Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

2

Landfill Gas Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

3

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173" Category: Articles with outstanding TODO tasks...

4

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

5

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

6

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

7

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

8

Monitoring of Gin Drinkers' Bay landfill, Hong Kong: I. Landfill gas on top of the landfill  

Science Journals Connector (OSTI)

The present study centered on the composition of landfill gas and its effects on soil and ... at the Gin Drinkers' Bay (GDB) landfill in Hong Kong This first part of ... the study was a whole-year monitoring of landfill

M. H. Wong; C. T. Yu

9

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network (OSTI)

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

Boyer, Edmond

10

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

11

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

12

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

13

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass Facility Type Landfill Gas Location Winnebago County, Wisconsin Coordinates...

14

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

15

Occupational Safety at Landfill Sites - Hazards and Pollution Due to Landfill Gas  

Science Journals Connector (OSTI)

Landfill gas is formed on a large scale ... of methane gas which escapes every year from landfill sites in the Federal Republic of Germany ... about 2.5 million standard cubic metres. Landfill gas (LFG) with its ...

Volkmar Wilhelm

1993-01-01T23:59:59.000Z

16

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...the uncontrolled migration of landfill gas G. M. Williams 1 N. Aitkenhead...Environment, 1989. The Control of Landfill Gas. HMSO, London. Doelle, H...1988. Trace constituents in landfill gas. Gas Research Institute. Frost...

G. M. Williams; N. Aitkenhead

17

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

18

Influence assessment of landfill gas pumping  

Science Journals Connector (OSTI)

Changes in CH4 gas concentrations arising in a landfill as a consequence of a number of gas extraction pumping rates, are characterized. The field-monitored results indicate a fairly free flow of gas through the ...

Edward A. McBean; Anthony J. Crutcher; Frank A. Rovers

1984-04-01T23:59:59.000Z

19

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

20

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

22

Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation.  

E-Print Network (OSTI)

??Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation Poupak Yaghoubi Department of Civil Engineering University of Illinois at Chicago Chicago, Illinois (2011) Dissertation Chairperson:… (more)

Yaghoubi, Poupak

2012-01-01T23:59:59.000Z

23

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Journals Connector (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

24

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

25

Landfill Gas: From Rubbish to Resource  

Science Journals Connector (OSTI)

The prospects of using landfill gas (LFG) as a high-grade fuel...Kyoto Protocols, and energy prices, are discussed. Adsorption cycles suggested in the late 1980s by Sircar and co-workers for treating LFG are revi...

Kent S. Knaebel; Herbert E. Reinhold

2003-03-01T23:59:59.000Z

26

Landfill Gas Formation, Recovery and Emission in The Netherlands  

Science Journals Connector (OSTI)

Landfills are one of the main sources of methane in The Netherlands. Methane emissions from landfills are estimated to be about 180–580 ... at a total of 760–1730 ktonnes. Landfill gas recovery and utilization is...

Hans Oonk

1994-01-01T23:59:59.000Z

27

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

28

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

29

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network (OSTI)

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions; and over 5 weeks in August--September, the peak GHG emission period, during 2012. (Pacific Northwest

30

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

31

Using landfill gas for energy: Projects that pay  

SciTech Connect

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

32

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito…

2014-04-01T23:59:59.000Z

33

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network (OSTI)

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

34

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

35

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

36

landfill  

Science Journals Connector (OSTI)

landfill, landfill(ed) site, refuse dump, garbage dump ... depository, trash disposal site (US); sanitary landfill [Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung ...

2014-08-01T23:59:59.000Z

37

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

38

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

39

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

40

Is converting landfill gas to energy the best option?  

Science Journals Connector (OSTI)

Is converting landfill gas to energy the best option? ... But when it comes to new discards, critics say that the hype over landfill-gas-to-energy(LFGTE) projects may have perverse outcomes, such as discouraging the diversion of organic waste from landfills and actually increasing the amount of methane being released. ... In the notice, EDF suggests that EPA tighten current controls, which require the capture and flaring of landfill gas at sites with more than 2.5 million metric tons of waste, by bringing regulation to smaller landfills and defining LFGTE projects as the best demonstrated technology (BDT). ...

Janet Pelley

2008-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characteristics of vegetation and its relationship with landfill gas in closed landfill  

Science Journals Connector (OSTI)

An investigation was carried out to elucidate landfill gas (LFG) and the vegetation characteristics in closed landfill. The results indicate that the stabilization process of the landfill is an important factor influencing the components of landfill gases. The coverage, height and species of vegetation increase with the closed time of landfill. Fourteen species were observed in the investigated cells, dominated by Phragmites australis, an invasive perennial plant. The concentrations of methane and carbon dioxide from vegetated cover soil were lower than those from non-vegetated cover soil.

Chai Xiaoli; Zhao Xin; Lou Ziyang; Takayuki Shimaoka; Hirofumi Nakayama; Cao Xianyan; Zhao Youcai

2011-01-01T23:59:59.000Z

42

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Journals Connector (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

43

E-Print Network 3.0 - annual landfill gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

gas emissions and potential aqueous... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Landfills generate gas...

44

Slippage solution of gas pressure distribution in process of landfill gas seepage  

Science Journals Connector (OSTI)

A mathematical model of landfill gas migration was established under presumption of the ... a large impact on gas pressure distribution. Landfill gas pressure and pressure gradient considering slippage effect...

Qiang Xue; Xia-ting Feng; Bing Liang

2005-12-01T23:59:59.000Z

45

Migration of landfill gas and its control by grouting—a case history  

Science Journals Connector (OSTI)

...research-article Article Migration of landfill gas and its control by grouting-a...London. Parker, A. 1981. Landfill gas problems-case histories. Proceedings of Landfill Gas Symposium, UK AERE Harwell. Rees...

J. G. Raybould; D. J. Anderson

46

Analysis of Changes in Landfill Gas Output and the Economic Potential for Development of a Landfill Gas Control Prototype.  

E-Print Network (OSTI)

??The relationship between changes in local atmospheric conditions and the performance of the landfill gas collection system installed at the Rockingham County (NC) municipal solid… (more)

Harrill, David Justin

2014-01-01T23:59:59.000Z

47

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

48

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

50

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Bioenergy recovery from landfill gas: A case study in China  

Science Journals Connector (OSTI)

Landfill gas (LFG) utilization which means a synergy...3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of...

Wei Wang; Yuxiang Luo; Zhou Deng

2009-03-01T23:59:59.000Z

56

The influence of air inflow on CH4 composition ratio in landfill gas  

Science Journals Connector (OSTI)

When landfill gas is collected, air inflow into the landfill...4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We...2 was an effective indicator of air inflow ...

Seung-Kyu Chun

2014-02-01T23:59:59.000Z

57

The Emissions of Major Aromatic Voc as Landfill Gas from Urban Landfill Sites in Korea  

Science Journals Connector (OSTI)

In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five...?1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of n...

Ki-Hyun Kim; Sung Ok Baek; Ye-Jin Choi…

2006-07-01T23:59:59.000Z

58

Landfill gas with hydrogen addition – A fuel for SI engines  

Science Journals Connector (OSTI)

The recent quest to replace fossil fuels with renewable and sustainable energy sources has increased interest on utilization of landfill and bio gases. It is further augmented due to environment concerns and global warming caused by burning of conventional fossil fuels, energy security concerns and high cost of crude oil, and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Methane if released directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is generally flared, where the energy recovery is not in place in practice. Using landfill gas to generate energy not only encourages more efficient collection reducing emissions into the atmosphere but also generates revenues for operators and local governments. However, use of landfill gases for energy production is not always perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address these disadvantages involved by studying landfill gases in a technological perspective and motivate utilization of landfill gas for future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way. It has been shown that though the performance and combustion characteristics of the landfill gas fueled engine deteriorated in comparison with methane operation, increasing compression ratio and advancing spark timing improved the performance of the landfill gas operation in par with methane operation. The effects due to composition changes in the landfill gas were found more pronounced at lean and rich mixture operation than at stoichiometry. In addition, the effects of additions of hydrogen up to 30% in the landfill gas were studied. Addition of even small quantities of hydrogen such as 3–5% delivered better performance improvement particularly at the lean and rich limit operations and extended the operational limits. Additions of hydrogen also improved the combustion characteristics and reduced cyclic variations of landfill gas operations especially at the lean and rich mixtures.

S.O. Bade Shrestha; G. Narayanan

2008-01-01T23:59:59.000Z

59

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network (OSTI)

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

60

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Passive drainage and biofiltration of landfill gas: behaviour and performance in a temperate climate.  

E-Print Network (OSTI)

??Microbial oxidation of methane has attracted interest as an alternative process for treating landfill gas emissions. Approaches have included enhanced landfill cover layers and biocovers,… (more)

Dever, Stuart Anthony

2009-01-01T23:59:59.000Z

62

Removal of Hydrogen Sulfide from Landfill Gas Using a Solar Regenerable Adsorbent.  

E-Print Network (OSTI)

??Landfill gas is a complex mix of gases, containing methane, carbon dioxide, nitrogen and hydrogen sulfide, created by the action of microorganisms within the landfill.… (more)

Kalapala, Sreevani

2014-01-01T23:59:59.000Z

63

Effects of landfill gas on subtropical woody plants  

Science Journals Connector (OSTI)

An account is given of the influence of landfill gas on tree growth in the field at...Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea gluti...

G. Y. S. Chan; M. H. Wong; B. A. Whitton

64

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

65

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

66

Numerical Simulation of the Radius of Influence for Landfill Gas Wells  

Science Journals Connector (OSTI)

...of the Radius of Influence for Landfill Gas Wells Harold Vigneault a * * Corresponding...used to quantify the efficiency of landfill gas recovery wells for unlined landfills...Results will help with the design of landfill gas recovery systems. In North America...

Harold Vigneault; René Lefebvre; Miroslav Nastev

67

Evaluating fugacity models for trace components in landfill gas  

Science Journals Connector (OSTI)

A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95?300 ?g m?3; 43 ?g m?3) fell within measured ranges observed in gas from landfills (24?300–180?000 ?g m?3; 20–70 ?g m?3). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.

Sophie Shafi; Andrew Sweetman; Rupert L. Hough; Richard Smith; Alan Rosevear; Simon J.T. Pollard

2006-01-01T23:59:59.000Z

68

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14–15 years) compared to the other two sites (?6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m?2 d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

69

Meteorological parameters as an important factor on the energy recovery of landfill gas in landfills  

Science Journals Connector (OSTI)

The effect of meteorological factors on the composition and the energy recovery of the landfill gas (LFG) were evaluated in this study. Landfill gas data consisting of methane carbon dioxide and oxygen content as well as LFG temperature were collected from April 2009 to March 2010 along with meteorological data. The data set were first used to visualize the similarity by using self-organizing maps and to calculate correlation factors. Then the data was used with ANN to further analyze the impacts of meteorological factors. In both analysis it is seen that the most important meteorological parameter effective on LFG energy content is soil temperatures. Furthermore ANN was found to be successful in explaining variations of methane content and temperature of LFG with correlation coefficients of 0.706 and 0.984 respectively. ANN was proved itself to be a useful tool for estimating energy recovery of the landfill gas.

?brahim Uyanik; Bestamin Özkaya; Selami Demir; Mehmet Çakmakci

2012-01-01T23:59:59.000Z

70

Toxic oxide deposits from the combustion of landfill gas and biogas  

Science Journals Connector (OSTI)

Oxide deposits found in combustion systems of landfill gas fired power stations contain relatively high concentrations ... They are selectively transported as part of the landfill gas into the gas-burning devices...

Dietmar Glindemann; Peter Morgenstern…

1996-06-01T23:59:59.000Z

71

Removal and determination of trimethylsilanol from the landfill gas  

Science Journals Connector (OSTI)

The removal and determination of trimethylsilanol (TMSOH) in landfill gas has been studied before and after the special E3000-ITC System. The system works according to principle of temperature swing. The performance of TMSOH and humidity removal was 20% and more than 90%, respectively. The six of active carbons and impinger method were tested on the full-scale landfill in Poland for TMSOH and siloxanes determination. The extraction method and absorption in acetone were used. The concentration of TMSOH and siloxanes were found in range from 23.6 to 29.2 mg/m3 and from 18.0 to 38.9 mg/m3, respectively. The content of TMSOH in biogas originating from landfill was 41% out of all siloxanes. Moreover, the used system is alternative to other existing technique of landfill gas purification.

Grzegorz Piechota; Manfred Hagmann; Roman Buczkowski

2012-01-01T23:59:59.000Z

72

The landfill gas activity of the IEA bioenergy agreement  

Science Journals Connector (OSTI)

Landfill gas (LFG) is a renewable source of useful energy. Its world wide annual energy potential is in the range of a few hundred TWh. Today it is only marginally exploited. LFG is also an important contributor to the atmospheres CH4-content, it can be estimated to contribute about 25% of the methane coming from anthropogenic sources. In comparison to many other sources of methane emissions such as peat bogs, rice paddies, termites and sheep, landfills can be considered to be point sources, i.e. they are stationary and of limited extension. For this reason landfill gas (LFG) utilisation is one of the most cost effective ways to combat the greenhouse effect. The aim of the IEA activity on LFG is to promote information exchange and co-operation between national programmes in order to promote the proliferation of landfill gas utilisation. During the period 1992–1994 the LFG activity has had six participating countries: Canada, Denmark, Norway, The Netherlands, Sweden, UK and USA. In the past three-year period, the activity has been mainly directed towards establishing networks and obtaining an over-view of data related to LFG in the member countries. Numerous contacts have been established and perhaps of most importance for the future of the activity are the links towards organisations involved in the development of landfill technology, such as ISWA and SWANA. The gathering and evaluation of data within the LFG area from the member countries has resulted in a number of documents that are to be published within the near future. These documents cover information on LFG utilisation, landfill research, landfill gas potentials, landfill emission assessment and also non-technical barriers to LFG utilisation.

