National Library of Energy BETA

Sample records for hydrological resistivity influenced

  1. Simulation of hydrologic influences on wetland ecosystem succession. Master's thesis

    SciTech Connect (OSTI)

    Pompilio, R.A.

    1994-09-01

    This research focuses on the development of a simulation model to determine the affects of hydrological influences on a wetland ecosystem. The model allows perturbations to the inputs of various wetland data which in turn, influences the successional development of the ecosystem. This research consisted of converting a grassland ecosystem model to one which simulates wetland conditions. The critical factor in determining the success of wetland creation is the hydrology of the system. There are four of the areas of the original model which are affected by the hydrology. The model measures the health or success of the ecosystem through the measurement of the systems gross plant production, the respiration and the net primary production of biomass. Altering the auxiliary variables of water level and the rate of flow through the system explicitly details the affects hydrologic influences on those production rates. Ten case tests depicting exogenous perturbations of the hydrology were run to identify these affects. Although the tests dealt with the fluctuation of water through the system, any one of the auxiliary variables in the model could be changed to reflect site specific data. Productivity, Hazardous material management, Hazardous material pharmacy.

  2. DC Resistivity Survey (Wenner Array) | Open Energy Information

    Open Energy Info (EERE)

    faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal:...

  3. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  4. Single-Well and Cross-Well Resistivity | Open Energy Information

    Open Energy Info (EERE)

    faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal:...

  5. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris; Hammond, Glenn

    2016-03-04

    A well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. As a result of water tablemore » elevation fluctuations, river water intrusion, and changes in groundwater flow directions, time series trends for Uaq and SpC were found to be complex and displayed large temporal and well-to-well variability. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in Uaq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized Uaq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. Moreover, while Uaq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  6. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris; Hammond, Glenn

    2016-03-04

    In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trendsmore » for Uaq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in Uaq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized Uaq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While Uaq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less

  7. The influence of Reynolds numbers on resistance properties of jet pumps

    SciTech Connect (OSTI)

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  8. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect (OSTI)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  9. The influence of temperature and grain boundary volume on the resistivity of nanocrystalline nickel

    SciTech Connect (OSTI)

    Darnbrough, J. E. Flewitt, P. E. J.; Roebuck, B.

    2015-11-14

    The thermal stability and modes of recrystallisation of nanocrystalline nickel has been observed through a conduction-based non-destructive test. Resistivity measurements have been utilised to quantify grain boundary volume fraction and microstructure. This observation makes clear the distinction of the factors that contribute to resistivity and demonstrates that these contributions are related to microstructure, either directly or in-directly. In static systems, the contribution of ordered grains and low-order grain boundary atomic arrangements in small grained material has been measured and correlated with resistivity. Measurements of in-situ resistivity conducted at high temperature gives changes with time which are related to grain growth, during heat treatment. This shows that resistivity can be used as a technique for observing the microstructure and grain growth of small grained material.

  10. ARM - The Hydrologic Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  11. Hydrologic Modeling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine

  12. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    SciTech Connect (OSTI)

    Pawel, Steven J; Hsu, Julia

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  13. Status report: A hydrologic framework for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B.; Moore, G.K.; McMaster, W.M.

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  14. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDRO-2014 Hydrological Investigations United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix HYDRO-2014 Table of Contents HYDRO-1.0 Hydrological Studies HYDRO-2.0 Optimization of Culebra Monitoring Well Network HYDRO-3.0 Geochemical Analyses HYDRO-4.0 Steel-Cased Well Reconfiguration and Replacement HYDRO-5.0 Geological Information HYDRO-6.0 Hydraulic Test Interpretation HYDRO-7.0 Monitoring

  15. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect (OSTI)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at

  16. Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition

    SciTech Connect (OSTI)

    Pollock, Evan B. Lad, Robert J.

    2014-07-01

    Aluminum-doped zinc oxide (AZO) films were deposited onto amorphous silica substrates using an atomic layer deposition process with diethyl zinc (DEZ), trimethyl aluminum (TMA), and deionized water at 200 °C. Three different Al doping sequences were used at a ZnO:Al ratio of 11:1 within the films. A minimum film resistivity of 1.6 × 10{sup −3} Ω cm was produced using sequential dosing of DEZ, TMA, DEZ, followed by H{sub 2}O for the Al doping step. This “ZAZW” sequence yielded an AZO film resistivity that is independent of film thickness, crystallographic texture, and grain size, as determined by high resolution x-ray diffraction (XRD). A pseudo-Voigt analysis method yields values for grain sizes that are smaller than those calculated using other XRD methods. Anisotropic grain sizes or variations in crystallographic texture have minimal influence on film resistivity, which suggests that factors other than film texture, such as intragrain scattering, may be important in influencing film resistivity.

  17. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  18. Current Hydrological Information (hydro/fcrps)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Hydrological Information For general hydrological information, see the National Weather Service Northwest River Forecast Center (NWRFC) Home Page (www.nwrfc.noaa.gov) For...

  19. Workshop on hydrology of crystalline basement rocks

    SciTech Connect (OSTI)

    Davis, S.N.

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  20. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  1. Resisting Bacterial Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resisting Bacterial Resistance 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Resisting Bacterial Resistance Los Alamos scientists are taking an in-depth look at how bacteria defeat death-by-antibiotics. March 8, 2016 Artist rendering of green bacteria Gram-negative bacteria have evolved multiple strategies for self-defense-including mechanisms to pump out any molecules that could kill them, such as antibiotics. "We want to ensure

  2. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    H.H. Liu; C.F. Ahlers

    2001-12-20

    The purpose of this Analysis/Model Report (AMR) is to describe the methods used to determine hydrologic properties based on the available field data from the unsaturated zone at Yucca Mountain, Nevada. This is in accordance with the AMR Development Plan (DP) for U0090 Analysis of Hydrologic Properties Data (CRWMS M and O 1999c). Fracture and matrix properties are developed by compiling and analyzing available survey data from the Exploratory Studies Facility (ESF), Cross Drift of Enhanced Characterization of Repository Block (ECRB), and/or boreholes; air injection testing data from surface boreholes and from boreholes in ESF; in-situ measurements of water potential; and data from laboratory testing of core samples.

  3. Hydrological consequences of global warming

    SciTech Connect (OSTI)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  4. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  5. Investigating coupled thermal-hydrological-mechanical processes...

    Office of Scientific and Technical Information (OSTI)

    processes in geothermal reservoirs Citation Details In-Document Search Title: Investigating coupled thermal-hydrological-mechanical processes in geothermal reservoirs ...

  6. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    Conference: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single ...

  7. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of ... Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization ...

  8. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  9. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological

  10. Representing northern peatland microtopography and hydrology within the Community Land Model

    SciTech Connect (OSTI)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics

  11. Representing northern peatland microtopography and hydrology within the Community Land Model

    SciTech Connect (OSTI)

    Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; Hanson, Paul J.; Mao, Jiafu; Sebestyen, Stephen D.; Griffiths, Natalie A.; Bisht, Gautam

    2015-11-12

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics

  12. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; Hanson, Paul J.; Mao, Jiafu; Sebestyen, Stephen D.; Griffiths, Natalie A.; Bisht, Gautam

    2015-11-12

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological

  13. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    L. Pan

    2004-10-04

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''.

  14. ARM - Field Campaign - SGP '97 (Hydrology) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP '97 (Hydrology) IOP Campaign Links NASA Archive Model Initialization Data Comments? We would love to hear from you Send us a note below or call us at ...

  15. Influence of microstructure on the corrosion resistance of AISI type 304L and type 316L sintered stainless steels exposed to ferric chloride solution

    SciTech Connect (OSTI)

    Otero, E.; Pardo, A.; Utrilla, M.V.; Perez, F.J.; Saenz, E.

    1995-10-01

    The corrosion behavior of type 304L and type 316L austenitic stainless steels, produced by powder metallurgy, when exposed to a ferric chloride solution was studied. The exposures were conducted according to ASTM G48-76, Method A. The influence of ferric chloride concentration and exposure temperature on the corrosion kinetics of these materials was evaluated. A mechanism is proposed to explain the associated morphology observed in the microstructures produced after exposure of these P/M alloys to the aggressive medium.

  16. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    SciTech Connect (OSTI)

    Devulder, Wouter De Schutter, Bob; Detavernier, Christophe; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Belmonte, Attilio

    2014-02-07

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu{sub 0.6}Te{sub 0.4} based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu{sub 0.6}Te{sub 0.4}-C/Al{sub 2}O{sub 3}/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al{sub 2}O{sub 3} under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al{sub 2}O{sub 3} before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  17. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2003

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2004-09-13

    This report presents results obtained from detailed hydrologic characterization of the unconfined aquifer system conducted at the Hanford Site.

  18. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Enhanced Geothermal System Development and Production | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Project objective: Develop a novel Thermal-Hydrological-Mechanical-Chemical (THMC) modeling tool.

  19. Variation and correlation of hydrologic properties

    SciTech Connect (OSTI)

    Wang, J.S.Y.

    1991-06-01

    Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability and the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.

  20. Resistivity analysis

    DOE Patents [OSTI]

    Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Edward Jr. I.; Hawkins, Charles F.; Tangyungong, Paiboon

    2006-06-13

    According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

  1. On Approaches to Analyze the Sensitivity of Simulated Hydrologic...

    Office of Scientific and Technical Information (OSTI)

    Land Model Citation Details In-Document Search Title: On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model ...

  2. Persistence of Hydrologic Variables and Reactive Stream Solute...

    Office of Scientific and Technical Information (OSTI)

    Watershed Citation Details In-Document Search Title: Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed Time and ...

  3. Hydrology of the Geothermal System in Long Valley Caldera, California...

    Open Energy Info (EERE)

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  4. Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrologic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of ... Cover Illustration: Schematic of time-lapse hydrological and geophysical monitoring data ...

  5. Pre-resistance-welding resistance check

    DOE Patents [OSTI]

    Destefan, Dennis E.; Stompro, David A.

    1991-01-01

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  6. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    Open Energy Info (EERE)

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  7. ARM - Field Campaign - Integrated Precipitation and Hydrology Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IPHEX): Cloud Spectrometer and Impactor (CSI) govCampaignsIntegrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Integrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) 2014.03.01 - 2014.07.01 Lead Scientist : Gerald Mace For data sets, see below. Abstract IPHEX -

  8. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal

  9. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  10. Clusters of antibiotic resistance genes enriched together stay together in

    Office of Scientific and Technical Information (OSTI)

    swine agriculture (Journal Article) | SciTech Connect Clusters of antibiotic resistance genes enriched together stay together in swine agriculture Citation Details In-Document Search Title: Clusters of antibiotic resistance genes enriched together stay together in swine agriculture Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR

  11. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  12. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    SciTech Connect (OSTI)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  13. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    SciTech Connect (OSTI)

    Reynolds, Jesse L.; Narasimhan, T.N.

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and treatment

  14. Enhancing carburization resistance in fossil fuel environments

    SciTech Connect (OSTI)

    Smith, G.D.; Tassen, C.S.

    1995-11-01

    There has been steady progress in the development of wrought alloys for use in gaseous carburizing environments. Contributing significantly to this progress is a growing knowledge base of the role of scales in enhancing carburization resistance. Future improvements in carburization resistance must build upon this level of understanding. This paper seeks to survey some of this wealth of information regarding scale characteristics of commercial wrought nickel-containing alloys as these scales are influenced by environment and alloy composition. Some suggestions as to the future direction of alloy development with regard to scale optimization and minimization of carburization resistance are proposed.

  15. DC Resistivity Survey (Mise-A-La-Masse) | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png DC Resistivity Survey (Mise-A-La-Masse): No definition has been...

  16. Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2'-O-Ribonucleic Acid Modifications

    SciTech Connect (OSTI)

    Egli, Martin; Minasov, George; Tereshko, Valentina; Pallan, Pradeep S.; Teplova, Marianna; Inamati, Gopal B.; Lesnik, Elena A.; Owens, Steve R.; Ross, Bruce S.; Prakash, Thazha P.; Manoharan, Muthiah

    2010-03-05

    The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the

  17. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect (OSTI)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  18. Direct-Current Resistivity Survey | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water. Thermal: Resistivity influenced by temperature.1 Cost Information Low-End Estimate (USD): 4,827.00482,700 centUSD 4.827...

  19. Weather-Resistive Barriers

    SciTech Connect (OSTI)

    2000-10-01

    How to select and install housewrap and other types of weather-resistive barriers: Building Technology Fact Sheet

  20. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-05-15

    This report provides the resluts of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, verticla flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  1. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 1999

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-01-19

    This report provides the results of detailed hydrologic characterization tests conducted within newly constructed Hanford Site wells during FY 1999. Detailed characterization tests performed during FY 1999 included: groundwater flow characterization, barometric response evaluation, slug tests, single-well tracer tests, constant-rate pumping tests, and in-well vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include: transmissivity, hydraulic conductivity, specific yield, effective porosity, in-well lateral flow velocity, aquifer flow velocity, vertical distribution of hydraulic conductivity (within the well-screen section) and in-well vertical flow velocity. In addition, local groundwater flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  2. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  3. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  4. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  5. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-12-31

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  6. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-01-01

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  7. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  8. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  9. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    SciTech Connect (OSTI)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role of hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable

  10. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  11. Resistive-ideal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resistive-ideal transition of pressure-driven instabilities in current-carrying plasmas beyond the Suydam criterion F. Ebrahimi, S. C. Prager, and C. R. Sovinec University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 14 January 2002; accepted 8 April 2002͒ The linear magnetohydrodynamics stability of local and global resistive pressure-driven instabilities is examined computationally in a cylinder. Both instabilities are resistive from beta values of zero up to several times the

  12. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect (OSTI)

    Krieger, F.W.; Eadington, P.J.; Lisk, M.

    1996-12-31

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60{degrees}C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  13. Calculation of resistivity of irreducible water for reserves estimation

    SciTech Connect (OSTI)

    Krieger, F.W.; Eadington, P.J.; Lisk, M. )

    1996-01-01

    A new fluid inclusion technique that allows determination of the resistivity of irreducible water trapped during oil accumulation has been developed. The technique is directly applicable to problems associated with the evaluation of oil accumulations which arise when the salinity and thus the resistivity of present day formation waters differ from those of the irreducible water trapped during oil accumulation. It is possible by measuring the ice melting temperature of samples of formation water trapped during creation of three phase, oil-water-vapour inclusions to calculate a salinity for the irreducible water and thus calculate a resistivity to be used in reserves calculations. Salinities of 71,000 to 85,000 parts per million have been measured on three phase inclusions in oil zone samples from the Papuan Foldbelt. Present day salinities in the Papuan Foldbelt are about 10,000-12,000 parts per million indicating that oil charge occurred before the present day hydrologic system was emplaced. Using salinity data from three phase inclusions results in resistivity values of about 0.05 ohm/m for irreducible water while present day formation waters have a resistivity of about 0.3 ohm/m at formation temperatures of 60[degrees]C. Using the water saturation calculated from three phase fluid inclusion salinity data compared with using the water saturation from present day formation water results in an estimated 25 % increase in reserves for oil fields studied in the Papuan Foldbelt.

