National Library of Energy BETA

Sample records for hydrologic monitoring program

  1. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  2. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2010-01-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  3. Gasbuggy, New Mexico Long-Term Hydrologic Monitoring Program Evaluation Report

    SciTech Connect (OSTI)

    2009-06-01

    This report summarizes an evaluation of the Long-Term Hydrologic Monitoring Program (LTHMP) that has been conducted since 1972 at the Gasbuggy, New Mexico underground nuclear detonation site. The nuclear testing was conducted by the U.S. Atomic Energy Commission under the Plowshare program, which is discussed in greater detail in Appendix A. The detonation at Gasbuggy took place in 1967, 4,240 feet below ground surface, and was designed to fracture the host rock of a low-permeability natural gas-bearing formation in an effort to improve gas production. The site has historically been managed under the Nevada Offsites Project. These underground nuclear detonation sites are within the United States but outside of the Nevada Test Site where most of the experimental nuclear detonations conducted by the U.S. Government took place. Gasbuggy is managed by the U.S. Department of Energy (DOE) Office of Legacy Management (LM ).

  4. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect (OSTI)

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  5. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results Report for Project Rulison, Co

    SciTech Connect (OSTI)

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.

  6. Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins

    SciTech Connect (OSTI)

    Diodato, D.M.; Cho, H.E.; Sundell, R.C.

    1991-07-01

    Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

  7. Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1984-10-01

    A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

  8. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  9. User Program Performance Monitor

    Energy Science and Technology Software Center (OSTI)

    1983-09-30

    PROGLOOK makes it possible to monitor the execution of virtually any OS/MVT or OS/VS2 Release 1.6 load module. The main reason for using PROGLOOK is to find out which portions of a code use most of the CPU time so that those parts of the program can be rewritten to reduce CPU time. For large production programs, users have typically found it possible to reduce CPU time by 10 to 30 percent without changing themore » program''s function.« less

  10. Appendix MON: WIPP Monitoring Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MON-2014 WIPP Monitoring Programs United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix MON-2014 Table of Contents MON-1.0 Introduction MON-1.1 Compliance Monitoring Program MON-1.2 Preclosure and Postclosure Monitoring MON-1.3 Monitoring Assessment MON-1.4 Appendix Summary MON-2.0 Compliance Monitoring Program Requirements MON-2.1 Compliance Certification/Recertification MON-3.0 Preclosure

  11. Cylinder monitoring program

    SciTech Connect (OSTI)

    Alderson, J.H.

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  12. Community Environmental Monitoring Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Community Engagement Community Engagement Oak Ridge’s EM program hosts numerous events throughout the year to interact with local residents and stakeholders. Oak Ridge's EM program hosts numerous events throughout the year to interact with local residents and stakeholders. We strive to maintain a strong, cooperative relationship with local residents, municipalities, and stakeholders. Since the 33,500-acre Oak Ridge Reservation spans Anderson and Roane counties and contains the

  13. Monitoring Plan for Weatherization Assistance Program, State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WPN 16-4: Weatherization Assistance Program Monitoring Guidance WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance WAP Memorandum 010: Quality Management Plan ...

  14. Nuclear Explosion Monitoring Research and Engineering Program...

    Office of Scientific and Technical Information (OSTI)

    Program Document: Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan Citation Details In-Document Search Title: Nuclear Explosion Monitoring Research ...

  15. Environmental Monitoring, Surveillance, and Control Programs...

    Office of Environmental Management (EM)

    ... source air emissions characterization (including monitoring programs), air pollution control equipment operation and maintenance, and reporting and compliance management systems. ...

  16. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of waters and gases from springs, wells, and steam vents;...

  17. Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1993-06-01

    The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

  18. Hydrologic resources management program and underground test area operable unit fy 1997

    SciTech Connect (OSTI)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  19. Ecological Monitoring and Compliance Program 2010 Report

    SciTech Connect (OSTI)

    Hansen, D.J.; Anderson, D.C.; Hall, D.B.; Greger, P.D.; Ostler, W.K.

    2011-07-01

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the programs activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2010. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2010, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  20. Monitoring Plan for Weatherization Assistance Program, State Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Efficiency and Conservation Block Grants | Department of Energy Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Appendix of Compliance Checklists appendix_compliance_checklists_102210.pdf (535.66 KB) More Documents & Publications WPN 16-4: Weatherization Assistance Program

  1. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect (OSTI)

    Samuels, L.S.

    1992-06-19

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  2. Ecological Monitoring and Compliance Program 2011 Report

    SciTech Connect (OSTI)

    Hansen, D. J.; Anderson, D. C.; Hall, D. B.; Greger, P. D.; Ostler, W. K.

    2012-06-13

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  3. Ecological Monitoring and Compliance Program 2012 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent; Hansen, Dennis J.

    2013-07-03

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2012. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2012, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  4. Ecological Monitoring and Compliance Program 2009 Report

    SciTech Connect (OSTI)

    Hansen, J. Dennis; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2010-07-13

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  5. Ecological Monitoring and Compliance Program 2008 Report

    SciTech Connect (OSTI)

    Hansen, Dennis J.; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2009-04-30

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

  6. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  7. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  8. Ecological Monitoring and Compliance Program 2007 Report

    SciTech Connect (OSTI)

    Hansen, Dennis; Anderson, David; Derek, Hall; Greger, Paul; Ostler, W. Kent

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  9. Ecological Monitoring and Compliance Program 2013 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.