A Lagerkvist

1995-01-01T23:59:59.000Z

73

An Empirical Analysis of Gas Well Design and Pumping Tests for Retrofitting Landfill Gas Collection.  

E-Print Network (OSTI)

??Retrofitting a landfill with a gas collection system is an expensive and time consuming endeavor. Such an undertaking usually consists of longer-term extraction testing programs… (more)

Stevens, Derek

2013-01-01T23:59:59.000Z

74

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

76

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

77

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

78

Powering Microturbines With Landfill Gas, October 2002 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.4 Landfill Methane Utilization CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

79

Landfill  

Science Journals Connector (OSTI)

Landfill, also known as a dump (US) or a tip (UK), is a site for the disposal of waste materials by burial and is the oldest form of waste treatment . Historically, landfills have been one of the most common...

2008-01-01T23:59:59.000Z

80

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling the final phase of landfill gas generation from long-term observations  

Science Journals Connector (OSTI)

For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usuall...

Johannes Tintner; Manfred Kühleitner; Erwin Binner; Norbert Brunner…

2012-06-01T23:59:59.000Z

82

Landfill  

Science Journals Connector (OSTI)

The solid wastes and refuse disposed of by burial in pits constructed for the purpose, natural depressions, or abandoned quarries or other artificial excavations. Localities used in this way are called landfill s...

2008-01-01T23:59:59.000Z

83

Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction  

Science Journals Connector (OSTI)

Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term.

Zezhi Chen; Huijuan Gong; Mengqun Zhang; Weili Wu; Yu Liu; Jin Feng

2011-01-01T23:59:59.000Z

84

Passive drainage and biofiltration of landfill gas: Results of Australian field trial  

Science Journals Connector (OSTI)

A field scale trial was undertaken at a landfill site in Sydney, Australia (2004–2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

Stuart A. Dever; Gareth E. Swarbrick; Richard M. Stuetz

2011-01-01T23:59:59.000Z

85

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Journals Connector (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

86

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??The world is facing an energy crisis and there is an immediate need to find a sustainable source of energy. Landfill gas has the potential… (more)

Khan, Feroze

2012-01-01T23:59:59.000Z

87

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

88

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

89

Vapor phase transport at a hillside landfill  

Science Journals Connector (OSTI)

...ambient density gradients. Post-landfill gas input reverses the direction of...landfill may explain observations of landfill gas found at depth. Post-landfill...of gas generation. Transport of landfill gas is shown to be dominated by diffusion...

P. H. Stauffer; N. D. Rosenberg

90

Prediction of Total Dissolved Gas (TDG) at Hydropower Dams throughout the Columbia  

SciTech Connect

The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. The entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin cause elevated levels of total dissolved gas (TDG) saturation. Physical processes that affect TDG exchange at hydropower facilities have been characterized throughout the CRB in site-specific studies and at real-time water quality monitoring stations. These data have been used to develop predictive models of TDG exchange which are site specific and account for the fate of spillway and powerhouse flows in the tailrace channel and resultant transport and exchange in route to the downstream dam. Currently, there exists a need to summarize the findings from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow for the formulation of optimal water regulation schedules subject to water quality constraints for TDG supersaturation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases.

Pasha, MD Fayzul K [ORNL] [ORNL; Hadjerioua, Boualem [ORNL] [ORNL; Stewart, Kevin M [ORNL] [ORNL; Bender, Merlynn [Bureau of Reclamation] [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers] [U.S. Army Corps of Engineers

2012-01-01T23:59:59.000Z

91

The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill  

Science Journals Connector (OSTI)

The landfill gas generation was investigated based on the theories of the thermodynamics, microbial dynamics and chemical dynamics. The coupling model was developed for describing the gas transport and heat release. And the relationship between the gas generation rate and the temperature was proposed. The parameters in the gas generation model were obtained by bioreactor test in order to evaluate the volume of gas production of the Erfeishan landfill in China. The simulation results shown that the operating life of the landfill will be overestimated if the model does not consider the thermal effect during degradation of the solid substrate.

Liu Lei; Liang Bing; Xue Qiang; Zhao Ying; Yang Chun

2011-01-01T23:59:59.000Z

92

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

93

Study on optimization model of energy collection efficiency and its power generation benefit evaluation of landfill gas  

Science Journals Connector (OSTI)

An optimization model for joint biogas energy collection efficiency that targets the prediction model for landfill gas output dynamics and the optimization model for gas well output has been established. The model was used to comprehensively analyze and evaluate the collection efficiency of a landfill gas well together with the long-term monitoring the gas output of the gas well within Chenjiachong Landfill. The collection efficiency increased by more than 50% than the original collection of landfill biogas and the power generation efficiency increased more than two times after the reservoir area of the landfill was optimized and regulated.

Xue Qiang

2013-01-01T23:59:59.000Z

94

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

95

Tracer method to measure landfill gas emissions from leachate collection systems  

Science Journals Connector (OSTI)

This paper describes a method developed for quantification of gas emissions from the leachate collection system at landfills and present emission data measured at two Danish landfills with no landfill gas collection systems in place: Fakse landfill and AV Miljř. Landfill top covers are often designed to prevent infiltration of water and thus are made from low permeable materials. At such sites a large part of the gas will often emit through other pathways such as the leachate collection system. These point releases of gaseous constituents from these locations cannot be measured using traditional flux chambers, which are often used to measure gas emissions from landfills. Comparing tracer measurements of methane (CH4) emissions from leachate systems at Fakse landfill and AV Miljř to measurements of total CH4 emissions, it was found that approximately 47% (351 kg CH4 d?1) and 27% (211 kg CH4 d?1), respectively, of the CH4 emitting from the sites occurred from the leachate collection systems. Emission rates observed from individual leachate collection wells at the two landfills ranged from 0.1 to 76 kg CH4 d?1. A strong influence on emission rates caused by rise and fall in atmospheric pressure was observed when continuously measuring emission from a leachate well over a week. Emission of CH4 was one to two orders of magnitude higher during periods of decreasing pressure compared to periods of increasing pressure.

Anders M. Fredenslund; Charlotte Scheutz; Peter Kjeldsen

2010-01-01T23:59:59.000Z

96

Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill  

Science Journals Connector (OSTI)

According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005–2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m?2 d?1 and 3800 g CH4 m?2 d?1, respectively. The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.

Bruno Capaccioni; Cristina Caramiello; Fabio Tatŕno; Alessandro Viscione

2011-01-01T23:59:59.000Z

97

Hollow fiber membrane process for the pretreatment of methane hydrate from landfill gas  

Science Journals Connector (OSTI)

Abstract Landfill gas is major source of green house effect because it is mainly composed of CH4 and CO2. Especially, the separation of CH4 from landfill gas was studied actively due to its high heating value which can be used for energy resource. In this study, polymeric hollow fiber membrane was produced by dry–wet phase inversion method to separate CH4 from the landfill gas. The morphology of the membranes was examined by scanning electron microscopy (SEM) to understand and correlate the morphology with the performance of the membrane. Firstly, single gas permeation and mixed gas separation were performed in lab-scale. After then, a pilot scale membrane process was designed using a simulation program. The manufactured process settled in Gyeong-ju landfill site and operated at various conditions. As a result, CH4 was concentrated to 88 vol.% and also CO2 removal efficiency increases up to 86.7%.

KeeHong Kim; WonKil Choi; HangDae Jo; JongHak Kim; Hyung Keun Lee

2014-01-01T23:59:59.000Z

98

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode...

99

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Using methane in these applications helps keep it out of the atmosphere, reducing air pollution. Federal Application Before conducting an assessment or deploying landfill...

100

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modified landfill gas generation rate model of first-order kinetics and two-stage reaction  

Science Journals Connector (OSTI)

This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes...L 0), the reaction rate constant in the first stage (K 1), and ...

Jiajun Chen; Hao Wang…

2009-09-01T23:59:59.000Z

102

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

Energy.gov (U.S. Department of Energy (DOE))

Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

103

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

Science Journals Connector (OSTI)

This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m2 hr, respectively, compared to an arithmetic mean of 0.24 l/m2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

Mutasem El-Fadel; Layale Abi-Esber; Samer Salhab

2012-01-01T23:59:59.000Z

104

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

105

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network (OSTI)

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system. Landfill technology, as it is the most widely employed and is regarded as the most suitable and simple and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been

Columbia University

106

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

107

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

108

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

109

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

110

Delivery and viability of landfill gas CDM projects in Africa—A South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1 MW) was registered, while the larger Component Two (9 MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

111

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

112

Carbon dioxide removal and capture for landfill gas up-grading  

Science Journals Connector (OSTI)

Within the frame of an EC financially supported project - LIFE05 ENV/IT/000874 GHERL (Greenhouse Effect Reduction from Landfill)–a pilot plant was set up in order to demonstrate the feasibility of applying chemical absorption to remove carbon dioxide from landfill gas. After proper upgrading - basically removal of carbon dioxide, hydrogen sulphide, ammonia and other trace gas compound–the gas might be fed into the distribution grid for natural gas or used as vehicle fuel, replacing a fossil fuel thus saving natural resources and carbon dioxide emissions. Several experiences in Europe have been carried out concerning the landfill gas - and biogas from anaerobic digestion - quality up-grading through CO2 removal, but in all of them carbon dioxide was vented to the atmosphere after separation, without any direct benefit in terms of greenhouse gases reduction. With respect to those previous experiences, in this work the attention was focused on CO2 removal from landfill gas with an effective capture process, capable of removing carbon dioxide from atmosphere, through a globally carbon negative process. In particular, processes capable of producing final solid products were investigated, with the aim of obtaining as output solid compounds which can be either used in the chemical industry or disposed off. The adopted absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. Potassium carbonate is a product which has several applications in the chemical industry if obtained with adequate quality. It can be sold as a pulverised solid, or in aqueous solution. Several tests were carried out at the pilot plant, which was located at a landfill site, in order to feed it with a fraction of the on-site collected landfill gas. The results of the experimental campaign are reported, explained and commented in the paper. Also a discussion on economic issues is presented.

Lidia Lombardia; Andrea Corti; Ennio Carnevale; Renato Baciocchi; Daniela Zingaretti

2011-01-01T23:59:59.000Z

113

Suitability of Tedlar® gas sampling bags for siloxane quantification in landfill gas  

Science Journals Connector (OSTI)

Landfill or digester gas can contain man-made volatile methylsiloxanes (VMS), usually in the range of a few milligrams per normal cubic metre (Nm3). Until now, no standard method for siloxane quantification exists and there is controversy with respect to which sampling procedure is most suitable. This paper presents an analytical and a sampling procedure for the quantification of common VMS in biogas via GC–MS and polyvinyl fluoride (Tedlar®) bags. Two commercially available Tedlar bag models are studied. One is equipped with a polypropylene valve with integrated septum, the other with a dual port fitting made from stainless steel. Siloxane recovery in landfill gas samples is investigated as a function of storage time, temperature, surface-to-volume ratio and background gas. Recovery was found to depend on the type of fitting employed. The siloxanes sampled in the bag with the polypropylene valve show high and stable recovery, even after more than 30 days. Sufficiently low detection limits below 10 ?g Nm?3 and good reproducibility can be achieved. The method is therefore well applicable to biogas, greatly facilitating sampling in comparison with other common techniques involving siloxane enrichment using sorption media.

M. Ajhar; B. Wens; K.H. Stollenwerk; G. Spalding; S. Yüce; T. Melin

2010-01-01T23:59:59.000Z

114

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

115

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...was considered of fundamental importance in determining...making the situation safe, even though in...with coal mining operations. In 1983 smells...central heating boiler had been ignited...different landfill operation and completion scenarios...how to improve the operation and engineering...

G. M. Williams; N. Aitkenhead

116

Effects of Landfill Gas on Growth and Nitrogen Fixation of Two Leguminous Trees (Acacia Confusa, Leucaena Leucocephala)  

Science Journals Connector (OSTI)

A study was made on the effects of landfill gas on ARA (acetylene reducing activity) of ... The effects of the three main components of landfill gas, O2, CO2 and CH4, were first measured separately over a 1-hr pe...

Y. S. G. Chan; M. H. Wong; B. A. Whitton

1998-10-01T23:59:59.000Z

117

Hydropower Projects  

Energy.gov (U.S. Department of Energy (DOE))

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

118

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition  

Science Journals Connector (OSTI)

Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition ... The performance of a four-stroke Honda GC160E spark ignition (SI) internal combustion (IC) engine operating on landfill gas (LFG) was investigated, as well as the impact of H2 and CO (syngas) addition on emissions and engine efficiency. ... In addition, variation across both the syngas content (up to 15%) and the ratio of H2 to CO in the syngas (H2/CO = 0.5, 1, and 2) were tested. ...

