National Library of Energy BETA

Sample records for hydrological combining compressional

  1. Compressional boundaries in the Earth's foreshock

    SciTech Connect (OSTI)

    Rojas-Castillo, D.; Blanco-Cano, X.; Kajdic, P.; Omidi, N.

    2013-06-13

    The terrestrial foreshock is a highly dynamic region populated by particles, waves and non-linear structures such as shocklets, SLAMS, hot flow anomalies, cavities and cavitons. Recently a new structure named foreshock compressional boundary (FCB) was reported in global hybrid simulations by Omidi et al. (2009). This structure represents a transition region that separates the highly disturbed foreshock plasma from pristine solar wind or from the region of field-aligned ion beams. The FCB is associated with a strong compression of magnetic field and density. Besides the enhancements in the field and density, the FCB also shows a region where these two quantities decrease below the ambient solar wind (SW) values. Here, we study a FCB observed by Cluster-1. This FCB shows that although sometimes FCBs are transition regions between the pristine solar wind plasma and the foreshock plasma, in this case the FCB separates a region with large amplitude waves from regions with high frequency (f{approx}1.7 Hz) small amplitude waves. We analyze the FCB properties, ion distributions inside them, and the waves near the structure.

  2. Data interpretation of joint compressional and shear wave survey in mountainous region

    SciTech Connect (OSTI)

    Fugiu, D. )

    1992-01-01

    The join utilization of compressional and shear wave data leads one to discover nonstructural hydrocarbon traps such as stratigraphic trap, lithologic trap, fracture trap, etc. and to ascertain fluid situation in formation, lithologic variation and fracture zone, so that the accuracy of seismic data interpretation is improved greatly. In this paper, the author describes how to determine shear wave horizon, how to interpret carbonate reservoir and how to discover gas accumulation zone in HBC area in Sichuan Province. It is very important to pay more attention to analyzing the ratio between compressional wave amplitude and shear wave amplitude, and the ratio between compressional wave velocity and shear wave velocity in data interpretation. The amplitude ratio anomaly and the velocity ratio anomaly in HBC area can be usually seen at anticlinal axis areas and small noses. Generally speaking, the amplitude ratio anomaly area reflects gas accumulation and the velocity ratio anomaly area exhibits dense fracture zone. Good results have been obtained from exploratory wells in the areas where there occur the two anomalies simultaneously.

  3. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    SciTech Connect (OSTI)

    Bandyopadhyay, P., E-mail: pintu@ipr.res.in; Dey, R.; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Kadyan, Sangeeta [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India)

    2014-10-15

    Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  4. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

  5. Hydrologic Modeling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine

  6. ARM - The Hydrologic Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  7. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  8. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDRO-2014 Hydrological Investigations United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix HYDRO-2014 Table of Contents HYDRO-1.0 Hydrological Studies HYDRO-2.0 Optimization of Culebra Monitoring Well Network HYDRO-3.0 Geochemical Analyses HYDRO-4.0 Steel-Cased Well Reconfiguration and Replacement HYDRO-5.0 Geological Information HYDRO-6.0 Hydraulic Test Interpretation HYDRO-7.0 Monitoring

  9. AN INVESTIGATION TO DOCUMENT MORROW RESERVOIRS THAT CAN BE BETTER DETECTED WITH SEISMIC SHEAR (S) WAVES THAN WITH COMPRESSIONAL (P) WAVES

    SciTech Connect (OSTI)

    Thomas Cottman

    2001-10-19

    Pennsylvanian-age Morrow reservoirs are a key component of a large fluvial-deltaic system that extends across portions of Colorado, Kansas, Oklahoma, and Texas. A problem that operators have to solve in some Morrow plays in this multi-state area is that many of the fluvial channels within the Morrow interval are invisible to seismic compressional (P) waves. This P-wave imaging problem forces operators in such situations to site infill, field-extension, and exploration wells without the aid of 3-D seismic technology. The objective of this project was to develop and demonstrate seismic technology that can improve drilling success in Morrow plays. Current P-wave technology commonly results in 80-percent of Morrow exploration wells not penetrating economic reservoir facies. Studies at Colorado School of Mines have shown that some of the Morrow channels that are elusive as P-wave targets create robust shear (S) wave reflections (Rampton, 1995). These findings caused Visos Energy to conclude that exploration and field development of Morrow prospects should be done by a combination of P-wave and S-wave seismic imaging. To obtain expanded information about the P and S reflectivity of Morrow facies, 9-component vertical seismic profile (9-C VSP) data were recorded at three locations along the Morrow trend. These data were processed to create P and S images of Morrow stratigraphy. These images were then analyzed to determine if S waves offer an alternative to P waves, or perhaps even an advantage over P waves, in imaging Morrow reservoir targets. The study areas where these field demonstrations were done are defined in Figure 1. Well A was in Sherman County, Texas; well B in Clark County, Kansas; and well C in Cheyenne County, Colorado. Technology demonstrated at these sites can be applied over a wide geographical area and influence operators across the multi-state region spanned by Morrow channel plays. The scope of the investigation described here is significant on the basis of the geographical extent of Morrow reservoirs, the number of operators that can be affected, and the importance of Morrow hydrocarbon reserves to the nation's economy.

  10. Hydrological/Geological Studies

    Office of Legacy Management (LM)

    .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . .

  11. Current Hydrological Information (hydro/fcrps)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Hydrological Information For general hydrological information, see the National Weather Service Northwest River Forecast Center (NWRFC) Home Page (www.nwrfc.noaa.gov) For...

  12. Workshop on hydrology of crystalline basement rocks

    SciTech Connect (OSTI)

    Davis, S.N.

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  13. Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.

    SciTech Connect (OSTI)

    Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan; Kaplan, Paul Garry; Brown, Theresa Jean; Conrad, Stephen Hamilton

    2010-09-01

    Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subset of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.

  14. Hydrological consequences of global warming

    SciTech Connect (OSTI)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  15. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    Conference: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single ...

  16. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of ... Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization ...

  17. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for ... More Documents & Publications Coupled Thermal-Hydrological-Mechanical-Chemical Model and ...

  18. Development of capabilities to simulate the coupledthermal-hydrologic...

    Office of Scientific and Technical Information (OSTI)

    coupled thermal-hydrological-mechanical-chemical (THMC) processes during in situ oil ... coupled thermal-hydrological-mechanical-chemical (THMC) processes during in situ oil ...

  19. ARM - Field Campaign - SGP '97 (Hydrology) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP '97 (Hydrology) IOP Campaign Links NASA Archive Model Initialization Data Comments? We would love to hear from you Send us a note below or call us at ...

  20. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    L. Pan

    2004-10-04

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''.

  1. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Patents [OSTI]

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-06-02

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.

  2. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  3. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  4. Brief summary of LADHS: Los Alamos distributed hydrologic modeling system.

    SciTech Connect (OSTI)

    Murray, R. E. (Regan E.); Winter, C. L. (C. Larrabee); Springer, E. P.; Costigan, K. R. (Keeley R.); Tseng, P. H. (Peng-Hsiang)

    2001-01-01

    This report describes the current state of the fourth Thrust Area of the NSF Science and Technology Center for the Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA). Sustainability of semi-arid regions has become a serious political and scientific concern. Increasing population has added stress to the water supply and other natural resources, notably, underground aquifers. Recent controversies in the Rio Grande Basin involving the competing interests of endangered species and humans for water have highlighted the delicate balance of biologically diverse southwestern riparian areas. Potentially, the warming climate may intensify summer storms and affect the amount and timing of snow melt, the largest renewable source of water in the southwest. It is, therefore, of great political, social and scientific interest to determine ways in which human activities can coexist with healthy riparian areas and a plentiful, clean water supply over the long run. An understanding of how all of these processes interrelate would allow regional decision-makers to consider a wide range of options and thereby develop useful plans for meeting societal needs. To make the best use of limited fresh water resources, decision makers must be able to make predictions about the entire hydrologic cycle, which is a complex combination of physical, chemical, and biological processes. Only then could they explore the potential effects of increased water use and of changes in the regional climate. The important processes in the hydrologic cycle include rainfall, snowmelt, storms, runoff, and flow in ephemeral streams, rivers, and underground aquifers. Riparian communities and evaporation play key roles in reducing the available water.

  5. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2003

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2004-09-13

    This report presents results obtained from detailed hydrologic characterization of the unconfined aquifer system conducted at the Hanford Site.

  6. Variation and correlation of hydrologic properties

    SciTech Connect (OSTI)

    Wang, J.S.Y.

    1991-06-01

    Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability and the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.

  7. Hydrologic characterization of fractured rocks: An interdisciplinary methodology

    SciTech Connect (OSTI)

    Long, J.C.S.; Majer, E.L.; Martel, S.J.; Karasaki, K.; Peterson, J.E. Jr.; Davey, A.; Hestir, K. )

    1990-11-01

    The characterization of fractured rock is a critical problem in the development of nuclear waste repositories in geologic media. A good methodology for characterizing these systems should be focused on the large important features first and concentrate on building numerical models which can reproduce the observed hydrologic behavior of the fracture system. In many rocks, fracture zones dominate the behavior. These can be described using the tools of geology and geomechanics in order to understand what kind of features might be important hydrologically and to qualitatively describe the way flow might occur in the rock. Geophysics can then be employed to locate these features between boreholes. Then well testing can be used to see if the identified features are in fact important. Given this information, a conceptual model of the system can be developed which honors the geologic description, the tomographic data and the evidence of high permeability. Such a model can then be modified through an inverse process, such as simulated annealing, until it reproduces the cross-hole well test behavior which has been observed insitu. Other possible inversion techniques might take advantage of self similar structure. Once a model is constructed, we need to see how well the model makes predictions. We can use a cross-validation technique which sequentially puts aside parts of the data and uses the model to predict that part in order to calculate the prediction error. This approach combines many types of information in a methodology which can be modified to fit a particular field site. 114 refs., 81 figs., 7 tabs.

  8. Hydrology of the Geothermal System in Long Valley Caldera, California...

    Open Energy Info (EERE)

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  9. On Approaches to Analyze the Sensitivity of Simulated Hydrologic...

    Office of Scientific and Technical Information (OSTI)

    Land Model Citation Details In-Document Search Title: On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model ...

  10. Persistence of Hydrologic Variables and Reactive Stream Solute...

    Office of Scientific and Technical Information (OSTI)

    Watershed Citation Details In-Document Search Title: Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed Time and ...

  11. I I Hydrological/Geological Studies Radiochemical Analyses of...

    Office of Legacy Management (LM)

    ' HydrologicalGeological Studies Radiochemical Analyses of Water Samples from Selected Streams, Wells, Springs and Precipitation Collected Prior to Re-Entry . , Drilling, Project ...

  12. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  13. Kinematics of compressional and extensional ductile shearing...

    Open Energy Info (EERE)

    the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a...

  14. Status report: A hydrologic framework for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B.; Moore, G.K.; McMaster, W.M.

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  15. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    Open Energy Info (EERE)

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  16. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic

    Office of Scientific and Technical Information (OSTI)

    Precipitation Processes Study Field Campaign Report (Technical Report) | SciTech Connect Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report Citation Details In-Document Search Title: Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report Three Microwave Radiometers (two 3-channel and one 2-channel) were deployed in the Southern Appalachian Mountains in

  17. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and

    Office of Scientific and Technical Information (OSTI)

    Impactor Field Campaign Report (Program Document) | SciTech Connect Program Document: Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report Citation Details In-Document Search Title: Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and

  18. Thermal-hydrologic-mechanical behavior of single fractures in EGS

    Office of Scientific and Technical Information (OSTI)

    reservoirs (Conference) | SciTech Connect Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs No abstract prepared. Authors: Zyvoloski, George [1] ; Kelkar, Sharad [1] ; Rapaka, Saikiran [1] ; Yoshinka, Keita [2] + Show Author Affiliations Los Alamos National Laboratory CHEVRON Publication Date: 2010-12-08 OSTI Identifier: 1043472 Report Number(s):

  19. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC)

    Broader source: Energy.gov (indexed) [DOE]

    Modeling Capabilities for Enhanced Geothermal Systems | Department of Energy Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon yu_shu_wu_thmc_modeling_peer2013.pdf More Documents & Publications Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production

  20. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  1. Combined methods reveal how water moves in trees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April » Combined methods reveal how water moves in trees Combined methods reveal how water moves in trees Water use by trees is a key part of the hydrological process linking soil to climate and local weather June 7, 2015 Photograph of the ULF-NMR and neutron imaging experiment. Photograph of the ULF-NMR and neutron imaging experiment: the experiment is conducted under a special growth lamp to induce stomatal opening. An LED lamp (no magnetic noise and heat produced) provides a high density of

  2. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect (OSTI)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.

  3. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect (OSTI)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  4. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  5. ENER G Combined Power formerly Combined Power Ltd | Open Energy...

    Open Energy Info (EERE)

    ENER G Combined Power formerly Combined Power Ltd Jump to: navigation, search Name: ENER.G Combined Power (formerly Combined Power Ltd) Place: United Kingdom Product: Specialises...

  6. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-05-15

    This report provides the resluts of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, verticla flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  7. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 1999

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-01-19

    This report provides the results of detailed hydrologic characterization tests conducted within newly constructed Hanford Site wells during FY 1999. Detailed characterization tests performed during FY 1999 included: groundwater flow characterization, barometric response evaluation, slug tests, single-well tracer tests, constant-rate pumping tests, and in-well vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include: transmissivity, hydraulic conductivity, specific yield, effective porosity, in-well lateral flow velocity, aquifer flow velocity, vertical distribution of hydraulic conductivity (within the well-screen section) and in-well vertical flow velocity. In addition, local groundwater flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  8. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  9. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation

    Office of Scientific and Technical Information (OSTI)

    8 Integrated Precipitation and Hydrology Experiment (IPHEx)ZGrographic Precipitation Processes Study Field Campaign Report AP Barros W Petersen AM Wilson April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  10. Model Captures How Nitrogen Limitation Affects Hydrological Processes |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Model Captures How Nitrogen Limitation Affects Hydrological Processes Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000

  11. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report AP Barros W Petersen AM Wilson April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  12. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Broader source: Energy.gov (indexed) [DOE]

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site through Natural Isotopic Reactive Tracers and Geochemical Investigation presentation at the April 2013 peer

  13. Combined Heat and Power

    Energy Savers [EERE]

    ... Energy and Water from Waste for the Food and Beverage ... Reciprocating Internal Combustion 223 Engine System for ... System for Combined Heat and Power 225 - Low-NOx ...

  14. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

  15. Combined Federal Campaign | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Combined Federal Campaign

  16. New Combined FAC Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FAC-C Level I XX year(s), XX month(s) Combined FAC Application 2 5. Training: Completion of the curriculum for the subject level is documented on the attached worksheet. For ...

