network [OSTI]

Electricity includes hydropower, wind, solar and otherNuclear Power NG Fired CC Hydropower Oil Fired Units Biomassand higher renewable and hydropower capacity each contribute

Zhou, Nan

2012-01-01T23:59:59.000Z

308

The Vanderbilt Haptic Paddle Assembly Guide and Parts List  

E-Print Network [OSTI]

accompanies the complete CAD files, Simulink files, lab manuals, and Arduino code provided on the VHP website #12;5 Connect Electronic Components The VHP electronics include an Arduino Uno microcontroller to an Arduino analog input, and the Ardumoto shield is stacked on top of the Arduino as shown in Figure 7

Webster III, Robert James

309

U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments  

SciTech Connect (OSTI)

This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

Not Available

2008-05-01T23:59:59.000Z

310

Potential Economic Impacts of Zebra Mussels on the Hydropower Facilities in the Columbia River Basin  

E-Print Network [OSTI]

was to estimate costs to the Federal Columbia River Power System hydroelectric projects in the event of a zebra found that the one-time cost for installing zebra mussel control systems at hydroelectric projects could hypochlorite (NaOCl) injection system and anti-fouling paint), at 13 select hydroelectric projects, was $23

311

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

SciTech Connect (OSTI)

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto] [University of Toronto; Zhang, Qin Fen [ORNL] [ORNL; Karney, Professor Byran W. [University of Toronto] [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia] [University of Belgrade, Belgrade, Serbia

2011-01-01T23:59:59.000Z

312

Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

Not Available

2009-12-01T23:59:59.000Z

313

E-Print Network 3.0 - advanced hydropower turbine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

314

16 R&D Projects Across 11 States to Advance Hydropower in U.S...  

Office of Environmental Management (EM)

canals and low height dams to using reservoirs for energy storage, to deploying a fish-friendly turbine. The 16 projects fall under one of four approaches to advancing...

315

Hydropower and the environment: A case study at Glen Canyon Dam  

SciTech Connect (OSTI)

The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

Wegner, D.L. [Denver Technical Service Center, Flagstaff, AZ (United States)

1995-12-31T23:59:59.000Z

316

Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,  

E-Print Network [OSTI]

solar and wind energy (IEA, 2012b). Science of the Total Environment 493 (2014) 1211­1221 Corresponding and Energy Sources Department, RSE SpA, Milano, Italy e Department of Civil and Environmental Engineering i n f o Article history: Received 8 August 2013 Received in revised form 6 October 2013 Accepted 6

Stoffel, Markus

317

Climate change impacts on hydropower in the Swiss and Italian Alps Ludovic Gaudard a,  

E-Print Network [OSTI]

solar and wind energy (IEA, 2012b). Science of the Total Environment xxx (2013) xxx­xxx Corresponding and Energy Sources Department, RSE SpA, Milano, Italy e Department of Civil and Environmental Engineering i n f o Article history: Received 8 August 2013 Received in revised form 6 October 2013 Accepted 6

Stoffel, Markus

318

Estimated impacts of climate warming on California’s high-elevation hydropower  

E-Print Network [OSTI]

and Cubed 2005). Hydroelectricity’s low cost, near-zero2010) 102:521–538 hydroelectricity generation by largelyReal time hourly hydroelectricity prices for 2005–2008 (

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

319

DESIGN OF SELF-TUNING FUZZY CONTROLLER FOR MICRO HYDROPOWER PLANSTS ON IRRIGATION DAMS.  

E-Print Network [OSTI]

??Micro hydro power plants are stand alone renewable energy sources and free from emission of green house gases. It is an appropriate choice for rural… (more)

Hayato, Jemal

2011-01-01T23:59:59.000Z

320

Hydropower production and river rehabilitation: A case study on an alpine river  

E-Print Network [OSTI]

), and construction of large dams for the production of hydroelectric power and flood control is wide- spread

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Use of Traits-Based Assessment to Estimate Effects of Hydropower Projects on Fish Populations  

E-Print Network [OSTI]

that influence the risk of downstream passage losses at hydroelectric power plants www.ornl.gov #12;

322

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA  

Broader source: Energy.gov [DOE]

DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

323

Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate EarthEnergy Contractor&3-1

324

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday in Energy TodayTonyARPA-E

325

U.S. Hydropower Potential from Existing Non-powered Dams | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API538 2.531

326

Hydropower Generators Will Deliver New Energy from an Old Dam | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochure

327

Hydropower R&D: Recent Advances in Turbine Passage Technology | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochureProcessof

328

Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis brochureProcessofcents

329

Hydropower is one of the oldest power sources on the planet. Flowing water, dire  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThis

330

New Stream-Reach Hydropower Development Fact Sheet | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Libraryornl.gov RonStaff Research Physicists

331

Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 Peer Review

332

Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 Peer Review1

333

Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 Peer

334

Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 PeerWind

335

Quantifying the Value of Hydropower in the Electric Grid: Final Report  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol.DepartmentFertilizer used for

336

Quantifying the Value of Hydropower in the Electric Grid: Final Report |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol.DepartmentFertilizer used forDepartment of

337

Real World Demonstration of a New American Low-Head Hydropower Unit |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More DocumentsCommunicationsProvides anTopDepartment of

338

Microsoft Word - Canadian Hydropower Association QER Submission_Oct-10-2014-Final R.docx  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EMAZ AUTOMOTIVECR-091 Primary Basis of

339

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect (OSTI)