McKenzie P. Kohn; Jechan Lee; Matthew L. Basinger; Marco J. Castaldi

2011-02-07T23:59:59.000Z

119

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013  

Energy.gov (U.S. Department of Energy (DOE))

Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

120

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

122

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

123

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser. biogas fra anaerob udrådning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

124

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling  

Science Journals Connector (OSTI)

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25 bar), temperature (10–25 °C) and water flow speed (5.5–11 l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41 Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0 mg/l and carbonate concentration between 500–1000 mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

J. Läntelä; S. Rasi; J. Lehtinen; J. Rintala

2012-01-01T23:59:59.000Z

125

Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells  

Science Journals Connector (OSTI)

The potential use of landfill gas as feeding fuel for the so-called molten carbonate fuel cells (MCFC) imposes the need for new upgrading technologies in order to meet the much tougher feed gas specifications of this type of fuel cells in comparison to gas engines. Nevertheless, MCFC has slightly lower purity demands than low temperature fuel cells. This paper outlines the idea of a new catalytic purification process for landfill gas conditioning, which may be supposed to be more competitive than state-of-the-art technologies and summarises some lab-scale results. This catalytic process transforms harmful landfill gas minor compounds into products that can be easily removed from the gas stream by a subsequent adsorption step. The optimal process temperature was found to be in the range 250–400 °C. After a catalyst screening, two materials were identified, which have the ability to remove all harmful minor compounds from landfill gas. The first material was a commercial alumina that showed a high activity towards the removal of organic silicon compounds. The alumina protects both a subsequent catalyst for the removal of other organic minor compounds and the fuel cell. Due to gradual deactivation caused by silica deposition, the activated alumina needs to be periodically replaced. The second material was a commercial V2O5/TiO2-based catalyst that exhibited a high activity for the total oxidation of a broad spectrum of other harmful organic minor compounds into a simpler compound class “acid gases (HCl, HF and SO2)”, which can be easily removed by absorption with, e.g. alkalised alumina. The encouraging results obtained allow the scale-up of this LFG conditioning process to test it under real LFG conditions.

W. Urban; H. Lohmann; J.I. Salazar Gómez

2009-01-01T23:59:59.000Z

126

The Microbial Community of Landfill Soils and the Influence of Landfill Gas on Soil Recovery and Revegetation  

Science Journals Connector (OSTI)

An extensive database for soil microbiological and physicochemical conditions has been established from samples taken from restored landfill sites in South East England. The sites...

Sharon D. Wigfull; Paul Birch

1990-01-01T23:59:59.000Z

127

Instrumentation for the Measurement of Landfill Gas Emissions  

Science Journals Connector (OSTI)

Where problems of gas emission are suspected, the reliable detection and measurement of the gas is essential if solutions to the problem are to be designed, constructed and monitored for their effectiveness. T...

D. Crowhurst

1988-01-01T23:59:59.000Z

128

Mechanics of biocell landfill settlements.  

E-Print Network (OSTI)

??Prediction of landfill gas generation and settlements are of concerns in design and maintenance of biocell landfills. Accurate settlement prediction is essential for design of… (more)

Hettiarachchi, Chamil Hiroshan

2005-01-01T23:59:59.000Z

129

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Energy.gov (U.S. Department of Energy (DOE))

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

130

Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington  

SciTech Connect

Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

2013-03-15T23:59:59.000Z

131

The reduction of greenhouse gas emissions using various thermal systems in a landfill site  

Science Journals Connector (OSTI)

In this paper, the Greenhouse Gas (GHG) emissions from an uncontrolled landfill site filled with Municipal Solid Waste (MSW) are compared with those from controlled sites in which collected Landfill Gases (LFG) are utilised by various technologies. These technologies include flaring, conventional electricity generation technologies such as Internal Combustion Engine (ICE) and Gas Turbine (GT) and an emerging technology, Solid Oxide Fuel Cell (SOFC). The results show that SOFC is the best option for reducing the GHG emissions among the studied technologies. In the case when SOFC is used, GHG emissions from the controlled site are reduced by 63% compared to the uncontrolled site. This case has a specific lifetime GHG emission of 2.38 tonnes CO2 .eq/MWh when only electricity is produced and 1.12 tonnes CO2.eq/MWh for a cogeneration application.

C. Ozgur Colpan; Ibrahim Dincer; Feridun Hamdullahpur

2009-01-01T23:59:59.000Z

132

Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report  

SciTech Connect

The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

2012-05-01T23:59:59.000Z

133

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

134

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network (OSTI)

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

135

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

136

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

137

Passive landfill gas emission – Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters  

Science Journals Connector (OSTI)

A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10 h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h?1 m?3 filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.

Julia Gebert; Alexander Groengroeft

2006-01-01T23:59:59.000Z

138

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

139

Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash  

Science Journals Connector (OSTI)

Abstract Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.

P. Mostbauer; L. Lombardi; T. Olivieri; S. Lenz

2014-01-01T23:59:59.000Z

140

domestic refuse landfill  

Science Journals Connector (OSTI)

domestic refuse landfill, domestic waste landfill, house waste landfill, house refuse landfill ? Hausmüllaufschüttung f

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Influence of Landfill Gas on the Microdistribution of Grass Establishment Through Natural Colonization  

Science Journals Connector (OSTI)

Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat condi...

Douglas H. Trotter; John A. Cooke

2005-03-01T23:59:59.000Z

142

Types of Hydropower Plants  

Energy.gov (U.S. Department of Energy (DOE))

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

143

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

144

Flexible hydropower: boosting energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab....

145

INTEGRATED CRYOGENIC SYSTEM FOR CO 2 SEPARATION AND LNG PRODUCTION FROM LANDFILL GAS  

Science Journals Connector (OSTI)

An integrated cryogenic system to separate carbon dioxide ( CO 2 ) and produce LNG from landfill gas is investigated and designed. The main objective of this design is to eliminate the requirement of a standard CO 2 removal process in the liquefaction system such distillation or (temperature or pressure) swing adsorption and to directly separate carbon dioxide as frost at the liquefying channel of methane. Two identical sets of heat exchangers are installed in parallel and switched alternatively with a time period so that one is in separation?liquefaction mode while the other is in CO 2 clean?up mode. A thermal regeneration scheme is presented for the purpose of saving energy and avoiding the stoppage of LNG production followed by the flow switching. The switching period is determined from results of a combined heat and mass transfer analysis on the CO 2 freeze?out process.

H. M. Chang; M. J. Chung; S. B. Park

2010-01-01T23:59:59.000Z

146

(sanitary) landfill  

Science Journals Connector (OSTI)

(sanitary) landfill, landfill(ed) site, refuse dump, garbage dump...Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung von Abfallstoffen oder von Industrieprodukten al...

2014-08-01T23:59:59.000Z

147

Calcite precipitation in landfills: an essential product of waste stabilization  

Science Journals Connector (OSTI)

...and carbon dioxide observed for landfill gas do not reflect the amount of bicarbonate...reactions within the waste) and landfill gas. Both of these are potentially...Brief summaries of leachate and landfill gas compositions and their evolution...

D. A. C. Manning

148

Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater  

Science Journals Connector (OSTI)

...considerably lower concentrations in landfill gas. CFCs and CCl4 in leachate may...all groundwater, leachate and landfill gas samples were taken on 6 April 2004...at the central site facility. Landfill gas was sampled by attaching a thick...

A. E. Foley; T. C. Atkinson; Y. Zhao

149

Hydropower Potential Screening Study  

E-Print Network (OSTI)

Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

150

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

SciTech Connect

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

151

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

152

Phase equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of tetrabutylammonium nitrate  

Science Journals Connector (OSTI)

Abstract Hydrate phase equilibrium conditions for the simulated landfill gas (LFG) of methane and carbon dioxide (50 mol% methane, 50 mol% carbon dioxide) were investigated with the pressure range of (1.90 to 13.83) MPa and temperature range of (280.0 to 288.3) K at (0.050, 0.170, 0.340, and 0.394) mass fraction (w) of tetrabutylammonium nitrate (TBANO3). The phase boundary between liquid–vapor–hydrate (L–V–H) phases and liquid–vapor (L–V) phases was determined by employing an isochoric pressure-search method. The phase equilibrium data measured showed that TBANO3 appeared a remarkable promotion effect at w TBANO 3  = 0.394, corresponding to TBANO3 · 26H2O, but inhibition effect at w TBANO 3  = (0.050, or 0.170) on the semiclathrate hydrate formation. In addition, the application of TBANO3 at 0.340 mass fraction, corresponding to TBANO3 · 32H2O, displayed promotion effect at lower pressures (below 6.38 MPa) and inhibition effect at higher pressures (above 6.38 MPa).

Ling-Li Shi; De-Qing Liang; Dong-Liang Li

2014-01-01T23:59:59.000Z

153

slag landfill  

Science Journals Connector (OSTI)

slag landfill [Context: the impacts of Cu 2+ emissions from the slag landfill to the groundwater were assessed to be...] ? Schlackendeponie f ...

2014-08-01T23:59:59.000Z

154

Energy 101: Hydropower  

ScienceCinema (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-24T23:59:59.000Z

155

National Hydropower Map  

Energy.gov (U.S. Department of Energy (DOE))

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

156

Energy 101: Hydropower  

SciTech Connect

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-01T23:59:59.000Z

157

Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas  

Science Journals Connector (OSTI)

Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150??C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5?nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO2, CH4, H2, NH3, CO and NO2 has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO2 presence in the multicomponent mixture LFG. The NO2 gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO2 concentrations of 3.3?ppm and 330?ppb dispersed in the LFG, respectively, with a wide NO2 gas concentration range measured from 0.33 to 3.3?ppm, at the sensor temperature of 150??C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 ?m and a single-tube diameter varying in the range of 5?35?nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5?50?nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100?ppb NO2, at the sensor temperature of 150??C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110??C. A comparison of the NO2 gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

M Penza; R Rossi; M Alvisi; E Serra

2010-01-01T23:59:59.000Z

158

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network (OSTI)

renewables, including large hydropower, by 2020. In 2009,coal mining and hydropower), iron and steel, machinery, andoil, and natural gas. Hydropower, nuclear, and wind energy

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

159

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

160

Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and  

E-Print Network (OSTI)

in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and districtStatkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in DĂĽsseldorf we are currently looking to hire a System Manager Renewable Energy

Morik, Katharina

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

162

Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Facility Facility Byxbee Park Sanitary Landfill Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

163

Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production  

E-Print Network (OSTI)

by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

164

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

165

Full-energy-chain greenhouse-gas emissions: a comparison between nuclear power, hydropower, solar power and wind power  

Science Journals Connector (OSTI)

Fair comparison of the climate impacts from different energy sources can be made only by accounting for the emissions of all relevant greenhouse gases (GHGs) from the full energy chain (FENCH) of the energy sources. FENCH-GHG emission factors of most of the non-fossil fuel energies are lower than those of the fossil fuels that are in the range of 500-1200 g CO2/kW h(e). The improvement rates concerning their CO2-to-energy ratios of OECD countries and some developing countries are discussed, showing the low performance of the latter from 1965-1996. Detailed FENCH-GHG systems analyses are given for nuclear power, hydropower, and wind and solar power. The FENCH-GHG emission factor of nuclear power is 8.9 g CO2-equiv./kW h(e) and applies to light-water nuclear power plants. The main contributions are from milling, conversion of lower-grade ore, enrichment, construction and operation of the power plant, and reprocessing (if relevant). For hydropower an emission factor is reported of 16 g CO2-equiv./kW h(e) for the best investigated flat-area cold climate power plants. The main, biogenic, emission source is the water reservoir. The information on high-altitude alpine reservoir-type and run-of- river hydropower generation is limited. These plants could probably have emission factors in the low range of 5-10 g CO2-equiv./kW h(e). The FENCH CO2-equivalent emission factors of wind power systems are in the order of 15 g CO2-equiv./kW h(e). The main source is associated with the materials for the turbine and for its foundation. Solar PV and solar thermal power are in an intermediate range their current values are 100-200 and 50-80g CO2-equiv./kW h(e), respectively. GHG emissions are mainly from silicon, which dominates the PV market.

Joop F. van de Vate

2002-01-01T23:59:59.000Z

166

2015 Forum on Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

167

National Hydropower Association conference proceedings  

SciTech Connect

These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

Not Available

1985-01-01T23:59:59.000Z

168

E-Print Network 3.0 - annual international landfill Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

-end of lifetime average collection efficiencies for international greenhouse gas (GHG) inventories for landfills... t h e U . S i THE IMPORTANCE OF LANDFILL GAS CAPTURE AND...

169

A renewable energy plan for the Oak Grove Sanitary Landfill In Winder, Georgia.  

E-Print Network (OSTI)

??Oak Grove Sanitary Landfill in Winder, Georgia is already refining its landfill gas (LFG) and sending it through the natural gas pipeline. This is more… (more)

Hambrick, Tracy L.

2011-01-01T23:59:59.000Z

170

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

171

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

172

Hydropower Research & Development | Department of Energy  

Energy Savers (EERE)

Development Hydropower Research & Development Hydropower Research & Development The Water Power Program's hydropower research and development (R&D) efforts focus on advancing...

173

(sanitary) landfill reclamation  

Science Journals Connector (OSTI)

(sanitary) landfill reclamation, reclamation of (sanitary) landfills [For industrial and commercial development] ? Deponielandgewinnung f, Kippenlandgewinnung

2014-08-01T23:59:59.000Z

174

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

eligible hydropower, landfill gas, and municipal solidgeothermal, biomass, landfill gas, solar, ocean, and theCo-Fired Biomass Landfill Gas Solar Ocean Existing (2004) Y

Blair, N.

2010-01-01T23:59:59.000Z

175

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

eligible hydropower, landfill gas, and municipal solidwind, geothermal, biomass, landfill gas, solar, ocean, andCo-Fired Biomass Landfill Gas Solar Ocean Existing (2004) Y

Blair, N.

2010-01-01T23:59:59.000Z

176

Benefits of Hydropower  

K-12 Energy Lesson Plans and Activities Web site (EERE)

There are many advantages to hydropower than conventional methods of generating electricity, from being a renewable, sustainable resource, to being a reliable back-up source of energy when there are disruptions to electricity.

177

Hydropower Memorandum of Understanding  

Energy.gov (U.S. Department of Energy (DOE))

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

178

NREL: Energy Analysis - Hydropower Results - Life Cycle Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the systematic review and analysis. The majority of life cycle greenhouse gas (GHG) emission estimates for hydropower cluster between about 4 and 14 g CO2eqkWh. The...