  17. MeshMaker: Configurable Meshing Framework for Eco-Hydrology Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nathan Collier; Jitendra Kumar

    2016-02-09

    MeshMaker is a Python-based framework for generation of high quality structured and unstructured grid computational meshes for Eco-Hydrological models.

  18. Manual for training reclamation inspectors in the fundamentals of hydrology

    SciTech Connect (OSTI)

    Curtis, W.R.; Dyer, K.L.; Williams, G.P.

    1988-01-01

    This handbook is intended to be a desk reference to help nonhydrologists achieve a basic understanding of hydrology as it relates to surface mining and reclamation. Surface coal mining and reclamation inspectors and other staff will find it useful in implementing regulatory programs. The handbook is not meant to be a comprehensive treatment of the subject. The handbook can be used in the training of surface-mining and reclamation inspectors, both Federal and State, and as a basic reference for inspectors in carrying out their assigned duties. The handbook describes clues and indicators of potential problems, suggests ways to prevent or mitigate them, and discusses various observation and sampling techniques.

  19. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  20. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  1. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  2. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  3. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  4. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    SciTech Connect (OSTI)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  5. Hydrologic resources management program and underground test area operable unit fy 1997

    SciTech Connect (OSTI)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  6. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  8. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  9. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    SciTech Connect (OSTI)

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  10. Klystron-linac combination

    DOE Patents [OSTI]

    Stein, W.E.

    1980-04-24

    A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

  11. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    SciTech Connect (OSTI)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  12. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect (OSTI)

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  13. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  14. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  15. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    SciTech Connect (OSTI)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.

  16. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  17. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  18. Superconductive ceramic oxide combination

    SciTech Connect (OSTI)

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  19. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect (OSTI)

    Lthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  20. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  1. Associations among hydrologic classifications and fish traits to support environmental flow standards

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,

    2014-01-01

    Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish were observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.

  2. The combined ν

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined ν µ -ν e oscillations fit for the BDT analysis in MiniBooNE Alexis Aguilar-Arevalo, David W. Schmitz, Columbia University for the MiniBooNE Collaboration Introduction: The Boosted Decision Tree (BDT) oscillations analysis in MiniBooNE uses the observed ν µ -CCQE events to normalize and constrain its Monte Carlo prediction and systematic errors for the ν e events via the construction of an error matrix which contains the correlations between the bins of the energy distributions of

  3. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting

    SciTech Connect (OSTI)

    Porro, I.

    2000-09-30

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage- evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary/biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared to pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared to thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  4. 2009-11 "Request LANS to Prepare a Hydrological Report Which Includes

    Office of Environmental Management (EM)

    Information Regarding Existing and Planned New Wells" | Department of Energy 1 "Request LANS to Prepare a Hydrological Report Which Includes Information Regarding Existing and Planned New Wells" 2009-11 "Request LANS to Prepare a Hydrological Report Which Includes Information Regarding Existing and Planned New Wells" The intent of the Recommendation is to have a comprehensive plan available to the public. This plan would give the public confidence that correct

  5. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect (OSTI)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  6. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  7. Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1984-10-01

    A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

  8. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  9. Representing northern peatland microtopography and hydrology within the Community Land Model

    SciTech Connect (OSTI)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.; Sebestyen, S. D.; Griffiths, N. A.; Bisht, G.

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.

  10. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  11. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  12. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  13. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    SciTech Connect (OSTI)

    Webster, D.A.; Bradley, M.W.

    1988-12-31

    Burial grounds 4, 5, and 6 were used sequentially from 1951 to the present for the disposal of solid, low-level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of transport from these sites are by dissolution in circulating ground water, and the overflow of fluids in trenches and subsequent flow across land surface. The waste-disposal areas are underlain by the Conasauga Group (Cambrian age), a complex sequence of mudstone, siltstone, and limestone interbeds grading from one lithotype to the other, both laterally and vertically. Compressional forces that caused regional thrust faulting also caused much internal deformation of the beds. Folds, bedding-plane faults, and joints are widespread. Small solution openings have developed in some areas where the structurally-related openings have provided ingress to ground water.

  14. Autonomous grain combine control system

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  15. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  16. Western surface mine permitting and reclamation. Volume 2. Contractor documents. Part B. Hydrologic evaluation and reclamation technologies for western surface coal mining

    SciTech Connect (OSTI)

    Not Available

    1986-07-01

    The report presents an analysis of the hydrologic evaluation and reclamation technologies of western surface coal mining as they have evolved and advanced since passage of the Federal Surface Mine Control and Reclamation Act of 1977 (SMCRA). The primary emphasis of the report is threefold, addressing: Hydrologic data used in the preparation and review of mining and reclamation plans. Analytical techniques used to predict and evaluate the hydrologic impacts of mining. Evaluation criteria used to determine the success of hydrologic restoration. The report also discusses special reclamation practices used to preserve and restore the essential hydrologic functions of alluvial valley floors.

  17. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    SciTech Connect (OSTI)

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted at the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.

  18. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  19. New Mathematical Method Enhances Hydrology Simulations | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) New Mathematical Method Enhances Hydrology Simulations Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  20. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  1. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2010-01-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  2. Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model

    SciTech Connect (OSTI)

    Naz, Bibi S [ORNL] [ORNL; Frans, Chris [University of Washington, Seattle] [University of Washington, Seattle; Clarke, Garry [University of British Columbia, Vancouver] [University of British Columbia, Vancouver; Burns, [Watershed Sciences Inc. (WSI), Portland] [Watershed Sciences Inc. (WSI), Portland; Lettenmaier, Dennis [University of Washington, Seattle] [University of Washington, Seattle

    2014-01-01

    We describe an integrated spatially distributed hydrologic and glacier dynamic model, and use it to investigate the effect of glacier recession on streamflow variations for the Upper Bow River basin, a tributary of the South Saskatchewan River. Several recent studies have suggested that observed decreases in summer flows in the South Saskatchewan River are partly due to the retreat of glaciers in the river's headwaters. Modeling the effect of glacier changes on streamflow response in river basins such as the South Saskatchewan is complicated due to the inability of most existing physically-based distributed hydrologic models to represent glacier dynamics. We compare predicted variations in glacier extent, snow water equivalent and streamflow discharge made with the integrated model with satellite estimates of glacier area and terminus position, observed streamflow and snow water equivalent measurements over the period of 1980 2007. Simulations with the coupled hydrology-glacier model reduce the uncertainty in streamflow predictions. Our results suggested that on average, the glacier melt contribution to the Bow River flow upstream of Lake Louise is about 30% in summer. For warm and dry years, however, the glacier melt contribution can be as large as 50% in August, whereas for cold years, it can be as small as 20% and the timing of glacier melt signature can be delayed by a month.

  3. Results of Detailed Hydrologic Characterization TestsFiscal and Calendar Year 2005

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2008-02-27

    This report provides the results of detailed hydrologic characterization tests conducted within selected Hanford Site wells during fiscal and calendar year 2005. Detailed characterization tests performed included groundwater-flow characterization, barometric response evaluation, slug tests, in-well vertical groundwater-flow assessments, and a single-well tracer and constant-rate pumping test. Hydraulic property estimates obtained from the detailed hydrologic tests include hydraulic conductivity, transmissivity, specific yield, effective porosity, in-well lateral and vertical groundwater-flow velocity, aquifer groundwater-flow velocity, and depth-distribution profiles of hydraulic conductivity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for a site where detailed well testing was performed. Results obtained from these tests provide hydrologic information that supports the needs of Resource Conservation and Recovery Act waste management area characterization as well as sitewide groundwater monitoring and modeling programs. These results also reduce the uncertainty of groundwater-flow conditions at selected locations on the Hanford Site.

  4. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    SciTech Connect (OSTI)

    Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  5. Hydrology and ecology of pinyon-juniper woodlands: Conceptual framework and field studies

    SciTech Connect (OSTI)

    Wilcox, B.P.; Breshears, D.D.

    1994-09-01

    Pinyon-juniper woodlands represent an important ecosystem in the semiarid western United States. Concern over the sustainability of, and management approaches for, these woodlands is increasing. As in other semiarid environments, water dynamics and vegetation patterns in pinyon-juniper woodlands are highly interrelated. An understanding of these relationships can aid in evaluating various management strategies. In this paper we describe a conceptual framework designed to increase our understanding of water and vegetation in pinyon-juniper woodlands. The framework comprises five different scales, at each of which the landscape is divided into {open_quotes}functional units{close_quotes} on the basis of hydrologic characteristics. The hydrologic behavior of each unit and the connections between units are being evaluated using an extensive network of hydrological and ecological field studies on the Pajarito Plateau in northern New Mexico. Data from these studies, coupled with application of the conceptual model, have led to the development of a number of hypotheses concerning the interrelationships of water and vegetation in pinyon-juniper woodlands.

  6. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  7. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  8. Clinton Combined Utility Sys | Open Energy Information

    Open Energy Info (EERE)

    Clinton Combined Utility Sys Jump to: navigation, search Name: Clinton Combined Utility Sys Place: South Carolina Phone Number: 864-833-7524 Website: www.cityofclintonsc.com...

  9. combined heat power | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat & Power and Distributed Energy Combined Heat and Power (CHP) is a key component of distributed energy within the DOE Advanced Manufacturing Office. CHP - sometimes ...

  10. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  11. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  12. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  13. Combined Corex/DRI technology

    SciTech Connect (OSTI)

    Flickenschild, A.J.; Reufer, F.; Eberle, A.; Siuka, D.

    1996-08-01

    A feasible steelmaking alternative, the Corex/direct reduction/electric arc furnace combination, provides an economic route for the production of high quality steel products. This combination is a major step into a new generation of iron and steel mills. These mills are based on the production of liquid steel using noncoking coal and comply with the increasing demands of environmental protection. The favorable production costs are based on: Utilization of Corex and DRI/HBI plants; Production of hot metal equal to blast furnace quality; Use of low cost raw materials such as noncoking coal and lump ore; Use of process gas as reducing agent for DRI/HBI production; and Use of electric arc furnace with high hot metal input as the steelmaking process. The high flexibility of the process permits the adjustment of production in accordance with the strategy of the steel mills. New but proven technologies and applications of the latest state of art steelmaking process, e.g., Corex, in conjunction with DRI production as basic raw material for an electric arc furnace, will insure high quality, high availability, optimized energy generation at high efficiency rates, and high product quality for steelmaking.

  14. VACUUM TRAP AND VALVE COMBINATION

    DOE Patents [OSTI]

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  15. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    2013-02-22

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  16. Combined Retrieval, Microphysical Retrievals and Heating Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feng, Zhe

    Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

  17. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  18. Combined PET/MRI scanner

    DOE Patents [OSTI]

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  19. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  20. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    None

    2009-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

  1. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    SciTech Connect (OSTI)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.

  2. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  3. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    SciTech Connect (OSTI)

    Reynolds, Jesse L.; Narasimhan, T.N.

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and treatment abilities. The proposal was typically described as complementing an already generous nature, not simply subduing it. Its implementation was limited by political tensions, and fifteen years later, a scaled-down version was constructed. Well levels recovered, but within a decade were declining due to increasing withdrawals. I assert that the approach in Santa Clara Valley was a forerunner to more recent innovations in natural resource management in California and beyond.

  4. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    SciTech Connect (OSTI)

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  5. Probability encoding of hydrologic parameters for basalt. Elicitation of expert opinions from a panel of five consulting hydrologists

    SciTech Connect (OSTI)

    Runchal, A.K.; Merkhofer, M.W.; Olmsted, E.; Davis, J.D.

    1984-11-01

    The Columbia River basalts underlying the Hanford Site in Washington State are being considered as a possible location for a geologic repository for high-level nuclear waste. To investigate the feasibility of a repository at this site, the hydrologic parameters of the site must be evaluated. Among hydrologic parameters of particular interest are the effective porosity of the Cohassett basalt flow top and flow interior and the vertical-to-horizontal hydraulic conductivity, or anisotropy ratio, of the Cohassett basalt flow interior. The Cohassett basalt flow is the prime candidate horizon for repository studies. Site-specific data for these hydrologic parameters are currently inadequate for the purpose of preliminary assessment of candidate repository performance. To obtain credible, auditable, and independently derived estimates of the specified hydrologic parameters, a panel of five nationally recognized hydrologists was assembled. Their expert judgments were quantified during two rounds of Delphi process by means of a probability encoding method developed to estimate the probability distributions of the selected hydrologic variables. The results indicate significant differences of expert opinion for cumulative probabilities of less than 10% and greater than 90%, but relatively close agreement in the middle ranges of values. The principal causes of the diversity of opinion are believed to be the lack of site-specific data and the absence of a single, widely accepted, conceptual or theoretical basis for analyzing these variables.

  6. Distribution of fast hydrologic paths in the unsaturated zone at Yucca Mountain

    SciTech Connect (OSTI)

    Fabryka-Martin, J.T.; Wolfsberg, A.V.; Levy, S.S.; Roach, J.L.; Winters, S.T.; Wolfsberg, L.E.; Elmore, D.; Sharma, P.

    1998-12-31

    Development and testing of conceptual flow and transport models for hydrologic systems are strengthened when natural environmental tracers are incorporated into the process. One such tracer is chlorine-36 ({sup 36}Cl, half-life, 301,000 years), a radioactive isotope produced in the atmosphere and carried underground with percolating groundwater. High concentrations of this isotope were also added to meteoric water during a period of global fallout from atmospheric testing of nuclear devices, primarily in the 1950s. This bomb-pulse signal has been used to test for the presence of fast transport paths in the unsaturated zone at Yucca Mountain and to provide the basis for a conceptual model for their distribution. Yucca Mountain is under investigation by the US Department of Energy as a potential site at which to host an underground high-level radioactive waste repository. Under wetter climatic conditions, fast-flow pathways will respond quickly to increases in infiltration and have the potential to become seeps in the tunnel drifts. The {sup 36}Cl data are also being used in numerical flow and transport models to establish lower bounds on infiltration rates, estimate ground water ages, and establish bounding values for hydrologic flow parameters governing fracture transport.

  7. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    SciTech Connect (OSTI)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  8. Laboratory Shuttle Bus Routes: Combined Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Routes & Schedules Blue Route Orange Route Rockridge Route Potter St.JBEI Route Combined Routes and Schedules (On-SiteOff-Site) Scroll down or click here for schedule...

  9. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  10. Artificial photosynthesis combines biology with technology for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial photosynthesis combines biology with technology for sustainable energy ... photosynthetic net primary production (NPP) to support our GDP and nutrition. ...

  11. Industrial Distributed Energy: Combined Heat & Power

    Broader source: Energy.gov [DOE]

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  12. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect (OSTI)

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.

  13. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 2

    SciTech Connect (OSTI)

    Purtymun, W.D.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  14. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  15. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  16. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.