  14. Updating the US hydrologic classification: an approach to clustering and stratifying ecohydrologic data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updating the US hydrologic classification: an approach to clustering and stratifying ecohydrologic data Ryan A. McManamay, * Mark S. Bevelhimer and Shih-Chieh Kao Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA ABSTRACT Hydrologic classifications unveil the structure of relationships among groups of streams with differing streamflows and provide a foundation for drawing inferences about the principles that govern those relationships. Hydrologic classes provide a

  15. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  16. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  17. Brief summary of LADHS: Los Alamos distributed hydrologic modeling system.

    SciTech Connect (OSTI)

    Murray, R. E. (Regan E.); Winter, C. L. (C. Larrabee); Springer, E. P.; Costigan, K. R. (Keeley R.); Tseng, P. H. (Peng-Hsiang)

    2001-01-01

    This report describes the current state of the fourth Thrust Area of the NSF Science and Technology Center for the Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA). Sustainability of semi-arid regions has become a serious political and scientific concern. Increasing population has added stress to the water supply and other natural resources, notably, underground aquifers. Recent controversies in the Rio Grande Basin involving the competing interests of endangered species and humans for water have highlighted the delicate balance of biologically diverse southwestern riparian areas. Potentially, the warming climate may intensify summer storms and affect the amount and timing of snow melt, the largest renewable source of water in the southwest. It is, therefore, of great political, social and scientific interest to determine ways in which human activities can coexist with healthy riparian areas and a plentiful, clean water supply over the long run. An understanding of how all of these processes interrelate would allow regional decision-makers to consider a wide range of options and thereby develop useful plans for meeting societal needs. To make the best use of limited fresh water resources, decision makers must be able to make predictions about the entire hydrologic cycle, which is a complex combination of physical, chemical, and biological processes. Only then could they explore the potential effects of increased water use and of changes in the regional climate. The important processes in the hydrologic cycle include rainfall, snowmelt, storms, runoff, and flow in ephemeral streams, rivers, and underground aquifers. Riparian communities and evaporation play key roles in reducing the available water.

  18. Manual for training reclamation inspectors in the fundamentals of hydrology

    SciTech Connect (OSTI)

    Curtis, W.R.; Dyer, K.L.; Williams, G.P.

    1988-01-01

    This handbook is intended to be a desk reference to help nonhydrologists achieve a basic understanding of hydrology as it relates to surface mining and reclamation. Surface coal mining and reclamation inspectors and other staff will find it useful in implementing regulatory programs. The handbook is not meant to be a comprehensive treatment of the subject. The handbook can be used in the training of surface-mining and reclamation inspectors, both Federal and State, and as a basic reference for inspectors in carrying out their assigned duties. The handbook describes clues and indicators of potential problems, suggests ways to prevent or mitigate them, and discusses various observation and sampling techniques.

  19. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. MeshMaker: Configurable Meshing Framework for Eco-Hydrology Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nathan Collier; Jitendra Kumar

    2016-02-09

    MeshMaker is a Python-based framework for generation of high quality structured and unstructured grid computational meshes for Eco-Hydrological models.

  1. A Large-Scale, High-Resolution Hydrological Model Parameter Data...

    Office of Scientific and Technical Information (OSTI)

    Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US Citation Details In-Document Search Title: A ...

  2. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  3. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    SciTech Connect (OSTI)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  4. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  5. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  6. Hydrologic resources management program and underground test area operable unit fy 1997

    SciTech Connect (OSTI)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  7. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  8. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    SciTech Connect (OSTI)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  9. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  10. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect (OSTI)

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  11. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  12. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  13. Vertical Electrical Sounding Configurations | Open Energy Information

    Open Energy Info (EERE)

    faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal:...

  14. Electrical Profiling Configurations | Open Energy Information

    Open Energy Info (EERE)

    faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal:...

  15. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    SciTech Connect (OSTI)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  16. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  17. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  18. Hydrologic characterization of fractured rocks: An interdisciplinary methodology

    SciTech Connect (OSTI)

    Long, J.C.S.; Majer, E.L.; Martel, S.J.; Karasaki, K.; Peterson, J.E. Jr.; Davey, A.; Hestir, K. )

    1990-11-01

    The characterization of fractured rock is a critical problem in the development of nuclear waste repositories in geologic media. A good methodology for characterizing these systems should be focused on the large important features first and concentrate on building numerical models which can reproduce the observed hydrologic behavior of the fracture system. In many rocks, fracture zones dominate the behavior. These can be described using the tools of geology and geomechanics in order to understand what kind of features might be important hydrologically and to qualitatively describe the way flow might occur in the rock. Geophysics can then be employed to locate these features between boreholes. Then well testing can be used to see if the identified features are in fact important. Given this information, a conceptual model of the system can be developed which honors the geologic description, the tomographic data and the evidence of high permeability. Such a model can then be modified through an inverse process, such as simulated annealing, until it reproduces the cross-hole well test behavior which has been observed insitu. Other possible inversion techniques might take advantage of self similar structure. Once a model is constructed, we need to see how well the model makes predictions. We can use a cross-validation technique which sequentially puts aside parts of the data and uses the model to predict that part in order to calculate the prediction error. This approach combines many types of information in a methodology which can be modified to fit a particular field site. 114 refs., 81 figs., 7 tabs.

  19. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  20. A New Global River Network Database for Macroscale Hydrologic modeling

    SciTech Connect (OSTI)

    Wu, Huan; Kimball, John S.; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Adler, Robert F.

    2012-09-28

    Coarse resolution (upscaled) river networks are critical inputs for runoff routing in macroscale hydrologic models. Recently, Wu et al. (2011) developed a hierarchical Dominant River Tracing (DRT) algorithm for automated extraction and spatial upscaling of basin flow directions and river networks using fine-scale hydrography inputs (e.g., flow direction, river networks, and flow accumulation). The DRT was initially applied using HYDRO1K baseline fine-scale hydrography inputs and the resulting upscaled global hydrography maps were produced at several spatial scales, and verified against other available regional and global datasets. New baseline fine-scale hydrography data from HydroSHEDS are now available for many regions and provide superior scale and quality relative to HYDRO1K. However, HydroSHEDS does not cover regions above 60°N. In this study, we applied the DRT algorithms using combined HydroSHEDS and HYDRO1K global fine-scale hydrography inputs, and produced a new series of upscaled global river network data at multiple (1/16° to 2°) spatial resolutions in a consistent (WGS84) projection. The new upscaled river networks are internally consistent and congruent with the baseline fine-scale inputs. The DRT results preserve baseline fine-scale river networks independent of spatial scales, with consistency in river network, basin shape, basin area, river length, and basin internal drainage structure between upscaled and baseline fine-scale hydrography. These digital data are available online for public access (ftp://ftp.ntsg.umt.edu/pub/data/DRT/) and should facilitate improved regional to global scale hydrological simulations, including runoff routing and river discharge calculations.

  1. Point defects: Their influence on electron trapping, resistivity...

    Office of Scientific and Technical Information (OSTI)

    and electron mobility-lifetime product in CdTesub xSesub 1-x detectors Citation ... and electron mobility-lifetime product in CdTesub xSesub 1-x detectors In this ...

  2. Associations among hydrologic classifications and fish traits to support environmental flow standards

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,

    2014-01-01

    Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish were observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.

  3. Fast Resistive Bolometry

    SciTech Connect (OSTI)

    Deeney, C.; Fehl, D.L.; Hanson, D.L.; Keltner, N.R.; McGurn, J.S.; McKenney, J.L.; Spielman, R.B.

    1999-02-01

    Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.

  4. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting

    SciTech Connect (OSTI)

    Porro, I.

    2000-09-30

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage- evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary/biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared to pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared to thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  5. Penetration resistant barrier

    DOE Patents [OSTI]

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  6. 2009-11 "Request LANS to Prepare a Hydrological Report Which Includes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Regarding Existing and Planned New Wells" | Department of Energy 1 "Request LANS to Prepare a Hydrological Report Which Includes Information Regarding Existing and Planned New Wells" 2009-11 "Request LANS to Prepare a Hydrological Report Which Includes Information Regarding Existing and Planned New Wells" The intent of the Recommendation is to have a comprehensive plan available to the public. This plan would give the public confidence that correct

  7. FORMATION OF CALCIUM AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, Y.M.,NV

    SciTech Connect (OSTI)

    J.B. Paces; J.F. Whelan; Z.E. Peterman; B.D. Marshall

    2000-07-27

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  8. Oxidation resistance of eight heat-resistant alloys at 870, 980...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; HEAT RESISTING ALLOYS; CORROSION RESISTANCE; OXIDATION; ... COMPOUNDS; CHROMIUM-NICKEL STEELS; CORROSION RESISTANT ALLOYS; DATA; HEAT RESISTANT ...

  9. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect (OSTI)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  10. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  11. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  12. Electrical resistivity probes

    DOE Patents [OSTI]

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  13. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  14. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  15. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  16. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of iStockphotodrewhadley...

  17. Degenerate resistive switching and ultrahigh density storage in resistive memory

    SciTech Connect (OSTI)

    Lohn, Andrew J. Mickel, Patrick R. James, Conrad D.; Marinella, Matthew J.

    2014-09-08

    We show that in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent partial increase in resistance specifies the resistance state and the final activation power state. We show that these states can be precisely written and read electrically, making this approach potentially amenable for ultra-high density memories. We provide a theoretical explanation for information storage and retrieval from activation power and experimentally demonstrate information storage in a third dimension related to the change in activation power with resistance.

  18. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  19. Abrasion resistant composition

    DOE Patents [OSTI]

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  20. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  1. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  2. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong -Guan; Tiedje, James M.

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance

  3. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  4. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  5. Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1984-10-01

    A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

  6. Computer interactive resistance simulator (CIRS)

    DOE Patents [OSTI]

    Mayn, Bobby G.

    1976-01-01

    A system for simulating the insertion of electric resistance values of either positive or negative quantity into an electric circuit and for cancelling drift errors therefrom.

  7. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  8. A valuation of possible glacio-hydrological characteristics changes under global warming for Pamiro-Alay glaciation

    SciTech Connect (OSTI)

    Ananicheva, M.D.

    1996-12-31

    Scenarios of global climate change for doubled carbon dioxide in the atmosphere is transformed into isoline maps for glaciated mountain region. Model data of monthly air temperature and precipitation are recalculated to values of annual solid precipitation and mean summer air temperature reduced to the level of 4,000 meters a.s.l. with the help of contemporary vertical gradients of air temperature and solid precipitation. The calculation algorithm is based on new techniques which analyze relationships between the spatial and altitudinal variability of meteorological parameters and their influence on snow and ice extent. Results form the basis for the calculation of the primary glaciologic and hydrologic characteristics: accumulation, ablation, melt runoff. New altitudes of main glaciological levels are calculated together with corresponding ablation and accumulation in the condition of doubled CO{sub 2}. These data are then used to produce a new spatial distribution of the input variables which can be used for improved melt water and heat resources calculation. The time period over which the model is run to obtain spatial distribution of pointed characteristics is the middle of 21 century, the situation of doubled CO{sub 2} in the atmosphere. Model output is in the form of isoline maps as well as digital data and covers the territory of Pamiro-Alay mountains and adjacent areas.

  9. Probability encoding of hydrologic parameters for basalt: Elicitation of expert opinions from a panel of five consulting hydrologists

    SciTech Connect (OSTI)

    Davis, J.D.

    1984-12-10

    The Columbia River Basalts Underlying the Hanford Site in Washington State are being considered as a possible location for a geologic repository for high-level nuclear waste. To investigate the feasibility of a repository at this site, the hydrologic parameters of the site must be evaluated. Among hydrologic parameters of particular interest are the effective porosity of the Cohassett flow top and flow interior and the vertical-to-horizontal hydraulic conductivity, or anisotropy ratio, of the Cohassett flow interior. Site-specific data for these hydrologic parameters are currently inadequate. To obtain credible, auditable, and independently derived estimates of the specified hydrologic parameters for the purpose of preliminary assessment of candidate repository performance, a panel of five nationally recognized hydrologists was assembled. Their expert judgments were quantified during two rounds of Delphi process by means of a probability encoding method developed to estimate the probability distributions of the selected hydrologic variables. 210 refs., 12 figs., 5 tabs.

  10. Corrosion resistant PEM fuel cell

    SciTech Connect (OSTI)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  11. Corrosion resistant PEM fuel cell

    SciTech Connect (OSTI)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  12. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; Berndt, Markus; Garimella, Rao; Moulton, J. David; Svyatskiy, Daniil; Wilson, Cathy J.

    2016-08-11

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less

  13. Corrosion resistant coatings suitable for elevated temperature application

    DOE Patents [OSTI]

    Chan, Kwai S.; Cheruvu, Narayana Sastry; Liang, Wuwei

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  14. Corrosion and wear resistance of tungsten carbide-cobalt and tungsten carbide-cobalt-chromium thermal spray coatings

    SciTech Connect (OSTI)

    Quets, J.; Alford, J.R.

    1999-07-01

    Tungsten carbide thermal spray coatings provide wear surfaces to new and overhauled components for various industries. Their wear resistance is obtained by incorporating small tungsten carbide particles into a metal matrix. This presentation will show what parameters influence their corrosion resistance in the ASTM B-117 Salt Spray Corrosion Test,

  15. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  16. Western surface mine permitting and reclamation. Volume 2. Contractor documents. Part B. Hydrologic evaluation and reclamation technologies for western surface coal mining

    SciTech Connect (OSTI)

    Not Available

    1986-07-01

    The report presents an analysis of the hydrologic evaluation and reclamation technologies of western surface coal mining as they have evolved and advanced since passage of the Federal Surface Mine Control and Reclamation Act of 1977 (SMCRA). The primary emphasis of the report is threefold, addressing: Hydrologic data used in the preparation and review of mining and reclamation plans. Analytical techniques used to predict and evaluate the hydrologic impacts of mining. Evaluation criteria used to determine the success of hydrologic restoration. The report also discusses special reclamation practices used to preserve and restore the essential hydrologic functions of alluvial valley floors.