179

Ni catalysts derived from Mg–Al layered double hydroxides for hydrogen production from landfill gas conversion  

Science Journals Connector (OSTI)

A layered double hydroxide (LDH) precursor with a hydrotalcite-like structure containing Ni/Mg/Al cations was prepared. A series of Ni catalysts containing mixed-oxides and spinel phases were then obtained through thermal treatment of the LDH precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), and temperature-programmed reduction (TPR) revealed that the LDH derived Ni catalysts have well-dispersed nickel phases upon reduction. The thermal treatment temperatures have noticeable effects on the specific surface area, pore volume, phase transformation, particle size, and reducibility of the catalysts. Thermal treatment temperatures up to 700 °C promote the generation of mesopores which facilitate an increase in specific area and pore volume. Beyond 700 °C sintering occurs, mesopores collapse, and specific area and pore volume decrease. High thermal treatment temperatures favor the phase transformation to spinel solid solutions and the particle size growth. Metal-support interaction is enhanced but reducibility is hindered due to the formation of spinel solid solution phases. The LDH derived Ni catalysts were tested for landfill gas conversion at 750 °C and have shown excellent activity and stability in terms of methane conversion. At gas hourly space velocity (GHSV) of 240,000 h?1 and pressure of 1 atm, 81% methane conversion was achieved during a 48 h test period without apparent catalyst deactivation.

Qingsong Wang; Wei Ren; Xueliang Yuan; Ruimin Mu; Zhanlong Song; Xiaolin Wang

2012-01-01T23:59:59.000Z

180

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network (OSTI)

open-loop biomass, eligible hydropower, landfill gas, andexisting and new non-hydropower renewable resources werewas included. In contrast, hydropower and municipal solid

Blair, N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

COMBUSTIVE APPROACH FOR MEASURING TOTAL VOLATILE PHOSPHORUS CONTENT IN LANDFILL GAS  

Science Journals Connector (OSTI)

A technique was developed to measure the total gaseous phosphorus content in biogas. The amount of air needed for a neutral to oxidising flame was mixed with the biogas. The gas mixture was burnt in a closed quar...

JORIS ROELS; FRANK VANHAECKE; WILLY VERSTRAETE

2005-02-01T23:59:59.000Z

182

hydropower | OpenEI  

Open Energy Info (EERE)

hydropower hydropower Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

183

Landfill Bioreactors  

Science Journals Connector (OSTI)

Modern waste disposal has evolved from open dumping to the current practice of sanitary landfilling. Although this approach has proved to be a good alternative for preventing a variety of negative human healt...

Dr. J. Patrick A. Hettiaratchi PhD; PEng

2012-01-01T23:59:59.000Z

184

R&D Research/Demonstration Greenhouse Using Methane Gas from a Landfill for Co-Generation  

Science Journals Connector (OSTI)

A research/demonstration greenhouse for the production of greenhouse tomatoes using the single truss tomato production ... from landfills or other sources for heating and lighting to maximize crop production whil...

William J. Roberts

1997-01-01T23:59:59.000Z

185

(sanitary) landfill operator  

Science Journals Connector (OSTI)

(sanitary) landfill operator, Müllkippenbetreiber m, Mülldeponiebetreiber, Kippenbetreiber, Deponiebetreiber

2014-08-01T23:59:59.000Z

186

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

187

Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management  

Science Journals Connector (OSTI)

Air extraction and injection were evaluated for extracting hazardous landfill gas and enhancing degradation of organic materials in a landfill in Korea. From the pilot and full ... pressure radius of influence wa...

J. Lee; C. Lee; K. Lee

2002-11-01T23:59:59.000Z

188

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network (OSTI)

decision support tool for landfill gas-to energy projects,”industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

189

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

190

NREL: Learning - Pumped Hydropower  

NLE Websites -- All DOE Office Websites (Extended Search)

Pumped Hydropower Pumped Hydropower Pumped hydro facilities use off-peak electricity to pump water from a lower reservoir into one at a higher elevation. When the water stored in the upper reservoir is released, it is passed through hydraulic turbines to generate electricity. The off-peak electrical energy used to pump the water up hill can be stored indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can be used to store electrical energy for a long period of time, and in large quantities. Utilities generally prefer to operate large coal and nuclear power stations at full power all the time (referred to as "baseload generation"), so in the middle of the night, these plants often produce more power than is needed. Pumped hydro energy storage can be used to smooth out the demand

191

How Hydropower Works | Department of Energy  

Energy Savers (EERE)

How Hydropower Works How Hydropower Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Hydropower is using water to power machinery...

192

National Hydropower Association Annual Conference  

Energy.gov (U.S. Department of Energy (DOE))

Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

193

History of Hydropower | Department of Energy  

Energy Savers (EERE)

History of Hydropower History of Hydropower Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour...

194

NREL: Climate Neutral Research Campuses - Hydropower  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations that are not electric utilities. The following resources explain the fundamentals of hydropower and ocean energy technologies: Hydropower Basics: The DOE Wind...

195

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

196

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

197

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Pumped Storage Hydropower...

198

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities AgencyCompany Organization: United Nations Framework Convention on...

199

Hydropower Basics | Department of Energy  

Energy Savers (EERE)

Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam -- a huge...

200

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydropower Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

202

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

An alternative methodology for the analysis of electrical resistivity data from a soil gas study  

Science Journals Connector (OSTI)

......causes a problem, especially in landfill gas models. The uncertainties originate...the gas in the soil pores. In landfill gas models, several authors (e...Lamborn J. , 2007. Developing a landfill gas model, inTenth International Waste......

Sara Johansson; Hĺkan Rosqvist; Mats Svensson; Torleif Dahlin; Virginie Leroux

2011-08-01T23:59:59.000Z

211

Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems  

Science Journals Connector (OSTI)

...intermediate stage in the production of landfill gas and as a sink for ammonia as ammonium...waste are monitored by analysis of landfill gas and leachate. Gas compositional...years. Fig. 3. Evolution in landfill gas composition with time, showing...

DAVID A. C. MANNING

212

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-Print Network (OSTI)

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER SYSTEM Energy Commission's California Climate Change Center JULY 2012 CEC5002012020 Prepared for: California consideration of climate change effects on highelevation hydropower supply and demand in California. Artificial

213

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01T23:59:59.000Z

214

LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999  

SciTech Connect

Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

1998-02-25T23:59:59.000Z

215

Landfill Leachate Control  

Science Journals Connector (OSTI)

Leachate refers to the liquid, contaminated water, that results from the interaction between any water in a landfill, e.g., as the result of rainwater infiltration, and the waste emplaced in the landfill. Lea...

Dr. Haluk Akgün; Jaak J. K. Daemen

2012-01-01T23:59:59.000Z

216

Landfill Methane Oxidation Across Climate Types in the U.S.  

Science Journals Connector (OSTI)

Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas ...

Jeffrey Chanton; Tarek Abichou; Claire Langford; Gary Hater; Roger Green; Doug Goldsmith; Nathan Swan

2010-12-06T23:59:59.000Z

217

Federal Memorandum of Understanding for Hydropower/Resources | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower/Resources Memorandum of Understanding for Hydropower/Resources < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered Dams in the United States Assessment of Potential Capacity Increases at Existing Hydropower Plants Site Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits Potential Hydroelectric Development at Existing Federal Facilities Advanced Conventional Hydropower Planning and Operation Analysis Tools The Integrated Basin-Scale Opportunity Assessment Initiative, FY

218

Landfill site selection and landfill liner design for Ankara, Turkey  

Science Journals Connector (OSTI)

Considering the high population growth rate of Ankara, it is inevitable that landfill(s) will be required in the area ... scope of this study is to select alternative landfill sites for Ankara based on the growin...

Gözde P?nar Yal; Haluk Akgün

2013-11-01T23:59:59.000Z

219

Technical Note Methane gas migration through geomembranes  

E-Print Network (OSTI)

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

220

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Landfill Bioreactor Financial Analysis—Monterey Peninsula Landfill, Marina, California  

Science Journals Connector (OSTI)

The Monterey Peninsula Landfill, owned and operated by the Monterey Regional ... that is permitted under the State of California landfill regulations. In order to evaluate the potential...

S. Purdy; R. Shedden

2009-01-01T23:59:59.000Z

222

University of Washington Montlake Landfill Oversight Committee  

E-Print Network (OSTI)

University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

Wilcock, William

223

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network (OSTI)

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

224

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network (OSTI)

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

225

Sensor Fish Re-design to Support Advance Hydropower Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Fish Re-design to Support Advance Hydropower Development Sensor Fish Re-design to Support Advance Hydropower Development Sensor Fish Re-design to Support Advance Hydropower...

226

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

227

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

228

Leachate Free Hazardous Waste Landfill  

Science Journals Connector (OSTI)

Experiences of the past few decades have shown that controlling leachate cannot be done by sealing only the landfill bed, but rather by sealing landfill top cover.

Dipl.Ing. Karl Rohrhofer; Dr.Techn. Fariar Kohzad

1990-01-01T23:59:59.000Z

229

Hydropower Resource Assessment and Characterization | Department...  

Energy Savers (EERE)

Assessment and Characterization Hydropower Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically...

230

Hydropower Market Acceleration and Deployment | Department of...  

Office of Environmental Management (EM)

Impacts and Mitigation Hydropower can have adverse environmental impacts on fish populations and migrations, on water quality in reservoirs and downstream from dams,...

231

Hydropower and Ocean Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

232

Federal Memorandum of Understanding for Hydropower/Federal Inland  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Federal Memorandum of Understanding for Hydropower/Federal Inland Hydropower Working Group < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Inland Hydropower Working Group The Federal Inland Hydropower Working Group is made up of 15 federal entities involved in the regulation, management, or development of hydropower resources (including hydrokinetics) in rivers and streams of the

233

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

234

Quantifying the Value of Hydropower in the Electric Grid: Final...  

Energy Savers (EERE)

research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid....

235

Preliminary Evaluation of the Impact of the Section 1603 Treasury Grant Program on Renewable Energy Deployment in 2009  

E-Print Network (OSTI)

of solar photovoltaic and landfill gas capacity chose theHydropower (incremental) Landfill Gas Solar Heat & Hot Waterhas elected the grant. ? Landfill gas: About 20.5 MW of the

Bolinger, Mark

2010-01-01T23:59:59.000Z

236

Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States  

E-Print Network (OSTI)

Hydropower (incremental) Landfill Gas Solar Heat & Hot Water2009 has elected the grant. Landfill gas: About 20.5 MW ofthe estimated 154 MW of landfill gas installed in the U.S.

Bolinger, Mark

2012-01-01T23:59:59.000Z

237

Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales  

Science Journals Connector (OSTI)

...given for the turbines and generators...Nations World Water Development Report 4: Managing...Greenhouse-gas emissions from...hydroelectric development of the Xingu River...Amazon hydropower development: Risk scenarios and environmental...life-cycle greenhouse gas (GHG) emissions...electric supply technologies. Energy 32:1543...

Claudia M. Stickler; Michael T. Coe; Marcos H. Costa; Daniel C. Nepstad; David G. McGrath; Livia C. P. Dias; Hermann O. Rodrigues; Britaldo S. Soares-Filho

2013-01-01T23:59:59.000Z

238

E-Print Network 3.0 - assessing landfill performance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and WTE waste management options... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Care has been taken to...

239

E-Print Network 3.0 - areas treating landfill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

240

Sorption model of trichloroethylene (TCE) and benezene in municipal landfill materials.  

E-Print Network (OSTI)

??This research is intended to establish a mathematical model describing the mass transfer of trace gas in landfill. Experimental data used for calibration were reported… (more)

Chuang, Yuh-Lin

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Considering Climate Change in Hydropower Relicensing  

E-Print Network (OSTI)

Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

242

U.S. Hydropower Resource Assessment - California  

SciTech Connect

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

243

US hydropower resource assessment for Utah  

SciTech Connect

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

244

US hydropower resource assessment for Colorado  

SciTech Connect

The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

Francfort, J.E.

1994-05-01T23:59:59.000Z

245

Hydropower: Setting a Course for Our Energy Future  

SciTech Connect

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

246

Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's  

E-Print Network (OSTI)

Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

Harrison, Gareth

247

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Idaho National Laboratory - Hydropower Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Research and Development Engineering Research and Development 1997 Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation, 1997, Development of a More Fish-Tolerant Turbine Runner, Advanced Hydropower Turbine Project, ARL Report No. 13-97/M63F, DOE/ID-10571. Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. An existing pump impeller provided the starting point for developing the fish-tolerant turbine runner. The Hidrostal pump is a single-bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of this research project was to develop a new runner geometry which is effective in downstream fish passage and

257

Brainpower for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

258

Brainpower for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

259

Types of Hydropower Turbines | Department of Energy  

Energy Savers (EERE)

type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding...

260

Microsoft Word - Hydropower Council Agenda 2007.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Hydropower Council Vicksburg, Mississippi June 12, 2007 Tuesday, June 12 1:00 p.m. Welcome Vicksburg District 1:05 p.m. Introductions All 1:15 p.m. Presentation of the...

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Unusual calcite stromatolites and pisoids from a landfill leachate collection system  

Science Journals Connector (OSTI)

...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...with leachate. The remaining void space is filled with landfill gas, which is composed mainly of methane and carbon dioxide...

262

Hydropower Resource Assessment of Brazilian Streams  

SciTech Connect

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

263

5341 sanitary landfill [n] (1)  

Science Journals Connector (OSTI)

envir....(Process of controlled dumping [US]/tipping [UK] of industrial or domestic waste material on a landfill site by dumping/tipping in layers, each... sanitary landfill [US] 2 ...

2010-01-01T23:59:59.000Z

264

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

265

1 INTRODUCTION High-head storage hydropower plants operate  

E-Print Network (OSTI)

1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

Floreano, Dario

266

Energy Department Making Hydropower More Eco-Friendly  

Office of Energy Efficiency and Renewable Energy (EERE)

Hydropower has long provided a flexible, low-cost, and renewable source of power for the United States—since the 1800s, in fact. Even today, in fact, hydropower accounted for roughly half of the...