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

340

Mitigation measures for fish habitat improvement in Alpine rivers affected by hydropower operations  

E-Print Network [OSTI]

Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland 2 Laboratory of Hydraulic and young-of-the-year). Simulations showed that operational measures such as limiting maximum turbine and concentrated turbine operations allow electricity to be produced on demand. The sudden opening and closing

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HydroPower: How Electricity gets from the River to Your House  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easterStatistical Self-Similarity in

342

Energy Department to Fund R&D to Advance Low-Impact Hydropower Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy Blog Energy Blog RSSCooperativesandBetter|

343

Hydropower is one of the oldest power sources on the planet. Flowing water, dire  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof EnergyHydrogen-Powered Buses Brochure -Energy

344

Laboratory Demonstration of a New American Low-Head Hydropower Turbine |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer SomersKnownLabor Standards forDepartment of

345

Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia| Open Energy

346

Hydropower R&D: Recent Advances in Turbine Passage Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and theDepartmentDOE/ID-10753

347

Microsoft PowerPoint - 2014 HydroPower - Stockton Turbine Replacement June 2014 [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1Plan forNASEO 2006/07SanSh

348

Microsoft PowerPoint - ACOE Regional HydroPower Conference Presentation.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1PlanARM Science Team Meeting Hyatt

349

Microsoft PowerPoint - Hydropower conf SDOX June 2008 final [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland Operations OfficeFinalModule8.pptFileGPSSupersaturated

350

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower Conference, 10 June 2010, rev 1.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S. CommercialIn this paper,Hydrokinetic

351

Microsoft PowerPoint - PowerPointHydropowerConfJun2007.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.Online CA:Shallow InjectionHYDRAULIC STEEL

352

Microsoft PowerPoint - SW Regional Hydropower Conference - June 2007.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.OnlineTank ClosureProjects

353

Microsoft PowerPoint - Sadiki - SW Regional Hydropower Conference - 12 June 2008.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S.OnlineTank09 Little RockSWPA /US Army

354

File:Federal Hydropower - Federal Energy Regulatory Commission.pdf | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf Jump

355

File:Federal Hydropower - U.S. Geological Survey.pdf | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf JumpEnergy Information

356

File:Federal Hydropower - Western Area Power Administration.pdf | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdf JumpEnergy InformationEnergy

357

Buford Major Rehabilitation Study (1996) and 11th Circuit Hydropower Report (Jun  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryan Wheeler About Us

358

Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production  

E-Print Network [OSTI]

Appendix E Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected have reappeared as management agencies have reinstituted spill as a means of aiding downstream fish passage throughout the system. The WDOE has set a TDG standard of 110 percent of saturation for all

359

Mixed Conduction in Rare-Earth Phosphates  

E-Print Network [OSTI]

compressed   air,   flywheels,   biofuels,   hydropower,   and   electrochemical   energy   storage  

Ray, Hannah Leung

2012-01-01T23:59:59.000Z

360

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

362

IEAB Independent Analysis Board  

E-Print Network [OSTI]

........................................................................... 15 2.3.1 Effects on Hydropower Production ............................................................................. 16 2.3.2 Effects on Hydropower Demand

363

BOISE, PAYETTE, AND WEISER MANAGEMENT PLAN  

E-Print Network [OSTI]

.....................................................................................................11 4.2 Mitigation for Federal Hydropower Development .........................................................................................................21 7.4 Mitigation for Federal Hydropower Development

364

China Energy and Emissions Paths to 2030  

E-Print Network [OSTI]

Generation Output (TWh) Biomass Solar Wind Power HydropowerGeneration Output (TWh) Biomass Solar Wind Power Hydropower

Fridley, David

2012-01-01T23:59:59.000Z

365

UNDERSTANDING FORCES THAT CONTRIBUTE TO PROTEIN STABILITY: APPLICATION FOR INCREASING PROTEIN STABILITY  

E-Print Network [OSTI]

Page 1 Ribbon diagram showing the structure of VHP and VlsE ......................... 12 2 Far-UV CD spectra for VHP and VlsE ...................................................... 13 3 Energy diagrams for protein folding reaction... interactions, hydrogen bonding and hydrophobic effect. The stabilizing effects of these interactions are largely opposed by the major destabilizing force, which is the conformational entropy loss upon protein folding. Other forces, such as electrostatic...

Fu, Hailong

2010-07-14T23:59:59.000Z

366

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix B HYDROPOWER AVAILABILITY IN RESPONSE TO SALMON RECOVERY  

E-Print Network [OSTI]

to maintain current river operations. However, as more information is gathered and more research is conducted, the operation of the river may be further modified. This could lead to more or fewer constraints, depending

367

Acoustic Camera Evaluation of Juvenile Salmonid Approach and Fate at Surface Flow Outlets of Two Hydropower Dams  

SciTech Connect (OSTI)