  17. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance P-Glycoprotein Structure and Chemotherapy Resistance Print Wednesday, 27 May 2009 00:00 A research team from the Scripps ...

  18. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  19. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, William G.; Lindbo, John A.

    1996-01-01

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

  20. The multigap resistive plate chamber

    SciTech Connect (OSTI)

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  1. Erosion-resistant composite material

    DOE Patents [OSTI]

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  2. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    SciTech Connect (OSTI)

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted at the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.

  5. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  6. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2010-01-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  7. HRE-Pond Cryogenic Barrier Technology Demonstration: Pre- and Post-Barrier Hydrologic Assessment

    SciTech Connect (OSTI)

    Moline, G.R.

    1999-06-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes on the Oak Ridge Reservation (ORR) in east Tennessee. The pond received radioactive wastes from 1957 to 1962, and was subsequently drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by an unnamed stream that contains significant concentrations of radioactive contaminants, primarily {sup 90}Sr. Because of the proximity of the stream to the HRE disposal site and the probable flow of groundwater from the site to the stream, it was hypothesized that the HRE Pond has been a source of contamination to the creek. The HRE-Pond was chosen as the site of a cryogenic barrier demonstration to evaluate this technology as a means for rapid, temporary isolation of contaminants in the type of subsurface environment that exists on the ORR. The cryogenic barrier is created by the circulation of liquid CO{sub 2} through a system of thermoprobes installed in boreholes which are backfilled with sand. The probes cool the subsurface, creating a vertical ice wall by freezing adjacent groundwater, effectively surrounding the pond on four sides. The purpose of this investigation was to evaluate the hydrologic conditions within and around the pond prior to, during, and after the cryogenic barrier emplacement. The objectives were (1) to provide a hydrologic baseline for post-banner performance assessment, (2) to confirm that the pond is hydraulically connected to the surrounding sediments, (3) to determine the likely contaminant exit pathways from the pond, and (4) to measure changes in hydrologic conditions after barrier emplacement in order to assess the barrier performance. Because relatively little information about the subsurface hydrology and the actual configuration of the pond existed, data from multiple sources was required to reconstruct this complex system.

  8. Structure and Origins of Trends in Hydrological Measures over the western United States

    SciTech Connect (OSTI)

    Das, T; Hidalgo, H G; Dettinger, M D; Cayan, D R; Pierce, D W; Bonfils, C; Barnett, T P; Bala, G; Mirin, A

    2008-08-22

    This study examines, at 1/8 degree spatial resolution, the geographic structure of observed trends in key hydrologically relevant variables across the western United States (U.S.) over the period 1950-1999, and investigates whether these trends are statistically significantly different from trends associated with natural climate variations. A number of variables were analyzed, including late winter and spring temperature, winter-total snowy days as a fraction of winter-total wet days, 1st April Snow Water Equivalent (SWE) as a fraction of October through March precipitation total (P{sub ONDJFM}), and seasonal (January-February-March; JFM) accumulated runoff as a fraction of water year accumulated runoff. The observed changes were compared to natural internal climate variability simulated by an 850-year control run of the CCSM3-FV climate model, statistically downscaled to a 1/8 degree grid using the method of Constructed Analogues. Both observed and downscaled temperature and precipitation data were then used to drive the Variable Infiltration Capacity (VIC) hydrological model to obtain the hydrological variables analyzed in this study. Large trends (magnitudes found less than 5% of the time in the long control run) are common in the observations, and occupy substantial part of the area (37-42%) over the mountainous western U.S. These trends are strongly related to the large scale warming that appears over 89% of the domain. The strongest changes in the hydrologic variables, unlikely to be associated with natural variability alone, have occurred at medium elevations (750 m to 2500 m for JFM runoff fractions and 500 m-3000 m for SWE/PONDJFM) where warming has pushed temperatures from slightly below to slightly above freezing. Further analysis using the data on selected catchments across the simulation domain indicated that hydroclimatic variables must have changed significantly (at 95% confidence level) over at least 45% of the total catchment area to achieve a

  9. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  10. CHARACTERIZING SUBDAILY FLOW REGIMES: IMPLICATIONS OF HYDROLOGIC RESOLUTION ON ECOHYDROLOGY STUDIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHARACTERIZING SUB-DAILY FLOW REGIMES: IMPLICATIONS OF HYDROLOGIC RESOLUTION ON ECOHYDROLOGY STUDIES M. S. BEVELHIMER a * , R. A. MCMANAMAY a AND B. O'CONNOR b† a Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA b Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA ABSTRACT Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower

  11. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  12. Results of Detailed Hydrologic Characterization TestsFiscal and Calendar Year 2005

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2008-02-27

    This report provides the results of detailed hydrologic characterization tests conducted within selected Hanford Site wells during fiscal and calendar year 2005. Detailed characterization tests performed included groundwater-flow characterization, barometric response evaluation, slug tests, in-well vertical groundwater-flow assessments, and a single-well tracer and constant-rate pumping test. Hydraulic property estimates obtained from the detailed hydrologic tests include hydraulic conductivity, transmissivity, specific yield, effective porosity, in-well lateral and vertical groundwater-flow velocity, aquifer groundwater-flow velocity, and depth-distribution profiles of hydraulic conductivity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for a site where detailed well testing was performed. Results obtained from these tests provide hydrologic information that supports the needs of Resource Conservation and Recovery Act waste management area characterization as well as sitewide groundwater monitoring and modeling programs. These results also reduce the uncertainty of groundwater-flow conditions at selected locations on the Hanford Site.

  13. Hydrology and ecology of pinyon-juniper woodlands: Conceptual framework and field studies

    SciTech Connect (OSTI)

    Wilcox, B.P.; Breshears, D.D.

    1994-09-01

    Pinyon-juniper woodlands represent an important ecosystem in the semiarid western United States. Concern over the sustainability of, and management approaches for, these woodlands is increasing. As in other semiarid environments, water dynamics and vegetation patterns in pinyon-juniper woodlands are highly interrelated. An understanding of these relationships can aid in evaluating various management strategies. In this paper we describe a conceptual framework designed to increase our understanding of water and vegetation in pinyon-juniper woodlands. The framework comprises five different scales, at each of which the landscape is divided into {open_quotes}functional units{close_quotes} on the basis of hydrologic characteristics. The hydrologic behavior of each unit and the connections between units are being evaluated using an extensive network of hydrological and ecological field studies on the Pajarito Plateau in northern New Mexico. Data from these studies, coupled with application of the conceptual model, have led to the development of a number of hypotheses concerning the interrelationships of water and vegetation in pinyon-juniper woodlands.

  14. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model

    SciTech Connect (OSTI)

    Naz, Bibi S [ORNL] [ORNL; Frans, Chris [University of Washington, Seattle] [University of Washington, Seattle; Clarke, Garry [University of British Columbia, Vancouver] [University of British Columbia, Vancouver; Burns, [Watershed Sciences Inc. (WSI), Portland] [Watershed Sciences Inc. (WSI), Portland; Lettenmaier, Dennis [University of Washington, Seattle] [University of Washington, Seattle

    2014-01-01

    We describe an integrated spatially distributed hydrologic and glacier dynamic model, and use it to investigate the effect of glacier recession on streamflow variations for the Upper Bow River basin, a tributary of the South Saskatchewan River. Several recent studies have suggested that observed decreases in summer flows in the South Saskatchewan River are partly due to the retreat of glaciers in the river's headwaters. Modeling the effect of glacier changes on streamflow response in river basins such as the South Saskatchewan is complicated due to the inability of most existing physically-based distributed hydrologic models to represent glacier dynamics. We compare predicted variations in glacier extent, snow water equivalent and streamflow discharge made with the integrated model with satellite estimates of glacier area and terminus position, observed streamflow and snow water equivalent measurements over the period of 1980 2007. Simulations with the coupled hydrology-glacier model reduce the uncertainty in streamflow predictions. Our results suggested that on average, the glacier melt contribution to the Bow River flow upstream of Lake Louise is about 30% in summer. For warm and dry years, however, the glacier melt contribution can be as large as 50% in August, whereas for cold years, it can be as small as 20% and the timing of glacier melt signature can be delayed by a month.

  15. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect (OSTI)

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  16. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    SciTech Connect (OSTI)

    Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  17. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  18. Evaluation of the Non-Transient Hydrologic Source Term from the CAMBRIC Underground Nuclear Test in Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Tompson, A B; Maxwell, R M; Carle, S F; Zavarin, M; Pawloski, G A; Shumaker, D E

    2005-08-05

    Hydrologic Source Term (HST) calculations completed in 1998 at the CAMBRIC underground nuclear test site were LLNL's first attempt to simulate a hydrologic source term at the NTS by linking groundwater flow and transport modeling with geochemical modeling (Tompson et al., 1999). Significant effort was applied to develop a framework that modeled in detail the flow regime and captured all appropriate chemical processes that occurred over time. However, portions of the calculations were simplified because of data limitations and a perceived need for generalization of the results. For example: (1) Transient effects arising from a 16 years of pumping at the site for a radionuclide migration study were not incorporated. (2) Radionuclide fluxes across the water table, as derived from infiltration from a ditch to which pumping effluent was discharged, were not addressed. (3) Hydrothermal effects arising from residual heat of the test were not considered. (4) Background data on the ambient groundwater flow direction were uncertain and not represented. (5) Unclassified information on the Radiologic Source Term (RST) inventory, as tabulated recently by Bowen et al. (2001), was unavailable; instead, only a limited set of derived data were available (see Tompson et al., 1999). (6) Only a small number of radionuclides and geochemical reactions were incorporated in the work. (7) Data and interpretation of the RNM-2S multiple well aquifer test (MWAT) were not available. As a result, the current Transient CAMBRIC Hydrologic Source Term project was initiated as part of a broader Phase 2 Frenchman Flat CAU flow and transport modeling effort. The source term will be calculated under two scenarios: (1) A more specific representation of the transient flow and radionuclide release behavior at the site, reflecting the influence of the background hydraulic gradient, residual test heat, pumping experiment, and ditch recharge, and taking into account improved data sources and modeling

  19. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  20. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  1. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  2. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  3. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  4. Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski...

    Open Energy Info (EERE)

    into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a comprehensive integrated geothermal model. From all of this...

  5. Resistive band for turbomachine blade

    DOE Patents [OSTI]

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  6. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    Reactor faul elements of the elongated cylindrical type which are jacketed in a corrosion resistant material are described. Each feel element is comprised of a plurality of jacketed cylinders of fissionable material in end to end abutting relationship, the jackets being welded together at their adjoining ends to retain the individual segments together and seat the interior of the jackets.

  7. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  8. Fire resistant nuclear fuel cask

    DOE Patents [OSTI]

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  9. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    SciTech Connect (OSTI)

    Zhang, J. Y.; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Liu, J. L.; Wang, R. M.; Amsellem, E.; Kohn, A.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  10. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect (OSTI)

    Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 k/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net

  11. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2009-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

  12. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    SciTech Connect (OSTI)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of

  13. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  14. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    SciTech Connect (OSTI)

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  15. Probability encoding of hydrologic parameters for basalt. Elicitation of expert opinions from a panel of five consulting hydrologists

    SciTech Connect (OSTI)

    Runchal, A.K.; Merkhofer, M.W.; Olmsted, E.; Davis, J.D.

    1984-11-01

    The Columbia River basalts underlying the Hanford Site in Washington State are being considered as a possible location for a geologic repository for high-level nuclear waste. To investigate the feasibility of a repository at this site, the hydrologic parameters of the site must be evaluated. Among hydrologic parameters of particular interest are the effective porosity of the Cohassett basalt flow top and flow interior and the vertical-to-horizontal hydraulic conductivity, or anisotropy ratio, of the Cohassett basalt flow interior. The Cohassett basalt flow is the prime candidate horizon for repository studies. Site-specific data for these hydrologic parameters are currently inadequate for the purpose of preliminary assessment of candidate repository performance. To obtain credible, auditable, and independently derived estimates of the specified hydrologic parameters, a panel of five nationally recognized hydrologists was assembled. Their expert judgments were quantified during two rounds of Delphi process by means of a probability encoding method developed to estimate the probability distributions of the selected hydrologic variables. The results indicate significant differences of expert opinion for cumulative probabilities of less than 10% and greater than 90%, but relatively close agreement in the middle ranges of values. The principal causes of the diversity of opinion are believed to be the lack of site-specific data and the absence of a single, widely accepted, conceptual or theoretical basis for analyzing these variables.

  16. High-temperature corrosion resistance of ceramics and ceramic coatings

    SciTech Connect (OSTI)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  17. Methods for resistive switching of memristors

    DOE Patents [OSTI]

    Mickel, Patrick R.; James, Conrad D.; Lohn, Andrew; Marinella, Matthew; Hsia, Alexander H.

    2016-05-10

    The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).

  18. Thermal shock resistance ceramic insulator (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators ...

  19. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well ...

  20. Resistance of a water spark.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  1. Distribution of fast hydrologic paths in the unsaturated zone at Yucca Mountain

    SciTech Connect (OSTI)

    Fabryka-Martin, J.T.; Wolfsberg, A.V.; Levy, S.S.; Roach, J.L.; Winters, S.T.; Wolfsberg, L.E.; Elmore, D.; Sharma, P.

    1998-12-31

    Development and testing of conceptual flow and transport models for hydrologic systems are strengthened when natural environmental tracers are incorporated into the process. One such tracer is chlorine-36 ({sup 36}Cl, half-life, 301,000 years), a radioactive isotope produced in the atmosphere and carried underground with percolating groundwater. High concentrations of this isotope were also added to meteoric water during a period of global fallout from atmospheric testing of nuclear devices, primarily in the 1950s. This bomb-pulse signal has been used to test for the presence of fast transport paths in the unsaturated zone at Yucca Mountain and to provide the basis for a conceptual model for their distribution. Yucca Mountain is under investigation by the US Department of Energy as a potential site at which to host an underground high-level radioactive waste repository. Under wetter climatic conditions, fast-flow pathways will respond quickly to increases in infiltration and have the potential to become seeps in the tunnel drifts. The {sup 36}Cl data are also being used in numerical flow and transport models to establish lower bounds on infiltration rates, estimate ground water ages, and establish bounding values for hydrologic flow parameters governing fracture transport.