267

Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting  

Science Journals Connector (OSTI)

The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past ... balance and flow is more critical in such landfills than in dry landfills, researchers ha...

Qiyong Xu; Hwidong Kim; Pradeep Jain…

2012-03-01T23:59:59.000Z

268

forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE  

E-Print Network (OSTI)

O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

Pasternack, Gregory B.

269

Huaneng Lancang River Hydropower | Open Energy Information  

Open Energy Info (EERE)

Lancang River Hydropower Lancang River Hydropower Jump to: navigation, search Name Huaneng Lancang River Hydropower Place Kunming, Yunnan Province, China Zip 650214 Sector Hydro, Solar Product Developer of hydro and solar power projects. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Commonwealth Hydropower Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Hydropower Program Commonwealth Hydropower Program Commonwealth Hydropower Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Water Buying & Making Electricity Home Weatherization Maximum Rebate Design and Construction: $600,000 Feasibility study: $40,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 09/2009 State Massachusetts Program Type State Grant Program Rebate Amount Design and Construction: 50% of costs or $1.00 per incremental kWh per year Feasibility study: 80% of costs Provider Massachusetts Clean Energy Center Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding

271

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

272

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR HYDROPOWER PILOT PROJECT LICENSE Admiralty Inlet Pilot Tidal Project-FERC Project No. 12690-005 (DOE/EA-1949) Washington Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 1617 Cole Boulevard Golden, Colorado 80401 January 15, 2013 20130115-3035 FERC PDF (Unofficial) 01/15/2013 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

273

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p  

E-Print Network (OSTI)

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

274

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES  

E-Print Network (OSTI)

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

Zornberg, Jorge G.

275

$26.6 Million for Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$26.6 Million for Hydropower $26.6 Million for Hydropower $26.6 Million for Hydropower April 5, 2011 - 4:52pm Addthis Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Today, the Department of Energy and the Department of Interior announced $26.6 million of available funding for companies and entrepreneurs looking to advance hydropower. "By improving hydropower technology, we can maximize America's biggest source of renewable energy in an environmentally responsible way," said Secretary Chu. Specifically, funding is available for projects in the following four areas: Sustainable small hydropower Environmental mitigation technologies for conventional hydropower

276

&#8220;Sustainable development of hydropower in third countries: The  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable development of hydropower in third countries: Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight against glo

277

Federal Memorandum of Understanding for Hydropower | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Memorandum of Understanding for Hydropower On March 24, 2010, the Department of the Army through the U.S. Army Corps of Engineers, the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to "help meet the nation's needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts." Additionally, the MOU aims to

278

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

279

Virtual Hydropower Prospector | Open Energy Information  

Open Energy Info (EERE)

Virtual Hydropower Prospector Virtual Hydropower Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Virtual Hydropower Prospector Agency/Company /Organization: Idaho National Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Website Website: hydropower.inl.gov/prospector/index.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

282

Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos County Completes Abiquiu Hydropower Project, Bringing Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on the completion and startup today of the Abiquiu Hydropower Project in New Mexico - the first hydropower project funded by the American Recovery and Reinvestment Act to be completed nationwide. "Today marks a major milestone in securing America's clean energy future as we celebrate the completion of the Department of Energy's first major Recovery Act-funded water power project. By increasing renewable energy output at existing hydropower facilities, we can create clean energy jobs,

283

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

284

Large-Scale Hydropower Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

285

7.4 Landfill Methane Utilization  

Energy.gov (U.S. Department of Energy (DOE))

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

286

IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL  

E-Print Network (OSTI)

#12;IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL FINAL REPORT DOE FRAP 1995-05 Prepared for List of Figures Site Location/Legal Boundary Old Quesnel Landfill .....................................2 Schematic of Source Pathway Receptor Model at Old Quesnel Landfill .......4 Landfill Extent

287

Estimated impacts of climate warming on California’s high-elevation hydropower  

E-Print Network (OSTI)

on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

288

An impact analysis of landfill for waste disposal on climate change: Case study of ‘Sudokwon Landfill Site 2nd Landfill’ in Korea  

Science Journals Connector (OSTI)

The impact of waste landfill on climate change was analyzed by comparing...4 emission from landfill with the potential energy conversion. For this...4 were used against Sudokwon Landfill Site 2nd Landfill, which ...

Seung Kyu Chun; Young Shin Bae

2012-11-01T23:59:59.000Z

289

Microsoft Word - FINAL 2013 Hydropower Meeting Agenda 060713  

NLE Websites -- All DOE Office Websites (Extended Search)

Board Oklahoma Comprehensive Water Plan Update Others SOUTHWESTERN FEDERAL HYDROPOWER MEETING The Earl Cabell Federal Building 1100 Commerce Street Red River Room Floor...

290

2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This document contains the compiled hydropower technologies presentations from the U.S. Department of Energy 2014 Water Power Program Peer Review, held February 25-27, 2014.

291

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

292

New Stream-Reach Hydropower Development Fact Sheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for new hydropower development in U.S. stream-reaches that do not currently have hydroelectric facilities or other forms of infrastructure. New Stream-Reach Development...

293

Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co.,Ltd Place: Jiangxi Province, China Zip: 343009 Sector: Hydro Product: China-based small hydro project developer. References: Anfu Guanshan Hydropower Development Co.,Ltd1...

294

Laboratory Demonstration of a New American Low-Head Hydropower...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Demonstration of a New American Low-Head Hydropower Turbine 68bhydrogreensmallhydroch11.ppt More Documents & Publications Real World Demonstration of a New...

295

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

296

Microsoft Word - Final TTR Landfill Extension EA--December 2006...  

National Nuclear Security Administration (NNSA)

continue until the landfill is closed. Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport...

297

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy Savers (EERE)

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

298

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

299

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

300

E-Print Network 3.0 - assessment hydropower evaluation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional displays for hydropower systems: Model-based guidance of scenario design... Work Domain Analysis and Ecological Interface Design for Hydropower System Monitoring and...

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

302

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

303

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Environmental Impacts of Landfill Bioreactorcells in Comparison to Former Landfill Techniques  

Science Journals Connector (OSTI)

Former and present landfill techniques at the Filbornaplant in Helsingborg, South ... the waste residue. The results showthat optimised landfill bioreactor-cells have a higherturn-over rate...

Michael Binder; Torleif Bramryd

2001-07-01T23:59:59.000Z

305

Recirculation of municipal landfill leachate  

E-Print Network (OSTI)

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

306

Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

307

Interconnection Standards (Utah  

Open Energy Info (EERE)

and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas,...

308

Alternative Fuels Data Center: DeKalb County Turns Trash to Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

reductions Related Links Natural Gas Fuel Basics Natural Gas Vehicles Natural Gas Vehicle Emissions Landfills Convert Biogas into RNG (video) DeKalb County Clean Cities Georgia...

309

Editorial: Time for green certification for all hydropower?  

SciTech Connect

While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

Deng, Zhiqun; Carlson, Thomas J.

2012-04-10T23:59:59.000Z

310

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

311

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

312

Property:PotentialHydropowerSites | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerSites PotentialHydropowerSites Jump to: navigation, search Property Name PotentialHydropowerSites Property Type Number Description The number of potential hydropower sites in a place. Pages using the property "PotentialHydropowerSites" Showing 25 pages using this property. (previous 25) (next 25) A Alabama + 2,435 + Alaska + 3,053 + Arizona + 1,958 + Arkansas + 3,268 + C California + 9,692 + Colorado + 5,060 + Connecticut + 659 + D Delaware + 25 + F Florida + 493 + G Georgia + 2,100 + H Hawaii + 437 + I Idaho + 6,706 + Illinois + 1,330 + Indiana + 1,142 + Iowa + 2,398 + K Kansas + 3,201 + Kentucky + 1,394 + L Louisiana + 934 + M Maine + 1,373 + Maryland + 491 + Massachusetts + 560 + Michigan + 1,942 + Minnesota + 1,391 + Mississippi + 1,536 + Missouri + 5,089 +

313

The Next Generation of Hydropower Engineers and Scientists | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to help meet its energy needs, a new generation of engineers and scientists is finding ways to make hydropower technologies more efficient, environmentally friendly and cost effective. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE), in cooperation with the Hydro Research

314

Event:Hydropower Africa 2012 | Open Energy Information  

Open Energy Info (EERE)

2012 2012 Jump to: navigation, search Calendar.png Hydropower Africa 2012: on 2012/09/04 "Hydropower Africa 2012 is the largest hydropower event of its kind in Africa boasting over 450 visitors from across the globe. It looks at planned projects and tender prospects for hydropower development in Africa and innovative funding solutions for projects - big and small. Refurbishment and modernisation updates of major hydropower facilities as well as operation and maintenance best practices from across the continent will be presented and discussed. Infrastructure development and African-appropriate engineering solutions to provide power to villages, rural areas and urban communities and achieving operational objectives while addressing environment and social challenges will be examined through

315

U.S. hydropower resource assessment for Ohio  

SciTech Connect

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

Conner, A.M.; Francfort, J.E.

1997-12-01T23:59:59.000Z

316

U.S. hydropower resource assessment for North Carolina  

SciTech Connect

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of North Carolina.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

317

U.S. hydropower resource assessment for Idaho  

SciTech Connect

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

318

U.S. hydropower resource assessment for Nevada  

SciTech Connect

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

319

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

320

6.15 - Pumped Storage Hydropower Developments  

Science Journals Connector (OSTI)

Abstract This chapter details how pumped storage hydroelectric projects differ from conventional hydroelectric projects. The concept of electrical energy storage has become a controversial issue in recent years. Many questions are raised in the electricity sector: Why is energy storage needed? What are the alternatives? One of the answers is pumped storage hydropower plants, using mainly pump–turbines. In this chapter, details of some remarkable examples of pumped storage power plants are given: Okinawa Seawater in Japan, Goldisthal in Germany, Tianhuangping in China, and Coo-Trois Ponts in Belgium.

T. Hino; A. Lejeune

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental factors influencing methanogenesis from refuse in landfill samples  

Science Journals Connector (OSTI)

Environmental factors influencing methanogenesis from refuse in landfill samples ... Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills ...

K. Rao Gurijala; Joseph M. Suflita

1993-06-01T23:59:59.000Z

322

An assessment of remediation measures and effects on groundwater quality at the Oneida County Sanitary Landfill  

SciTech Connect

The Oneida County Sanitary Landfill has operated from 1979 to the present. The four existing landfill cells were constructed based on standards that existed at their time of development from 1979 to 1995. The landfill was initially permitted as a natural attenuation landfill with a silt soil base liner and top cover. Groundwater sampling at the site showed that many constituents exceeded Wisconsin Administrative Code Chapter NR 140 (NR 140) standards throughout the 1980s. Measures that were implemented to remediate landfill impacts on groundwater quality included installation of a leachate/gas extraction system in 1990 and construction of a composite final cover over completed cells in 1994. In 1994, an Environmental Contamination Assessment (ECA) was conducted in accordance with NR 140 to evaluate landfill performance, groundwater quality trends, and future monitoring/remediation measures. Since implementation of the gas/leachate extraction system, there has been a reduction in detected volatile organic compounds in leachate, gas, gas condensate, and groundwater quality samples. Continued monitoring is necessary to evaluate remediation measures.

McGuire, P.; Otterson, S. [Rust Environment & Infrastructure, Sheboygan, WI (United States); Welhouse, G. [Environmental Compliance Consultants, Oshkosh, WI (United States)] [and others

1995-12-31T23:59:59.000Z

323

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

324

Low Head/Low Power Hydropower Resource Assessment of the Pacific Northwest Hydrologic Region  

E-Print Network (OSTI)

three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro

Power Hydropower; Douglas G. Hall; Gregory R. Carroll; Shane J. Cherry; Y D. Lee; Garold L. Sommers

2002-01-01T23:59:59.000Z

325

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network (OSTI)

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

326

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network (OSTI)

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

327

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

E-Print Network (OSTI)

7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

Oldenburg, Curtis M.

2001-01-01T23:59:59.000Z

328

Cleanup Agreed on for Niagara Landfill  

Science Journals Connector (OSTI)

Cleanup Agreed on for Niagara Landfill ... The U.S., New York state, and Occidental Chemical finally have reached agreement on how to clean up toxic liquid wastes at the Hyde Park landfill in Niagara, N.Y. ... The cleanup program is a multifaceted scheme designed to remove and destroy the most concentrated of the hazardous liquids buried in the landfill. ...

LOIS EMBER

1985-12-16T23:59:59.000Z

329

New instruments for measuring landfill gases  

Science Journals Connector (OSTI)

New instruments for measuring landfill gases ... The legislation mandates that landfill operators monitor more than 1200 active sites for specific pollution products. ... According to Varian, the instrumentation systems can be adapted easily to meet landfill testing requirements that might be enacted in states other than California. ...

RUDY BAUM

1988-02-01T23:59:59.000Z

330

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

331

Federal Memorandum of Understanding for Hydropower/Participating Agencies |  

Open Energy Info (EERE)

Participating Agencies Participating Agencies < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Bonneville Power Administration: caption:Bonneville Power Administration Bonneville Power Administration Factsheet Bonneville Power Administration Publications Conservation Resource Energy Data - The Red Book Bureau of Indian Affairs: caption:Bureau of Indian Affairs Bureau of Indian Affairs Factsheet Tribal Energy and Environmental Clearinghouse (TEEIC) Office of Indian Energy and Economic Development (IEED) Division of Irrigation, Power and Safety of Dams Bureau of Reclamation: caption:Bureau of Reclamation Factsheet

332

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2012 (EIA)

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

333

Performance evaluation of synthetically lined landfills  

SciTech Connect

Landfill design and performance standards for new facilities frequently require the use of geomembrane composite and double liners. Performance data from synthetically lined landfill sites have not been widely available. This report presents data obtained by monitoring three recently constructed synthetically lined landfill sites. Quantities of leachate removed by the primary and secondary collection systems from these landfills were tabulated. The data show that properly designed and constructed synthetic landfill liners provide effective containment of leachate. The environmental protection provided by synthetic liners is equivalent or superior to that of typical clay-lined facilities.