  17. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

    1993-08-11

    This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  18. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1993-10-08

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  19. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  20. Hydrological conditions at the 317/319 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 317/319 Area at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, based on these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 317/319 Area is located between Meridian Road and the southern border of ANL. The 317 Area was commissioned in the late 1940s for the temporary storage of radioactive waste. Low- and high-level solid radioactive waste is stored in partially buried concrete vaults. Low-level radioactive waste awaiting shipment for off-site disposal is stored in aboveground steel bins north of the vaults. The 319 Area is an inactive landfill, located east of the 317 Area that was used for the disposal of general refuse, demolition debris, and laboratory equipment. Fluorescent light bulbs, chemical containers, and suspect waste were also placed in the landfill. Liquid chemical wastes were disposed of at each site in gravel-filled trenches called French drains.'' The 317/319 Area is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 19.5m. Organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. At the time of this report, no chemical quality analyses had been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. 14 refs., 13 figs., 6 tabs.

  1. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-12-31

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  2. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-01-01

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  3. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  4. Combined Heat and Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Combined Heat and Power Combined Heat and Power Combined heat and power (CHP)-sometimes called cogeneration-is an integrated set of technologies for the simultaneous, on-site production of electricity and heat. R&D breakthroughs can help U.S. manufacturers introduce advanced technologies and systems to users in the United States and around the world. CHP and distributed energy systems improve energy efficiency, reduce carbon emissions, optimize fuel

  5. SQUID Instrumentation for Early Cancer Diagnostics: Combining...

    Office of Scientific and Technical Information (OSTI)

    Conference: SQUID Instrumentation for Early Cancer Diagnostics: Combining SQUID-Based ... Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: LDRD Country of ...

  6. Combining Feedback Absorption Spectroscopy, Amplified Resonance...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with Amplified Resonance and Low Pressure ...

  7. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  8. Combining Quantitative Electrochemistry and Electron Microscopy...

    Office of Scientific and Technical Information (OSTI)

    Microscopy to Study Reversible Lithiation of Silicon Nanowires. Citation Details In-Document Search Title: Combining Quantitative Electrochemistry and Electron Microscopy to ...

  9. SQUID Instrumentation for Early Cancer Diagnostics: Combining...

    Office of Scientific and Technical Information (OSTI)

    Cancer Diagnostics: Combining SQUID-Based Ultra-Low Field MRI and Superparamagnetic Relaxometry Citation Details In-Document Search Title: SQUID Instrumentation for Early Cancer ...

  10. Combined surface analytical methods to characterize degradative...

    Office of Scientific and Technical Information (OSTI)

    Title: Combined surface analytical methods to characterize degradative processes in anti-stiction films in MEMS devices. The performance and reliability of microelectromechanical ...

  11. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  12. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  13. Combined Heat and Power (CHP) Grant Program

    Broader source: Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  14. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...

  15. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  16. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  17. The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)

    SciTech Connect (OSTI)

    Tilmes, S.; Fasullo, John; Lamarque, J.-F.; Marsh, D.; Mills, Mike; Alterskjaer, Kari; Muri, Helene O.; Kristjansson, Jon E.; Boucher, Olivier; Schulz, M.; Cole, Jason N.; Curry, Charles L.; Jones, A.; Haywood, J.; Irvine, Peter; Ji, Duoying; Moore, John; Bou Karam, Diana; Kravitz, Benjamin S.; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Yang, Shuting; Watanabe, Shingo

    2013-10-14

    Abstract: The hydrologic impact of enhancing Earth’s albedo due to solar radiation management (SRM) is investigated using simulations from 12 models contributing to the Geoengineering Model Intercomparison Project (GeoMIP). An artificial experiment is investigated, where global mean temperature is preserved at pre-industrial conditions, while atmospheric carbon dioxide concentrations are quadrupled. The associated reduction of downwelling surface solar radiation in a high CO2 environment leads to a reduction of global evaporation of 10% and 4% and precipitation of 6.1% and 6.3% over land and ocean, respectively. An initial reduction of latent heat flux at the surface is largely driven by reduced evapotranspiration over land with instantly increasing CO2 concentrations in both experiments. A warming surface associated with the transient adjustment in the 4xCO2 experiment further generates an increase of global precipitation, with considerable regional changes, such as a significant precipitation reduction of 7% for the North American summer monsoon. Reduced global precipitation persists in the geoengineered experiment where temperatures are stabilized, with considerable regional rainfall deficits. Precipitation reductions that are consistent in sign across models are identified in the geoengineered experiment over monsoonal land regions of East Asia (6%), North America (7%), South America (6%) and South Africa (5%). In contrast to the 4xCO2 experiment, where the frequency of months with heavy precipitation intensity is increased by over 50%, it is reduced by up to 20% in the geoengineering scenario . The reduction in heavy precipitation is more pronounced over land than over the ocean, and accompanies a stronger reduction in evaporation over land. For northern mid-latitudes, maximum precipitation reduction over land ranges from 1 to 16% for individual models. For 45-65°N, the frequency of median to high intensity precipitation in summer is strongly reduced. These changes in precipitation in both total amount and frequency of extremes, point to a considerable weakening of the hydrological cycle in a geoengineered world.

  18. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  19. Crankshaft position sensing with combined starter alternator

    DOE Patents [OSTI]

    Brandenburg, Larry Raymond (Plymouth, MI); Miller, John Michael (Saline, MI)

    2000-06-13

    A crankshaft position sensing apparatus for use with an engine (16) having a combined starter/alternator assembly (18). The crankshaft position sensing apparatus includes a tone ring (38) with a sensor (36) and bandpass filter (46), having a cylinder identification input from a camshaft sensor (48), and a gain limiter (54). The sensing apparatus mounts near the rotor (30) of the combined starter/alternator assembly (18). The filtered crankshaft position signal can then be input into a vehicle system controller (58) and an inner loop controller (60). The starter/alternator assembly (18) in combination with an internal combustion engine is particularly useful for a hybrid electric vehicle system.

  20. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  1. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  2. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect (OSTI)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  3. The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines

    SciTech Connect (OSTI)

    Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.

    1996-12-31

    The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow is restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.

  4. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  5. Combine, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Combine is a city in Dallas County and Kaufman County, Texas. It falls under Texas's 5th congressional district.12 References...

  6. Midwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  7. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  8. Combination and Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Combination & ...

  9. Combination and Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination and Integration of DPF-SCR Aftertreatment Technologies Combination ...

  10. Combined statistical and dynamical assessment of simulated

    Office of Scientific and Technical Information (OSTI)

    vegetation-rainfall in North Africa during the mid-Holocene* (Journal Article) | SciTech Connect Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* Citation Details In-Document Search Title: Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* A negative feedback of vegetation cover on subsequent annual precipitation is simulated for the mid-Holocene over

  11. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    SciTech Connect (OSTI)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim; Naz, Bibi S; Tootle, Glenn

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  12. A combined cycle engine test facility

    SciTech Connect (OSTI)

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  13. Combination & Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment ... More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment ...

  14. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  15. FORMATION OF CALCIUM AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, Y.M.,NV

    SciTech Connect (OSTI)

    J.B. Paces; J.F. Whelan; Z.E. Peterman; B.D. Marshall

    2000-07-27

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings formed in a UZ setting that has been hydrologically stable over million-year time scales.

  16. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect (OSTI)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  17. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    SciTech Connect (OSTI)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

  18. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect (OSTI)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  19. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    SciTech Connect (OSTI)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  20. SOUTHWESTERN POWER ADMINISTRATION COMBINED FINANCIAL STATEMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADMINISTRATION COMBINED FINANCIAL STATEMENTS 2006-2009 This page inTenTionally lefT blank SOUTHWESTERN FEDERAL POWER SYSTEM Combined Financial Statements September 30, 2009, 2008, 2007, and 2006 (With Independent Auditors' Report Thereon) This page inTenTionally lefT blank KPMG LLP Suite 310 100 West Fifth Street Tulsa, OK 74103 KPMG LLP is a Delaware limited liability partnership, the U.S. member firm of KPMG International Cooperative ("KPMG International"), a Swiss entity.

  1. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  2. Combination neutron-gamma ray detector

    DOE Patents [OSTI]

    Stuart, Travis P.; Tipton, Wilbur J.

    1976-10-26

    A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.

  3. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  4. Combined cycle comes to the Philippines

    SciTech Connect (OSTI)

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  5. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  6. Sensitivity of Surface Flux Simulations to Hydrologic Parameters Based on an Uncertainty Quantification Framework Applied to the Community Land Model

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Huang, Maoyi; Leung, Lai-Yung R.; Lin, Guang; Ricciuto, Daniel M.

    2012-08-10

    Uncertainties in hydrologic parameters could have significant impacts on the simulated water and energy fluxes and land surface states, which will in turn affect atmospheric processes and the carbon cycle. Quantifying such uncertainties is an important step toward better understanding and quantification of uncertainty of integrated earth system models. In this paper, we introduce an uncertainty quantification (UQ) framework to analyze sensitivity of simulated surface fluxes to selected hydrologic parameters in the Community Land Model (CLM4) through forward modeling. Thirteen flux tower footprints spanning a wide range of climate and site conditions were selected to perform sensitivity analyses by perturbing the parameters identified. In the UQ framework, prior information about the parameters was used to quantify the input uncertainty using the Minimum-Relative-Entropy approach. The quasi-Monte Carlo approach was applied to generate samples of parameters on the basis of the prior pdfs. Simulations corresponding to sampled parameter sets were used to generate response curves and response surfaces and statistical tests were used to rank the significance of the parameters for output responses including latent (LH) and sensible heat (SH) fluxes. Overall, the CLM4 simulated LH and SH show the largest sensitivity to subsurface runoff generation parameters. However, study sites with deep root vegetation are also affected by surface runoff parameters, while sites with shallow root zones are also sensitive to the vadose zone soil water parameters. Generally, sites with finer soil texture and shallower rooting systems tend to have larger sensitivity of outputs to the parameters. Our results suggest the necessity of and possible ways for parameter inversion/calibration using available measurements of latent/sensible heat fluxes to obtain the optimal parameter set for CLM4. This study also provided guidance on reduction of parameter set dimensionality and parameter calibration framework design for CLM4 and other land surface models under different hydrologic and climatic regimes.

  7. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  8. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  9. Sensitivity analysis for joint inversion of ground-penetratingradar and thermal-hydrological data from a large-scale underground heatertest

    SciTech Connect (OSTI)

    Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

    2007-06-25

    We describe a joint inversion approach that combinesgeophysical and thermal-hydrological data for the estimation of (1)thermal-hydrological parameters (such as permeability, porosity, thermalconductivity, and parameters of the capillary pressure and relativepermeability functions) that are necessary for predicting the flow offluids and heat in fractured porous media, and (2) parameters of thepetrophysical function that relates water saturation, porosity andtemperature to the dielectric constant. The approach incorporates thecoupled simulation of nonisothermal multiphase fluid flow andground-penetrating radar (GPR) travel times within an optimizationframework. We discuss application of the approach to a large-scale insitu heater test which was conducted at Yucca Mountain, Nevada, to betterunderstand the coupled thermal, hydrological, mechanical, and chemicalprocesses that may occur in the fractured rock mass around a geologicrepository for high-level radioactive waste. We provide a description ofthe time-lapse geophysical data (i.e., cross-borehole ground-penetratingradar) and thermal-hydrological data (i.e., temperature and water contentdata) collected before and during the four-year heating phase of thetest, and analyze the sensitivity of the most relevantthermal-hydrological and petrophysical parameters to the available data.To demonstrate feasibility of the approach, and as a first step towardcomprehensive inversion of the heater test data, we apply the approach toestimate one parameter, the permeability of the rock matrix.

  10. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect (OSTI)

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  11. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  12. Inpainting with sparse linear combinations of exemplars

    SciTech Connect (OSTI)

    Wohlberg, Brendt

    2008-01-01

    We introduce a new exemplar-based inpainting algorithm based on representing the region to be inpainted as a sparse linear combination of blocks extracted from similar parts of the image being inpainted. This method is conceptually simple, being computed by functional minimization, and avoids the complexity of correctly ordering the filling in of missing regions of other exemplar-based methods. Initial performance comparisons on small inpainting regions indicate that this method provides similar or better performance than other recent methods.

  13. combines high intensity and short pulse duration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines high intensity and short pulse duration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  14. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  15. Review of information on hydrology and radionuclide migration at the Nevada Test Site 1976--1988, and annotated bibliography

    SciTech Connect (OSTI)

    Raymond, J.R.; Eddy, P.A.; Wallace, R.W.; Foley, M.G.; Bierschenk, W.H.; Harrison, R.P.; IT Corp., Richland, WA; Pacific Northwest Lab., Richland, WA )

    1989-09-01

    The purpose of this report is to provide information on changes in the state of knowledge on the hydrology and radionuclide migration that have occurred at the Nevada Test Site (NTS) since 1976. In the present study, a literature review was conducted to examine information published since 1976 about the various activities that have occurred at the NTS. Information was collected from the literature on the site's geological, hydrological, geochemical, and geomorphic characteristics related to the impacts on the ground water from weapons testing and the disposal of waste at the NTS. This information was used to identify the state of knowledge about the NTS and the potential impacts of NTS activities on the ground water. More than 250 reports were reviewed, of which about 200 contained information pertinent to the subject of this report. Because the reports have never been collected in a single location, only those that were supplied by the US Department of Energy and other cooperating organizations could be reviewed, and some pertinent documents may have been missed. Appendix A contains an annotated bibliography of the reports reviewed. 149 refs., 28 figs., 2 tabs.

  16. FACT SHEET: Energy Department Actions to Deploy Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost ...

  17. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of ...

  18. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  19. Energy Department Actions to Deploy Combined Heat and Power,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

  20. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 ...

  1. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Info (EERE)

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  2. Comparative Toxicity of Combined Particle and Semi-Volatile Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toxicity of Combined Particle and Semi-Volatile Organic Fractioins of Gasoline and Diesel Emissions Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractioins ...

  3. Mastermind Session: Combining Energy Efficiency and Health Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Energy Efficiency and Health Services Mastermind Session: Combining Energy Efficiency and Health Services Better Buildings Neighborhood Program Peer Exchange Call: ...

  4. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  5. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li...

    Office of Scientific and Technical Information (OSTI)

    Combined Quantum ChemicalRaman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic ... Citation Details In-Document Search Title: Combined Quantum ChemicalRaman Spectroscopic ...

  6. Combined Fiscal Year (FY) 2006 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2006 Annual Performance Results and FY 2007 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2006 Annual ...

  7. Combined Fiscal Year (FY) 2007 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2007 Annual Performance Results and FY 2008 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2007 Annual ...

  8. Combined Fiscal Year (FY) 2010 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2010 Annual ...

  9. Combined Fiscal Year (FY) 2009 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2009 Annual ...

  10. Combined Fiscal Year (FY) 2013 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2013 Annual Performance Results and FYs 2014 and 2015 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2013 Annual ...