The objective of this study was to estimate and compare fate probabilities for juvenile salmon approaching two surface flow outlets (SFOs) to identify effective design characteristics. The SFOs differed principally in forebay location, depth, discharge, and water velocity over a sharp-crested weir. Both outlets were about 20 ft wide. The 22-ft deep Bonneville Powerhouse 2 Corner Collector (B2CC) was located in the southwest corner of the forebay and passed 5,000 ft3/s of water at normal-pool elevation. In contrast, The Dalles Dam ice and trash sluiceway outlet above Main Unit 1-3 (TDITC) was not located in a forebay corner, was only 7-ft deep, and discharged about 933 ft3/s at normal-pool elevation. The linear velocity of water over the weir was about 15 ft/s at the B2CC and 5 ft/s at the TDITC. We used a Dual-Frequency Identification Sonar (DIDSON) to record movements of fish within about 65 ft of the B2CC and within 35 ft of the TDITC. We actively tracked fish by manually adjusting pan and tilt rotator angles to keep targets in view. Contrary to expectations, active tracking did not provide a predominance of long tracks that clearly indicated fish fate because most tracks were incomplete. Active tracking did increase error in fish-position estimation, which complicated data processing, so we plan to sample multiple fixed zones in the future. The probability of fish entering each SFO was estimated by a Markov chain analysis, which did not require complete fish tracks. At the B2CC, we tracked 7,943 juvenile salmonids and most of them entered the B2CC. Fish moving south 40 to 60 ft upstream of the dam face were more likely to enter the eddy at the south end of the powerhouse than to enter the B2CC. At the TDITC, we tracked 2,821 smolts. Fish movement was complex with active swimming toward and away from the entrance. The high entrance probability zone (EPZ), where over 90% of tracked fish entered the SFO, extended 32 ft out at the B2CC and only 8 ft out at the TDITC. Greater discharge at the B2CC pushed the entrainment zone (EZ - where flow exceeded 7 ft/s) upstream from the entrance so that fish were entrained before they began to struggle against the flow. The high EPZ also was extended by flow along the powerhouse face at both sites, but more at the B2CC (about 450 ft) than at the TDITC (about 50 ft). Fish entering the large south eddy that circulated past the B2CC entrance were provided multiple opportunities to discover and enter. In contrast, fish moving past the sampled TDITC entrance either entered adjacent sluiceway openings or moved west to the spillway because there was no eddy to provide additional opportunities. Information from our study should be useful to fisheries managers and engineers seeking to transfer SFO technologies from one site to another. There are two important components to designing SFOs, the location within the forebay to take advantage of forebay circulation and specific entrance characteristics such as discharge and depth which affect the size and shape of the EZ and the high EPZ. Providing SFOs with an EZ extending upstream of structure could reduce entrance rejection, decrease forebay residence time and risk of predation, and increase passage of schools of smolts.

Ploskey, Gene R.; Johnson, Gary E.; Weiland, Mark A.; Khan, Fenton; Mueller, Robert P.; Serkowski, John A.; Rakowski, Cynthia L.; Hedgepeth, J.; Skalski, John R.; Ebberts, Blaine D.; Klatte, Bernard A.

2006-08-04T23:59:59.000Z

368

Summary of the Midwest conference on small-scale hydropower in the Midwest: an old technology whose time has come  

SciTech Connect (OSTI)

A variety of decision makers convened to examine and discuss certain significant problems associated with small-scale hydroelectric development in the Midwestern region, comprised of Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin. The conference opened with an introductory panel of resource persons who outlined the objectives of the conference, presented information on small-scale hydro, and described the materials available to conference participants. A series of workshop sessions followed. Two of the workshop sessions discussed problems and policy responses raised by state and Federal regulation. The remaining two workshops dealt with economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model developed by the Thayer School of Engineering at Dartmouth College. A plenary session and recommendations completed the workshop.

None

1980-05-01T23:59:59.000Z

369

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

370

Microsoft PowerPoint - NERC Reliability Standards and Mandatory Compliance Presentation to Hydro-Power Conference - June 2007.p  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping Richland OperationsU.S. CommercialInMicrobial

371

STATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT  

E-Print Network [OSTI]

, because we expect that all hydropower-based transactions will be labeled as such in the future, due in a good deal of double-counting of hydropower. Pacific Northwest utilities claim their hydropower first hydropower (and nuclear), then non-firm hydropower to serve native loads. A Concept for Discussion We believe

372

China Energy Primer  

E-Print Network [OSTI]

7 Table 1-3 China’s Exploitable HydropowerGW of technically exploitable hydropower reserves capable ofTable 1-3). The major hydropower resources are in Southwest

Ni, Chun Chun

2010-01-01T23:59:59.000Z

373

Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook  

E-Print Network [OSTI]

with generally lower hydropower generation and much higherFired Units NG Fired CC Hydropower Nuclear Power Solar WindCoal Fired NG Fired CC Hydropower Nuclear Power Solar Wind

Zheng, Nina

2010-01-01T23:59:59.000Z

374

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

by unusually low market prices for power. This has raised concern among hydropower operators regarding revenue · Minimum hydropower generation constrained by spill· Minimum hydropower generation constrained by spill

375

China Energy Databook - Rev. 4  

E-Print Network [OSTI]

construction. t The output of hydropower plants on the YaluSelf-Producers, 1980-1993 Hydropower Generation and CapacityFactors for Principal Hydropower Plants, >250 MW, 1991

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

376

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of 2 GW), or 86 GW of hydropower capacity (compared to 2007capacity displayed above hydropower in this figure. 3.3.1.load factor 86 GW of hydropower capacity @ 50% load factor

Aden, Nathaniel

2010-01-01T23:59:59.000Z

377

NORTHWEST POWER AND CONSERVATION COUNCIL BRIEFING BOOK  

E-Print Network [OSTI]

as the construction of the hydropower system itself had seemed during the New Deal two generations before. -- Joseph and wildlife. For fish and wildlife interests, mitigation would require a healthy hydropower system capable ......................................................................................................................................................................................4 1. Columbia River hydropower development

378

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network [OSTI]

4.3 Hydropower and Pumped Hydro Storage . . 4.4 Thermal24 Integration of Wind and Hydropower Systems; Volume 1:and Economics of Wind and Hydropower Integration. Technical

Mills, Andrew

2013-01-01T23:59:59.000Z

379

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

for several days, hydropower was able to take their place.on Mexico’s most important hydropower dam complex on thecoast, two large new hydropower dams, several windpower and

Shields, David

2008-01-01T23:59:59.000Z

380

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Showing 1 - 1 of 1 result. Article Hydropower Technology Basics Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in...