Maule, J. [Champion International Corp., Norway, MI (United States); Lowe, R.K. [STS Consultants Ltd., Green Bay, WI (United States); McCulloch, J.L. [Cross Pointe Paper Co., Park Falls, WI (United States)

1993-12-01T23:59:59.000Z

334

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

335

Solar Energy and Small Hydropower Tax Credit (Personal) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Personal Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

336

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

337

A Boost for Hydropower (and the Economy) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) September 20, 2010 - 5:29pm Addthis The 91-year old Cheoah Dam in Robbinsville, North Carolina. The 91-year old Cheoah Dam in Robbinsville, North Carolina. Jacques Beaudry-Losique Director, Wind & Water Program There are approximately 2,400 hydropower dams in the U.S., many of which have not undergone a significant upgrade in decades. These older dams present a great opportunity to expand clean energy across the country, allowing us to rapidly increase generation capacity through the installation of new high-efficiency equipment. I recently got a firsthand look at one such effort when I helped kick off a project to modernize the 91-year old Cheoah Dam in Robbinsville, North

338

Solar Energy and Small Hydropower Tax Credit (Corporate) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Corporate Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

339

New Hydropower Turbines to Save Snake River Steelhead | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Turbines to Save Snake River Steelhead Hydropower Turbines to Save Snake River Steelhead New Hydropower Turbines to Save Snake River Steelhead May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Joshua DeLung Hydropower harnesses water power to create reliable, clean and plentiful renewable energy, but dams can have an unintended impact on wildlife --

340

Climate change impacts on financial risk in hydropower projects   

E-Print Network (OSTI)

the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

Harrison, Gareth P; Whittington, Bert; Wallace, Robin

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Businesses Key in Hydropower Tech Advancement Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business that handles hydroelectric power generation and power and communication line construction. The company, which has eight employees currently, has been awarded funding for two projects. Near Space Systems, a Colorado Springs-based company, is a service-disabled veteran-owned business with a manufacturing focus that's

342

A New Vision for United States Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision has not only breadth, but depth in its approach to the future of this vital renewable energy industry. To aid in this process, Hydropower Vision Task Forces are being...

343

Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.  

E-Print Network (OSTI)

Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

344

Memorandum of Understanding for Hydropower Two Year Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

345

Short Mountain Landfill gas recovery project  

SciTech Connect

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

346

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Coupled to an induction generator, this HCCI genset allowspowered by the induction generator acting as a motor. OnceGenerator Size Weight Specification 6 (In-line) 6.6 L 21 Quart Air-Liquid (DEAC) 1.5 ATM 1800 RPM 35 kW Induction

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

347

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

348

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

349

Landfill reduction experience in The Netherlands  

Science Journals Connector (OSTI)

Abstract Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

Heijo Scharff

2014-01-01T23:59:59.000Z

350

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

351

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill  

Science Journals Connector (OSTI)

Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates ... with different ages were collected from Laogang Refuse Landfill, and charact...

Ziyang Lou; Xiaoli Chai; Youcai Zhao…

2014-06-01T23:59:59.000Z

352

Electrochemical treatment of landfill leachate  

Science Journals Connector (OSTI)

Electrochemical methods can offer an elegant contribution towards environmental control as electrons provide a means of removing pollutants by redox reactions. In the process of electrochemical oxidation the main aim has been to convert oxidisable species into carbon dioxide. Leachate originating in landfills is complex wastewater that could exert high environmental impact. This study aims to treat the landfill leachate in order to meet the inland disposal standards. The removal of pollutants was studied with different anode materials in electrochemical process. The treatment of leachate by electrochemical oxidation was carried out in a batch electrolytic parallel plate reactor. The electrochemical process was carried out separately with stainless steel as cathode and anode materials aluminium and titanium/platinum electrodes. The effects of the operating factors such as current density, reaction time, chloride ion concentration, additional electrolyte such as sulphuric acid that influence the removal of pollutant from leachate electrochemically were studied.

C. Ramprasad; A. Navaneetha Gopalakrishnan

2012-01-01T23:59:59.000Z

353

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

354

Gravity data as a tool for landfill study  

Science Journals Connector (OSTI)

This paper shows the potential of gravity data to map a buried landfill bottom topography. To this end, a ... gravity inversion method is presented for estimating the landfill’s bottom depths at discrete points a...

Joăo B. C. Silva; Wlamir A. Teixeira; Valéria C. F. Barbosa

2009-04-01T23:59:59.000Z

355

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network (OSTI)

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

356

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

357

Real World Demonstration of a New American Low-Head Hydropower...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American...

358

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

359

Hydrogeological studies on the mechanical behavior of landfill gases and leachate of the Nanjido Landfill in Seoul, Korea  

Science Journals Connector (OSTI)

?The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems ass...

K. K. Lee; Y. Y. Kim; H. W. Chang; S. Y. Chung

1997-06-01T23:59:59.000Z

360

DOE - Office of Legacy Management -- West Lake Landfill - MO...  

Office of Legacy Management (LM)

Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Monitoring the Performance of an Alternative Landfill Cover at...  

Office of Environmental Management (EM)

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover...

362

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

363

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

364

Models for Hydrologic Design of Evapotranspiration Landfill Covers  

Science Journals Connector (OSTI)

Models for Hydrologic Design of Evapotranspiration Landfill Covers ... The focus of the HELP model is on the man-made features of landfills. ...

Victor L. Hauser; Dianna M. Gimon; James V. Bonta; Terry A. Howell; Robert W. Malone; Jimmy R. Williams

2005-08-05T23:59:59.000Z

365

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

366

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Office of Environmental Management (EM)

Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report...

367

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

Woburn Landfill - MA 07 FUSRAP Considered Sites Site: Woburn Landfill (MA.07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

368

Leaching of cadmium from pigmented plastics in a landfill site  

Science Journals Connector (OSTI)

Leaching of cadmium from pigmented plastics in a landfill site ... Plastics ending up in soil or landfill environment will eventually be degraded. ...

David C. Wilson; Peter J. Young; Brinley C. Hudson; Grant. Baldwin

1982-09-01T23:59:59.000Z

369

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

370

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

371

Quantifying the Value of Hydropower in the Electric Grid: Final Report  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

372

Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,  

E-Print Network (OSTI)

1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

Harrison, Gareth

373

How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer  

E-Print Network (OSTI)

How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Ă? Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

Jager, Henriette I.

374

Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming  

E-Print Network (OSTI)

i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

Lund, Jay R.

375

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994  

E-Print Network (OSTI)

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

376

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network (OSTI)

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

377

Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI  

E-Print Network (OSTI)

i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

Lund, Jay R.

378

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y  

E-Print Network (OSTI)

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal

Jager, Henriette I.

379

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

380

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation 933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA SUMMARY DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Aleo Manali Hydropower Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Manali Hydropower Pvt Ltd Manali Hydropower Pvt Ltd Jump to: navigation, search Name Aleo Manali Hydropower Pvt Ltd Place Kullu, Himachal Pradesh, India Zip 203001 Sector Hydro Product Himachal-based small hydro project developer. Coordinates 23.42796°, 84.91112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.42796,"lon":84.91112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

State bans dumping of chemicals in landfill  

Science Journals Connector (OSTI)

State bans dumping of chemicals in landfill ... California governor Edmund G. Brown Jr. has begun a program aimed at eliminating most hazardous-waste chemicals from landfills in that state—a goal that will be difficult and costly to achieve. ...

1981-10-26T23:59:59.000Z

383

The dependence of the methylation of mercury on the landfill stabilization process and implications for the landfill management  

Science Journals Connector (OSTI)

Abstract Mercury species and other chemical characteristics of the leachate from anaerobic and semi-aerobic landfills were analyzed to investigate the factors that control mercury methylation during the landfill stabilization process. At the early landfill stage, the total mercury (THg) and the monomethyl mercury (MMHg) released rapidly and significantly, the \\{THg\\} concentration of the semi-aerobic landfill leachate was obviously higher than that of the anaerobic landfill leachate, while compared with the semi-aerobic landfill, the \\{MMHg\\} concentration in the anaerobic landfill was higher. As the landfill time increased, both of \\{THg\\} and \\{MMHg\\} concentration decreased quickly, the \\{THg\\} concentration in the anaerobic landfill was much higher than that in semi-aerobic landfill, while the \\{MMHg\\} concentration in the anaerobic landfill was lower than that in the semi-aerobic landfill. Generally, the concentrations of dimethyl mercury (DMHg) in the anaerobic landfill leachate were slightly higher than in the semi-aerobic landfill leachate during the stabilization process. A significant positive correlation was found between the \\{DMHg\\} concentrations and the pH value in anaerobic landfill leachate, but this correlation was opposite in the semi-aerobic landfill. The oxidative–reductive potential (ORP) condition was found to be the controlling factor of the methylation process during the early stage. However, the chemical characteristics, especially the TOC concentration, appeared to be the dominant factor affecting the methylation process as the landfill time increased.

Xiaoli Chai; Yongxia Hao; Zhonggen Li; Wei Zhu; Wentao Zhao

2015-01-01T23:59:59.000Z

384

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network (OSTI)

Landfill Instability and Its Implications for Operation, Construction, and Design By: W. Douglas landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100,000 cubic yard landfill failure involving leachate recirculation. Other failures of lesser magnitude also

385

Effects of Climate Change on Federal Hydropower (Report to Congress)  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities

386

Modeling California's high-elevation hydropower systems in energy units  

E-Print Network (OSTI)

it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy and Oregon, with approximately 27% in Washington (Energy Information Administration, Energy kid's page, 6

Pasternack, Gregory B.

387

Metal speciation in landfill leachates with a focus on the influence of organic matter  

E-Print Network (OSTI)

fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest mobility and natural attenuation in a context of landfill risk assessment are discussed. hal-00605888

Paris-Sud XI, Université de

388

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

389

Public health assessment for Seattle Municipal Landfill/Kent Highlands, Kent, King County, Washington, Region 10. Cerclis No. WAD980639462. Final report  

SciTech Connect

The Seattle Municipal Landfill, better known as the Kent Highlands Landfill, is located in the City of Kent, approximately 14 miles south of the City of Seattle, Washington, at 23076 Military Road South. Surface water settling ponds, a leachate collection system, and gas collection system have been constructed. Only one completed pathway exists, which is the use of Midway Creek by recreationists. However, worst case scenarios were evaluated and there did not appear to be a human health threat. Two potential pathways were analyzed, for landfill gas and ground water. Again the worst case scenarios did not reveal any imminent human health threat.

Not Available

1994-11-23T23:59:59.000Z

390

Reverse osmosis module successfully treats landfill leachate  

SciTech Connect

By law, modern landfills are to be constructed with double liners to prevent contaminants from leaching into surface and ground water. Despite this design feature, however, both hazardous and non-hazardous compounds do leach from the waste disposed in landfills. The resulting contaminated water, or leachate, must be collected and treated. Rochem Environmental, Inc. (Houston, Texas) has developed a new membrane process, known as the Disc Tube{trademark} system, to remove a variety of contaminants from landfill leachate. 1 ref., 1 fig., 2 tabs.

NONE

1995-03-01T23:59:59.000Z

391

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

392

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

393

Landfill Leachate Treatment by Reverse Osmosis  

Science Journals Connector (OSTI)

Leachate from landfill sites represents a highly polluted waste water. It containes biodegradable compounds but also inorganic salts and trace recalcitrant pollutants. The reverse osmosis process with or without ...

B. Weber; F. Holz

1991-01-01T23:59:59.000Z

394

Landfill Closure and Reuse of Land  

Science Journals Connector (OSTI)

This section examines the sustainable reuse of existing landfill sites . Sustainability is examined in the context of the existing regulatory authority of the United States Environmental Protection Agency (US...

Dr. Joseph J. Lifrieri Ph.D; PE; CPG…

2012-01-01T23:59:59.000Z

395

Hydropower Potential in the Western U.S. | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Potential in the Western U.S. Hydropower Potential in the Western U.S. Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Hydropower Potential in the Western U.S. Dataset Summary Description The dataset includes design elements, installed capacity, production capability, associated costs and cost -to-benefit ratios for nearly 200 water storing and conveying structures currently maintained by the Bureau of Reclamation. These data were used to support the internal study and report for assessing hydropower capability at 70 of Reclamation's existing facilities where hydropower has not been developed. The dataset can further be leveraged to support applications designed to provide a better understanding of our hydropower production potential and resource utilization.

396

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about Hydropower about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

397

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

398

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network (OSTI)

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

399

Review of Pump as Turbine (PAT) for Micro-Hydropower  

E-Print Network (OSTI)

Abstract — Micro-hydropower projects are the excellent alternative for electricity generation in remote areas. These projects can be installed on small streams, rivers, and channels without any recognizable effect on environment. The only problem in micro-hydro projects is the high cost of turbine, for which Pump as Turbine (PAT) is a successful solution. An objective of the present study is to review the selection criteria of PAT for various hydropower sites having different potential. Since no general model has been developed which can be used to calculate the conversion factors for PAT, so this paper focuses on the research that have been carried out in this field. The limitations of the various available models and other selection criteria have also been discussed in this paper.