  11. Combined Fiscal Year (FY) 2012 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2012 Annual Performance Results and FYs 2013 and 2014 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2012 Annual ...

  12. Combined Fiscal Year (FY) 2011 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2011 Annual ...

  13. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  14. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented ...

  15. Engine Driven Combined Heat and Power: Arrow Linen Supply, December...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008 This paper describes the Arrow ...

  16. Rational Design and Adaptive Management of Combination Therapies...

    Office of Scientific and Technical Information (OSTI)

    of Combination Therapies for Hepatitis C Virus Infection CrossMark click for updates n ... Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection. ...

  17. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Combined PVBattery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP) PROJECT PROFILE: Combined PVBattery Grid Integration with ...

  18. Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for ...

  19. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by ...

  20. Energy Portfolio Standards and the Promotion of Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White ...

  1. The Influence of Building Location on Combined Heat and Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Building Location on Combined Heat and Power Hydrogen (Tri-Generation) ... location on the economics of Combined Heat and Power Hydrogen (Tri-Generation) systems. ...

  2. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, ...

  3. Development of an Advanced Combined Heat and Power (CHP) System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System ...

  4. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.

  5. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  6. Combined fluidized bed retort and combustor

    DOE Patents [OSTI]

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  7. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  8. Testing a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  9. Combined SM Higgs Limits at the Tevatron

    SciTech Connect (OSTI)

    Krumnack, N.

    2009-10-01

    We combine results from CDF and D{sup 0} on direct searches for a standard model (SM) Higgs boson (H) in p{bar p} collisions at the Fermilab Tevatron at {radical}s = 1.96 TeV. Compared to the previous Higgs Tevatron combination, more data and new channels WH {yields} {tau}{nu}b{bar b}, VH {yields} {tau}{tau}b{bar b}/jj{tau}{tau}, VH {yields} jjb{bar b}, t{bar t}H {yields} t{bar t}b{bar b} have been added. Most previously used channels have been reanalyzed to gain sensitivity. We use the latest parton distribution functions and gg {yields} H theoretical cross sections when comparing our limits to the SM predictions. With 2.0-3.6 fb{sup -1} of data analyzed at CDF, and 0.9-4.2 fb{sup -1} at D{sup 0}, the 95% C.L. upper limits on Higgs boson production are a factor of 2.5 (0.86) times the SM cross section for a Higgs boson mass of m{sub H} = 115 (165) GeV/c{sup 2}. Based on simulation, the corresponding median expected upper limits are 2.4 (1.1). The mass range excluded at 95% C.L. for a SM Higgs has been extended to 160 < m{sub H} < 170 GeV/c{sup 2}.

  10. SHIELDING ANALYSIS FOR PORTABLE GAUGING COMBINATION SOURCES

    SciTech Connect (OSTI)

    J. TOMPKINS; L. LEONARD; ET AL

    2000-08-01

    Radioisotopic decay has been used as a source of photons and neutrons for industrial gauging operations since the late 1950s. Early portable moisture/density gauging equipment used Americium (Am)-241/Beryllium (Be)/Cesium (Cs)-137 combination sources to supply the required nuclear energy for gauging. Combination sources typically contained 0.040 Ci of Am-241 and 0.010 Ci of CS-137 in the same source capsule. Most of these sources were manufactured approximately 30 years ago. Collection, transportation, and storage of these sources once removed from their original device represent a shielding problem with distinct gamma and neutron components. The Off-Site Source Recovery (OSR) Project is planning to use a multi-function drum (MFD) for the collection, shipping, and storage of AmBe sources, as well as the eventual waste package for disposal. The MFD is an approved TRU waste container design for DOE TRU waste known as the 12 inch Pipe Component Overpack. As the name indicates, this drum is based on a 12 inch ID stainless steel weldment approximately 25 inch in internal length. The existing drum design allows for addition of shielding within the pipe component up to the 110 kg maximum pay load weight. The 12 inch pipe component is packaged inside a 55-gallon drum, with the balance of the interior space filled with fiberboard dunnage. This packaging geometry is similar to the design of a DOT 6M, Type B shipping container.

  11. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  12. Combining attosecond XUV pulses with coincidence spectroscopy

    SciTech Connect (OSTI)

    Sabbar, M. Heuser, S.; Boge, R.; Lucchini, M.; Cirelli, C.; Keller, U.; Gallmann, L.

    2014-10-15

    Here we present a successful combination of an attosecond beamline with a COLTRIMS apparatus, which we refer to as AttoCOLTRIMS. The setup provides either single attosecond pulses or attosecond pulse trains for extreme ultraviolet-infrared pump-probe experiments. We achieve full attosecond stability by using an active interferometer stabilization. The capability of the setup is demonstrated by means of two measurements, which lie at the heart of the COLTRIMS detector: firstly, we resolve the rotating electric field vector of an elliptically polarized few-cycle infrared laser field by attosecond streaking exploiting the access to the 3D momentum space of the charged particles. Secondly, we show streaking measurements on different atomic species obtained simultaneously in a single measurement making use of the advantage of measuring ions and electrons in coincidence. Both of these studies demonstrate the potential of the AttoCOLTRIMS for attosecond science.

  13. Combined Experiment Phase 1. Final report

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT)? The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  14. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  15. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  16. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  17. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    SciTech Connect (OSTI)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest; Freeze, Geoffrey A.; Hammond, Glenn Edward

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  18. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect (OSTI)

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution and abundance of actinides in a nuclear test cavity and chimney. This work demonstrates that early-time processes can widely disperse actinides at low concentrations outside the melt glass, implying that melt glass dissolution may not be the sole mechanism for the release of actinides to groundwater. The study also provides evidence for the isotopic fractionation of plutonium under the extreme conditions accompanying nuclear explosions. In Chapter 4, X-ray absorption spectroscopy measurements were used to determine the redox state of Fe and U in nuclear melt glass samples from the NTS. Both elements were found to occur in mixed valence states (Fe{sup 2+}/Fe{sup 3+} and U{sup 5+}/U{sup 6+}) in all samples. Comparison of the Fe and U redox states with published redox studies of synthetic glasses suggests that plutonium is predominantly in the Pu{sup 4+} oxidation state in the melt glasses. In Chapter 5, alpha autoradiography is used in a NTS field study to investigate the spatial distribution and transport of actinides in soils, and to help identify the size distribution and morphology of the actinide particles. It was found that {alpha}-emitting radionuclides have moved to at least 39 cm depth in the soil profile, far deeper than expected. The methodology that was developed could easily be applied to other field locations where actinides are dispersed in the soil zone. Chapter 6 summarizes the development of a method for measuring environmental levels of {sup 241}Am on the multi-collector inductively coupled plasma mass spectrometer. The method detection limit of 0.017 pCi/L is about two times lower than the best analyses possible by alpha spectrometry. Chapter 7 describes a chlorine-36 study of vertical groundwater transport processes in Frenchman Flat. Mass balance calculations developed from a {sup 36}Cl mixing model at well ER-5-3 No.2 are used to estimate vertical transport fluxes and average vertical flow velocities through the thick volcanic section underlying the basin. The study also documents the variations in {sup 36}Cl/Cl ratios within the three princ

  19. Extending facility life by combining embankments: permitting energy solutions class a combined disposal cell

    SciTech Connect (OSTI)

    McCandless, S.J.; Shrum, D.B.

    2007-07-01

    EnergySolutions' Class A low-level radioactive waste management operations are limited to a 540-acre section of land in Utah's west desert. In order to optimize the facility lifetime, EnergySolutions has launched an effort to improve the waste disposal utilization of this acreage. A chief component of this effort is the Class A Combined embankment. The Class A Combined embankment incorporates the footprint of both the currently licensed Class A cell and the Class A North cell, and also includes an increase in the overall embankment height. By combining the cells and raising the height of the embankment, disposal capacity is increased by 50% over the two-cell design. This equates to adding a second Class A cell, at approximately 3.8 million cubic yards capacity, without significantly increasing the footprint of disposal operations. In order to justify the design, EnergySolutions commissioned geotechnical and infiltration fate and transport evaluations, modeling, and reports. Cell liner and cover materials, specifications, waste types, and construction methods will not change. EnergySolutions estimates that the Class A Combined cell will add at least 10 years of capacity to the site, improving utilization of the permitted area without unacceptable environmental impacts. (authors)

  20. Combined propellant for pulse MHD generator

    SciTech Connect (OSTI)

    Dogadayev, R.V.; Dyogtev, Yu.G.; Gomozov, V.A.; Klyachko, L.A.

    1994-12-31

    The results of the experimental researches and calculations of the pulse MHD generator equilibrium plasma which is the products of the solid pyrotechnical (metal) fuel (PF) combustion in the air (combined propellant - CP) are presented. The optimum fuel composition and the excess air factor have been determined. The magnesium- and aluminium-based PF experimental samples have been calculated, manufactured and tested. The conception has been suggested, the model plasma generator has been designed and manufactured. The dependencies of pressure, temperature, heat losses, electrical conductivity and electron mobility and their pulsations in the small-scale MHD generator channel (m{approx}1.5 kg/s, M{approx}3, p{approx}0.07MPa, T{approx}2800K) upon different factors have been determined experimentally. Under these conditions the electrical conductivity reached 25 S/m. The solid MgO particles spectrum in the supersonic flow has been determined. The MHD conversion with the use of the CP has been demonstrated. The maximum electrical power of the {open_quotes}Pamir-0-KT{close_quotes} small-scale MHD generator was 68 kW with the magnetic field 1.9 T.

  1. Combined current collector and electrode separator

    DOE Patents [OSTI]

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  2. Combined current collector and electrode separator

    DOE Patents [OSTI]

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  3. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  4. Combination for electrolytic reduction of alumina

    DOE Patents [OSTI]

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  5. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a ``clean`` site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  6. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a clean'' site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  7. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  8. Project W-320, combined pump winch assembly test - Test report

    SciTech Connect (OSTI)

    Bellomy, J.R., Westinghouse Hanford

    1996-05-15

    Test report documenting results of the Project W-320 combined pump/winch test performed at Lawrence Pumps.

  9. Combined Heat and Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Combined Heat & Power Deployment » Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point

  10. Alaska Gateway School District Adopts Combined Heat and Power

    Broader source: Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  11. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  12. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  13. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  14. Wideband unbalanced waveguide power dividers and combiners (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Patent: Wideband unbalanced waveguide power dividers and combiners Citation Details In-Document Search Title: Wideband unbalanced waveguide power dividers and combiners The various technologies presented herein relate to waveguide dividers and waveguide combiners for application in radar systems, wireless communications, etc. Waveguide dividers-combiners can be manufactured in accordance with custom dimensions, as well as in accordance with

  15. A Combined Water Heater, Dehumidifier, and Cooler (WHDC) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Combined Water Heater, Dehumidifier, and Cooler (WHDC) A Combined Water Heater, Dehumidifier, and Cooler (WHDC) Figure 1: The system model for the combined Water heater, dehumidifier and cooler (WHDC). Figure 1: The system model for the combined Water heater, dehumidifier and cooler (WHDC). Figure 2: Initial test results from a water heater and dehumidifier utilizing LiBr as a working fluid being tested at UF: System COP and capacity for different heat inputs. Figure 2: Initial test

  16. Second-Generation Biofuels from Multi-Product Biorefineries Combine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Sustainability With Environmental Sustainability | Department of Energy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Breakout Session 3B-Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic

  17. Combination and Integration of DPF-SCR Aftertreatment Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace025_rappe_2012_o.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment

  18. Combination and Integration of DPF-SCR Aftertreatment Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace025_rappe_2011_o.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies

  19. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  20. Hydrologic review services. Final project report, May 24--December 31, 1993

    SciTech Connect (OSTI)

    Hoopes, J.A.

    1995-10-01

    Research on the runoff, sediment, and contaminant transport in Big Buck Canyon at the Los Alamos National Laboratory began in 1993. The final research goal is to estimate how fast and how much contaminated sediment is moving in the canyon. Due to equation of state experiments involving high explosives, soils in the vicinity of the three test sites have been contaminated with heavy metals such as uranium and cadmium. There are three main parts to the research that will eventually be combined to address the final goal of estimating total contaminant movement. The first part involves the collection and interpretation of experimental field data, such as rainfall and runoff amounts. The second part involves numerical modeling the watershed response to rainfall inputs. The third part involves experimental chemistry work to evaluate the concentration of contaminants in a representative sample of sediment. The details about the model development and testing are presented. The simulation of a large flood in 1991 did not compare well with observations of the event. The model seriously underpredicted the flow out of the watershed because the value of the hydraulic conductivity in the channel was too large. The infiltration of water into the channel bed, known as transmission losses, is a direct function of hydraulic conductivity. Field measurements of hydraulic conductivity yielded values that are much larger than those found in the literature. Consequently, the high input values of hydraulic conductivity produced model results that underestimated the flow. Future research on the process of transmission losses is recommended to resolve this issue and improve the accuracy of the model results.

  1. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect (OSTI)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  2. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect (OSTI)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  3. Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO 2 Migration 28 January 2016 Office of Fossil Energy NRAP-TRS-III-004-2016 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  4. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  5. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    SciTech Connect (OSTI)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  6. A valuation of possible glacio-hydrological characteristics changes under global warming for Pamiro-Alay glaciation

    SciTech Connect (OSTI)

    Ananicheva, M.D.

    1996-12-31

    Scenarios of global climate change for doubled carbon dioxide in the atmosphere is transformed into isoline maps for glaciated mountain region. Model data of monthly air temperature and precipitation are recalculated to values of annual solid precipitation and mean summer air temperature reduced to the level of 4,000 meters a.s.l. with the help of contemporary vertical gradients of air temperature and solid precipitation. The calculation algorithm is based on new techniques which analyze relationships between the spatial and altitudinal variability of meteorological parameters and their influence on snow and ice extent. Results form the basis for the calculation of the primary glaciologic and hydrologic characteristics: accumulation, ablation, melt runoff. New altitudes of main glaciological levels are calculated together with corresponding ablation and accumulation in the condition of doubled CO{sub 2}. These data are then used to produce a new spatial distribution of the input variables which can be used for improved melt water and heat resources calculation. The time period over which the model is run to obtain spatial distribution of pointed characteristics is the middle of 21 century, the situation of doubled CO{sub 2} in the atmosphere. Model output is in the form of isoline maps as well as digital data and covers the territory of Pamiro-Alay mountains and adjacent areas.

  7. Cumulative hydrologic impact assessments on surface-water in northeastern Wyoming using HEC-1; a pilot study

    SciTech Connect (OSTI)

    Anderson, A.J.; Eastwood, D.C.; Anderson, M.E.