  2. Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kao, Shih -Chieh; Ashfaq, Moetasim; Mei, Rui; Bowling, Laura C.; Naz, Bibi S.; Rastogi, Deeksha

    2016-06-16

    Despite the fact that Global Climate Model (GCM) outputs have been used to project hydrologic impacts of climate change using off-line hydrologic models for two decades, many of these efforts have been disjointed applications or at least calibrations have been focused on individual river basins and using a few of the available GCMs. This study improves upon earlier attempts by systematically projecting hydrologic impacts for the entire conterminous United States (US), using outputs from ten GCMs from the latest Coupled Model Intercomparison Project phase 5 (CMIP5) archive, with seamless hydrologic model calibration and validation techniques to produce a spatially andmore » temporally consistent set of current hydrologic projections. The Variable Infiltration Capacity (VIC) model was forced with ten-member ensemble projections of precipitation and air temperature that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24 (~4 km) grid resolution for the baseline (1966 2005) and future (2011 2050) periods under the Representative Concentration Pathway 8.5. Based on regional analysis, the VIC model projections indicate an increase in winter and spring total runoff due to increases in winter precipitation of up to 20% in most regions of the US. However, decreases in snow water equivalent (SWE) and snow-covered days will lead to significant decreases in summer runoff with more pronounced shifts in the time of occurrence of annual peak runoff projected over the eastern and western US. In contrast, the central US will experience year-round increases in total runoff, mostly associated with increases in both extreme high and low runoff. Furthermore, the projected hydrological changes described in this study have implications for various aspects of future water resource management, including water supply, flood and drought preparation, and reservoir operation.« less

  3. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  4. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect (OSTI)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  5. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  6. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    Jacketed metal bodies of the type used as fuel elements for nuclear reactors, which contain an internal elongated body of fissionable material jacketed in a corrosion resistant metal are described. The ends of the internal bodies are provided with screw threads having a tapered outer end. The jacket material overlaps the ends and extends into the tapered section of the screw threaded opening. Screw caps with a mating tapered section are screwed into the ends of the body to compress the jacket material in the tapered sections to provtde an effective seal against corrosive gases and liquids.

  7. Abrasion resistant track shoe grouser

    DOE Patents [OSTI]

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  8. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  9. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  10. CORROSION RESISTANT JACKETED METAL BODY

    DOE Patents [OSTI]

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  11. Gasbuggy, New Mexico Long-Term Hydrologic Monitoring Program Evaluation Report

    SciTech Connect (OSTI)

    2009-06-01

    This report summarizes an evaluation of the Long-Term Hydrologic Monitoring Program (LTHMP) that has been conducted since 1972 at the Gasbuggy, New Mexico underground nuclear detonation site. The nuclear testing was conducted by the U.S. Atomic Energy Commission under the Plowshare program, which is discussed in greater detail in Appendix A. The detonation at Gasbuggy took place in 1967, 4,240 feet below ground surface, and was designed to fracture the host rock of a low-permeability natural gas-bearing formation in an effort to improve gas production. The site has historically been managed under the Nevada Offsites Project. These underground nuclear detonation sites are within the United States but outside of the Nevada Test Site where most of the experimental nuclear detonations conducted by the U.S. Government took place. Gasbuggy is managed by the U.S. Department of Energy (DOE) Office of Legacy Management (LM ).

  12. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 2

    SciTech Connect (OSTI)

    Purtymun, W.D.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  13. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  14. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  15. Hydrological conditions at the 317/319 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 317/319 Area at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, based on these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 317/319 Area is located between Meridian Road and the southern border of ANL. The 317 Area was commissioned in the late 1940s for the temporary storage of radioactive waste. Low- and high-level solid radioactive waste is stored in partially buried concrete vaults. Low-level radioactive waste awaiting shipment for off-site disposal is stored in aboveground steel bins north of the vaults. The 319 Area is an inactive landfill, located east of the 317 Area that was used for the disposal of general refuse, demolition debris, and laboratory equipment. Fluorescent light bulbs, chemical containers, and suspect waste were also placed in the landfill. Liquid chemical wastes were disposed of at each site in gravel-filled trenches called French drains.'' The 317/319 Area is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 19.5m. Organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. At the time of this report, no chemical quality analyses had been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. 14 refs., 13 figs., 6 tabs.

  16. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  17. Superconductive microstrip exhibiting negative differential resistivity

    DOE Patents [OSTI]

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  18. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance P-Glycoprotein Structure and Chemotherapy Resistance Print Wednesday, 27 May 2009 00:00 A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs.

  19. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  20. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  1. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    that the anomaly does not represent resistivity complexity in just the upper few kilometers. A fundamental, calderawide 3-D effect is documented by comparison of observed and...

  2. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Info (EERE)

    resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  3. Acid soluble, pepsin resistant platelet aggregating material

    DOE Patents [OSTI]

    Schneider, Morris D.

    1982-08-31

    Acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  4. Crosswell Electromagnetic Resistivity Imaging: Illuminating the...

    Open Energy Info (EERE)

    Reviiew, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior...

  5. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the ...

  6. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  7. Thermal shock resistance ceramic insulator

    DOE Patents [OSTI]

    Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  8. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, J.A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  9. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  10. Shapeable short circuit resistant capacitor

    DOE Patents [OSTI]

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  11. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  12. Resistivity measurements of halide-salt/MgO separators for thermal cells

    SciTech Connect (OSTI)

    Redey, L.; McParland, M. ); Guidotti, R. )

    1990-01-01

    Resistivities of 20 compositions of halide-salt/MgO mixtures (various selections and percentages of LiF, LiCl, LiBr, KCl, KBr, CsBr, and MgO) to be used in Li-alloy/metal sulfide cells have been measured at temperatures between the melting point of a particular mixture and 500{degrees}C. The resistivities were determined with cold-pressed electrolyte-binder pellets by using a special cell and DC measuring technique. Temperature, salt composition, and MgO content were found to have a strong influence on resistivity. These factors are listed in decreasing order of the magnitude of the effect. The fabrication density (porosity) of the pellet also has some effect on resistivity. These measured resistivities provide a data base to select optimum compositions of electrolyte-binder pellets for LiSi/FeS{sub 2} thermal batteries and to calculate area-specific resistances of these components for battery modeling and optimization. 5 refs., 7 figs.

  13. Direct-Current Resistivity At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    and east of this fissure (Figs 48, 49). These data suggest that a high-level body of cold freshwater is impounded to the north of the fissure (which is acting as a hydrologic...

  14. Direct-Current Resistivity Survey At Kilauea Southwest Rift And...

    Open Energy Info (EERE)

    and east of this fissure (Figs 48, 49). These data suggest that a high-level body of cold freshwater is impounded to the north of the fissure (which is acting as a hydrologic...

  15. Negative resistance in an organic thin film

    SciTech Connect (OSTI)

    Ehara, S. ); Takagi, T. ); Yoshida, T.; Inaba, H.; Naito, H.; Okuda, M. )

    1992-08-20

    This paper reports that the negative resistance of the tunneling currents was observed in a semiconducting organic thin film on a graphite substrate by an STM (Scanning Tunneling Microscopy). This negative resistance may be understood by the theory of a molecular resonance tunneling effect.

  16. The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect (OSTI)

    Tilmes, S.; Fasullo, John; Lamarque, J.-F.; Marsh, D.; Mills, Mike; Alterskjaer, Kari; Muri, Helene O.; Kristjansson, Jon E.; Boucher, Olivier; Schulz, M.; Cole, Jason N.; Curry, Charles L.; Jones, A.; Haywood, J.; Irvine, Peter; Ji, Duoying; Moore, John; Bou Karam, Diana; Kravitz, Benjamin S.; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Yang, Shuting; Watanabe, Shingo

    2013-10-14

    Abstract: The hydrologic impact of enhancing Earth’s albedo due to solar radiation management (SRM) is investigated using simulations from 12 models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). An artificial experiment is investigated, where global mean temperature is preserved at pre-industrial conditions, while atmospheric carbon dioxide concentrations are quadrupled. The associated reduction of downwelling surface solar radiation in a high CO2 environment leads to a reduction of global evaporation of 10% and 4% and precipitation of 6.1% and 6.3% over land and ocean, respectively. An initial reduction of latent heat flux at the surface is largely driven by reduced evapotranspiration over land with instantly increasing CO2 concentrations in both experiments. A warming surface associated with the transient adjustment in the 4xCO2 experiment further generates an increase of global precipitation, with considerable regional changes, such as a significant precipitation reduction of 7% for the North American summer monsoon. Reduced global precipitation persists in the geoengineered experiment where temperatures are stabilized, with considerable regional rainfall deficits. Precipitation reductions that are consistent in sign across models are identified in the geoengineered experiment over monsoonal land regions of East Asia (6%), North America (7%), South America (6%) and South Africa (5%). In contrast to the 4xCO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50%, it is reduced by up to 20% in the geoengineering scenario . The reduction in heavy precipitation is more pronounced over land than over the ocean, and accompanies a stronger reduction in evaporation over land. For northern mid-latitudes, maximum precipitation reduction over land ranges from 1 to 16% for individual models. For 45-65°N, the frequency of median to high intensity precipitation in summer is strongly reduced. These

  17. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  18. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  19. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  20. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  1. Proliferation resistance: issues, initiatives and evaluation

    SciTech Connect (OSTI)

    Pilat, Joseph F

    2009-01-01

    The vision of a nuclear renaissance has highlighted the issue of proliferation resistance. The prospects for a dramatic growth in nuclear power may depend on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance. The GenIV International Forum (GIF) and others have devoted attention and resources to proliferation resistance. However, the hope of finding a way to make the peaceful uses of nuclear energy resistant to proliferation has reappeared again and again in the history of nuclear power with little practical consequence. The concept of proliferation resistance has usually focused on intrinsic (technological) as opposed to extrinsic (institutional) factors. However, if there are benefits that may yet be realized from reactors and other facilities designed to minimize proliferation risks, it is their coupling with effective safeguards and other nonproliferation measures that likely will be critical. Proliferation resistance has also traditionally been applied only to state threats. Although there are no technologies that can wholly eliminate the risk of proliferation by a determined state, technology can play a limited role in reducing state threats and perhaps in eliminating many non-state threats. These and other issues are not academic. They affect efforts to evaluate proliferation resistance, including the methodology developed by GIF's Proliferation Resistance and Physical Protection (PR&PP) Working Group as well as the proliferation resistance initiatives that are being pursued or may be developed in the future. This paper will offer a new framework for thinking about proliferation resistance issues, including the ways the output of the methodology could be developed to inform the decisions that states, the International Atomic Energy (IAEA) and others will have to make in order to fully realize the promise of a nuclear renaissance.

  2. An evaluation of groundwater travel times in the Wolfcamp Formation using the CFEST-INV stochastic hydrology library

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Performance assessments of a nuclear waste repository must consider the hydrologic, thermal, mechanical, and geochemical environments of a candidate site. Predictions of radionuclide transport requires estimating water movement as a function of pressure, temperature, and solute concentration. CFEST (Coupled Fluid, Energy, and Solute Transport, Gupta et al., 1987) is a finite-element based groundwater code that can be used to simultaneously solve the partial differential equations for pressure heads, solute temperature, and solute concentration. The CFEST code has been designed to support site, repository, and waste package subsystem assessments. CFEST-INV is a stochastic hydrology software library that was developed to augment the CFEST technology in data processing; model calibration; performance prediction; error propagation; and data collection guidance. 18 refs., 9 figs., 4 tabs.

  3. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect (OSTI)

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  4. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results Report for Project Rulison, Co

    SciTech Connect (OSTI)

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.

  5. The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines

    SciTech Connect (OSTI)

    Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.

    1996-12-31

    The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow is restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.

  6. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect (OSTI)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  7. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  8. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  9. Piping and equipment resistance to seismic-generated missiles

    SciTech Connect (OSTI)

    LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.

    1992-02-01

    For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missiles during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.

  10. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  11. Cell shunt resistance and photovoltaic module performance

    SciTech Connect (OSTI)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  12. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  13. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    SciTech Connect (OSTI)

    White, R.A.; Angeliu, T.M.

    1997-12-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.

  14. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  15. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  16. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  17. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect (OSTI)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  18. Alternative Fuels Data Center: Low Rolling Resistance Tires

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Rolling Resistance Tires to someone by E-mail Share Alternative Fuels Data Center: Low Rolling Resistance Tires on Facebook Tweet about Alternative Fuels Data Center: Low Rolling Resistance Tires on Twitter Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Google Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Delicious Rank Alternative Fuels Data Center: Low Rolling Resistance Tires on Digg Find More places to share Alternative Fuels Data

  19. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    SciTech Connect (OSTI)

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  20. On the magnetic reconnection of resistive tearing mode with the dynamic flow effects

    SciTech Connect (OSTI)

    Ali, A.; Li, Jiquan Kishimoto, Y.

    2015-04-15

    Magnetic reconnection usually occurs in turbulent environments, which may not only provide anomalous resistivity to enhance reconnection rates but also significantly modify the reconnection process through direct nonlinear interaction with magnetic islands. This study presents numerical simulations investigating the effects of an imposed dynamic flow on magnetic reconnection, based on a two-dimensional reduced resistive MHD model. Results show that while the linear stability properties of the resistive tearing mode are moderately affected by the dynamic flow, nonlinear evolution is significantly modified by radial parity, amplitude, and frequency of the dynamic flow. After the slowly evolving nonlinear Rutherford stage, the reconnection process is found to progress in two phases by including the dynamic flow. A Sweet-Parker like current sheet is formed in the first phase. Afterwards, plasmoid instability is triggered in the second phase, where multiple plasmoids are continuously generated and ejected along the current sheet, leading to an impulsive bursty reconnection. The reconnection rate is considerably enhanced in the range of low resistivity as compared to without flow. We found that plasmoid instability onset and evolution are strongly influenced by the frequency and radial parity of the dynamic flows. The scaling of effective reconnection rates with the flow is found to be independent of resistivity.

  1. Direct-Current Resistivity At Honokowai Area (Thomas, 1986) ...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  2. Direct-Current Resistivity At Lualualei Valley Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  3. Direct-Current Resistivity Survey At Honokowai Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  4. Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  5. An introduction to electrical resistivity in geophysics | Open...

    Open Energy Info (EERE)

    introduction to electrical resistivity in geophysics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An introduction to electrical resistivity...

  6. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & ...

  7. Evolution of extreme resistance to ionizing radiation via genetic...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Prev Next Title: Evolution of extreme resistance to ionizing ...