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind-energy-technology-basics Article Hydropower Technology Basics Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in...

382

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

U.S. Department of Energy (Wind and Hydropower Technologiesand Renewable Energy (Wind & Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

383

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Article Hydropower Technology Basics Hydropower, or...

384

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

and Renewable Energy (Wind & Hydropower TechnologiesU.S. Department of Energy (Wind and Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

385

Essays in Applied Microeconomics  

E-Print Network [OSTI]

3.3.1 Hydropowerdams but with similar hydropower potential. Until mid-rise to a replacement of hydropower, which is a renewable,

Severnini, Edson Roberto

2013-01-01T23:59:59.000Z

387

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

wind power, hydropower since it does not necessary required turbines with moving parts, which make noise

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

388

Multi-Objective Optimization of Folsom Reservoir Operation RANDI CAMERON FIELD  

E-Print Network [OSTI]

, hydropower and downstream temperature control are desired. In the summer and early fall fishery habitat impose a cost to hydropower generation if colder temperature water bypasses the hydropower tur- bines, and maximize hydropower generation. In this appli- cation, optimal seasonal reservoir release decisions

Lund, Jay R.

389

Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba  

E-Print Network [OSTI]

Kariba, the largest hydropower reservoir in the Zambezi River Basin (ZRB). Sediment characteristics large dams are constructed to provide socio- economic benefits in the form of hydropower, water storage regions of the world have considerable untapped hydropower potential [Bartle, 2002; Hydropower and Dams

Gilli, Adrian

390

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST AND PERFORMANCE  

E-Print Network [OSTI]

.............................................................................................................3 APPENDIX FBI BIOMASS APPENDIX FCO COAL APPENDIX FGT GEOTHERMAL APPENDIX FHY HYDROPOWER APPENDIX Residue 1995 10MW Stoker 68.9 28 BIO 5 Forest Residue 1995 25 MW Stoker 79.4 664 HYD 1 Hydropower Conventional 19.9 64 HYD 2 Hydropower Conventional 46.9 89 HYD 3 Hydropower Conventional 78.2 45 SOL 1 Solar

391

Information Gathering Session Gillian Charles & Ken Dragoon  

E-Print Network [OSTI]

and associated technologies. ­ Hydropower upgrades, new hydropower projects 3 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan-effectiveness Quantity-MWh Price - $/MWh 4 #12;3/27/2012 3 Hydro Assessment: 1980's National Hydropower Survey Hydro Site

392

SCHEDULING TVA'S RESERVOIRS WITH RIVERWARE Timothy M. Magee, Operations Research Analyst, Center for Advanced Decision Support  

E-Print Network [OSTI]

Ware's capabilities with TVA's daily operations scheduling models which optimize hydropower value while meeting non and operates 29 conventional hydropower plants and one pumped storage hydropower plant in the Tennessee Valley to hydropower generation, the reservoir system provides other beneficial services throughout the Tennessee

393

Reach Survival Estimates, 2008 Bill Muir, Steve Smith, Doug Marsh,  

E-Print Network [OSTI]

through the hydropower system #12;Outline · Juvenile travel time and survival through the hydropower the hydropower system · Data problem in lower river in 2008? · Percentage transported #12;Outline · Juvenile travel time and survival through the hydropower system · Data problem in lower river in 2008

394

Engineers, are focused on advanced water quality modeling on the Cumberland River in Kentucky and  

E-Print Network [OSTI]

hydropower dams in the Columbia River Basin to protect aquatic life. ORNL is providing an assessment of the effects of climate change on water availability for federal hydropower and on marketing of hydropower by increased understanding the role of climate variability and change. Collaborating with the Hydropower

395

Bringing Environmental Considerations into Water-use Optimization  

E-Print Network [OSTI]

sustainable hydropower? Conventional hydropower provides the bulk of renewable energy in the US. Popular hydropower meets sustainable production standards that protect aquatic ecosystems downstream. This can best considerations into the equations used to make decisions guiding the operation of hydropower projects. To advance

396

Nevada: Kingston Creek Hydro Project Powers 100 Households  

Broader source: Energy.gov [DOE]

Hydropower project produces enough electricity to annually power nearly 100 typical American households.

397

Syllabus HYDROMETEOROLOGY -METR 4633  

E-Print Network [OSTI]

related decision making. Turkey has significant hydroelectric power resources (104 hydropower stations

Droegemeier, Kelvin K.

398

W4E HYDROPOWER DIRECT DRIVE IN-LINE HYDROTURBINE GENERATOR FULL SCALE PROTOTYPE VALIDATION TESTING REPORT MAY 2013 ALDEN LABORATORIES  

SciTech Connect (OSTI)

The W4E is a patent-pending, direct-drive, variable force turbine/generator. The equipment generates electricity through the water dependent engagement of a ring of rotating magnets with coils mounted on a stator ring. Validation testing of the W4e was performed at Alden Laboratories in the Spring of 2013. The testing was independently observed and validated by GZA GeoEnvironmental, Inc. The observations made during testing and the results of the testing are included in the Test Summary Report

Cox, Chad W [GZA GeoEnvironmental,Inc.] [GZA GeoEnvironmental,Inc.