    1997-12-31

    The Surface Mining Control and Reclamation Act of 1977 requires that areas in which multiple mines will affect one watershed be analyzed and the cumulative impacts of all mining on the watershed be assessed. The purpose of the subject study was to conduct a cumulative hydrologic impact assessment (CHIA) for surface-water on a watershed in northeastern Wyoming that is currently being impacted by three mines. An assessment of the mining impact`s affect on the total discharge of the watershed is required to determine whether or not material damage to downstream water rights is likely to occur as a result of surface mining and reclamation. The surface-water model HEC-1 was used to model four separate rainfall-runoff events that occurred in the study basin over three years (1978-1980). Although these storms were used to represent pre-mining conditions, they occurred during the early stages of mining and the models were adjusted accordingly. The events were selected for completeness of record and antecedent moisture conditions (AMC). Models were calibrated to the study events and model inputs were altered to reflect post-mining conditions. The same events were then analyzed with the new model inputs. The results were compared with the pre-mining calibration. Peak flow, total discharge and timing of flows were compared for pre-mining and post-mining models. Data were turned over to the State of Wyoming for assessment of whether material damage to downstream water rights is likely to occur.

  8. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  9. Estimation of field-scale soil hydraulic and dielectric parametersthrough joint inversion of GPR and hydrological data

    SciTech Connect (OSTI)

    Kowalsky, Michael B.; Finsterle, Stefan; Peterson, John; Hubbard,Susan; Rubin, Yoram; Majer, Ernest; Ward, Andy; Gee, Glendon

    2005-05-05

    A method is described for jointly using time-lapse multiple-offset cross-borehole ground-penetrating radar (GPR) travel time measurements and hydrological measurements to estimate field-scale soil hydraulic parameters and parameters of the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We build upon previous work to take advantage of a wide range of GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function. Within the context of water injection experiments in the vadose zone, we test our inversion methodology with synthetic examples and apply it to field data. The synthetic examples show that while realistic errors in the petrophysical function cause substantial errors in the soil hydraulic parameter estimates,simultaneously estimating petrophysical parameters allows for these errors to be minimized. Additionally, we observe in some cases that inaccuracy in the GPR simulator causes systematic error in simulated travel times, making necessary the simultaneous estimation of a correction parameter. We also apply the method to a three-dimensional field setting using time-lapse GPR and neutron probe (NP) data sets collected during an infiltration experiment at the U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone.

  10. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect (OSTI)

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  11. Combining Solar and Home Performance Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Solar and Home Performance Services Combining Solar and Home Performance Services Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, call slides and discussion summary, December 11, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary Initiative on Incentives:

  12. Mastermind Session: Combining Energy Efficiency and Health Services |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combining Energy Efficiency and Health Services Mastermind Session: Combining Energy Efficiency and Health Services Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session on Combining Energy Efficiency and Health Services, featuring host Tim Carryer, GTECH Strategies and ReEnergize Pittsburgh; Call Slides and Summary, July 23, 2013. PDF icon Call Slides and Summary More Documents & Publications Mastermind Session:

  13. Combined ICR heating antenna for ion separation systems

    SciTech Connect (OSTI)

    Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-01-15

    A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

  14. DOE-Idaho Leads Regional Combined Federal Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE NEWS RELEASE DOE-Idaho Leads Regional Combined Federal Campaign FOR IMMEDIATE RELEASE December 5, 2007 Media Contact: Brad Bugger, (208) 526-8484 The U.S. Department of Energy's Idaho Operations Office is once again leading the regional Combined Federal Campaign, which is the only sanctioned charitable campaign for all federal employees. Idaho Operations Office staff evaluates applications from local non-profit organizations who want to be included in the Combined Federal Campaign, to make

  15. Combined Retrieval, Microphysical Retrievals and Heating Rates (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Data Explorer Search Results Combined Retrieval, Microphysical Retrievals and Heating Rates Title: Combined Retrieval, Microphysical Retrievals and Heating Rates Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval. Authors: Feng, Zhe Publication Date: 2013-02-22 OSTI Identifier: 1169498 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM)

  16. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation

    Office of Scientific and Technical Information (OSTI)

    Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate (Journal Article) | SciTech Connect Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate Citation Details In-Document Search Title: Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate Combined computational/Raman

  17. Preoperative chemoradiation of locally advanced T3 rectal cancer combined

    Office of Scientific and Technical Information (OSTI)

    with an endorectal boost (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Preoperative chemoradiation of locally advanced T3 rectal cancer combined with an endorectal boost Citation Details In-Document Search Title: Preoperative chemoradiation of locally advanced T3 rectal cancer combined with an endorectal boost Purpose: To investigate the effect and feasibility of concurrent radiation and chemotherapy combined with endorectal brachytherapy in T3 rectal

  18. World's Fastest Supercomputer Combination Unveiled For National Security at

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore Laborator | National Nuclear Security Administration World's Fastest Supercomputer Combination Unveiled For National Security at Lawrence Livermore Laborator October 27, 2005 World's Fastest Supercomputer Combination Unveiled For National Security at Lawrence Livermore Laboratory Pair to be used to ensure U.S. nuclear weapons stockpile is safe and reliable without testing~October 27, 2005 World's Fastest Supercomputer Combination Unveiled For National Security at Lawrence

  19. Assessment of Combined Heat and Power Premium Power Applications in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, September 2008 | Department of Energy Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 report analyzes the economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.Through a series of three case studies, key trade-offs are analyzed with regard to the

  20. Bret Knapp to head combined Weapons Engineering, Weapons Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership...

  1. Combined electron- and ion-beam imprinter and itsapplications...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Combined ... Publication Date: 2004-09-01 OSTI Identifier: 926752 Report ... Resource Type: Journal Article Resource Relation: ...

  2. Combined Heat and Power: A Federal Manager's Resource Guide,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Technology Overview and Federal Sector Deployment The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating, ...

  3. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  4. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  5. Development of a Thermal Enhancer ’ for Combined Partial Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  6. Elastic wave velocity measurement combined with synchrotron X...

    Office of Scientific and Technical Information (OSTI)

    Elastic wave velocity measurement combined with synchrotron X-ray measurements at high ... VELOCITY; WAVE PROPAGATION; X-RAY DIFFRACTION Word Cloud More Like This Full Text ...

  7. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector, January 2000 The Market and Technical Potential for Combined Heat and ... and developed estimates of additional technical potential for CHP in industry. ...

  8. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined ...

  9. Combined Federal Campaign Opening Event Hits a High Note

    Broader source: Energy.gov [DOE]

    Energy Department Combined Federal Campaign organizers hope to raise $1.5 million this year to aid local, national and international charities.

  10. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  11. Combining QCD and electroweak corrections to dilepton production...

    Office of Scientific and Technical Information (OSTI)

    dilepton production in the framework of the FEWZ simulation code Citation Details In-Document Search Title: Combining QCD and electroweak corrections to dilepton production in the ...

  12. Industrial Energy Efficiency and Combined Heat and Power Fact Sheet

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2012-07-16

    Provides an overview of the State and Local Energy Efficiency Action Network's (SEE Action) Industrial Energy Efficiency and Combined Heat and Power Working Group.

  13. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Broader source: Energy.gov (indexed) [DOE]

    can help improve the resiliency and reliability of key infrastructure. PDF icon Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings, ...

  14. Combined Heat and Power System Enables 100% Reliability at Leading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal ...

  15. Combined Fiscal Year (FY) 2015 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subject: Office of Inspector General's combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan This report presents the goals, ...

  16. Combined Fiscal Year (FY) 2014 Annual Performance Results and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subject: Office of Inspector General's combined Fiscal Year (FY) 2014 Annual Performance Results and FYs 2015 and 2016 Annual Performance Plan This report presents the goals, ...

  17. Combined local-density and dynamical mean field theory calculations...

    Office of Scientific and Technical Information (OSTI)

    field theory calculations for the compressed lanthanides Ce, Pr, and Nd Citation Details In-Document Search Title: Combined local-density and dynamical mean field theory ...

  18. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its ...

  19. Utility Incentives for Combined Heat and Power | Open Energy...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentutility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental...

  20. Y-12 Site Office Recognized For Contributions To Combined Federal...

    National Nuclear Security Administration (NNSA)

    Site Office Recognized For Contributions To Combined Federal Campaign | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  1. Rational design and adaptive management of combination therapies...

    Office of Scientific and Technical Information (OSTI)

    therapies for Hepatitis C virus infection Prev Next Title: Rational design and adaptive management of combination therapies for Hepatitis C virus infection Recent ...

  2. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Environmental Protection Agency (EPA) developed the Guide to Using Combined Heat ... Naik-Dhungel, and Charles Imohiosen, EPA; and Michael Freedberg, and Robert Groberg ...

  3. Combined Heat and Power with Your Local Utility

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) and its uses, configurations, considerations, and more.

  4. Combined Fiscal Year (FY) 2002 Annual Performance Report and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual Performance Plan More Documents & Publications Annual Performance Plan: IG-APP-005 DOE OIG ...

  5. Mid-Atlantic Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  6. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author ...

  7. MHK Technologies/OMI Combined Energy System | Open Energy Information

    Open Energy Info (EERE)

    The Combined Energy System CES consists of four sub system components a seawater wave pump a hydro turbine electric generator a reverse osmosis filtration unit and an...

  8. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  9. Photoluminescence from GaAs nanodisks fabricated by using combination...

    Office of Scientific and Technical Information (OSTI)

    GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth Citation Details In-Document Search Title:...

  10. Combined Heat and Power Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Webinar PDF icon 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  11. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect (OSTI)

    Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 k/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. ?

  12. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  13. Combining Quantitative Electrochemistry and Electron Microscopy to Study

    Office of Scientific and Technical Information (OSTI)

    Reversible Lithiation of Silicon Nanowires. (Conference) | SciTech Connect Conference: Combining Quantitative Electrochemistry and Electron Microscopy to Study Reversible Lithiation of Silicon Nanowires. Citation Details In-Document Search Title: Combining Quantitative Electrochemistry and Electron Microscopy to Study Reversible Lithiation of Silicon Nanowires. Authors: Zavadil, Kevin R. ; Liu, Yang ; Harris, Charles Thomas ; Sullivan, John P. [1] + Show Author Affiliations (Sandia National

  14. NNMCAB Combined Committee Agenda: February 2016 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 6 Pojoaque NNMCAB Combined Committee Agenda: February 2016 Pojoaque At This Meeting: Discussion on NNMCAB Combined Committee Calendar Year 2016 Meeting Schedule Discussion on Draft Recommendation 2016-02 "Budget Priorities" Update from DOE Committee Breakout Session PDF icon Committee Agenda - February 10, 2016

  15. Combination & Integration of DPF-SCR Aftertreatment Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control systems for on-road heavy-truck application PDF icon deer11_rappe.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment

  16. Southwestern Power Administration Combined Financial Statements, 2006-2009

    SciTech Connect (OSTI)

    2009-09-01

    We have audited the accompanying combined balance sheets of the Southwestern Federal Power System (SWFPS), as of September 30, 2009, 2008, 2007, and 2006, and the related combined statements of revenues and expenses, changes in capitalization, and cash flows for the years then ended. As described in note 1(a), the combined financial statement presentation includes the hydroelectric generation functions of another Federal agency (hereinafter referred to as the generating agency), for which Southwestern Power Administration (Southwestern) markets and transmits power. These combined financial statements are the responsibility of the management of Southwestern and the generating agency. Our responsibility is to express an opinion on these combined financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audits to obtain reasonable assurance about whether the combined financial statements are free of material misstatement. An audit includes consideration of internal control over financial reporting as a basis for designing audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of Southwestern and the generating agency’s internal control over financial reporting. Accordingly, we express no such opinion. An audit also includes examining, on a test basis, evidence supporting the amounts and disclosures in the combined financial statements, assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall combined financial statement presentation. We believe that our audits provide a reasonable basis for our opinion. In our opinion, the combined financial statements referred to above present fairly, in all material respects, the respective financial position of the Southwestern Federal Power System, as of September 30, 2009, 2008, 2007, and 2006, and the results of its operations and its cash flow for the years then ended, in conformity with U.S. generally accepted accounting principles. Our audits were conducted for the purpose of forming an opinion on the 2009, 2008, 2007, and 2006 SWFPS’s combined financial statements taken as a whole. The supplementary information in the combining financial statements is presented for purposes of additional analysis and is not a required part of the basic combined financial statements. The supplementary information has been subjected to the auditing procedures applied in the audit of the basic combined financial statements and, in our opinion, is fairly stated in all material respects in relation to the basic combined financial statements taken as a whole.

  17. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  18. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  19. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelCell Energy, June 2011 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon

  20. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  1. Combined local-density and dynamical mean field theory calculations...

    Office of Scientific and Technical Information (OSTI)

    a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are ...

  2. Three Argonne scientists combine for 100 years of combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three Argonne scientists combine for 100 years of combustion research By Robyn Henderson * ... and it's mainly because of how much better computers have become in the last 35 years." ...

  3. Advisory on the reporting error in the combined propane stocks...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Advisory on the reporting error in the combined propane stocks for PADDs 4 and 5 Release Date: June 12, 2013 The U.S. Energy Information Administration issued the following...

  4. Development of Pattern Recognition Options for Combining Safeguards Subsystems

    SciTech Connect (OSTI)

    Burr, Thomas L.; Hamada, Michael S.

    2012-08-24

    This talk reviews project progress in combining process monitoring data and nuclear material accounting data to improve the over nuclear safeguards system. Focus on 2 subsystems: (1) nuclear materials accounting (NMA); and (2) process monitoring (PM).

  5. Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation summarizes the efforts of the team led by ESPEC Corp. to investigate thermal cycling combined with dynamic mechanical load, a solar project funded by the SunShot Initiative.

  6. NNMCAB Combined Committee Agenda: August 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy August 2014 Pojoaque NNMCAB Combined Committee Agenda: August 2014 Pojoaque At This Meeting: Draft Committee Work Plans for FY'2015 Committee Breakout Session Presentation DOE, Long Term Stewardship Program, Tom Longo PDF icon Committee Agenda - August 13

  7. NNMCAB Combined Committee Agenda: January 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 4 Pojoaque NNMCAB Combined Committee Agenda: January 2014 Pojoaque At This Meeting: Presentation LANL, General Information on Los Alamos National Laboratory, Tori George Update on WIPP Mercury SEIS PDF icon Committee Agenda - January 8, 2014

  8. NNMCAB Combined Committee Agenda: July 2015 Pojoaque | Department of Energy

    Office of Environmental Management (EM)

    5 Pojoaque NNMCAB Combined Committee Agenda: July 2015 Pojoaque At This Meeting: Public Comment Chromium Plume Presentation LANL, Overview RDX in Groundwater at LANL, Tim Goering Presentation LANL, Virtual Simulation Team, Kelly Michael PDF icon Committee Agenda - July 8, 2015

  9. NNMCAB Combined Committee Agenda: September 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy September 2014 Pojoaque NNMCAB Combined Committee Agenda: September 2014 Pojoaque At This Meeting: Election of Committee Officers Draft Work Plans for FY'15 General Committee Business PDF icon Committee Agenda - September 10

  10. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  11. Slip sliding away: Graphene and diamonds prove a slippery combination...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slip sliding away: Graphene and diamonds prove a slippery combination By Jared Sagoff * May 22, 2015 Tweet EmailPrint Scientists at the U.S. Department of Energy's Argonne National...