Tarang Agarwal

400

Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characteristics of the design of the hydropower equipment of the purnari-II hydroelectric station  

Science Journals Connector (OSTI)

1. The experience of design works on the hydropower equipment of a hydrostation as large of a large number of su...

V. A. Linyuchev

1998-03-01T23:59:59.000Z

402

Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

403

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

404

FRASER BASIN LANDFILL INVENTORY DOE FRAP 1997-19  

E-Print Network (OSTI)

-term sustainability of the Fraser River Basin. Inventories of point and non-point sources of pollution from both's WASTE database, Federal Indian Band Landfill investigations, and BC Environment's Municipal Landfill

405

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network (OSTI)

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

406

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy Savers (EERE)

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB...

407

1 INTRODUCTION The use of geosynthetics in modern landfills involves  

E-Print Network (OSTI)

1 INTRODUCTION The use of geosynthetics in modern landfills involves important roles because systems for landfills typically include both geosynthetics and earthen material components, (e-established components of the landfill industry. The state of the art on the use of geosynthetics in waste containment

Zornberg, Jorge G.

408

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network (OSTI)

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I Landfill, OK, provides an excellent natural laboratory for the study of anaerobicprocessesimpactinglandfill enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First

Grossman, Ethan L.

409

ORIGINAL PAPER The conservation value of restored landfill sites  

E-Print Network (OSTI)

ORIGINAL PAPER The conservation value of restored landfill sites in the East Midlands, UK landfill sites. However, this potential largely remains unexplored. In this study, birds were counted using point sampling on nine restored landfill sites in the East Midlands region of the UK during 2007

Northampton, University of

410

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING  

E-Print Network (OSTI)

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING slopes at waste containment facilities. The Geneva Landfill is located near Geneva, Ohio which

411

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network (OSTI)

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

412

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg  

E-Print Network (OSTI)

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively used in the design of both base and cover liner systems of landfill facilities. This includes that can be used as an infiltration/hydraulic barrier; · geopipes, which can be used in landfill

Zornberg, Jorge G.

413

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network (OSTI)

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

414

Review Paper/ Biogeochemical Evolution of a Landfill Leachate  

E-Print Network (OSTI)

Review Paper/ Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma by I Abstract Leachate from municipal landfills can create groundwater contaminant plumes that may last in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade

415

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-Print Network (OSTI)

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

Zornberg, Jorge G.

416

Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine  

Energy.gov (U.S. Department of Energy (DOE))

Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

417

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Energy.gov (U.S. Department of Energy (DOE))

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

418

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

419

Landfill stabilization focus area: Technology summary  

SciTech Connect

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

420

Representing Energy Price Variability in Long-and Medium-term Hydropower Optimization  

E-Print Network (OSTI)

, 2002). The output of each hydropower plant is usually small relative to the overall energy market1 Representing Energy Price Variability in Long- and Medium- term Hydropower Optimization Marcelo A Department of Civil and Environmental Engineering, University of California, Davis, USA Journal of Water

Pasternack, Gregory B.

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)  

SciTech Connect

This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

Not Available

2014-02-01T23:59:59.000Z

422

Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T. Smith and Henriette I. Jager  

E-Print Network (OSTI)

1 Prospects for Combining Energy and Environmental Objectives in Hydropower Optimization Brennan T, we review studies that derived rules for hydropower operation by solving optimization problems driven be compatible with hydropower optimization. Given the increasing value placed on the ecological sustainability

Jager, Henriette I.

423

Micro-hydropower: status and prospects IT Power Limited, The Manor House, Chineham Court, Luytens Close, Chineham, Hants, UK  

E-Print Network (OSTI)

, Luytens Close, Chineham, Hants, UK Abstract: Hydropower on a small scale, or micro-hydro, is one productivity and lifetime. Hydropower on a small-scale, or micro-hydro, is the exploitation of a river's hydro. 1.1 Small-scale hydro Hydropower has various degrees of `smallness'. To date there is still

Kammen, Daniel M.

424

Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower Upgrades to Yield Added Generation at Average Costs Less Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower infrastructure by increasing efficiency and reducing environmental impacts at existing facilities. The expanded hydro generation projects have estimated incremental costs of less than 4 cents per kWh on average. The selections announced today will deploy innovative technologies such as high-efficiency, fish-friendly turbines, improved water intakes, and

425

Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse (EREC) Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

you're considering building a small you're considering building a small hydropower system on water flowing through your property, you have a long tradition from which to draw your inspi- ration. Two thousand years ago, the Greeks learned to harness the power of running water to turn the massive wheels that rotated the shafts of their wheat flour grinders. And in the hydropower heyday of the 18th century, thousands of towns and cities worldwide were located around small hydropower sites. Today, small hydropower projects offer emissions-free power solutions for many remote communities throughout the world-such as those in Nepal, India, China, and Peru-as well as for highly industrialized countries, like the United States. This fact sheet will help you determine whether a small hydropower system will

426

Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development  

Open Energy Info (EERE)

Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development Jump to: navigation, search Logo: Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development Name Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic Development Agency/Company /Organization Deutsche Gesellschaft fĂĽr Internationale Zusammenarbeit (GIZ) GmbH Partner on behalf of Bundesministerium fĂĽr Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ); Directorate General for International Cooperation (DGIS Niederlande) Sector Energy Topics Background analysis Website http://www.gtz.de/en/themen/16 Program Start 1999 Program End 2008 Country Indonesia UN Region South-Eastern Asia References Mini-Hydropower Schemes for Sustainable Economic Development[1]

427

MHK Technologies/Kinetic Hydropower System KHPS | Open Energy Information  

Open Energy Info (EERE)

Kinetic Hydropower System KHPS Kinetic Hydropower System KHPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Verdantpower.jpg Technology Profile Primary Organization Verdant Power Project(s) where this technology is utilized *MHK Projects/Roosevelt Island Tidal Energy RITE *MHK Projects/Cornwall Ontario River Energy CORE Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Verdant Power's central technology is the Kinetic Hydropower System (KHPS), a water-to-wire system that consists of three main components: 1) KHPS TURBINE: a three-bladed horizontal-axis turbine with four major assemblies: a) Composite rotor with 3-fixed blades that rotate at the relatively slow and constant speed of approximately 40 RPM, with tip-speeds of 35 feet per second. This is well below normal water vessel propeller speeds and conventional hydropower turbine blade speeds. b) Sealed nacelle, pylon and passive yaw mechanism that is hydrodynamically designed to allow the turbine to self-rotate into the prevailing current (like a weathervane) so that the blades are optimally aligned to generate energy. c) Custom-designed drivetrain unit (with induction generator) enclosed within the nacelle that integrates the bearing housing with a special long-life planetary gearbox, with mechanical shaft seals and a minimum of sealed lubricants. d) Streambed mounting system that can vary depending on site conditions as a single drilled monopile, a single gravity-based structure, or a gravity-based triframe mount that supports 3 turbines. 2) UNDERWATER CABLING: low-voltage shielded cable of short distance; and shoreline switchgear vaults, control room, and interconnection point(s). 3) APPURTENANT FACILITIES: for navigation safety, such as Public Aides to Navigation (PATON) buoys and lighted warning signs, as well as instrumentation including Acoustic Doppler Current Profilers (ADCPs). In order to maximize the application of the KHPS within the global MHK resource, Verdant Power has designed the technology as a simple and uniquely scalable system that can be operated in tidal, river and ocean current settings. Possible KHPS installations range from distributed generation arrangements in near-shore urban and village settings to base power generation at offshore deepwater locales.

428

Suitability of Hydrologic Evaluation of Landfill Performance (HELP) model of the US Environmental Protection Agency for the simulation of the water balance of landfill cover systems  

Science Journals Connector (OSTI)

?Cover systems are widely used to safeguard landfills and contaminated sites. The evaluation of the ... water balance is crucial for the design of landfill covers. The Hydrologic Evaluation of Landfill Performanc...

K. Berger; S. Melchior; G. Miehlich

1996-12-01T23:59:59.000Z

429

Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill  

Science Journals Connector (OSTI)

As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact co...

M. A. Abduli; Abolghasem Naghib; Mansoor Yonesi…

2011-07-01T23:59:59.000Z

430

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

431

Turning waste into energy beats landfilling  

E-Print Network (OSTI)

, not incineration. Miller and others also refer to incineration as a source of dioxins, and they're right. But let's put things in perspective. In Sweden, which has 30 incineration plants, the total amount of dioxins that the landfills throughout Ontario and Michigan release fewer dioxins than that, he needs to hire better advisers

Columbia University

432

Behavior of Engineered Nanoparticles in Landfill Leachate  

Science Journals Connector (OSTI)

This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles ...

Stephanie C. Bolyard; Debra R. Reinhart; Swadeshmukul Santra

2013-06-25T23:59:59.000Z

433

16 R&D Projects Across 11 States to Advance Hydropower in U.S. | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 R&D Projects Across 11 States to Advance Hydropower in U.S. 6 R&D Projects Across 11 States to Advance Hydropower in U.S. 16 R&D Projects Across 11 States to Advance Hydropower in U.S. September 6, 2011 - 3:38pm Addthis Rajesh Dham Hydropower Technology Team Lead Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly. These research projects will help advance hydropower technologies - providing clean power to Americans while creating jobs. Hydropower technologies capture water's potential energy via a turbine to generate electricity. It is the nation's largest, most reliable, and least expensive source of renewable power generation. Companies, universities, national laboratories, and local governments

434

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark  

E-Print Network (OSTI)

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark University strength of MSW. The back-analysis of failed waste slopes in the Gnojna Grora landfill in Poland, Istanbul Landfill in Turkey, Hiriya Landfill in Israel, and Payatas Landfill in Philippines are presented

435

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

436

Microsoft PowerPoint - SW Regional Hydropower Conference - June 2007.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

of Engineers® of Engineers® Vision Statement Vision Statement Be the premier stewards of entrusted hydropower resources US Army Corps of Engineers® Mission Statement Mission Statement Provide reliable hydroelectric power services at the lowest possible cost, consistent with sound business principles, in partnership with other Federal hydropower generators, the Power Marketing Administrations, and Preference Customers, to benefit the Nation. US Army Corps of Engineers® Mission Statement Mission Statement Provide reliable hydroelectric power services at the lowest possible cost, consistent with sound business principles, in partnership with other Federal hydropower generators, the Power Marketing Administrations, and Preference Customers, to benefit the Nation. US Army Corps

437

DOE Hydropower Program biennial report 1992--1993 (with an updated annotated bibliography)  

SciTech Connect

This report, the latest in a series of annual/biennial Hydropower Program reports sponsored by the US Department of Energy, summarizes the research and development and technology transfer activities of fiscal years 1992 and 1993. The report discusses the activities in the four areas of the hydropower program: Environmental research; resource assessment; research coat shared with industry; and technology transfer. The report also offers an annotated bibliography of reports pertinent to hydropower, written by persons in Federal and state agencies, cities, metropolitan water districts, irrigation companies, and public and independent utilities. Most reports are available from the National Technical Information Service.

Cada, G.F.; Sale, M.J. [Oak Ridge National Lab., TN (United States); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-07-01T23:59:59.000Z

438

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

439

File:Federal Hydropower - Southwestern Power Administration.pdf | Open  

Open Energy Info (EERE)

Administration.pdf Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Southwestern Power Administration.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 715 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:35, 22 May 2013 Thumbnail for version as of 15:35, 22 May 2013 1,275 × 1,650, 2 pages (715 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage

440

Feasibility of Hydrogen Production from Micro Hydropower Projects in Nepal  

E-Print Network (OSTI)

The current energy crisis in Nepal clearly indicates that the future energy-demand cannot be met by traditional energy-sources. Community-based micro-hydropower operations are considered to be one of the most feasible options for energy development. However, the power plant capacity factor remains very low due to limited commercial and business opportunities. Generation of hydrogen (H2) from the unutilized power could eradicate this problem. This new energy carrier is clean, can save foreign currency and increases the energy-security. The aim of this study is to determine the potential of H2 production from excess energy of a micro-hydro project in rural Nepal using “HOMER ” from NREL.

M. S. Zaman; A. B. Chhetri; M. S. Tango

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Request for Qualifications for Sacramento Landfill  

Energy.gov (U.S. Department of Energy (DOE))

This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

442

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

443

Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India  

E-Print Network (OSTI)

DRASTIC Method The prepared landfill project is supposed toAssessment of Sanitary Landfill Project at Jammu City, Indiaimpact of a proposed landfill facility for the city of Jammu

Nagar, Bharat Bhushan; Mirza, Umar Karim

2002-01-01T23:59:59.000Z

444

Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor  

E-Print Network (OSTI)

1179. Popov, V. ; Power, H. Landfill emission of gases intoC.M. T2LBM Version 1.0: Landfill bioreactor model forand recovery from landfills, Ann Arbor Science Publishers,

Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

2002-01-01T23:59:59.000Z

445

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference  

E-Print Network (OSTI)

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference of Enhanced Landfill Mining. Held at the Greenville (Center of Cleantech of old landfills, each containing valuable resources that are untapped

446

Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile  

E-Print Network (OSTI)

Subsurface characterization of groundwater contaminated by landfill leachate using microbial from groundwater monitoring wells located within and around an aquifer contaminated with landfill. In this landfill leachate application, the weighted SOM assembles the microbial community data from monitoring

Vermont, University of

447

GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill  

E-Print Network (OSTI)

Diversity in Norman Landfill Zhenmei Lu 1,2 , Zhili He 2,4 ,projects/norlan / ABSTRACT The Norman Landfill is a closedmunicipal solid waste landfill located on an alluvium

Lu, Zhenmei

2010-01-01T23:59:59.000Z

448

The UK landfill tax and the landfill tax credit scheme: operational weaknesses  

Science Journals Connector (OSTI)

The UK Landfill Tax and the related Landfill Tax Credit Scheme have now been in operation since October 1996. There have been a number of reviews to assess its operation and effectiveness that have led to some minor amendments. However, there continue to be concerns about operational weaknesses of the tax and the credit scheme. In particular, there is the risk that the tax may be evaded and there are fears that a lack of transparency and independence may undermine the fundamental principles of the Landfill Tax Credit Scheme. Following a recent report, the Secretary of State for the Department of the Environment, Transport and the Regions has set up an inquiry. This paper looks at some of the specific concerns that have been raised and the implications for waste management.