  8. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the ... wear resistant nano-composite coatings and components for a wide range of applications. ...

  9. Thermal shock resistance ceramic insulator (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator You are accessing a document from the ...

  10. DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information

    Open Energy Info (EERE)

    Techniques Potential Pitfalls See Direct-Current Resistivity Survey References (Smith, 1986) "Application of the pole-dipole resistivity technique to the detection of...

  11. Energy scaling advantages of resistive memory crossbar based...

    Office of Scientific and Technical Information (OSTI)

    Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding Prev Next Title: Energy scaling advantages of resistive memory ...

  12. High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Resistant Cross-Linked Encapsulnt Based on Polyolefin SOLAR ASCE High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin SOLAR ASCE Presented at the PV Module ...

  13. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines ...

  14. Resistivity Log At Alum Area (Moos & Ronne, 2010) | Open Energy...

    Open Energy Info (EERE)

    and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes Density and electrical resistivity data were important to calibrate structural models based...

  15. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to...

  16. Designing and Building Hurricane-Resistant Homes

    SciTech Connect (OSTI)

    2006-05-25

    A production builders efforts to identify better wall systems to use in homes led to the development of a disaster-resistant housing solution for the southeastern United States.

  17. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help...

  18. Ethanologenic bacteria with increased resistance to furfural

    DOE Patents [OSTI]

    Miller, Elliot Norman; Jarboe, Laura R.; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham; Ingram, Lonnie O'Neal

    2015-10-06

    The invention relates to bacterium that have increased resistance to furfural and methods of preparation. The invention also relates to methods of producing ethanol using the bacterium and corresponding kits.

  19. Creep resistant high temperature martensitic steel

    DOE Patents [OSTI]

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  20. Synthesis, crystal structure, resistivity, and electronic structure...

    Office of Scientific and Technical Information (OSTI)

    Synthesis, crystal structure, resistivity, and electronic structure of the U(V) quaternary ... and electronic structure of the U(V) quaternary polyselenide Ba8PdU2Se12(Se2)2 ...

  1. Property:WaterResistivity | Open Energy Information

    Open Energy Info (EERE)

    Page. Pages using the property "WaterResistivity" Showing 2 pages using this property. L Lightning Dock Geothermal Area + 1,700 + W Waunita Hot Springs Geothermal Area + 850 +...

  2. Resistance probe for energetic particle dosimetry

    DOE Patents [OSTI]

    Wampler, W.R.

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film having an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current throught the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  3. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  4. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  5. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  6. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  7. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  8. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-Glycoprotein Structure and Chemotherapy Resistance Print A research team from the Scripps Research Institute and the Texas Tech University Health Sciences Center has obtained the first glimpse of a protein that keeps certain substances, including many drugs, out of cells. The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs. The structure is

  9. Resistance probe for energetic particle dosimetry

    DOE Patents [OSTI]

    Wampler, William R.

    1988-01-01

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film havinmg an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current through the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  10. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  11. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression

  12. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect (OSTI)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  13. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    SciTech Connect (OSTI)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  14. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    SciTech Connect (OSTI)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

  15. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect (OSTI)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  16. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  17. Antimicrobial resistance prediction in PATRIC and RAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, James J.; Boisvert, Sebastien; Brettin, Thomas; Kenyon, Ronald W.; Mao, Chunhong; Olson, Robert; Overbeek, Ross; Santerre, John; Shukla, Maulik; Wattam, Alice R.; et al

    2016-06-14

    The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less

  18. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect (OSTI)

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.

  19. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  20. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  1. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  2. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  3. Sensitivity of Surface Flux Simulations to Hydrologic Parameters Based on an Uncertainty Quantification Framework Applied to the Community Land Model

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Huang, Maoyi; Leung, Lai-Yung R.; Lin, Guang; Ricciuto, Daniel M.

    2012-08-10

    Uncertainties in hydrologic parameters could have significant impacts on the simulated water and energy fluxes and land surface states, which will in turn affect atmospheric processes and the carbon cycle. Quantifying such uncertainties is an important step toward better understanding and quantification of uncertainty of integrated earth system models. In this paper, we introduce an uncertainty quantification (UQ) framework to analyze sensitivity of simulated surface fluxes to selected hydrologic parameters in the Community Land Model (CLM4) through forward modeling. Thirteen flux tower footprints spanning a wide range of climate and site conditions were selected to perform sensitivity analyses by perturbing the parameters identified. In the UQ framework, prior information about the parameters was used to quantify the input uncertainty using the Minimum-Relative-Entropy approach. The quasi-Monte Carlo approach was applied to generate samples of parameters on the basis of the prior pdfs. Simulations corresponding to sampled parameter sets were used to generate response curves and response surfaces and statistical tests were used to rank the significance of the parameters for output responses including latent (LH) and sensible heat (SH) fluxes. Overall, the CLM4 simulated LH and SH show the largest sensitivity to subsurface runoff generation parameters. However, study sites with deep root vegetation are also affected by surface runoff parameters, while sites with shallow root zones are also sensitive to the vadose zone soil water parameters. Generally, sites with finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the parameters. Our results suggest the necessity of and possible ways for parameter inversion/calibration using available measurements of latent/sensible heat fluxes to obtain the optimal parameter set for CLM4. This study also provided guidance on reduction of parameter set dimensionality and parameter

  4. Influences on particle shape in underwater pelletizing processes

    SciTech Connect (OSTI)

    Kast, O. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  5. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  6. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  7. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    SciTech Connect (OSTI)

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  8. Sensitivity analysis for joint inversion of ground-penetratingradar and thermal-hydrological data from a large-scale underground heatertest

    SciTech Connect (OSTI)

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2007-06-25

    We describe a joint inversion approach that combinesgeophysical and thermal-hydrological data for the estimation of (1)thermal-hydrological parameters (such as permeability, porosity, thermalconductivity, and parameters of the capillary pressure and relativepermeability functions) that are necessary for predicting the flow offluids and heat in fractured porous media, and (2) parameters of thepetrophysical function that relates water saturation, porosity andtemperature to the dielectric constant. The approach incorporates thecoupled simulation of nonisothermal multiphase fluid flow andground-penetrating radar (GPR) travel times within an optimizationframework. We discuss application of the approach to a large-scale insitu heater test which was conducted at Yucca Mountain, Nevada, to betterunderstand the coupled thermal, hydrological, mechanical, and chemicalprocesses that may occur in the fractured rock mass around a geologicrepository for high-level radioactive waste. We provide a description ofthe time-lapse geophysical data (i.e., cross-borehole ground-penetratingradar) and thermal-hydrological data (i.e., temperature and water contentdata) collected before and during the four-year heating phase of thetest, and analyze the sensitivity of the most relevantthermal-hydrological and petrophysical parameters to the available data.To demonstrate feasibility of the approach, and as a first step towardcomprehensive inversion of the heater test data, we apply the approach toestimate one parameter, the permeability of the rock matrix.

  9. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect (OSTI)

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  10. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  11. Attrition resistant microporous particles by spray drying

    SciTech Connect (OSTI)

    Bergna, H.E. )

    1988-09-01

    Industrial powders made of grains in the micron size range are often used in processes that require high attrition resistance. Good examples of such powders are catalysts for fluid bed processes which are generally made of ca. 45 to ca. 150 or 200 {mu}m porous grains, hereby referred to as porous micrograins or, if they are spheroidal, porous microspheres (PMS). A conventional approach to impart attrition resistance to a catalyst grain is to embed small particles of the active catalyst in a continuous framework or skeleton made of a hard and relatively inert material. In this case, the percentage of hard materials required to impart sufficient attrition resistance to the catalyst composite particle is so high ({approximately} 50%) that it may affect the activity and/or the selectivity of the catalyst.

  12. Terrain effects in resistivity and magnetotelluric surveys

    SciTech Connect (OSTI)

    Holcombe, H.T.

    1982-12-01

    A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

  13. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; FINK JB; LOKE MH

    2009-12-16

    Highly industrialized areas pose challenges for surface electrical resistivity characterization due to metallic infrastructure. The infrastructure is typically more conductive than the desired targets and will mask the deeper subsurface information. These challenges may be minimized if steel-cased wells are used as long electrodes in the area near the target. We demonstrate a method of using long electrodes to electrically monitor a simulated leak from an underground storage tank with both synthetic examples and a field demonstration. The synthetic examples place a simple target of varying electrical properties beneath a very low resistivity layer. The layer is meant to replicate the effects of infrastructure. Both surface and long electrodes are tested on the synthetic domain. The leak demonstration for the field experiment is simulated by injecting a high conductivity fluid in a perforated well within the S tank farm at Hanford, and the resistivity measurements are made before and after the leak test. All data are processed in four dimensions, where a regularization procedure is applied in both the time and space domains. The synthetic test case shows that the long electrode ERM could detect relative changes in resistivity that are commensurate with the differing target properties. The surface electrodes, on the other hand, had a more difficult time matching the original target's footprint. The field results shows a lowered resistivity feature develop south of the injection site after cessation of the injections. The time lapsed regularization parameter has a strong influence on the differences in inverted resistivity between the pre and post injection datasets, but the interpretation of the target is consistent across all values of the parameter. The long electrode ERM method may provide a tool for near real-time monitoring of leaking underground storage tanks.

  14. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect (OSTI)

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  15. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  16. ENVIRONMENTAL MONITORING OF LEAKS USING TIME LAPSED LONG ELECTRODE ELECTRICAL RESISTIVITY

    SciTech Connect (OSTI)

    RUCKER DF; FINK JB; LOKE MH; MYERS DA

    2009-11-05

    Highly industrialized areas pose significant challenges for surface based electrical resistivity characterization and monitoring due to the high degree of metallic infrastructure. The infrastructure is typically several orders of magnitude more conductive than the desired targets, preventing the geophysicist from obtaining a clear picture of the subsurface. These challenges may be minimized if steel-cased wells are used as long electrodes. We demonstrate a method of using long electrodes in a complex nuclear waste facility to monitor a simulated leak from an underground storage tank. The leak was simulated by injecting high conductivity fluid in a perforated well and the resistivity measurements were made before and after the leak test. The data were processed in four dimensions, where a regularization procedure was applied in both the time and space domains. The results showed a lowered resistivity feature develop south of the injection site. The time lapsed regularization parameter had a strong influence on the differences in inverted resistivity between the pre and post datasets, potentially making calibration of the results to specific hydrogeologic parameters difficult.

  17. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect (OSTI)

    Liu, M. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China); Department of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zheng, X. H., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China)

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  18. Review of information on hydrology and radionuclide migration at the Nevada Test Site 1976--1988, and annotated bibliography

    SciTech Connect (OSTI)

    Raymond, J.R.; Eddy, P.A.; Wallace, R.W.; Foley, M.G.; Bierschenk, W.H.; Harrison, R.P.; IT Corp., Richland, WA; Pacific Northwest Lab., Richland, WA )

    1989-09-01

    The purpose of this report is to provide information on changes in the state of knowledge on the hydrology and radionuclide migration that have occurred at the Nevada Test Site (NTS) since 1976. In the present study, a literature review was conducted to examine information published since 1976 about the various activities that have occurred at the NTS. Information was collected from the literature on the site's geological, hydrological, geochemical, and geomorphic characteristics related to the impacts on the ground water from weapons testing and the disposal of waste at the NTS. This information was used to identify the state of knowledge about the NTS and the potential impacts of NTS activities on the ground water. More than 250 reports were reviewed, of which about 200 contained information pertinent to the subject of this report. Because the reports have never been collected in a single location, only those that were supplied by the US Department of Energy and other cooperating organizations could be reviewed, and some pertinent documents may have been missed. Appendix A contains an annotated bibliography of the reports reviewed. 149 refs., 28 figs., 2 tabs.

  19. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  20. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  1. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    SciTech Connect (OSTI)

    Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

    2000-02-28

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

  2. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  3. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    SciTech Connect (OSTI)

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  4. Determination of electrical resistivity of dry coke beds

    SciTech Connect (OSTI)

    Eidem, P.A.; Tangstad, M.; Bakken, J.A.

    2008-02-15

    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  5. Attrition resistant gamma-alumina catalyst support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  6. Localized corrosion resistance of automotive exhaust alloys

    SciTech Connect (OSTI)

    Sabata, A.; Brossia, C.S.; Behling, M.

    1998-12-31

    Corrosion in automotive exhaust systems can be broadly classified as (a) cold end corrosion and (b) hot end corrosion. For the cold end, the requirements include inside-out perforation corrosion resistance and cosmetic corrosion resistance. Perforation corrosion causes noticeable degradation in noise quality and may even affect the back pressure. For the hot end, the key concern has been perforation corrosion resistance. With the use of oxygen sensors in catalytic converters, the failure criteria will become more stringent. Numerous accelerated corrosion tests have been used to rank materials for the Hot End and the Cold End. These include (a) Continuous Test, (b) Cyclic Tests -- Hot End, (c) Cyclic Tests -- Cold End, (d) Electrochemical Ranking. In this paper the authors evaluate some of the commonly used exhaust materials in these accelerated tests. These accelerated tests are easy to use, inexpensive to run as compared to proving ground testing or trailer testing and can provide information in a relatively short time. Here they report lab work to date on some of the accelerated corrosion testing for perforation corrosion resistance. Note that these tests are useful for ranking materials only. Life expectancy of the material can be given only after a correlation is established between the accelerated tests and field performance. The electrochemical tests were designed to gain insight into pit growth kinetics in the accelerated tests.

  7. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect (OSTI)

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  8. Magnetic field annealing for improved creep resistance

    DOE Patents [OSTI]

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  9. Engineered microorganisms having resistance to ionic liquids

    DOE Patents [OSTI]

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  10. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and

  11. Borehole thermal resistance: Laboratory and field studies

    SciTech Connect (OSTI)

    Remund, C.P.