  12. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, ... coproduce low cost reducing gas, power and heat on site for reduction of copper powder ...

  13. Northern New Mexico Citizens' Advisory Board 2 Combined Committee...

    Office of Environmental Management (EM)

    guests. 43 44 NNMCAB Combined Committee Meeting Minutes for July 8, 2015 4 VI. Old Business 1 Mr. Pacheco opened the floor for discussion on old business. 2 3 Mr. Sayre...

  14. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  15. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of

  16. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 (Conference) | SciTech Connect GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Citation Details In-Document Search Title: GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions

  17. Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up

    Office of Scientific and Technical Information (OSTI)

    Self-Assembly and Top-Down Micromachining (Journal Article) | SciTech Connect Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining Citation Details In-Document Search Title: Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining Authors: Gerasopoulos, K ; Pomerantseva, Ekaterina ; McCarthy, M ; Brown, A ; Wang, Chunsheng ; Culver, J N ; Ghodssi, Reza Publication Date:

  18. Federal Agencies Combine Efforts to Protect Environment and Reduce Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bills | Department of Energy Combine Efforts to Protect Environment and Reduce Home Energy Bills Federal Agencies Combine Efforts to Protect Environment and Reduce Home Energy Bills July 11, 2005 - 2:07pm Addthis Department of Housing and Urban Development; Department of Energy; Environmental Protection Agency WASHINGTON, DC- The Bush administration today announced a major new partnership aimed at reducing household energy costs by 10 percent over the next decade. The Partnership for

  19. Forecasting neutrino masses from combining KATRIN and the CMB observations:

    Office of Scientific and Technical Information (OSTI)

    Frequentist and Bayesian analyses (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses Citation Details In-Document Search Title: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological

  20. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN

    Office of Scientific and Technical Information (OSTI)

    SOLAR FLARES. I. THE NUMERICAL MODEL (Journal Article) | SciTech Connect COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Citation Details In-Document Search Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience

  1. Combined surface analytical methods to characterize degradative processes

    Office of Scientific and Technical Information (OSTI)

    in anti-stiction films in MEMS devices. (Conference) | SciTech Connect Conference: Combined surface analytical methods to characterize degradative processes in anti-stiction films in MEMS devices. Citation Details In-Document Search Title: Combined surface analytical methods to characterize degradative processes in anti-stiction films in MEMS devices. The performance and reliability of microelectromechanical (MEMS) devices can be highly dependent on the control of the surface energetics in

  2. Combining QCD and electroweak corrections to dilepton production in the

    Office of Scientific and Technical Information (OSTI)

    framework of the FEWZ simulation code (Journal Article) | SciTech Connect Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code Citation Details In-Document Search Title: Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code Authors: Li, Ye ; Petriello, Frank Publication Date: 2012-11-21 OSTI Identifier: 1101806 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D

  3. Dissociative electron attachments to ethanol and acetaldehyde: A combined

    Office of Scientific and Technical Information (OSTI)

    experimental and simulation study (Journal Article) | SciTech Connect Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Citation Details In-Document Search Title: Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion

  4. Testimonials - Partnerships in Combined Heat and Power Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Inc. | Department of Energy Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Kevin Keene, Project Director, Cummins" and footage of a man. Kevin Keene: Working with the Department of Energy has been

  5. AMO Announces Successful Completion of Industrial-Scale Combined Heat,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, and Power System | Department of Energy Announces Successful Completion of Industrial-Scale Combined Heat, Hydrogen, and Power System AMO Announces Successful Completion of Industrial-Scale Combined Heat, Hydrogen, and Power System May 20, 2015 - 9:00am Addthis Photo Courtesy of FuelCell Energy, Danbury, CT Photo Courtesy of FuelCell Energy, Danbury, CT AMO recently joined with FuelCell Energy of Danbury, CT to celebrate the completion of their successful partnership project at

  6. Combining Feedback Absorption Spectroscopy, Amplified Resonance and Low

    Broader source: Energy.gov (indexed) [DOE]

    Pressure Sampling for the Measurement of Nitrogen-Containing Compounds in Automotive Emissions | Department of Energy Discusses a novel combination of multi-component scanning direct absorption spectroscopy, resonant cavity and low-pressure sampling to systematically improve the performance of a specific gas analyzer. PDF icon deer11_lanher.pdf More Documents & Publications On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with

  7. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  8. Secondary hardening steel having improved combination of hardness and toughness

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  9. Combined hydrophobicity and mechanical durability through surface nanoengineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; Furrer, David U.; Burlatsky, Sergei F.; Filburn, Thomas P.

    2015-04-08

    This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.

  10. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  11. Evaluation of the Non-Transient Hydrologic Source Term from the CAMBRIC Underground Nuclear Test in Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Tompson, A B; Maxwell, R M; Carle, S F; Zavarin, M; Pawloski, G A; Shumaker, D E

    2005-08-05

    Hydrologic Source Term (HST) calculations completed in 1998 at the CAMBRIC underground nuclear test site were LLNL's first attempt to simulate a hydrologic source term at the NTS by linking groundwater flow and transport modeling with geochemical modeling (Tompson et al., 1999). Significant effort was applied to develop a framework that modeled in detail the flow regime and captured all appropriate chemical processes that occurred over time. However, portions of the calculations were simplified because of data limitations and a perceived need for generalization of the results. For example: (1) Transient effects arising from a 16 years of pumping at the site for a radionuclide migration study were not incorporated. (2) Radionuclide fluxes across the water table, as derived from infiltration from a ditch to which pumping effluent was discharged, were not addressed. (3) Hydrothermal effects arising from residual heat of the test were not considered. (4) Background data on the ambient groundwater flow direction were uncertain and not represented. (5) Unclassified information on the Radiologic Source Term (RST) inventory, as tabulated recently by Bowen et al. (2001), was unavailable; instead, only a limited set of derived data were available (see Tompson et al., 1999). (6) Only a small number of radionuclides and geochemical reactions were incorporated in the work. (7) Data and interpretation of the RNM-2S multiple well aquifer test (MWAT) were not available. As a result, the current Transient CAMBRIC Hydrologic Source Term project was initiated as part of a broader Phase 2 Frenchman Flat CAU flow and transport modeling effort. The source term will be calculated under two scenarios: (1) A more specific representation of the transient flow and radionuclide release behavior at the site, reflecting the influence of the background hydraulic gradient, residual test heat, pumping experiment, and ditch recharge, and taking into account improved data sources and modeling approaches acquired or developed since the previous work (as in Pawloski et al., 2001, at the CHESHIRE site). This will be referred to as the transient CAMBRIC source term. (2) A generic release model made under steady-state flow conditions, in the absence of any transient effect, at the same site with the same RST for use in the development of simple release models at the other nine underground test sites in the Frenchman Flat CAU. This will be referred to as the steady state (non-transient) source term. The purpose of this report is to summarize the results of our steady state source term simulations. Additional details pertaining to these results, the transient model results, and the overall strategy, rationale, and assumptions used in the models will be documented in a separate report.

  12. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  13. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect (OSTI)

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  14. A framework for combining social impact assessment and risk assessment

    SciTech Connect (OSTI)

    Mahmoudi, Hossein; Environmental Sciences Research Institute, Shahid Beheshti University, G.C. ; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-11-15

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify the common features of social impact assessment (SIA) and social risk assessment (SRA), and discuss the merits of a combined approach. A hybrid model combining SIA and SRA to form a new approach called, ‘risk and social impact assessment’ (RSIA) is introduced. RSIA expands the capacity of SIA to evaluate and manage the social impacts of risky projects such as nuclear energy as well as natural hazards and disasters such as droughts and floods. We outline the three stages of RSIA, namely: impact identification, impact assessment, and impact management. -- Highlights: • A hybrid model to combine SIA and SRA namely RSIA is proposed. • RSIA can provide the proper mechanism to assess social impacts of natural hazards. • RSIA can play the role of ex-post as well as ex-ante assessment. • For some complicated and sensitive cases like nuclear energy, conducting a RSIA is necessary.

  15. NNMCAB Combined Committee Agenda: April 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 4 Pojoaque NNMCAB Combined Committee Agenda: April 2014 Pojoaque At This Meeting: Nominating Committee for FY'15 Elections Consideration and Action on Recommendation 2014-01 "FY 2016 Budget Priorities" Presentation DOE/LANL, Proposed Campaign Process, Pete Maggiore, Jeff Mousseau PDF icon Committee Agenda - April 9, 2014

  16. NNMCAB Combined Committee Agenda: February 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 4 Pojoaque NNMCAB Combined Committee Agenda: February 2014 Pojoaque At This Meeting: LANL Public Reading Room Update on WIPP Permit Modification Presentation NWNM, Nuke Watch Perspective on Material Disposal Area G Cap and Cover, Scott Kovac PDF icon Committee Agenda - February 12, 2014

  17. NNMCAB Combined Committee Agenda: January 2016 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 6 Pojoaque NNMCAB Combined Committee Agenda: January 2016 Pojoaque At This Meeting: Presentation DOE, LANL TRU Waste Program Corrective Actions Election of Committee Officer (EM&R Vice-Chair) PDF icon Committee Agenda - October 13, 2016

  18. NNMCAB Combined Committee Agenda: July 2014 Pojoaque | Department of Energy

    Office of Environmental Management (EM)

    4 Pojoaque NNMCAB Combined Committee Agenda: July 2014 Pojoaque At This Meeting: Update to DOE Recommendation 2014-01 Response Committee Breakout Sessions Consideration and Action on Recommendation 2014-02 "WIPP Continually Operational" PDF icon Committee Agenda - July 9, 2014

  19. NNMCAB Combined Committee Agenda: June 2014 Pojoaque | Department of Energy

    Office of Environmental Management (EM)

    June 2014 Pojoaque NNMCAB Combined Committee Agenda: June 2014 Pojoaque At This Meeting: Consideration and Action on Recommendation 2014-02 "WIPP Disposal Operations Continually Operational" Review Committee Work Plans for Changes/Impacts from 3706 Campaign Report on Annual Evaluation PDF icon Committee Agenda - June 11

  20. NNMCAB Combined Committee Agenda: March 2014 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 4 Pojoaque NNMCAB Combined Committee Agenda: March 2014 Pojoaque At This Meeting: Overview Roberts Rules of Order Committee Breakout (Mid-Year Review of Work Plans) Presentation DOE, National Environmental Policy Act, Karen Oden PDF icon Committee Agenda - March 12, 2014

  1. NNMCAB Combined Committee Agenda: March 2016 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 6 Pojoaque NNMCAB Combined Committee Agenda: March 2016 Pojoaque At This Meeting: Discussion on Draft Recommendation 2016-02 "FY 2017 Budget Priorities" Presentation, DOE, LANL TRU Waste Program Corrective Actions Part II, Dave Nickless PDF icon Committee Agenda - March 9, 2016

  2. The Combined Federal Campaign: Scoring a Touchdown in Giving

    Broader source: Energy.gov [DOE]

    It has been said that Federal employees are big-hearted people. We could not agree more, and nothing demonstrates that caring spirit year after year better than the Combined Federal Campaign (CFC), the Federal government’s annual giving drive.

  3. Northern New Mexico Citizens' Advisory Board 2 Combined Committee...

    Office of Environmental Management (EM)

    April 8, 2015 Approved 05132015 1 1 Northern New Mexico Citizens' Advisory Board 2 Combined Committee Meeting 3 April 8, 2015 4 2:00 p.m. to 4:30 p.m. 5 NNMCAB Office 6 94 Cities...

  4. Cyber security analysis testbed : combining real, emulation, and simulation.

    SciTech Connect (OSTI)

    Villamarin, Charles H.; Eldridge, John M.; Van Leeuwen, Brian P.; Urias, Vincent E.

    2010-07-01

    Cyber security analysis tools are necessary to evaluate the security, reliability, and resilience of networked information systems against cyber attack. It is common practice in modern cyber security analysis to separately utilize real systems of computers, routers, switches, firewalls, computer emulations (e.g., virtual machines) and simulation models to analyze the interplay between cyber threats and safeguards. In contrast, Sandia National Laboratories has developed novel methods to combine these evaluation platforms into a hybrid testbed that combines real, emulated, and simulated components. The combination of real, emulated, and simulated components enables the analysis of security features and components of a networked information system. When performing cyber security analysis on a system of interest, it is critical to realistically represent the subject security components in high fidelity. In some experiments, the security component may be the actual hardware and software with all the surrounding components represented in simulation or with surrogate devices. Sandia National Laboratories has developed a cyber testbed that combines modeling and simulation capabilities with virtual machines and real devices to represent, in varying fidelity, secure networked information system architectures and devices. Using this capability, secure networked information system architectures can be represented in our testbed on a single, unified computing platform. This provides an 'experiment-in-a-box' capability. The result is rapidly-produced, large-scale, relatively low-cost, multi-fidelity representations of networked information systems. These representations enable analysts to quickly investigate cyber threats and test protection approaches and configurations.

  5. Combining Wind Plant Control With Systems Engineering (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Ning, A.; Gebraad, P.; Dykes, K.

    2015-02-01

    This presentation was given at the third Wind Energy Systems Engineering Workshop in Boulder, Colorado, and focused on wind plant controls research, combined optimization, a case study on the Princess Amalia Wind Park, results from the case study, and future work.

  6. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  7. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect (OSTI)

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  8. Geologic and hydrologic research at the Western New York Nuclear Service Center, West Valley, New York. Final report, August 1982-December 1983

    SciTech Connect (OSTI)

    Albanese, J.R.; Anderson, S.L.; Fakundiny, R.H.; Potter, S.M.; Rogers, W.B.; Whitbeck, L.F.; LaFleur, R.G.; Boothroyd, J.C.; Timson, B.S.

    1984-06-01

    This report is the last in a series by the New York State Geological Survey on studies funded by the US Nuclear Regulatory Commission. The report covers five important aspects of the geology and hydrology of the Western New York Nuclear Service Center, near West Valley, New York: geomorphology, stratigraphy, sedimentology, surface water, and radionuclide analyses. We reviewed past research on these subjects and present new data obtained in the final phase of NYSGS research at the site. Also presented are up-to-date summaries of the present knowledge of geomorphology and stratigraphy. The report contains a significant bibliography of previous West Valley studies. Appendices include a report on the Fall 1983 Drilling Project and the procedures used, history and prognosis of Cattaraugus Creek and tributaries down cutting, and bar modification and landslide processes of Buttermilk Valley. 100 references, 7 figures, 7 tables.

  9. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  10. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  11. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  12. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  13. On combining Laplacian and optimization-based mesh smoothing techniques

    SciTech Connect (OSTI)

    Freitag, L.A.