John R. Morris; Adam D. Read

2001-01-01T23:59:59.000Z

449

Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales  

Science Journals Connector (OSTI)

...including Brazil, Peru, Colombia...their hydropower energy capacity over...and most other renewable forms of electricity...solar and wind energy improve their...transition to renewable energy is storing excess...however, Brazil’s discovery...

Claudia M. Stickler; Michael T. Coe; Marcos H. Costa; Daniel C. Nepstad; David G. McGrath; Livia C. P. Dias; Hermann O. Rodrigues; Britaldo S. Soares-Filho

2013-01-01T23:59:59.000Z

450

Huge Potential for Hydropower: Assessment Highlights New Possible Clean Energy Sources  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department’s New Stream-reach Development Assessment, conducted by Oak Ridge National Laboratory, has identified more than 65 gigawatts of untapped sustainable hydropower potential in U.S. rivers and streams.

451

Energy Department Announces $4.4 Million to Advance Hydropower Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced a total of $4.4 million for two projects in Michigan and Pennsylvania to support the use of advanced materials and manufacturing techniques in the development of new “low-head” hydropower technologies.

452

Climate Change Effects on Hydropower Potential in the Alcantara River Basin in Sicily (Italy)  

Science Journals Connector (OSTI)

In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting ...

G. T. Aronica; B. Bonaccorso

2013-09-01T23:59:59.000Z

453

Disappearing rivers — The limits of environmental assessment for hydropower in India  

SciTech Connect

The mountain rivers of the Indian Himalaya possess a vast potential for hydropower generation. After decades of comparatively modest development recent years have seen a major intensification in the construction of new hydropower dams. Although increasingly portrayed as a form of renewable energy generation, hydropower development may lead to extensive alterations of fluvial systems and conflicts with resource use patterns of local communities. To appraise and reduce adverse effects is the purpose of statutory Environmental Impact Assessments (EIA) and corresponding mitigation plans. However, in the light of ambitious policies for hydropower expansion conventional approaches of environmental assessment are increasingly challenged to keep up with the intensity and pace of development. This paper aims to explore the systemic limitations of environmental assessment for hydropower development in the Indian state of Himachal Pradesh. Based on a qualitative methodology involving interviews with environmental experts, document reviews and field observations the study suggests that the current practice of constraining EIAs to the project level fails to address the larger effects of extensive hydropower development. Furthermore, it is critically discussed as to what extent the concept of Strategic Environmental Assessment (SEA) might have the potential to overcome existing shortcomings.

Erlewein, Alexander, E-mail: erlewein@sai.uni-heidelberg.de

2013-11-15T23:59:59.000Z

454

E-Print Network 3.0 - ardeer landfill scotland Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

...28 Are there risks associated with landfilling of air pollution control residues... . 79% went to landfill sites, 21% to ash processors to make into...

455

Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin .  

E-Print Network (OSTI)

??Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States… (more)

Foley, Rachel (Rachel L.)

2013-01-01T23:59:59.000Z

456

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network (OSTI)

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

457

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

458

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network (OSTI)

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

459

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

460

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Municipal landfill leachate treatment by SBBGR technology  

Science Journals Connector (OSTI)

The paper reports the results of a laboratory-scale investigation aimed at evaluating the performance of a periodic biofilter with granular biomass (SBBGR) for treating leachate coming from a mature municipal landfill. The results show that the SBBGR was able to remove roughly 80% of COD in leachate. The remaining 20% of COD were, therefore, presumably owing to the presence in the leachate of recalcitrant compounds. Ammonia removal efficiency was low because of the presence of high salinity and inhibitory compounds in the investigated leachate. The process was characterised by very low sludge production (lower than 0.02 kg TSS/kg CODremoved).

Claudio Di Iaconi; Guido Del Moro; Michele Pagano; Roberto Ramadori

2009-01-01T23:59:59.000Z

462

Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.  

SciTech Connect

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

463

In-situ Removal of Hydrogen Sulphide from Landfill Gas.  

E-Print Network (OSTI)

?? This project was compiled in co-operation with the Royal Institute of Technology, Stockholm and Veolia Environmental Services (Australia) at the Woodlawn Bioreactor in NSW,… (more)

Lazarevic, David Andrew

2007-01-01T23:59:59.000Z

464

Fordonsgas frĺn deponier; Vehicle fuel from landfill gas.  

E-Print Network (OSTI)

?? The demand for biogas as vehicle fuel has risen sharply and there is a great need for increased production. A possible addition of vehicle… (more)

Willén, Jessica

2010-01-01T23:59:59.000Z

465

Simulation of Landfill Gas Performance in a Spark Ignited Engine.  

E-Print Network (OSTI)

?? Computer simulations were performed using KIVA-4 code to determine performance of a spark ignited engine fueled by methane diluted with carbon dioxide to approximate… (more)

Swain, Daniel P.

2010-01-01T23:59:59.000Z

466

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

467

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network (OSTI)

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

468

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill  

Science Journals Connector (OSTI)

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill ... Of the global anthropogenic CH4 emissions, more than 10% originates from landfills (1). ... Landfills are the largest source of anthropogenic CH4 emissions to the atm. in the US; however, few measurements of whole landfill CH4 emissions have been reported. ...

Annalea Lohila; Tuomas Laurila; Juha-Pekka Tuovinen; Mika Aurela; Juha Hatakka; Tea Thum; Mari Pihlatie; Janne Rinne; Timo Vesala

2007-03-15T23:59:59.000Z

469

PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER QUALITY MODEL (RZWQM) AND  

E-Print Network (OSTI)

Abstract PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER into the waste, earthen landfill covers are constructed once a landfill reaches its capacity. Formation earthen landfill covers during service. Most commonly used water balance models that are used

470

Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1  

E-Print Network (OSTI)

1 Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1 treatment and disposal costs of leachate, and increasing landfill capacity. Such aerobic decomposition engineered containment structures i.e. landfilling. The goal of a conventional landfill (typically referred

Nasipuri, Asis

471

Bulletin of Entomological Research (1999) 89, 493498 493 Fly populations associated with landfill  

E-Print Network (OSTI)

Bulletin of Entomological Research (1999) 89, 493­498 493 Fly populations associated with landfill at the following sites in Hampshire, UK during August to November 1998: a landfill and composting site (Paulsgrove), a site adjacent to this landfill (Port Solent), a site with no landfill nearby (Gosport

472

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard ~1200 Tg/yr (1 Tg = 1012 g), >70% of which is landfilled. Landfilling of waste contributes ~30-35 Tg

Columbia University

473

Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing  

SciTech Connect

The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

2011-01-01T23:59:59.000Z

474

Microsoft Word - Roosevelt-HW-Hill_Landfill-G0335-I0019-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum James Hall Customer Service Engineer - TPC-TPP-4 Proposed Action: H.W. Hill / Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335) Budget Information: Work Order # 244620, Task # 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Klickitat County, Washington Proposed by: Klickitat County Public Utility District No.1 (KPUD) and Bonneville Power

475

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

476

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

B B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF Maintenance 2011 Project remained in good condition. Vegetation on the landfill cover including the seep areas remains dormant. OLF Cover Lower OLF Cover Facing East Upper OLF Cover Facing East

477

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

478

File:Federal Hydropower - Federal Energy Regulatory Commission.pdf | Open  

Open Energy Info (EERE)

Federal Hydropower - Federal Energy Regulatory Commission.pdf Federal Hydropower - Federal Energy Regulatory Commission.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Federal Energy Regulatory Commission.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 740 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:32, 22 May 2013 Thumbnail for version as of 15:32, 22 May 2013 1,275 × 1,650, 2 pages (740 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

479

File:Federal Hydropower - Bureau of Indian Affairs.pdf | Open Energy  

Open Energy Info (EERE)

Federal Hydropower - Bureau of Indian Affairs.pdf Federal Hydropower - Bureau of Indian Affairs.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Bureau of Indian Affairs.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 685 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:25, 22 May 2013 Thumbnail for version as of 15:25, 22 May 2013 1,275 × 1,650, 2 pages (685 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

480

Full-Scale Practice of Ecologically Based Landfill of Municipal Solid Waste: to Accecelerate The Biological Conversion Inside Landfill and Cover Layers  

Science Journals Connector (OSTI)

The application of bioreactor landfill with leachate recirculation was usually confronted with ... leachate. A modified operation called “ecologically based landfill” was induced by recycling the pre-treated fres...

Pin-Jing He

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydropower landfill gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

482

http://ndep.nv.gov/bwm/landfill.htm  

National Nuclear Security Administration (NNSA)

Story County Ely Landfill City of Ely Operating - Class I & III Permitted City of Ely White Pine County White Pine Energy Station (WPES) Class III disposal site White Pine County...

483

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network (OSTI)

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

484

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

485

How does landfill leachate affect the chemical processes in a lake system downgradient from a landfill site?  

Science Journals Connector (OSTI)

A field study on the geochemical properties of a chemically-stressed limnic environment was performed in Lake Silbersee, which receives leachate water of high inorganic loading from an upgradient landfill site. T...

Thomas Striebel; Wolfgang Schäfer; Stefan Peiffer

1991-01-01T23:59:59.000Z

486

Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales  

Science Journals Connector (OSTI)

...precipitation (26). Energy Pathways. Nations must...needs for electrical energy while minimizing GHG...social and environmental costs. In the near- to medium-term...wind, nuclear, and geothermal plants. Hydropower...advances for solar and wind energy improve their competitiveness...

Claudia M. Stickler; Michael T. Coe; Marcos H. Costa; Daniel C. Nepstad; David G. McGrath; Livia C. P. Dias; Hermann O. Rodrigues; Britaldo S. Soares-Filho

2013-01-01T23:59:59.000Z

487

Trade-offs of Water Use for Hydropower Generation and Biofuel Production in the Zambezi Basin in Mozambique  

Science Journals Connector (OSTI)

Abstract In the Zambezi basin in Mozambique, hydropower production is an important economic resource, with substantial development envisaged for the next decades. Irrigated agriculture currently plays a minor role, but irrigation development has a large potential and is an important government policy goal, especially aiming at the cultivation of biofuel crops. This contribution assesses interrelations and trade-offs between these two water-dependent development options. Scenario simulations under different climate and development assumptions show that adverse impacts of irrigation withdrawal on hydropower are low. Consequently, the use of water for irrigated agriculture can generate higher economic benefits than the use for hydropower production.

Philipp Stanzel; Harald Kling; Kit Nicholson

2014-01-01T23:59:59.000Z

488

Metal speciation in landfill leachates with a focus on the influence of organic matter  

SciTech Connect

Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

Claret, Francis, E-mail: f.claret@brgm.fr [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Tournassat, Christophe; Crouzet, Catherine; Gaucher, Eric C. [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Schaefer, Thorsten [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe (Germany); Freie Universitaet Berlin, Institute of Geological Sciences, Department of Earth Sciences, Hydrogeology Group, D-12249 Berlin (Germany); Braibant, Gilles; Guyonnet, Dominique [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France)

2011-09-15T23:59:59.000Z

489

Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions  

SciTech Connect

Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

2010-04-30T23:59:59.000Z

490

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

491

E-Print Network 3.0 - air force landfill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Forces towards Materials... lack of Waste-to-Energy capacity. 12;9 Austria As Germany, but Ban in force already in 2002. Landfill... Landfill Ban in force already in...

492

The Role of the state in large-scale hydropower development perspectives from Chile, Ecuador, and Perú  

E-Print Network (OSTI)

In recent years, governments in South America have turned to large-scale hydropower as a cost-effective way to improve livelihoods while addressing the energy 'trilemma': ensuring that future energy technologies provide ...

Zambrano-Barragán, Patricio Xavier

2012-01-01T23:59:59.000Z

493

Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin  

E-Print Network (OSTI)

Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

Foley, Rachel (Rachel L.)

2013-01-01T23:59:59.000Z

494

11. GEOELECTRICAL CHARACTERIZATION OF COVERED LANDFILL SITES: A PROCESS-ORIENTED MODEL AND  

E-Print Network (OSTI)

in disused quarries or special purpose-built structures but not all past landfill operations were adequately

Meju, Max

495

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

496

Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter  

SciTech Connect

This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

2011-12-31T23:59:59.000Z

497

Review of state of the art methods for measuring water in landfills  

SciTech Connect

In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.

Imhoff, Paul T. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)], E-mail: imhoff@udel.edu; Reinhart, Debra R. [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Englund, Marja [Fortum Service Ltd., P.O. Box 10, FIN-00048, Fortum (Finland); Guerin, Roger [Universite Pierre et Marie Curie-Paris 6, UMR 7619 Sisyphe, case courrier 105, 4 place Jussieu, 75252 Paris cedex 05 (France); Gawande, Nitin [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Han, Byunghyun [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Jonnalagadda, Sreeram; Townsend, Timothy G. [Civil and Environmental Engineering Sciences Department, Gainesville, FL 32609 (United States); Yazdani, Ramin [Planning, Resources, and Public Works Department, Division of Integrated Waste Management, 292 West Beamer Street, Woodland, CA 95695 (United States)

2007-07-01T23:59:59.000Z

498

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network (OSTI)

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1 ,P.G., R.S., Timothy D, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential, particularly aluminum production wastes, may react exothermically with liquid within a landfill and cause

499

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate  

E-Print Network (OSTI)

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given 20­30% due to the low biodegradability of organic matter in the leach- ate from old landfills

500

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills  

E-Print Network (OSTI)

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills in cover systems for abandoned landfills. The research study included extensive laboratory testing and field demonstration at an abandoned landfill in Carlinville, Ill. Laboratory testing was conducted using