2013-09-24T23:59:59.000Z

399

Technical Specifications of Micro-Hydropower System Design and Implementation : Feasibility Analysis and Design of Lamaya Khola Micro-Hydro Power Plant.  

E-Print Network [OSTI]

??The purpose of this thesis is to first conduct a literature review regarding the technical specifications and design parametres required to design a working Micro… (more)

Kunwor, Anil

2012-01-01T23:59:59.000Z

400

i i h i ffMeasures to mitigate the Negative Effects of Complex Hydropower Schemes on River Systemsp y p y  

E-Print Network [OSTI]

The problem of hydropeaking depends on hydraulic been developed, calibrated and tested i inet sources, (wind power) in the E l t depends on hydraulic, morphological and ecological calibrated and tested rainfallof the turbines produces highly t d fl diti i disciplinary approach is necessary to address all

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized By State through

402

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor | DepartmentTesting,

403

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor | DepartmentTesting,

404

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |

405

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE WIND PROJECTS

406

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE WIND

407

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE

408

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE Technologies

409

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2006 Â… FY 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1TeleworkAgriculture U.S. Department of| DepartmentU.S.

410

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 Â… FY 2010  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26 Date:Charter Electricity0 Auditexcess-2018OFFSHORE

411

Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico  

E-Print Network [OSTI]

was stuck. A portable rotary rig (Prospector model TKT-1000)out of the hole, the rotary rig was again moved to thethen reamed out using the rotary rig with an 8 ˝" diameter

Dobson, P.

2009-01-01T23:59:59.000Z

412

WEST TEXAS HISTORICAL ASSOCIATION VO L U M E X X I, IS S U E 1  

E-Print Network [OSTI]

commercial oilfield was completed in 1921 in Mitchell County with the discovery well of the Westbrook field at a depth of 2,498 feet. Prospectors discovered the Yates oilfield on October 28, 1926, in southeastern

Rock, Chris

413

Proceedings of the 6th International Fuel Cell Science, Engineering & Technology Conference  

E-Print Network [OSTI]

systems, operating strategy, stand alone (SA), networked (NW), heat load following (HLF), electricity load following (ELF), no load following (NLF), variable heat-to-power ratio (VHP), fixed heat-to-power ratio (FHP-garde strategies for installing and operating CHP FCSs in buildings. These strategies include networking, load

Kammen, Daniel M.

414

Materials Science and Engineering A244 (1998) 138144 The vacuum hot pressing behavior of silicon carbide fibers coated  

E-Print Network [OSTI]

carbide fibers coated with nanocrystalline Ti­6Al­4V Joseph M. Kunze *, Haydn N.G. Wadley Intelligent (VHP) of silicon carbide monofilaments coated with nanocrystalline Ti­6Al­4V has been studied. During micromechanical contact analysis for a metal coated fiber. Final stage densification was analyzed by modifying

Wadley, Haydn

415

Ecological factors affecting growth and formation of sclerotia in Sclerotium rolfsii  

E-Print Network [OSTI]

L I B R A R Y A ft M COLLEGE OF TEXAS AftMtCOfLM ELfGFAT LXXAfGOSC CPtaG; LSe gtPcLGOtS tX TfMAhtGOL OP TfGiGAcurGGG2I PtMGTnn osg StAcLS el XMLetT L e2ddpgv*v2lr T3o02vvp! vl vHp Cg*!3*vp TJHll- lI vHp Lmg2J3-v3g*- *r! cpJH*r2J*- fl--pmp l...I GpD*d 2r 5*gv2*- I3-I2--0prv lI vHp gp132gp0prvd Ilg vHp !pmgpp lI etfGth t. .;OMtTt.;4 c*6 8)7? c*slg T3ospJv, .-*rv .*vHl-lm6 MOPhLh4

Flados, Norman D.

2013-10-04T23:59:59.000Z

416

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

coal units are ramped to follow load. During the dry season,and hydropower is used to follow load. This hydropower-coalUsing coal units to follow load requires the GPGC, like

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

417

California: Alden Fish Friendly Turbine Allows for Safe Fish Passage  

Broader source: Energy.gov [DOE]

Alden hydroelectric will provide a more sustainable option for producing electricity at more than 1,000 estimated environmentally sensitive hydropower facilities and enable hydropower development at thousands of new sites.

418

Universitt Stuttgart Auslandsorientierter Studiengang  

E-Print Network [OSTI]

.1. Small Hydro Assessment Considerations . . . . . . . . . . . . . . . . . . . . 18 2.2. Formula Water Resources Engineering and Management - WAREM Master's Thesis: Cost Optimization of Small large hydropower plants in the developing world. Small hydropower however, still has a place in both

Cirpka, Olaf Arie

419

Cryo-compressed Hydrogen Storage. Tobias Brunner  

E-Print Network [OSTI]

Elektrolysis Natural gas Carbon Electricity mix EU Wind power Hydropower Solar energy Geothermal energy Biomass Wind power Hydropower Solar energy Geothermal energy Biomass Liquefaction GH2 LH2 High pressure buffer

420

Fabrication of layer-by-layer photonic crystals using two polymer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Structures With Negative Index Of Refraction - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

422

Process for the conversion of cyclic amines into lactams - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

423

Selective oxidation of organic substrates to partially oxidized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

424

Structures with negative index of refraction - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

425

Explore Water Power Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Civil Engineer Construction Manager Hydropower Strategy Director Operations Hydroelectric Plant Operator Engineering Analyst What's Driving Job Creation? Capacity...