    1999-07-01

    Vertical ground heat exchangers are a common method of linking geothermal heat pump systems to the earth, and they consist of pipe installed into a borehole that is subsequently backfilled with a material that forms the heat transfer link between the pipe and earth. In many states that material must also be a grout to form a barrier against water migration in any direction along the entire borehole length. Until recently, little attention has been given to the thermal properties of commonly used backfill and grouting materials or to the effect of the thermal conductivity of those materials on the thermal performance of the vertical ground heat exchanger. Laboratory studies were performed to determine the effect of grout thermal conductivity, borehole diameter, pipe size, and pipe configuration on the total thermal resistance in the borehole. It was found that borehole thermal resistance decreased with increasing grout thermal resistance decreased with increasing grout thermal conductivity, but increasing grout thermal conductivity above 1.0 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F provided very small additional reduction. The studies resulted in a set of relationships for borehole thermal resistance, depending on the pipe configuration in the borehole, that can be utilized in the calculation of design length of a vertical ground heat exchanger for a prescribed heating and cooling load. A series of independent field tests verified that the assumption of equal spacing between the pipes and the borehole wall conservatively accounted for the thermal conductivity of the backfill or grout material. The effect of increasing grout thermal conductivity from 0.43 to 0.85 Btu/h{center{underscore}dot}ft{center{underscore}dot}{degree}F resulted in overall reductions in thermal resistance between the circulating fluid and the earth by 15.3% to 19.5%.

  12. Resistance heater for use in a glass melter

    DOE Patents [OSTI]

    Routt, K.R.; Porter, M.A.

    1984-01-01

    A resistance heating element that includes: a resistance heating medium of a mixture of electrically conductive and insulative particles in powdered form mixed together in predetermined proportions to achieve a given resistivity; a hollow outer electrode surrounding the resistance heating medium; and an inner electrode coaxially disposed within said outer electrode. In its preferred embodiments, the electrically conductive powder is selected from the group consisting essentially of graphite, Inconel alloy, molybdenum, nichrome alloy and stainless steel, while the insulator powder is silicon dioxide or alumina. The resistance heating element, being resistant to damage from mechanical shock and corrosion at elevated temperatures, is used in a glass melter.

  13. Influence of optically quenched superconductivity on quasiparticle...

    Office of Scientific and Technical Information (OSTI)

    Influence of optically quenched superconductivity on quasiparticle relaxation rates in Bi ... Title: Influence of optically quenched superconductivity on quasiparticle relaxation rates ...

  14. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar ...

  15. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  16. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on {open_quotes}Fractures, Hydrology, and Yucca Mountain{close_quotes}: Abstracts and summary

    SciTech Connect (OSTI)

    Gomberg, J.

    1991-12-31

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation.

  17. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a ``clean`` site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  18. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a clean'' site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  19. Methods for resistive switching of memristors (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Methods for resistive switching of memristors The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as ...

  20. Overcoming Resistance, and Lighting Up the World | Department...

    Office of Environmental Management (EM)

    Overcoming Resistance, and Lighting Up the World Overcoming Resistance, and Lighting Up the World March 15, 2013 - 2:47pm Addthis Inside a clean room, Brookhaven physicists Ivan ...

  1. Breaking a Pocket of Resistance in the Fight Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking a Pocket of Resistance in the Fight Against Cancer Breaking a Pocket of Resistance in the Fight Against Cancer Print Thursday, 12 December 2013 11:55 ras protein The new...

  2. Oxidation-resistant, solution-processed plasmonic Ni nanochain...

    Office of Scientific and Technical Information (OSTI)

    Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiOsub x (x < 2) selective solar thermal absorbers Citation Details In-Document Search Title: Oxidation-resistant, ...

  3. Extremely durable biofouling-resistant metallic surfaces based...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel Title: Extremely durable ...

  4. Electrical Resistivity At Coso Geothermal Area (1972) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location...

  5. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. On the tear resistance of skin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Wen; Sherman, Vincent R.; Gludovatz, Bernd; Schaible, Eric; Stewart, Polite; Ritchie, Robert O.; Meyers, Marc A.

    2015-03-27

    Tear resistance is vitally important for the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. Here we explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. Finally, we express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensilemore » direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip.« less

  7. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  8. Conformal chemically resistant coatings for microflow devices

    DOE Patents [OSTI]

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  9. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  10. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  11. Proliferation Resistance and the Nuclear Renaissance

    SciTech Connect (OSTI)

    Shea, Thomas E.; Zentner, Michael D.

    2008-05-01

    This article explores how emphasizing proliferation resistance will accomplish that goal. What does it mean for a nuclear fuel cycle to be resistant to proliferation? How can the risk of proliferation from a fuel cycle be evaluated? How has proliferation been considered in the past and how is it being considered in nuclear energy development programs today? How should proliferation concerns interact with facility safety and operations? How do proliferation concerns affect the prospects for nuclear energy in the 21st century? And finally, what is the thinking today in relation to deployment arrangements, technical measures, and R&D programs that are in place or proposed that could both decrease the risk of proliferation and ensure the successful renaissance of nuclear power.

  12. Sulfate and acid resistant concrete and mortar

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  13. Sulfate and acid resistant concrete and mortar

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  14. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect (OSTI)

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution

  15. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    SciTech Connect (OSTI)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest; Freeze, Geoffrey A.; Hammond, Glenn Edward

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  16. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  17. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect (OSTI)

    Lthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  18. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2005-02-15

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  19. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  20. Pitting corrosion resistant austenite stainless steel

    DOE Patents [OSTI]

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  1. DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL

    DOE Patents [OSTI]

    Kittel, J.H.

    1963-10-31

    A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)

  2. Resistance after firing protected electric match

    DOE Patents [OSTI]

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  3. Resistance after firing protected electric match

    SciTech Connect (OSTI)

    Montoya, A.P.

    1981-11-10

    An electric match having electrical leads embedded in flameproducing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  4. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  5. Resistance controllability and variability improvement in a TaO{sub x}-based resistive memory for multilevel storage application

    SciTech Connect (OSTI)

    Prakash, A. E-mail: amit.knp02@gmail.com Song, J.; Hwang, H. E-mail: amit.knp02@gmail.com; Deleruyelle, D.; Bocquet, M.

    2015-06-08

    In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimental observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.

  6. Novel Attrition-Resistant Fischer Tropsch Catalyst

    SciTech Connect (OSTI)

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be

  7. Influence of nanostructure on charge transport in RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Steeves, M. M.; Lad, R. J.

    2010-07-15

    Polycrystalline thin films of RuO{sub 2} were grown on fused-quartz substrates and a parametric study was carried out to probe the influence of film nanostructure on the four-point Van der Pauw resistivity and Hall coefficient. The films were grown via reactive rf magnetron sputtering of a Ru target in an Ar/O{sub 2} plasma using deposition rates from 0.27 to 3.5 A/s and substrate temperatures from 16 to 500 deg. C Room-temperature resistivities of the RuO{sub 2} films ranged from 58 to 360 {mu}{Omega} cm. Upon first heating following deposition, some films showed decreasing resistivity with increasing temperature, but the resistivities also decreased upon subsequent cooling suggesting that the annealing treatment reduces the film defect density. The temperature coefficient of resistance was found to be small (<0.001 K{sup -1}) in agreement with previous investigations. Hall coefficient measurements of the polycrystalline thin films demonstrated that either n-type or p-type majority carriers can be present depending on deposition conditions and the resulting nanostructure, in contrast to single-crystal RuO{sub 2}, which is an n-type metal. Grain size and homogeneous strain within the films were measured by x-ray diffraction and are correlated to the majority carrier type.

  8. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  9. Electrical resistance tomography from measurements inside a steel cased borehole

    DOE Patents [OSTI]

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  10. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  11. Erosion resistant elbow for solids conveyance

    DOE Patents [OSTI]

    Everett, J.W.

    1984-10-23

    An elbow and process for fabrication for use in particulate material conveyancing comprises a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figs.

  12. High efficiency, oxidation resistant radio frequency susceptor

    DOE Patents [OSTI]

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  13. Erosion resistant elbow for solids conveyance

    DOE Patents [OSTI]

    Everett, James W.

    1984-10-23

    An elbow and process for fabrication for use in particulate material conveyancing comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe.

  14. Erosion resistant elbow for solids conveyance

    DOE Patents [OSTI]

    Not Available

    An elvow and process for fabrication for use in particulate material conveying comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figures.

  15. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  16. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  17. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  18. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  19. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect (OSTI)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  20. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect (OSTI)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  1. ALS Gives Chevron Scientists New Insights into Corrosion Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Gives Chevron Scientists New Insights into Corrosion Resistance ALS Gives Chevron Scientists New Insights into Corrosion Resistance Print Thursday, 25 July 2013 13:44 In the chemical environments common in energy production plants, steel pipes and equipment can accumulate layers of iron sulfide, some of which are corrosion resistant and provide protection to the steel surface. Understanding how operating conditions affect steel surface layers can improve corrosion rate estimates, decreasing

  2. GNEP Element:Demonstrate More Proliferation-Resistant Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GNEP Element:Demonstrate More Proliferation-Resistant Recycling GNEP Element:Demonstrate More Proliferation-Resistant Recycling An article describing GNEP element of recycling. GNEP Element:Demonstrate More Proliferation-Resistant Recycling (478.08 KB) More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet -

  3. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    SciTech Connect (OSTI)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  4. Cumulative hydrologic impact assessments on surface-water in northeastern Wyoming using HEC-1; a pilot study

    SciTech Connect (OSTI)

    Anderson, A.J.; Eastwood, D.C.; Anderson, M.E.

    1997-12-31

    The Surface Mining Control and Reclamation Act of 1977 requires that areas in which multiple mines will affect one watershed be analyzed and the cumulative impacts of all mining on the watershed be assessed. The purpose of the subject study was to conduct a cumulative hydrologic impact assessment (CHIA) for surface-water on a watershed in northeastern Wyoming that is currently being impacted by three mines. An assessment of the mining impact`s affect on the total discharge of the watershed is required to determine whether or not material damage to downstream water rights is likely to occur as a result of surface mining and reclamation. The surface-water model HEC-1 was used to model four separate rainfall-runoff events that occurred in the study basin over three years (1978-1980). Although these storms were used to represent pre-mining conditions, they occurred during the early stages of mining and the models were adjusted accordingly. The events were selected for completeness of record and antecedent moisture conditions (AMC). Models were calibrated to the study events and model inputs were altered to reflect post-mining conditions. The same events were then analyzed with the new model inputs. The results were compared with the pre-mining calibration. Peak flow, total discharge and timing of flows were compared for pre-mining and post-mining models. Data were turned over to the State of Wyoming for assessment of whether material damage to downstream water rights is likely to occur.

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  6. Estimation of field-scale soil hydraulic and dielectric parametersthrough joint inversion of GPR and hydrological data

    SciTech Connect (OSTI)

    Kowalsky, Michael B.; Finsterle, Stefan; Peterson, John; Hubbard,Susan; Rubin, Yoram; Majer, Ernest; Ward, Andy; Gee, Glendon

    2005-05-05

    A method is described for jointly using time-lapse multiple-offset cross-borehole ground-penetrating radar (GPR) travel time measurements and hydrological measurements to estimate field-scale soil hydraulic parameters and parameters of the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We build upon previous work to take advantage of a wide range of GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function. Within the context of water injection experiments in the vadose zone, we test our inversion methodology with synthetic examples and apply it to field data. The synthetic examples show that while realistic errors in the petrophysical function cause substantial errors in the soil hydraulic parameter estimates,simultaneously estimating petrophysical parameters allows for these errors to be minimized. Additionally, we observe in some cases that inaccuracy in the GPR simulator causes systematic error in simulated travel times, making necessary the simultaneous estimation of a correction parameter. We also apply the method to a three-dimensional field setting using time-lapse GPR and neutron probe (NP) data sets collected during an infiltration experiment at the U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone.

  7. Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO 2 Migration 28 January 2016 Office of Fossil Energy NRAP-TRS-III-004-2016 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  8. Direct-Current Resistivity Survey At Mokapu Penninsula Area ...

    Open Energy Info (EERE)

    analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity...

  9. Direct-Current Resistivity Survey At Brady Hot Springs Area ...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Brady Hot Springs Area...

  10. Spatially resolved resistance of NiO nanostructures under humid...

    Office of Scientific and Technical Information (OSTI)

    yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties convergemore with the mesoscale properties as ...

  11. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  12. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  13. Direct-Current Resistivity Survey At Hualalai Northwest Rift...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  14. Direct-Current Resistivity At Hualalai Northwest Rift Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  15. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)...

  16. Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  17. Direct-Current Resistivity Survey At Roosevelt Hot Springs Area...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  18. Direct-Current Resistivity Survey At Cove Fort Area - Liquid...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  19. Direct-Current Resistivity Survey At Lahaina-Kaanapali Area ...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  20. Resistivity studies of the Imperial Valley geothermal area, California...

    Open Energy Info (EERE)

    salinities can be estimated by combiningthe ground resistivity survey and formation factor-depth relationshipscompiled from well logs.From a technical point of view, the...

  1. Spatial localization of resistive drift wave structure in tokamak...

    Office of Scientific and Technical Information (OSTI)

    Spatial localization of resistive drift wave structure in tokamak edge plasmas with an embedded magnetic island Citation Details In-Document Search Title: Spatial localization of...

  2. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Valley Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis The Goals of this...

  3. Progress Report on Electrical Resistivity Studies Coso Geothermal...

    Open Energy Info (EERE)

    Report on Electrical Resistivity Studies Coso Geothermal Area Inyo County California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Progress Report on...

  4. Progress report on electrical resistivity studies, COSO Geothermal...

    Open Energy Info (EERE)

    report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Progress report...

  5. Direct-Current Resistivity At Kilauea Summit Area (Keller, Et...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown Notes An electromagnetic sounding survey by Jackson and Keller (1972) defined a strong resistivity anomaly above the center of inflation...

  6. Direct-Current Resistivity Survey At Kilauea Summit Area (Keller...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown Notes An electromagnetic sounding survey by Jackson and Keller (1972) defined a strong resistivity anomaly above the center of inflation...

  7. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  8. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  9. Advanced fire-resistant forms of activated carbon and methods...

    Office of Scientific and Technical Information (OSTI)

    activated carbon and methods of adsorbing and separating gases using same Citation Details In-Document Search Title: Advanced fire-resistant forms of activated carbon and methods ...

  10. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  11. Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...

    Open Energy Info (EERE)

    Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  12. Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski...

    Open Energy Info (EERE)

    Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  13. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These nano- coatings will provide erosion protection to compressor airfoils, allowing ... quality and erosion resistance of the ER nano- coatings meet performance specifcations ...

  14. Direct-Current Resistivity At Clear Lake Area (Skokan, 1993)...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  15. Direct-Current Resistivity Survey At Clear Lake Area (Skokan...

    Open Energy Info (EERE)

    surveys were carried out in the area. These field measurements (Rapolla and Keller, 1984) were combined by spatially averaging apparent resistivities on a one kilometer grid (...