    1997-07-01

    Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.

  14. Combination ring cavity and backward Raman waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  15. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  16. Combined Extraction of Cesium and Strontium from Akaline Nitrate Solutions

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bonnesen, Peter V; Engle, Nancy L; Haverlock, Tamara; Sloop Jr, Frederick {Fred} V; Moyer, Bruce A

    2006-01-01

    The combined extraction of cesium and strontium from caustic wastes can be achieved by adding a crown ether and a carboxylic acid to the Caustic-Side Solvent Extraction (CSSX) solvent. The ligand 4,4'(5')-di(tert-butyl)cyclohexano-18-crown-6 and one of four different carboxylic acids were combined with the components of the CSSX solvent optimized for the extraction of cesium, allowing for the simultaneous extraction of cesium and strontium from alkaline nitrate media simulating alkaline high level wastes present at the U.S. Department of Energy Savannah River Site. Extraction and stripping experiments were conducted independently and exhibited adequate results for mimicking waste simulant processing through batch contacts. The promising results of these batch tests showed that the system could reasonably be tested on actual waste.

  17. Theory meets reality: Combined first principles modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization studies of renewable energy materials | Solid State Solar Thermal Energy Conversion Theory meets reality: Combined first principles modeling and characterization studies of renewable energy materials Seminar Thursday Apr 7, 2016 2:00pm Location: 13-3038 Speaker: Maria Chan, Assistant Scientist, Center for Nanoscale Materials, Argonne National Laboratory Event Contact: rschusky@mit.edu S3TEC welcomes Dr. Maria Chan, Asssistant Scientist, Center for Nanoscale Materials,

  18. Combined approach to the inverse protein folding problem. Final report

    SciTech Connect (OSTI)

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  19. Evolutionary theory, web-search technology combine for DNA analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequedex: bioinformatics breakthrough Evolutionary theory, web-search technology combine for DNA analysis Sequedex: bioinformatics breakthrough with clinical & environmental applications. October 4, 2012 From left, Los Alamos scientists Joel Berendzen, Ben McMahon, Mira Dimitrijevic, Nick Hengartner and Judith Cohn From left, Los Alamos scientists Joel Berendzen, Ben McMahon, Mira Dimitrijevic, Nick Hengartner and Judith Cohn Contact Nancy Ambrosiano Communications Office (505) 667-0471

  20. High Performance Organic Photovoltaics via Novel Materials Combinations

    SciTech Connect (OSTI)

    Laird, Dr Darin; McGuiness, Dr Christine; Storch, Mark

    2011-01-20

    OPV cell efficiencies have increased significantly over the last decade and verified champion efficiencies are currently at 8.3% for both single and multi-junction device types. These increases in efficiency have been driven through the development and optimization of the donor and acceptor materials in bulk heterojunction active layers. Plextronics and Solarmer Energy Inc. are two of the world leading developers of these donor and acceptor materials. Solarmer Energy has reported NREL certified 6.77% efficiencies using optimized low band gap donor materials in combination with PC61BM and PC71BM acceptors and recently reported a champion NREL certified efficiency of 8.1%. Plextronics has reported Newport certified efficiencies of 6.7% using PC71BM acceptors with low band gap materials. In addition, Plextronics has also demonstrated that OPV efficiency of P3HT based materials can be improved by 50% by improving the Voc using alternative acceptors (indene substituted C60 and C70) to PC61BM and PC71BM. However, performance of these alternative acceptors in combination with low band gap materials has not been investigated and the potential for efficiency improvement is evident. In this collaboration, four low band gap donor materials from Solarmer Energy Inc were combined with Plextronics indene-class acceptors Plextronics indene substituted C60 and C70 acceptors to demonstrate OPV performance greater than 7%. Two main indene class C60 acceptors (codenamed Mono-indene[C60] Mono-indene[C60] , Bis-indene[C60] ) were screened with the Solarmer polymers. These four polymers were screened and optimized with the indene class acceptors at both Plextronics and Solarmer. A combination was identified which produced 6.7% (internal measurement) with a Solarmer polymer and a Plextronics fullerene acceptor. This was accomplished primarily by improving the Voc as well as improving the current (Jsc) and FF.

  1. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  2. Least Squ Fit of Lin Combination of Exponential Decay

    Energy Science and Technology Software Center (OSTI)

    2001-07-06

    This program fits by least squares a function which is a linear combination of real exponential decay functions. The function is y(k) = summation over j of a(j) * exp(-lambda(j) * k). Values of the independent variable (k) and the dependent variable y(k) are specified as input data. Weights may be specified as input information or set by the program (w(k) = 1/y(k) ).

  3. NNMCAB Combined Committee Agenda: April 2016 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 6 Pojoaque NNMCAB Combined Committee Agenda: April 2016 Pojoaque At This Meeting: Discussion on Draft Recommendation 2016-03, "Consent Order Revisions" Comments on the Consent Order Revision Update from the Department of Energy Presentation by DOE/LANS, Impact/Monitoring of the Buckman Direct Diversion, Rodriguez, Veenis PDF icon Committee Agenda - April 27, 2016 More Documents & Publications NNMCAB Board Agenda: May 2016 Pojoaque NNMCAB Committee Minutes: March 2016

  4. NNMCAB Combined Committee Agenda: February 2015 Pojoaque | Department of

    Office of Environmental Management (EM)

    Energy 5 Pojoaque NNMCAB Combined Committee Agenda: February 2015 Pojoaque At This Meeting: Consideration and Action on Recommendation 2015-01 "WIPP Waste Disposition" Consideration and Action on Recommendation 2015-02 "Budget Priorities for FY'16 LANL EM Cleanup Work" Presentation DOE, Fiscal Year 2015 Annual Work Plan, David Rhodes PDF icon Committee Agenda - February 18, 2015

  5. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  6. Combining Strategies Speeds the Work of Enzymes - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining Strategies Speeds the Work of Enzymes NREL research finds synergy in two approaches to breaking down cell walls of biomass April 26, 2013 Enzymes could break down cell walls faster - leading to less expensive biofuels for transportation - if two enzyme systems are brought together in an industrial setting, new research by the Energy Department's National Renewable Energy Laboratory suggests. A paper on the breakthrough, "Fungal Cellulases and Complexed Cellulosomal Enzymes Exhibit

  7. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  8. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  9. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  10. Subsea manifolds optimization -- The combination of mature and new technologies

    SciTech Connect (OSTI)

    Paulo, C.A.S.

    1996-12-31

    Subsea equipment can now be considered a mature option for offshore field developments. In Brazil, since the first oil in Campos Basin, different concepts ranging from one-atmosphere chambers to deepwater guidelineless X-mas trees, have been tested, contributing to this development. The experience acquired during these years makes it possible to combine the proven systems with new technologies being developed, for the design of subsea manifolds. The main target is more efficiency and cost reduction. When choosing a manifold concept, a usual rule is applicable: the simpler the better. The maturity, confidence and reliability obtained, allow the usage of resident hydraulically actuated valves, simplifying considerably the manifold arrangement. Other contributions come from: the reduction of piping bend radius allowed by the new pigs; the increased reliability of subsea instrumentation and chokes, allowing elimination of the gas-lift-test flowline; and the development of the direct vertical connection, that turns subsea tie-ins into very fast and easy operations. Combining all that with the new technology of a multiphase meter (to eliminate the test flowline and even the test separator on the platform), one can achieve a cost effective solution. This paper describes the possibilities of simplifying the subsea manifolds and presents a comparison of different designs. The usage of mature technology combined with the new developments, can help the industry to make deep water developments profitable, worldwide.

  11. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  12. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup

    SciTech Connect (OSTI)

    Larsson, Elin M.; Langhammer, Christoph; Zoric, Igor; Kasemo, Bengt; Edvardsson, Malin E. M.

    2009-12-15

    We have developed an instrument combining localized surface plasmon resonance (LSPR) sensing with electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D). The two techniques can be run simultaneously, on the same sensor surface, and with the same time resolution and sensitivity as for the individual techniques. The electrodeless QCM eliminates the need to fabricate electrodes on the quartz crystal and gives a large flexibility in choosing the surface structure and coating for both QCM-D and LSPR. The performance is demonstrated for liquid phase measurements of lipid bilayer formation and biorecognition events, and for gas phase measurements of hydrogen uptake/release by palladium nanoparticles. Advantages of using the combined equipment for biomolecular adsorption studies include synchronized information about structural transformations and extraction of molecular (dry) mass and degree of hydration of the adlayer, which cannot be obtained with the individual techniques. In hydrogen storage studies the combined equipment, allows for synchronized measurements of uptake/release kinetics and quantification of stored hydrogen amounts in nanoparticles and films at practically interesting hydrogen pressures and temperatures.

  13. Pros and cons of power combined cycle in Venezuela

    SciTech Connect (OSTI)

    Alvarez, C.; Hernandez, S.

    1997-09-01

    In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energy and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.

  14. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

  15. Top 10 Things You Didn't Know About Combined Heat and Power ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. ...

  16. Diversity combining in laser Doppler vibrometry for improved signal reliability

    SciTech Connect (OSTI)

    Drbenstedt, Alexander

    2014-05-27

    Because of the speckle nature of the light reflected from rough surfaces the signal quality of a vibrometer suffers from varying signal power. Deep signal outages manifest themselves as noise bursts and spikes in the demodulated velocity signal. Here we show that the signal quality of a single point vibrometer can be substantially improved by diversity reception. This concept is widely used in RF communication and can be transferred into optical interferometry. When two statistically independent measurement channels are available which measure the same motion on the same spot, the probability for both channels to see a signal drop-out at the same time is very low. We built a prototype instrument that uses polarization diversity to constitute two independent reception channels that are separately demodulated into velocity signals. Send and receive beams go through different parts of the aperture so that the beams can be spatially separated. The two velocity channels are mixed into one more reliable signal by a PC program in real time with the help of the signal power information. An algorithm has been developed that ensures a mixing of two or more channels with minimum resulting variance. The combination algorithm delivers also an equivalent signal power for the combined signal. The combined signal lacks the vast majority of spikes that are present in the raw signals and it extracts the true vibration information present in both channels. A statistical analysis shows that the probability for deep signal outages is largely decreased. A 60 fold improvement can be shown. The reduction of spikes and noise bursts reduces the noise in the spectral analysis of vibrations too. Over certain frequency bands a reduction of the noise density by a factor above 10 can be shown.

  17. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  18. Separating and combining single-mode and multimode optical beams

    DOE Patents [OSTI]

    Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S

    2013-11-12

    Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.

  19. Combination biological and microwave treatments of used rubber products

    DOE Patents [OSTI]

    Fliermans, Carl B.; Wicks, George G.

    2002-01-01

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.

  20. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  1. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinakin Patel / Fred Jahnke FuelCell Energy, Inc . U.S. DOE Advanced Manufacturing Office Peer Review Meeting � Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective � � Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs up to 25%. � Many industrial sites import liquid hydrogen, power and natural gas at

  2. Standby Rates for Combined Heat and Power Systems

    SciTech Connect (OSTI)

    Sedano, Richard; Selecky, James; Iverson, Kathryn; Al-Jabir, Ali

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  3. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  4. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  5. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  6. Performance evaluation of a combined-cycle cogeneration system

    SciTech Connect (OSTI)

    Huang, F.F.; Naumowicz, T.

    1999-07-01

    A methodology for performance evaluation of a combined-cycle cogeneration system has been presented. Results for such a system using an advanced gas-turbine as the prime mover show that it is a very versatile system. It can produce a large power-to-heat ratio together with a high second-law efficiency over a wide range of process steam pressures. This work also demonstrates once again that the most appropriate and useful performance parameters for decision-making in cogeneration system design are the second-law efficiency and the power-to-heat ratio.

  7. "Integrated Gasification Combined Cycle"

    U.S. Energy Information Administration (EIA) Indexed Site

    Status of technologies and components modeled by EIA" ,"Revolutionary","Evolutionary","Mature" "Pulverized Coal",,,"X" "Pulverized Coal with CCS" " - Non-CCS portion of Pulverized Coal Plant",,,"X" " - CCS","X" "Integrated Gasification Combined Cycle" " - Advanced Combustion Turbine",,"X" " - Heat Recovery Steam Generator",,,"X" " -

  8. Combining High Accuracy Electronic Structure Methods to Study Surface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions | Argonne Leadership Computing Facility A model of the aMnO2 (001) surface (side view) with lithium intercalated in the structure and an oxygen molecule adsorbed on top. Purple = Mn, red = O, green = Li. A model of the aMnO2 (001) surface (side view) with lithium intercalated in the structure and an oxygen molecule adsorbed on top. Purple = Mn, red = O, green = Li. Maria Chan, Argonne National Laboratory Combining High Accuracy Electronic Structure Methods to Study Surface

  9. Western Area Power Administration. Combined power system financial statements

    SciTech Connect (OSTI)

    1998-02-26

    This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

  10. Testing in a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2004-10-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  11. Combined upper limit for SM Higgs at the Tevatron

    SciTech Connect (OSTI)

    Penning, Bjorn; /Fermilab

    2009-01-01

    We combine results from CDF and D0 on direct searches for a standard model (SM) Higgs boson (H) in p{bar p} collisions at the Fermilab Tevatron at {radical}s = 1.96 TeV. Compared to the previous Higgs Tevatron combination, more data and new channels (WH {yields} {tau}{nu}b{bar b}, VH {yields} {tau}{tau}b{bar b}/jj{tau}{tau}, VH {yields} jjb{bar b}, t{bar t}H {yields} t{bar t}b{bar b}) have been added. Most previously used channels have been reanalyzed to gain sensitivity. We use the latest parton distribution functions and gg {yields} H theoretical cross sections when comparing our limits to the SM predictions. With 2.0-3.6 fb{sup -1} of data analyzed at CDF, and 0.9-4.2 fb{sup -1} at D0, the 95%C.L. upper limits on Higgs boson production are a factor of 2.5 (0.86) times the SM cross section for a Higgs boson mass of m{sub H} = 115 (165) GeV/c{sup 2}. Based on simulation, the corresponding median expected upper limits are 2.4 (1.1). The mass range excluded at 95% C.L. for a SM Higgs has been extended to 160 < m{sub H} < 170 GeV/c{sup 2}.

  12. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources vulnerability to climate change and air pollution.

  13. Combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan

    Broader source: Energy.gov [DOE]

    Combined Fiscal Year (FY) 2015 Annual Performance Results and FYs 2016 and 2017 Annual Performance Plan

  14. Combined group ECC protection and subgroup parity protection

    DOE Patents [OSTI]

    Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin

    2013-06-18

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

  15. Combined group ECC protection and subgroup parity protection

    DOE Patents [OSTI]

    Gara, Alan; Cheng, Dong; Heidelberger, Philip; Ohmacht, Martin

    2016-02-02

    A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

  16. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  17. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  18. Extended write combining using a write continuation hint flag

    DOE Patents [OSTI]

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos

    2013-06-04

    A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.