426

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network [OSTI]

Chengde Hongsong Wind Power II 150 Power Plant Weishui PowerHelanshan Wind Power Qinghai Longyangxia Hydropower Plant

Fridley, Ed., David

2008-01-01T23:59:59.000Z

427

Water  

Broader source: Energy.gov [DOE]

Learn about the Energy Department's commitment to develop and deploy clean, domestic power generation from hydropower, waves, and tides.

428

Pass or prune? Council judges R&D projects at Technology Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

areas: hydropower, transmission assets, transmission operations, transmission planning, demand response and energy efficiency. For example, this fiscal year's portfolio includes...

429

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the scientific, economic, environmental, technological, and societal aspects of hydropower to secondary students http:energy.goveereeducationdownloads...

430

The Transition to a Carbon-Neutral Energy Economy: Exploring UCSD's Role  

E-Print Network [OSTI]

on the amount of hydroelectric power that can be produced.supply of hydropower. Hydroelectric power has significant

2006-01-01T23:59:59.000Z

431

Departments of Energy and Interior Award Nearly $17 Million for...  

Office of Environmental Management (EM)

enhance environmental performance while increasing electricity generation, mitigating fish and habitat impacts and enhancing downstream water quality. Advanced Hydropower System...

432

Environmental Stewardship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tours Value of the River Hydropower Transmission Environmental Stewardship Fish Renewables Irrigation, Navigation Flood Control and Recreation Energy Efficiency...

433

104 S Capitol Blvd PO Box 1731  

E-Print Network [OSTI]

's already reducing our hydropower potential. "Clean coal" is a myth, and nowhere is that fiction more

434

Integrated investigations of karst phenomena in urban environments Jannis Epting a,  

E-Print Network [OSTI]

of water engineering and protection schemes. Interests include (1) the use of hydropower from a small hydro

Gilli, Adrian

435

Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study  

E-Print Network [OSTI]

no clear trend in wind potential More precipitation falls aspotential impacts on wind power potential and on hydropower

Coughlin, Katie

2008-01-01T23:59:59.000Z

436

Green Industrial Policy: Trade and Theory  

E-Print Network [OSTI]

Renewable energy, including hydropower, geothermal and biomass, provided approximately 16% of global energy use in 2009. Developing countries

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

437

Notes From the Chair 2 Climate Change Impacts Could 2  

E-Print Network [OSTI]

Notes From the Chair 2 Climate Change Impacts Could 2 Affect Columbia River Hydropower Generation hydropower dams, irrigates crops, provides habitat for fish and wild- life, and recreation, the implications and wildlife and hydropower. With the goal of protecting both resources, the Council has developed innovative

438

Bill Bradbury Jennifer Anders  

E-Print Network [OSTI]

16, 2014 MEMORANDUM TO: Interested Parties FROM: Council Staff SUBJECT: Council's Regional Hydropower hydropower scoping study. The Council selected a proposal by the Northwest Hydroelectric Association (NWHA potential for new hydropower development and for upgrades to existing units, and the costs associated

439

2 Executive Summary 2.1 Purpose and Scope  

E-Print Network [OSTI]

by the development and operation of the Columbia River hydropower system. The primary goal of subbasin planning): The development of the hydropower system in the Columbia River Basin has affected many species of wildlife as well of the hydropower system was not just land,

440

Bruce A. Measure Dick Wallace  

E-Print Network [OSTI]

of Snake River migrants that were collected and transported from mainstem Snake River hydropower dams survival for Snake River yearling Chinook salmon and steelhead through the hydropower system (Snake River hydropower system survival for yearling Chinook was 54.8%, which is higher than the average of 49

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bill Bradbury Henry Lorenzen  

E-Print Network [OSTI]

by the development and operation of hydropower dams in the Columbia River Basin. Rationale Development and operation lost to hydropower dam development and operation. Beginning in the 2000 Program, the Council called of the hydropower projects Develop and implement habitat acquisition and enhancement projects to fully mitigate

442

BULGARIAN ACADEMY OF SCIENCES PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 64  

E-Print Network [OSTI]

, 64 · 2011 · Sofia Remote Control and Monitoring of a Small Hydro-Power Plant Rumyana Krasteva of a small hydro-power plant. The hydro-power plant consists of a waterwheel, a hydro and monitoring of the waterwheel of a small hydroelectric power station. The small power station is located

Borissova, Daniela

443

Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts  

E-Print Network [OSTI]

, Portes du Scex,!) and in the hydropower plants "If a risk of overflowing exists, the Decision Support System MINDS proposes the optimal hydropower plants management for flood peak reduction PREDICTING FLOODS! ...taking profit of the existing hydropower schemes for reducing flood damages ...warning authorities

444

The impact of mining on the development of the eight Mountain States, 1860-1900  

E-Print Network [OSTI]

California Sold, independent prospectors recalled rumors of great mineral wealth locked in the streams and Sulches of the Rocky Mountains and returned to sea. ch the Colorado or Pike's Peak area. Other prospectors reasoned t. hat since the gold they had.... s a hindrance in the extraction of gold and as a factor that reduced the market value of their ore, When the blue-colored material was identified as silver, the great 1860 rush from California to the Com- 4 stock area began. The miners 1'ound...