  16. DC Resistivity Survey (Schlumberger Array) | Open Energy Information

    Open Energy Info (EERE)

    of the electrodes during the survey. References (Keller, 1966) "Dipole Method for Deep Resistivity Studies" (Sharma, 1997) "Environmental and Engineering Geophysics"...

  17. DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information

    Open Energy Info (EERE)

    field systems, data processing and interpretation" (Keller, 1966) "Dipole Method for Deep Resistivity Studies" (UW-Madison, n.d.) "Introduction to Applied Geophysics" Page...

  18. CRISPR--a widespread system that provides acquired resistance...

    Office of Scientific and Technical Information (OSTI)

    phages in bacteria and archaea. Citation Details In-Document Search Title: CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. ...

  19. DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal...

    Open Energy Info (EERE)

    Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area...

  20. Phase-space jets drive transport and anomalous resistivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...

  1. Selection of a Wear-Resistant Tractor Drivetrain Material: Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (HTML) User Program Selection of a Wear-Resistant Tractor Drivetrain Material: Success stories at the High Temperature Materials Laboratory (HTML) User Program ...

  2. Magnetic field annealing for improved creep resistance (Patent...

    Office of Scientific and Technical Information (OSTI)

    C. Alloys having improved creep resistance are also disclosed. Authors: Brady, Michael P. ; Ludtka, Gail M. ; Muralidharan, Govindarajan ; Nicholson, Don M. ; Rios, Orlando ; ...

  3. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts Citation Details In-Document Search Title: Evaluation of Heat Checking and ...

  4. Viscous corrections to the resistance of nanojunctions: A dispersion...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Viscous corrections to the resistance of nanojunctions: A dispersion relation approach Citation Details In-Document Search Title: ...

  5. Drug-resistant TB Nature-inspired Polymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... More research is needed to develop on-demand multidrug- resistance panels and ... materi- als, such as spent nuclear fuel components, in order to improve ...

  6. ALS Gives Chevron Scientists New Insights into Corrosion Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in energy production plants, steel pipes and equipment can accumulate layers of iron sulfide, some of which are corrosion resistant and provide protection to the steel surface. ...

  7. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys...

    Office of Scientific and Technical Information (OSTI)

    This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die ...

  8. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    the findings from the other resistivity surveys conducted in the area. References James Kauahikaua, Douglas Klein (1978) Results of Electric Survey in the Area of Hawaii...

  9. Effects of Operating Conditions on Internal Resistances in Enzyme...

    Office of Scientific and Technical Information (OSTI)

    Effects of Operating Conditions on Internal Resistances in Enzyme Fuel Cells Studied via Electrochemical Impedance Spectroscopy Citation Details In-Document Search Title: Effects ...

  10. Application Of Electrical Resistivity And Gravimetry In Deep...

    Open Energy Info (EERE)

    Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

  11. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    and produced 12 resistivity profiles, each approximately 1.3 km in length. Equilibrium temperature data from wells and shallow (305 cm) holes was correlated to geoelectrical...

  12. Proliferation Resistance and Physical Protection Evaluation Methodology Development and Applications

    SciTech Connect (OSTI)

    Bari,R.A.; Bari, R.; Peterson, P.; Therios, I.; Whitlock, J.

    2009-07-08

    An overview of the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection of Generation IV nuclear energy Systems.

  13. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Find More Like This Return to Search Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology...

  14. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Superconductors are materials which carry...

  15. Magnetic field annealing for improved creep resistance (Patent...

    Office of Scientific and Technical Information (OSTI)

    C. Alloys having improved creep resistance are also disclosed. Authors: Brady, Michael P. ; Ludtka, Gail M. ; Ludtka, Gerard M. ; Muralidharan, Govindarajan ; Nicholson, Don M. ; ...

  16. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IPelectrical resistivity traversing. These...

  17. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    R. Langton, Brian D. Fairbank, Claron E. Mackelprang (1999) Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Additional References...

  18. Direct-Current Resistivity Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area...

  19. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River...

  20. Hot Particle and Turbulent Transport Effects on Resistive Instabilities

    SciTech Connect (OSTI)

    Brennan, Dylan P.

    2012-10-16

    This research project included two main thrusts; energetic particle effects on resistive MHD modes in tokamaks, and turbulence interactions with tearing modes in simplified geometry.

  1. Covered Product Category: Residential Electric Resistance Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP sets federal efficiency requirements and provides acquisition guidance across a variety of product categories, including residential electric resistance water heaters.

  2. Improved high temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  3. High performance corrosion-resistant structural steels

    SciTech Connect (OSTI)

    Fletcher, F.B.; Ferry, B.N.; Beblo, D.G.

    1995-12-31

    A new corrosion-resistant structural steel named Duracorr was developed for low maintenance when compared to conventional structural steels. The new stainless steel is a dual phase composition between the established 12% Cr, ferritic T409 and martensitic T410 grades. Attractive combinations of hardness, strength, toughness, weldability and formability are derived from a microstructure that is a dual phase mixture of ferrite and martensite. The Duracorr composition, UNS S41003, provides for a microstructure of ferrite and austenite to be present throughout the hot rolling process. Cooling to room temperature causes transformation of the austenite to martensite. Subsequent tempering of the steel creates minimum mechanical properties of 275 MPa (40 ksi) yield strength and 455 MPa (66 ksi) tensile strength with room temperature longitudinal Charpy impact values typically greater than 34 J (25 ft-lbs).

  4. High temperature chemically resistant polymer concrete

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  5. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  6. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  7. Proliferation resistance of advanced nuclear energy systems

    SciTech Connect (OSTI)

    Pierpoint, Lara; Kazimi, Mujid; Hejzlar, Pavel

    2007-07-01

    A methodology for evaluating the proliferation resistance of advanced nuclear fuel cycles is presented. The methodology, based on multi-attribute utility theory (MAUT) is intended as a computerized assessment for fuel cycles at their earliest stages of development (i.e. when detailed facility design information is not available). Preliminary results suggest that the methodology may be useful in identifying sources of proliferation vulnerability within different fuel cycles. Of the fuel cycles and segments studied, the fabrication step of the Once- Through fuel cycle and the reprocessing step of the MOX fuel cycle present the greatest vulnerability. The Advanced Burner Reactor (ABR) fuel cycle with conversion ratio 0.0 appears to be the overall safest fuel cycle from a proliferation protection standpoint. (authors)

  8. High temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  9. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2006-03-07

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.

  10. Load-resistant coaxial transmission line

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-01-03

    A transmission line for downhole tools that make up all or part of a tool string for drilling and production of oil, gas, and geothermal wells that can withstand the dynamic gravitational forces and other accelerations associated with downhole excavations. The transmission line has a metal tube, or outer conductor, that houses a coaxial wire inner conductor. A non-metallic dielectric material is interposed between the inner and outer conductors. The outer and inner conductors and the dielectric are sufficiently compressed together so that independent motion between them is abated. Compression of the components of the transmission line may be achieved by drawing the transmission through one or more dies in order to draw down the outer conductor onto the dielectric, or by expanding the inner conductor against the dielectric using a mandrel or hydraulic pressure. Non-metallic bead segments may be used in aid of the compression necessary to resist the dynamic forces and accelerations of drilling.

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect (OSTI)

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  12. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  13. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  14. Attrition resistant Fischer-Tropsch catalyst and support

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  15. Apparatus and method for measuring and imaging surface resistance

    DOE Patents [OSTI]

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1993-08-24

    Apparatus and method for determining and imaging superconductor surface resistance. The apparatus comprises modified Gaussian confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor.

  16. EFFECTS OF RESISTIVITY ON MAGNETIZED CORE-COLLAPSE SUPERNOVAE

    SciTech Connect (OSTI)

    Sawai, H.; Suzuki, H.; Yamada, S.; Kotake, K.

    2013-02-10

    We studied the role of turbulent resistivity in the core-collapse of a strongly magnetized massive star, carrying out two-dimensional resistive-MHD simulations. Three cases with different initial strengths of magnetic field and rotation are investigated: (1) a strongly magnetized rotating core, (2) a moderately magnetized rotating core, and (3) a very strongly magnetized non-rotating core. In each case, one ideal-MHD model and two resistive-MHD models are computed. As a result of these computations, each model shows an eruption of matter assisted by magnetic acceleration (and also by centrifugal acceleration in the rotating cases). We found that resistivity attenuates the explosion in cases 1 and 2, while it enhances the explosion in case 3. We also found that in the rotating cases, the main mechanisms for the amplification of a magnetic field in the post-bounce phase are an outward advection of the magnetic field and a twisting of poloidal magnetic field lines by differential rotation, which are somewhat dampened down with the presence of resistivity. Although magnetorotational instability seems to occur in the rotating models, it plays only a minor role in magnetic field amplification. Another impact of resistivity is that on the aspect ratio. In the rotating cases, a large aspect ratio of the ejected matter, >2.5, attained in an ideal-MHD model is reduced to some extent in a resistive model. These results indicate that resistivity possibly plays an important role in the dynamics of strongly magnetized supernovae.

  17. Resistance Weld Qualification Analysis for Radioactive Waste Canisters

    SciTech Connect (OSTI)

    Gupta, N.K.; Gong, C.

    1995-01-10

    High level radioactive waste canisters are sealed by resistance upset welding to ensure leak tight closures. Resistance welding is fast, uniform, and can be performed remotely to minimize radiation exposure to the operators. Canisters are constructed in accordance with ASME Band PV Code, Section VIII, Division 1, however, the resistance welds are not used in Section VIII. The resistance welds are qualified by analysis using material properties obtained from the test coupons. Burst tests are performed on canister welds to meet ASME Section IX welder qualification requirements. Since burst tests are not used in Section IX for resistance weld qualification, finite element results of canister resistance welds are compared with the finite element analysis results of resistance weld tests in ASME Section IX, QW-196 to establish similarity between the two weld tests. Detailed analyses show that the primary mode of failure in both the tests is shear and, therefore, the use of burst test in place of shear test is acceptable. It is believed that the detailed analyses and results could help in establishing acceptance criteria for resistance upset welding in ASME B&PV Code, Sections VIII, and IX.

  18. Detecting and treating breast cancer resistance to EGFR inhibitors

    DOE Patents [OSTI]

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  19. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  20. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  1. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  2. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  3. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  4. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    SciTech Connect (OSTI)

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; Mesick, Carl; Hubbard, Alan E.; Hinkelman, Travis M.; Weber, Peter K.; Whitman, George E.; Glessner, Justin J.; Johnson, Rachel C.

    2015-05-20

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.

  6. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; Mesick, Carl; Hubbard, Alan E.; Hinkelman, Travis M.; Weber, Peter K.; Whitman, George E.; Glessner, Justin J.; Johnson, Rachel C.

    2015-05-20

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning tomore » the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.« less

  7. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    SciTech Connect (OSTI)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  8. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    DOE Patents [OSTI]

    Phelps, Amanda C.; Kirby, Kevin K.; Gregoire, Daniel J.

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  9. Information-based physics, influence, and forces

    SciTech Connect (OSTI)

    Walsh, James Lyons; Knuth, Kevin H.

    2015-01-13

    In recent works, Knuth and Bahreyni have demonstrated that the concepts of space and time are emergent in a coarse-grained model of direct particle-particle influence. In addition, Knuth demonstrated that observer-made inferences regarding the free particle, which is defined as a particle that influences others, but is not itself influenced, result in a situation identical to the Feynman checkerboard model of the Dirac equation. This suggests that the same theoretical framework that gives rise to an emergent spacetime is consistent with quantum mechanics. In this paper, we begin to explore the effect of influence on the emergent properties of a particle. This initial study suggests that when a particle is influenced, it is interpreted as accelerating in a manner consistent with special relativity implying that, at least in this situation, influence can be conceived of as a force.

  10. Radiation resistant hydrogen microsensors for fusion applications.

    SciTech Connect (OSTI)

    Bastasz, Robert J.; Lemp, Thomas Kerr; Buchenauer, Dean A.; Whaley, Josh A.

    2010-11-01

    Quantifying the flux and energy of charge exchange neutrals to the walls of fusion experiments is important to understanding wall erosion and energy balance. Quantification of these fluxes is made much more difficult because they have very strong poloidal and toroidal variations. To facilitate such measurements, we have been developing compact, palladium metal oxide semiconductor (Pd-MOS) detectors. These devices are dosemetric detectors, which can evaluate differences between plasma discharges. To become widely used, however, such detectors must be made resistant to UV and x-ray induced damage, as well as high energy particle bombardment. We report here on the fabrication of Schottky diode Pd-MOS devices in which we have minimized the oxide thickness (to reduce the production of charges from UV and x-rays) and increased the Pd overlayer (to reduce charge production from high energy particles). The fabrication has been facilitated through use of an array of metallic posts to improve the Pd film adhesion. The efficacy of the film adhesion and comparison with standard detectors will be examined. Testing and calibration of the detectors is reported as a function of hydrogen flux and energy.

  11. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan

    2010-12-28

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  12. NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics

    SciTech Connect (OSTI)

    Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R

    2007-12-11

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

  13. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect (OSTI)

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  14. Influence of sputtering power on the optical properties of ITO thin films

    SciTech Connect (OSTI)

    K, Aijo John; M, Deepak T, Manju; Kumar, Vineetha V.

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  15. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    SciTech Connect (OSTI)

    Brennan, D. P.; Finn, J. M.

    2014-10-15

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite ? and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for ??=?0 and the marginal stability values ?{sub rp,rw}?resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below ?{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above ?{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with ??>??{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below ?{sub rp,iw}.

  16. Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study

    SciTech Connect (OSTI)

    Ma, Bo; Wen, Yanwei E-mail: bshan@mail.hust.edu.cn; Gong, Cheng; Cho, Kyeongjae; Chen, Rong; Shan, Bin E-mail: bshan@mail.hust.edu.cn

    2014-05-14

    A systematic first-principles non-equilibrium Green's function study is conducted on the contact resistance between a series of metals (Au, Ag, Pt, Cu, Ni, and Pd) and graphene in the side contact geometry. Different factors such as the termination of the graphene edge, contact area, and point defect in contacted graphene are investigated. Notable differences are observed in structural configurations and electronic transport characteristics of these metal-graphene contacts, depending on the metal species and aforementioned influencing factors. It is found that the enhanced chemical reactivity of the graphene due to dangling bonds from either the unsaturated graphene edge or point defects strengthens the metal-graphene bonding, leading to a considerable contact resistance reduction for weakly interacting metals Au and Ag. For stronger interacting metals Pt and Cu, a slightly reduced contact resistance is found due to such influencing factors. However, the wetting metals Ni and Pd most strongly hybridize with graphene, exhibiting negligible dependence on the above influencing factors. This study provides guidance for the optimization of metal-graphene contacts at an atomic scale.