  19. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Ritter, Jason C. ); Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-10-30

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001).

  20. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  1. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission ?? providing top quality medical care and instruction ?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECO??s operation is the largest Chilled Water District Energy System in the United States. The company used DOE??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMC??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nation??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  2. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    SciTech Connect (OSTI)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.

  3. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect (OSTI)

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.

  4. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  5. Combined passive magnetic bearing element and vibration damper

    DOE Patents [OSTI]

    Post, Richard F.

    2001-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.

  6. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  7. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  8. Combined dispersive/interference spectroscopy for producing a vector spectrum

    DOE Patents [OSTI]

    Erskine, David J.

    2002-01-01

    A method of measuring the spectral properties of broadband waves that combines interferometry with a wavelength disperser having many spectral channels to produce a fringing spectrum. Spectral mapping, Doppler shifts, metrology of angles, distances and secondary effects such as temperature, pressure, and acceleration which change an interferometer cavity length can be measured accurately by a compact instrument using broadband illumination. Broadband illumination avoids the fringe skip ambiguities of monochromatic waves. The interferometer provides arbitrarily high spectral resolution, simple instrument response, compactness, low cost, high field of view and high efficiency. The inclusion of a disperser increases fringe visibility and signal to noise ratio over an interferometer used alone for broadband waves. The fringing spectrum is represented as a wavelength dependent 2-d vector, which describes the fringe amplitude and phase. Vector mathematics such as generalized dot products rapidly computes average broadband phase shifts to high accuracy. A Moire effect between the interferometer's sinusoidal transmission and the illumination heterodynes high resolution spectral detail to low spectral detail, allowing the use of a low resolution disperser. Multiple parallel interferometer cavities of fixed delay allow the instantaneous mapping of a spectrum, with an instrument more compact for the same spectral resolution than a conventional dispersive spectrometer, and not requiring a scanning delay.

  9. Combined goal gasifier and fuel cell system and method

    DOE Patents [OSTI]

    Gmeindl, Frank D.; Geisbrecht, Rodney A.

    1990-01-01

    A molten carbonate fuel cell is combined with a catalytic coal or coal char gasifier for providing the reactant gases comprising hydrogen, carbon monoxide and carbon dioxide used in the operation of the fuel cell. These reactant gases are stripped of sulfur compounds and particulate material and are then separated in discrete gas streams for conveyance to appropriate electrodes in the fuel cell. The gasifier is arranged to receive the reaction products generated at the anode of the fuel cell by the electricity-producing electrochemical reaction therein. These reaction products from the anode are formed primarily of high temperature steam and carbon dioxide to provide the steam, the atmosphere and the heat necessary to endothermically pyrolyze the coal or char in the presence of a catalyst. The reaction products generated at the cathode are substantially formed of carbon dioxide which is used to heat air being admixed with the carbon dioxide stream from the gasifier for providing the oxygen required for the reaction in the fuel cell and for driving an expansion device for energy recovery. A portion of this carbon dioxide from the cathode may be recycled into the fuel cell with the air-carbon dioxide mixture.

  10. Gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, Kenny C.; Laug, Matthew T.

    1985-01-01

    The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

  11. Improved gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  12. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect (OSTI)

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  13. Simulated combined abnormal environment fire calculations for aviation impacts.

    SciTech Connect (OSTI)

    Brown, Alexander L.

    2010-08-01

    Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the fire dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.

  14. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  15. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  16. A reduced order modeling approach to represent subgrid-scale hydrological dynamics for regional- and climate-scale land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-04-04

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from molecular scale (pore-scale O2 consumption) to tens of kilometer scale (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a particular reduced-order modeling (ROM) technique known as "Proper Orthogonal Decomposition mapping method" that reconstructs temporally-resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We applied this technique to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the four study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for two validation years not used in training the ROM. We also demonstrated that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training dataset with relatively good accuracy (< 1.5% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. This method has the potential to efficiently increase the resolution of land models for coupled climate simulations, allowing LSMs to be used at spatial scales consistent with mechanistic physical process representation.« less

  17. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  18. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    SciTech Connect (OSTI)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  19. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  20. STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER...

  1. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  2. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications (EIA)

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  3. SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power SulfaTrap(tm): Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving ...

  4. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners ...

  5. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for ...

  6. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research ...

  7. How Combined Heat and Power Can Support State Climate and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    combined heat and power in their climate and energy plans, including current activity at ... PDF icon How Combined Heat and Power Can Support State Climate and Energy Planning More ...

  8. How Combined Heat and Power Can Support State Climate and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Can Support State Climate and Energy Planning energy.goveere... it would look like to include combined heat and power in their climate and energy ...

  9. Combined Heat and Power - A Decade of Progress, A Vision for...

    Broader source: Energy.gov (indexed) [DOE]

    Combined heat and power (CHP) technology holds enormous potential to improve the nation's ... PDF icon Combined Heat and Power: A Decade of Progress, A Vision for the Future, August ...

  10. STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED...

    Office of Environmental Management (EM)

    STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER ...

  11. Assessing the Benefits of On-Site Combined Heat and Power During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the ...

  12. FINAL Combined SGIG Selections - By State for Press -5.xls | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FINAL Combined SGIG Selections - By State for Press -5.xls FINAL Combined SGIG Selections - By State for Press -5.xls PDF icon FINAL Combined SGIG Selections - By State for Press -5.xls More Documents & Publications Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011

  13. AMO Industrial Distributed Energy: Combine Heat and Power: A Clean Energy Solution, August 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary .................................................................................................... 3 Introduction ................................................................................................................ 5 Combined Heat and Power as A Clean Energy Solution ......................................... 7 The Current Status of CHP and Its

  14. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  15. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  16. Small, Inexpensive Combined NOx and O2 Sensor

    SciTech Connect (OSTI)

    W. Lawless; C. Clark

    2008-09-01

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  17. Civil Engineer (Hydraulics/Hydrologic)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This position is located in the Oregon Implementation unit (EWL) of the Fish and Wildlife Program (EW), Environment, Fish and Wildlife (E), Bonneville Power Administration (BPA). The Fish and...

  18. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potential for significant reductions in the plant cost-of-electricity, about 4.5% for the Current Standards case, and more than 7% for the Future Standards case. For Methanol Synthesis, the Novel Gas Cleaning process scheme again shows the potential for significant advantages over the conventional gas cleaning schemes. The plant generating capacity is increased more than 7% and there is a 2.3%-point gain in plant thermal efficiency. The Total Capital Requirement is reduced by about 13% and the cost-of-electricity is reduced by almost 9%. For both IGCC Methanol Synthesis cases, there are opportunities to combine some of the filter-reactor polishing stages to simplify the process further to reduce its cost. This evaluation has devised plausible humid-gas cleaning schemes for the Filter-Reactor Novel Gas Cleaning process that might be applied in IGCC and Methanol Synthesis applications.

  19. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  20. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for

  1. combined_supplemental_hud_multifamily_weatherization_list_3-2_lihtc.xls |

    Energy Savers [EERE]

    Department of Energy combined_supplemental_hud_multifamily_weatherization_list_3-2_lihtc.xls combined_supplemental_hud_multifamily_weatherization_list_3-2_lihtc.xls Office spreadsheet icon combined_supplemental_hud_multifamily_weatherization_list_3-2_lihtc.xls More Documents & Publications list2_eligible_multifamily_buildings_10-cfr-440-22b4ii.xls rd_mfh_low_and_very_low.xls hud_list-1

  2. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced

    Energy Savers [EERE]

    Methane Recovery | Department of Energy Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast

  3. 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Questions for an Expert: Bob Gemmer on Combined Heat and Power 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power October 27, 2014 - 7:13pm Addthis Infographic by Sarah Gerrity, Energy Department. Infographic by Sarah Gerrity, Energy Department. Amy Manheim Communication and Outreach Lead, Advanced Manufacturing Office Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy

  4. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  5. Opportunities for Combined Heat and Power in Data Centers, March 2009 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities for combined heat and power (CHP) technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. PDF

  6. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  7. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  8. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Broader source: Energy.gov [DOE]

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  9. New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    potential in industrial facilities and commercial buildings for ... to consider combined heat and power in strategic energy planning and energy efficiency program design. ...

  10. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  11. Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009

    Broader source: Energy.gov [DOE]

    EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

  12. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  13. Determination of Ice Water Path Over the ARM SGP Using Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite ... Global information of cloud ice water path (IWP) is urgently needed for testing ...

  14. Combined Heat and Power: Is It Right For Your Facility? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HUD CHP GUIDE 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 New and Emerging Technologies Combined Heat and Power (CHP) Resource Guide for Hospital ...

  15. A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide...

    Office of Scientific and Technical Information (OSTI)

    Assembly for Actinide Waste Minimization Citation Details In-Document Search Title: A Combined Nonfertile and UOsub 2 PWR Fuel Assembly for Actinide Waste Minimization A new ...

  16. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus- Case Study, 2013

    Broader source: Energy.gov [DOE]

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  17. THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff ...

  18. Final Project Report, DE-SC0001280, Characterizing the Combined Roles of Iron and Transverse Mixing on Uranium Bioremediation in Groundwater using Microfluidic Devices

    SciTech Connect (OSTI)

    Finneran, Kevin; Werth, Charles; Strathmann, Timothy

    2015-01-10

    In situ bioremediation of U(VI) involves amending groundwater with an appropriate electron donor and limiting nutrients to promote biological reduction to the less soluble and mobile U(IV) oxidation state. Groundwater flow is laminar; mixing is controlled by hydrodynamic dispersion. Recent studies indicate that transverse dispersion along plume margins can limit mixing of the amended electron donor and accepter (such as U(VI) in remediation applications). As a result, microbial growth, and subsequently contaminant reaction, may be limited to these transverse mixing zones during bioremediation. The primary objective of this work was to characterize the combined effects of hydrology, geochemistry, and biology on the (bio)remediation of U(VI). Our underlying hypothesis was that U(VI) reaction in groundwater is controlled by transverse mixing with an electron donor along plume margins, and that iron bioavailability in these zones affects U(VI) reduction kinetics and U(IV) re-oxidation. Our specific objectives were to a) quantify reaction kinetics mediated by biological versus geochemical reactions leading to U(VI) reduction and U(IV) re-oxidation, b) understand the influence of bioavailable iron on U(VI) reduction and U(IV) re-oxidation along the transverse mixing zones, c) determine how transverse mixing limitations and the presence of biomass in pores affects these reactions, and d) identify how microbial populations that develop along transverse mixing zones are influenced by the presence of iron and the concentration of electron donor. In the completed work, transverse mixing zones along plume margins were re-created in microfluidic pore networks, referred to as micromodels. We conducted a series of experiments that allowed us to distinguish among the hydraulic, biological, and geochemical mechanisms that contribute to U(VI) reduction, U(IV) re-oxidation, and U(VI) abiotic reaction with the limiting biological nutrient HP042-. This systematic approach may lead to a better understanding of U(VI) remediation, and better strategies for groundwater amendments to maximize remediation efficiency.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  20. Y-12 Site Office Recognized For Contributions To Combined Federal Campaign

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Y-12 Site Office Recognized For Contributions To Combined Federal Campaign March 23, 2012 OAK RIDGE, Tenn. -- Employees of the National Nuclear Security Administration's Y-12 Site Office have been recognized for their contributions to the Combined Federal Campaign (CFC). File y12 cfc 03.22.12

  1. Combination & Integration of DPF-SCR Aftertreatment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    focused on optimizing SCR washcoat within the DPF substrate, and maximizing the capacity for passive soot oxidation exhibited in the system PDF icon deer12_rappe.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies

  2. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  3. A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide Waste

    Office of Scientific and Technical Information (OSTI)

    Minimization (Journal Article) | SciTech Connect A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide Waste Minimization Citation Details In-Document Search Title: A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide Waste Minimization A new COmbined NonFertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept,

  4. Capella Corona Revisited: a Combined View from Textit XMM-Newton RGS,

    Office of Scientific and Technical Information (OSTI)

    Textit Chandra HETGS, and LETGS (Conference) | SciTech Connect Conference: Capella Corona Revisited: a Combined View from Textit XMM-Newton RGS, Textit Chandra HETGS, and LETGS Citation Details In-Document Search Title: Capella Corona Revisited: a Combined View from Textit XMM-Newton RGS, Textit Chandra HETGS, and LETGS We present a combined analysis of the X-ray emission of the Capella corona obtained with XMM-Newton RGS, Chandra HETGS, and LETGS. An improved atomic line database and a new

  5. Combined local-density and dynamical mean field theory calculations for the

    Office of Scientific and Technical Information (OSTI)

    compressed lanthanides Ce, Pr, and Nd (Journal Article) | SciTech Connect Journal Article: Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd Citation Details In-Document Search Title: Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the

  6. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential: Independent Review | Department of Energy 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and

  7. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. PDF icon chp_large.pdf More Documents & Publications CHP Assessment, California Energy Commission, October

  8. Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The template presented below is a Statement of Work (SOW) for services of an EIR/ICE Support Contractor for assisting OECM in conducting a combined EIR/ICE at CD-2.

  9. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  10. FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency

    Broader source: Energy.gov [DOE]

    Underscoring President Obama’s Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology.

  11. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  12. EM Headquarters Employees Give More than $51,000 to 2015 Combined Federal Campaign

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Final results of the 2015 Combined Federal Campaign (CFC) show EM headquarters employees donated more than $51,000 to people in need through the federal government’s workplace charitable giving drive.

  13. Preparation of Nanoporous MgAl2O4 by Combined Utilization of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation of Nanoporous MgAl2O4 by Combined Utilization of Sol-Gel Process and Combustion of Biorenewable Oil Authors: Hrtz, C., Ladd, D. M., and Seo, D.-K. Title: Preparation...

  14. Statement of Work (SOW) Template (Combined EIR/ICE Support Contractor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The template presented below is a Statement of Work (SOW) for services of an EIRICE Support Contractor for assisting OECM in conducting a combined EIRICE at CD-2. Project and ...

  15. The Effective Combination of Mesh Adaptation and Non-linearThermo...

    Office of Scientific and Technical Information (OSTI)

    The Effective Combination of Mesh Adaptation and Non-linear Thermo-mechanical Solution Components for the Modeling of Weld Failures. Citation Details In-Document Search Title: The...

  16. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  17. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  18. Combining THz laser excitation with resonant soft X-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    resonant soft X-ray scattering at the Linac Coherent Light Source Citation Details In-Document Search Title: Combining THz laser excitation with resonant soft X-ray scattering ...

  19. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is part of a suite of publications offered by the Department of Energy to improve steam system performance. PDF icon Guide to Combined Heat and Power Systems for Boiler Owners ...

  20. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems

    Broader source: Energy.gov [DOE]

    The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...