Lang, Diane Coates

1968-01-01T23:59:59.000Z

446

A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures  

SciTech Connect (OSTI)

Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmon Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the use of a single suture for surgical implantation of transmitters with incisions that are approximately 5 1/2 mm long after tag insertion.

Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.; Eppard, M. B.

2013-07-15T23:59:59.000Z

447

PUBLISHED ONLINE: 14 OCTOBER 2012 | DOI: 10.1038/NGEO1601 Direct measurement of hydroxyl in the lunar  

E-Print Network [OSTI]

of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA. *e-mail: yangl that some of the observed hydroxyl is derived from solar wind sources. Our findings imply that ice in polar of H2O ice in cold traps at the lunar poles12 and support observations of hydrogen by Lunar Prospector

Zhang, Youxue

448

Parallel Loop Schedules Part I. Preliminaries  

E-Print Network [OSTI]

. Map-Reduce #12;3­2 BIG CPU, BIG DATA itcoin (http://bitcoin.org/) is an open-source, peer-to-peer, digital currency system. Bitcoins are created by "mining," reminiscent of how the 1849 Gold Rush prospectors panned for gold. Our next program example implements a simplified version of Bitcoin mining. You

Kaminsky, Alan

449

An indigenous origin for the South Pole Aitken basin thorium anomaly Ian Garrick-Bethell and Maria T. Zuber  

E-Print Network [OSTI]

An indigenous origin for the South Pole Aitken basin thorium anomaly Ian Garrick-Bethell and Maria high abundance of thorium as determined by Apollo and Lunar Prospector gamma-ray spectroscopy that the anomaly is the result of convergence of thorium-enriched ejecta from the Imbrium impact. Examination

Zuber, Maria

450

AN ORIGIN FOR THE SOUTH POLE-AITKEN BASIN THORIUM. V.I. Chikmachev, S.G.Pugacheva, Sternberg State Astronomical institute. Moscow University.  

E-Print Network [OSTI]

AN ORIGIN FOR THE SOUTH POLE-AITKEN BASIN THORIUM. V.I. Chikmachev, S.G.Pugacheva, Sternberg State, that within the limits of the possible Al-Khwarizmi/King basin [3]. The SPA basin thorium map: The using data Lunar Prospector [4] the thorium distribution map demonstrated a hemisphere of the Moon which contains

Chikmachov, Vadim I.

451

Alison Malcolm Research Statement The biggest steps forward in Earth imaging are coming from the border of mathematics and  

E-Print Network [OSTI]

of both helping regulators to assess the success of CO2 seques- tration, and prospectors to find oil cleaner sources, both unconventional petroleum reserves, such as shale gas and tight gas, and geothermal things have in common is the need for fluids to move through rocks with little intrinsic permeability

Malcolm, Alison

452

atlantic troms norway: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydropower resource is not a new subject of study however with growing concern over both energy in this area. Lehner et al. (2005) conducted European scale hydrological modelling...

453

Search results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BusinessIndustry Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page Hydropower Basics How does water power energy work? Water turbine http:...

454

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

terms Search Retain current filters Showing 1 - 10 of 10 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

455

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy.goveerevideosenergy-101-wind-turbines-2014-update Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

456

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

457

Notices  

Energy Savers [EERE]

FPA to allow the Commission the responsibility of issuing licenses for nonfederal hydroelectric plants. 2 Section 24 of the FPA requires that applicants proposing hydropower...

458

Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

459

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

terms Search Retain current filters Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

460

PRESENTATION TITLE  

Office of Environmental Management (EM)

Hydroelectric Design Center "Leaders in Hydropower Engineering" Deanna Dinh, PE Product Coordinator, Hydroelectric Design Center 6 November 2014 BUILDING STRONG HYDROELECTRIC...

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network [OSTI]

cost Achievements Solar PV, wind, power electronics Needscoal-fired power tariff Solar PV Biomass Wind Small hydropower generation units including solar PV, diesel, energy storage, wind, and

Marnay, Chris

2014-01-01T23:59:59.000Z

462

Renewable Energy Property Tax Exemption  

Broader source: Energy.gov [DOE]

This statute exempts renewable energy equipment from property taxes. Renewable energy includes wind, solar thermal electric, photovoltaic, biomass, hydropower, geothermal, and landfill gas...

463

Sandia National Laboratories: Conventional Water Power: Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

undeveloped hydropower resources can be developed without constructing new dams. All new development must be designed and operated so as to be environmentally sustainable. Many of...

464

Department of Energy, Department of the Interior and Army Corps...  

Energy Savers [EERE]

relationship, sharing priorities, and aligning ongoing and future renewable energy development efforts across the agencies. The Memorandum of Understanding for Hydropower -...

465

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

466

Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...  

Open Energy Info (EERE)

Clean Energy States Alliance Idioma: Ingls Kinetic Hydropower Systems Fuente: Thayer School Idioma: Ingls Wave and Tidal Energy in the UK: 2GW by 2020? Fuente: Renewable Energy...

467

Gateway:América Latina/Aprender más sobre las ERNC/Seleccion...  

Open Energy Info (EERE)

Federico Santa Mara Idioma: Espaol Kinetic Hydropower Systems Fuente: Thayer School Idioma: Ingls Retrieved from "http:en.openei.orgwindex.php?titleGateway:Amric...