  17. State Waste Discharge Permit Application: Electric resistance tomography testing

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This permit application documentation is for a State Waste Discharge Permit issued in accordance with requirements of Washington Administrative Code 173-216. The activity being permitted is a technology test using electrical resistance tomography. The electrical resistance tomography technology was developed at Lawrence Livermore National Laboratory and has been used at other waste sites to track underground contamination plumes. The electrical resistance tomography technology measures soil electrical resistance between two electrodes. If a fluid contaminated with electrolytes is introduced into the soil, the soil resistance is expected to drop. By using an array of measurement electrodes in several boreholes, the areal extent of contamination can be estimated. At the Hanford Site, the purpose of the testing is to determine if the electrical resistance tomography technology can be used in the vicinity of large underground metal tanks without the metal tank interfering with the test. It is anticipated that the electrical resistance tomography technology will provide a method for accurately detecting leaks from the bottom of underground tanks, such as the Hanford Site single-shell tanks.

  18. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect (OSTI)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: The HAZ liquation crack during resistance spot welding of TWIP steel was examined. Cracks were completely backfilled and healed with divorced eutectic secondary phase. Co-segregation of C and Mn was detected in the cracked zone. Heat input was the most influencing factor to initiate liquation crack. Cracks have less/no significant effect on static tensile properties.

  19. Results from two years of resistivity monitoring at Cerro Prieto

    SciTech Connect (OSTI)

    Wilt, M.J.; Goldstein, N.E.

    1981-01-01

    Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and resistivity monitoring were first made at Cerro Prieto in 1978 and have continued on an annual basis since then. Two 20 km long dipole-dipole lines with permanently emplaced electrodes at one kilometer spacings were established over the field area; one of these lines is remeasured annually. Resistivity measurements are taken using a 25 kW generator capable of up to 80A output and a microprocessor controlled signal averaging receiver; this high power-low noise system is capable of highly accurate measurements even at large transmitter-receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points, but 95% confidence intervals show error limits about 2 to 4 times higher. Analysis of collected data indicate little change in the apparent resistivity of the upper 300 m over the field production zone and that in this section measurements are relatively insensitive to the annual rainfall cycle. Apparent resistivity increases were observed over the older producing zone at Cerro Prieto at depths of 1 km and greater. Large zones of decreasing apparent resistivity were observed flanking the zone of increases on both sides. The increase in apparent resistivity in the production region may be due to an increasing fraction of steam in the reservoir resulting from a production related decline in reservoir pressure. Alternatively the increases may be the result of fresh water influx from the Colorado River. The zone of declining resistivity flanking the area of increase may be due to the movement of saline waters into the reservoir region as a result of the pressure decline. Quantitative modeling of observed changes is impractical owing to the high uncertainty in estimating apparent resistivity changes and the nonuniqueness of models.

  20. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect (OSTI)

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  1. Weldability of an abrasion-resistant steel

    SciTech Connect (OSTI)

    Adonyi, Y.; Domis, W.F.; Chen, C.C.

    1995-12-31

    The welding performance of a low-carbon-equivalent, abrasion-resistant steel newly developed for the mining industry was studied using a combination of simulative and actual weldability tests. The susceptibility to hydrogen-induced cracking in the weld-metal and heat-affected zones (HAZ), as well as the potential loss of strength and toughness in the HAZ, were evaluated. Simulative testing included the use of the Gleeble 1500 thermomechanical simulator to produce single and multiple-pass weld HAZ microstructures on CVN-size specimens. The effects of heat input, interpass temperature, and post-weld heat treatment (PWHT) on the HAZ microstructure and properties were determined. Additionally, a computer software was used to predict theoretical HAZ hardnesses and volume fraction of phases as a function of cooling rates. The actual welding tests included the Gapped Bead-on-Plate and the Y-groove tests to determine the weld-metal and HAZ susceptibility to hydrogen-induced cracking. Three heat inputs, two diffusible hydrogen and two weld-metal yield-strength levels were used for the actual welding stage. Good correlation was found between microstructure predictions, physical simulations, and actual weld testing results. The new steel was found to be highly weldable because of the low preheat required to avoid HAZ hydrogen induced cracking. All aspects of weld-metal and HAZ cracking behavior had to be addressed for a complete weldability characterization. It was also found that use of excessive heat inputs and PWHT should be avoided when welding this type of steels.

  2. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  3. Processing, properties, and wear resistance of aluminides

    SciTech Connect (OSTI)

    Wright, R.N.; Rabin, B.H.; Wright, J.K.

    1993-03-01

    Fully dense alloys based on Fe{sub 3}Al were produced by reaction synthesis from low cost elemental powders using hot pressing, hot isostatic pressing or Ceracon process. The reaction proceeds by outward spreading of a transient liquid phase from the initial aluminum particle site and precipitation of the compound phase from the liquid. Combustion synthesized material has a very fine grain size that is resistant to coarsening at high temperature because of a high density of fine oxides from the prior particle boundaries. The fine grain size results in approximately twice the yield strength in the reaction synthesized material compared to hot extruded pre-alloyed powder. Combustion synthesis has also been successfully applied to joining Fe{sub 3}Al and to forming coatings on carbon steel substrates. Combustion synthesis has been shown to be viable for fabricating trialuminides from elemental powder compacts. Al{sub 3}Ti, Al{sub 73}Ti{sub 24}Cr{sub 3} and Al{sub 67}Ti{sub 25}Cr{sub 8} were examined. Fully dense, homogeneous materials exhibiting an equiaxed grain structure were produced by conducting reaction and homogenization under pressure, or in a furnace at ambient pressure and subsequently densifying the porous preform by hot consolidation. The tetragonal DO{sub 22} structure was the primary reaction product for all compositions. Most of the Cr remained undissolved after reaction and a homogenization heat treatment at 1200C or above was used to put the Cr into solution and form the desired L1{sub 2} phase.

  4. A new approach for deriving pseudovelocity logs from resistivity logs

    SciTech Connect (OSTI)

    Dos Santos, W.L.B.; Ulrych, T.J.; De Lima, O.A.L.

    1988-01-01

    This paper describes a method of generating pseudovelocity logs using measurements of electrical resistivity. A theoretical relation between electrical resistivity and transit time, which is applicable to a wide range of lithologies, has been developed. The application of this relation using a method which defines lithoresistivity zones as lithological intervals related to the same formation and showing small resistivity variations, has been tested in the Reconcavo sedimentary basin in Bahia, Brazil. A comparison of derived pseudovelocity logs with actual sonic logs for five wells shows the validity of the present approach.

  5. Methods of attaching erosion-resistant nonmetallic panels

    SciTech Connect (OSTI)

    Girzhel, A.M.

    1984-01-01

    Attachment methods for panels of wear-resistant nonmetallic materials, e.g. cast stone and slag, devitrified slag, and erosion-resistant and heat-resistant concretes to protect hopper, chute, and trough structures at metallurgical and coal industries have been investigated. Attachment methods can be divided into two groups, attachment by adhesives and by mechanical attachment. A new method of mechanical attachment, considered to be much superior to adhesive attachment, provides for reliable fastening without damage to the protected metal structure. Various panel designs may be used depending on the operating conditions.

  6. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1987-05-19

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  7. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1988-05-17

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  8. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, Ray B.

    1988-01-01

    A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

  9. Oxidation resistant high creep strength austenitic stainless steel

    SciTech Connect (OSTI)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  10. New Air and Water-Resistive Barrier Technologies for Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings Lead Performer: Oak Ridge

  11. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  12. Hydrological/Geological Studies

    Office of Legacy Management (LM)

    ... E. .Williams W. D. Smith, Jr. H. G. V e r m i l l i o n o f f i c e o f e a c e f u l Nuclear Explosives, U. S. Atomic Energy Cbmmission, , . Las Vegas , Nev. : A, D. Thornbrough ...

  13. Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  14. Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  15. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly Water-Resistant Solar ...

  16. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and ... Title: Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals ...

  17. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema (OSTI)

    None

    2013-05-28

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  18. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    SciTech Connect (OSTI)

    2011-01-01

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  19. The tokamak density limit: A thermo-resistive disruption mechanism...

    Office of Scientific and Technical Information (OSTI)

    Title: The tokamak density limit: A thermo-resistive disruption mechanism Authors: Gates, D. A. 1 ; Brennan, D. P. 1 ; Delgado-Aparicio, L. 1 ; White, R. B. 1 + Show Author ...

  20. Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown Notes Two electrical resistivity survey lines were run in the project area: a southern east-west line along Caliche Road, and a northern...

  1. Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems

    Broader source: Energy.gov [DOE]

    The NERAC1 Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS) determined at its first meeting in November 1999 that a...

  2. Proof of feasibility of the through casing resistivity technology

    SciTech Connect (OSTI)

    Vail, Dr. W. Banning; Momii, Steven T.

    2000-06-21

    This project is to definitely prove that the resistivity of geological formations can be measured from within cased wells and to license the relevant patents and technology to major wireline service companies.

  3. Resistive switching phenomena: A review of statistical physics...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Resistive switching phenomena: A review of ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...

  4. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  5. Dipole-Dipole Resistivity At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    of about 6000 ohm-m and the layer below has a resistivity of 5-10 ohm-m. References James Kauahikaua, Douglas Klein (1978) Results of Electric Survey in the Area of Hawaii...

  6. Out of band radiation effects on resist patterning

    SciTech Connect (OSTI)

    George, Simi A .; Naulleau, Patrick P.

    2011-03-11

    Our previous work estimated the expected out-of-band (OOB) flare contribution at the wafer level assuming that there is a given amount of OOB at the collector focus. We found that the OOB effects are wavelength, resist, and pattern dependent. In this paper, results from rigorous patterning evaluation of multiple OOB-exposed resists using the SEMATECH Berkeley 0.3-NA MET are presented. A controlled amount of OOB is applied to the resist films before patterning is completed with the MET. LER and process performance above the resolution limit and at the resolution limits are evaluated and presented. The results typically show a negative impact on LER and process performance after the OOB exposures except in the case of single resist formulation, where resolution and performance improvement was observed.

  7. Parallel resistivity and ohmic heating of laboratory dipole plasmas

    SciTech Connect (OSTI)

    Fox, W.

    2012-08-15

    The parallel resistivity is calculated in the long-mean-free-path regime for the dipole plasma geometry; this is shown to be a neoclassical transport problem in the limit of a small number of circulating electrons. In this regime, the resistivity is substantially higher than the Spitzer resistivity due to the magnetic trapping of a majority of the electrons. This suggests that heating the outer flux surfaces of the plasma with low-frequency parallel electric fields can be substantially more efficient than might be naively estimated. Such a skin-current heating scheme is analyzed by deriving an equation for diffusion of skin currents into the plasma, from which quantities such as the resistive skin-depth, lumped-circuit impedance, and power deposited in the plasma can be estimated. Numerical estimates indicate that this may be a simple and efficient way to couple power into experiments in this geometry.

  8. Sulfide stress cracking resistance of nitrogen-strengthened stainless steel

    SciTech Connect (OSTI)

    Gaugh, R.R.

    1981-01-01

    The paper describes sulfide stress cracking tests performed on a number of these alloys. Most were found to be somewhat susceptible to cracking, depending on the stress level. It was determined that this was due to their high manganese content. The mechanism responsible for cracking was not firmly established. One commercial nitrogen-strengthened stainless steel, XM19, was highly resistant to sulfide stress cracking despite a manganese content of 5%. This difference is attributed to the superior corrosion resistance of the alloy.

  9. Engineering disease resistance with pectate lyase-like genes

    DOE Patents [OSTI]

    Vogel, John; Somerville, Shauna

    2005-03-08

    A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

  10. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect (OSTI)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  11. Proliferation resistance and the advanced fuel cycle facility (AFCF)

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Tobin, Stephen

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. The processes, materials and safeguards will be selected and designed to enhance proliferation resistance beyond that of the existing plutonium based mixed oxide (MOX) fuel cycle. This paper explores the concept of proliferation resistance and how the AFCF will advance the related state of the art. (authors)

  12. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_qu.pdf (724.19 KB) More Documents & Publications Ionic Liquids as Multifunctional Ashless

  13. Progress and Status on Through-Plane Resistance and Conductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Fuel Cell Membranes | Department of Energy Progress and Status on Through-Plane Resistance and Conductivity Measurement of Fuel Cell Membranes Progress and Status on Through-Plane Resistance and Conductivity Measurement of Fuel Cell Membranes Presentation at the High Temperature Membrane Working Group Meeting, Oct. 14, 2010 high_temp_cooper.pdf (915.85 KB) More Documents & Publications Lead Research and Development Activity for High Temperature, Low Relative Humidity

  14. Test Procedure for UV Weathering Resistance of Backsheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Test Procedure for UV Weathering Resistance of Backsheet Test Procedure for UV Weathering Resistance of Backsheet Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_toray_hirota.pdf (507.97 KB) More Documents & Publications QA TG5 UV, temperature and humidity Weathering Performance of PV Backsheets A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions

  15. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  16. Attrition Resistant Catalyst Materials for Fluid Bed Applications - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryResearchers at NREL have developed novel steam reforming catalyst materials which have improved resistance to loss of catalyst due to attrition when producing hydrogen from gasified

  17. Studying Resist Stochastics with the Multivariate Poisson Propagation Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; Bhattarai, Suchit; Neureuther, Andrew

    2014-01-01

    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.

  18. Polaron Coherence Condensation in Layered Colossal Resistive Manganites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polaron Coherence Condensation in Layered Colossal Resistive Manganites Polaron Coherence Condensation in Layered Colossal Resistive Manganites Print Wednesday, 30 July 2008 00:00 Novel quantum phenomena, such as high-temperature superconductivity (HTSC) and colossal magnetoresistance (CMR), arise in certain materials where the interactions between electrons are very strong, but the mechanism driving their appearance remains a major puzzle. Now, angle-resolved photoemission findings from an

  19. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan King/Greg Stillman Total budget: $300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi Sugama Co-PI; Dr. Tatiana Pyatina Presenter Name: Dr. Toshifumi Sugama This presentation does not contain any proprietary confidential, or otherwise restricted information. Microstructure developed in conventional foamed (left) and corrosion- resistant foamed cements (right) 2 | US DOE Geothermal Office

  20. Microorganisms having enhanced resistance to acetate and methods of use

    DOE Patents [OSTI]

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.