468

Santee Cooper- Renewable Energy Resource Loans  

Broader source: Energy.gov [DOE]

Santee Cooper offers low-interest loans to residential customers who have a licensed contractor install photovoltaic (PV) systems, wind energy systems, micro-hydropower systems, biomass energy...

469

Power Supply Negotiations  

Office of Environmental Management (EM)

Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

470

Montana Dam Safety Act (Montana)  

Broader source: Energy.gov [DOE]

This Act establishes the state's interest in the construction of dams for water control and regulation and for hydropower generation purposes. It regulates dam construction, operation, and...

471

Looking for project-based learning ...  

Energy Savers [EERE]

featuring a variety of energy related topics including wind, solar, geothermal, electric vehicles, biofuels, fuel cells and hydropower. Learn the fundamental concepts behind...

472

Clean Energy Production Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

473

Clean Energy Production Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

Maryland offers a production tax credit for electricity generated by wind, geothermal energy, solar energy, hydropower, hydrokinetic, municipal solid waste and biomass resources. Eligible biomass...

474

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Retain current filters Showing 1 - 2 of 2 results. Page How Distributed Wind Works Wind generator http:energy.goveerewindhow-distributed-wind-works Page Hydropower Basics How...

475

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

and Renewable Energy (Wind & Hydropower Technologiesfor Understanding Public Perceptions of Wind Energy.Wind Energy. 8(2): 125 - 139. Durbin, J. and Watson, G. S. (

Hoen, Ben

2010-01-01T23:59:59.000Z

476

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

Wiser, Ryan

2014-01-01T23:59:59.000Z

477

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailing40 6.2 20% Wind Energy: Wind Deployment System (and Renewable Energy (Wind & Hydropower Technologies

Mills, Andrew D.

2009-01-01T23:59:59.000Z

478

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

PV installations. Geothermal energy may require water tobiomass, geothermal, hydro, and marine energy offshore. Asgeothermal and hydropower not included in this table The 2050 Energy

2011-01-01T23:59:59.000Z

479

E-Print Network 3.0 - albeni falls dam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station Vicksburg, MS Collection: Engineering 3 SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Summary: , the minimum lake elevation at...

480

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Parents Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Page Hydropower Basics How does water power energy...

Note: This page contains sample records for the topic "hydropower prospector vhp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Sources Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Article Hydropower Technology Basics...

482

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewables Education Toolbox Search Education Toolbox Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Article Hydropower Technology Basics...

483

Videos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

he Hanford Story Tank Waste Cleanup Energy Innovation Hubs on Capitol Hill Energy 101: Hydropower Legacy Management Business Center FY 2014 Budget Preview Webcast of the 'Energy...

484

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

485

Microsoft Word - News Release -- EN Bond Sale goes well 8-19...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPA is a nonprofit federal agency that markets renewable hydropower from 31 federal hydro projects in the Columbia Basin and power from Energy Northwest's Columbia Generating...

486

Search results | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Choices for Tomorrow Here you can find more activities on solar energy, biomass, hydropower, and wind energy for students in grades 6-8. http:energy.goveereeducation...

487

atherosclerosis study feast: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy Potential at NonPowered Dams in the United Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits B6 Bureau of Reclamation Renewable Energy...

488

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

489

Energy Department Accepting Small Business Grant Applications...  

Office of Environmental Management (EM)

of the undeveloped hydropower resource potential in the United States may require turbine-generator units operating at "heads," the height at which the water falls, less than...

490

Eminent Domain Rights (Florida)  

Broader source: Energy.gov [DOE]

Developers of certain facilities, including dams to be used for hydropower, natural gas companies, wastewater systems, and coal pipelines, may be eligible to exercise eminent domain powers in...

491

Western Area Power Administration Transmission Infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expected to Borrow Next WHAT IS WESTERN? * Power Marketing Administration under DOE * Wholesale electricity supplier, 57 hydropower plants, 10,479 MW capacity * 682 long-termfirm...

492

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration? * Power marketing administration, under the U.S Depart of Energy * Wholesale electricity supplier, 57 hydropower plants, 10,479 MW capacity * 682 long-termfirm...

493

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network [OSTI]

David Kline of the National Renewable Energy Laboratory foralong with hydropower, renewable and nuclear capacityCapacity Accelerated Renewable Generation Power Sector CO2

Zhou, Nan

2013-01-01T23:59:59.000Z

494

Intermediate Energy Infobook and Intermediate Infobook Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

activities are: Forms Of Energy fill in the blanks Biomass worksheet Coal worksheet Geothermal worksheet Hydropower worksheet Natural Gas worksheet Petroleum worksheet Propane...

495

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

496

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Search Enter terms Search Retain current filters Showing 1 - 1 of 1 result. Page Hydropower Basics How does water power energy work? Water turbine http:energy.goveerewater...

497

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

curriculum that introduces scientific concepts of electricity, water, and hydropower to elementary students with the following activities http:energy.goveere...

498

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Works Wind generator http:energy.goveerewindhow-distributed-wind-works Page Hydropower Basics How does water power energy work? Water turbine http:energy.goveerewater...

499

CX-008228: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-008228: Categorical Exclusion Determination Hydropower Energy Resource (HyPER) Harvester CX(s) Applied: A9 Date: 04112012 Location(s):...

500

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(11 Activities) An inquiry-based unit that provides a comprehensive understanding of hydropower and electricity for intermediate students with the following activities http:...