    2014-06-05

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2013. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2013, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  10. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  11. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  12. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  13. Radiation Exposure Monitoring Systems Program Policy for Submitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Policy for Submitting of PII information Radiation Exposure Monitoring Systems ... Guide. PDF icon Radiation Exposure Monitoring Systems Program Policy for Submitting ...

  14. WPN 12-5: Updated Weatherization Assistance Program Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Updated Weatherization Assistance Program Monitoring Guidance WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance Effective: Dec. 1, 2011 To issue the ...

  15. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis...

    Office of Legacy Management (LM)

    ... was used to verify that the EDD files were complete and in compliance with requirements. ... DVP-May 2015, Rio Blanco, Colorado U.S. Department of Energy RIN 15057040 October 2015 ...

  16. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis...

    Office of Legacy Management (LM)

    ... was used to verify that the EDD files were complete and in compliance with requirements. ... DVP-May 2015, Rulison, Colorado U.S. Department of Energy RIN 15057039 October 2015 Page ...

  17. Certificate in Environmental Monitoring Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certificate in Environmental Monitoring Program Description Since a primary goal of the Neighborhood Environmental Watch Network (NEWNET) project is to provide information to the public, it is fitting that there are appropriate education programs. NEWNET has collaborated with several local high schools and colleges by providing them with local NEWNET stations. Some teaching curricula include a study of radiation and detection, data acquisition and plotting, meteorology, or uses of computers.

  18. Update on the Stockpile Monitor Program

    SciTech Connect (OSTI)

    Rivera, T.; Harry, H.H.

    1999-04-01

    In 1991 the Los Alamos National Laboratory (LANL) launched a program to develop a comprehensive database of warhead storage conditions. Because of the extended lifetimes expected of the Stockpile, it became desirable to obtain as much detailed information on the storage environments as possible. Temperature and relative humidity at various facilities capable of storing and/or handling nuclear weapons were used as monitoring locations. The Stockpile Monitor Program (SMP) was implemented in a variety of locations as illustrated in a figure. Probably the most useful data come from the most extreme conditions monitored. The hottest outside temperatures and relative humidities come from Barksdale, while some of the lowest relative humidity values come from Nellis, which continue to be monitored. The coldest conditions come from Grand Forks, Griffiss, and KI Sawyer, none of which are presently being monitored. For this reason, the authors would like to begin monitoring Minot, ND. The outside extreme temperatures are ameliorated by the structures to a significant degree. For example, the hottest outside temperature (120 F) is contrasted by the corresponding cooler inside temperature (85 F), and the coldest outside temperature ({minus}35 F) is contrasted by the corresponding warmer inside temperature (+25 F). These data have become useful for calculations related to stockpile-to-target sequence (STS) and other analyses. SMP information has been provided to a number of outside agencies.

  19. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  20. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  1. Radiation Exposure Monitoring Systems Program Policy for Submitting...

    Broader source: Energy.gov (indexed) [DOE]

    Reporting Guide. Radiation Exposure Monitoring Systems Program Policy for Submitting of PII information (11.69 KB) More Documents & Publications Radiation Exposure Monitoring ...

  2. Review of present groundwater monitoring programs at the Nevada Test Site

    SciTech Connect (OSTI)

    Hershey, R.L.; Gillespie, D.

    1993-09-01

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.

  3. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  4. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  5. Farmland Mapping and Monitoring Program | Open Energy Information

    Open Energy Info (EERE)

    Mapping and Monitoring Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Farmland Mapping and Monitoring ProgramLegal Abstract...

  6. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  7. WPN 16-4: Weatherization Assistance Program Monitoring Guidance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: Weatherization Assistance Program Monitoring Guidance WPN 16-4: Weatherization Assistance Program Monitoring Guidance Effective: Dec. 17, 2015 To issue updated monitoring policy and procedures for the Weatherization Assistance Program (WAP). WPN 16-4: Weatherization Assistance Program Monitoring Guidance (422.19 KB) Grantee PM Checklist (519.85 KB) Subgrantee Checklist (254.08 KB) Grantee Programmatic Management Changes (614.68 KB) Subgrantee Checklist Changes (433.97

  8. United States Environmental Protection Agency Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nevada, and Utah counties near the Nevada Test ... Admi.nistration Energy Research and Development ... Hydrological Monitoring Program meter minimum detectable ...

  9. Ecological Monitoring and Compliance Program 2006 Report

    SciTech Connect (OSTI)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were

  10. Ecological Monitoring and Compliance Program 2006 Report

    SciTech Connect (OSTI)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were

  11. Ecological Monitoring and Compliance Program Fiscal Year 2000 Report

    SciTech Connect (OSTI)

    Wills, C.A.

    2000-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, Nevada Operations Office, monitors the ecosystem of he Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2000. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance,(3) ecosystem mapping, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conducted for 24 NTS projects. Seventeen sites were in desert tortoise habitat, and six acres of tortoise habitat were documented as being disturbed this year. No tortoises were found in or displaced from project areas, and no tortoises were accidentally injured or killed. A topical report describing the classification of habitat types o n the NTS was completed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. A long-term monitoring plan for important plant species that occur on the NTS was completed. Sitewide inventories were conducted for the western burrowing owl, bat species of concern, wild horses, raptor nests, and mule deer. Fifty-nine of 69 known owl burrows were monitored. Forty-four of the known burrows are in disturbed habitat. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid-March to early April. A total of 45 juvenile owls was detected from eight breeding pairs. One nest burrow was detected in the Mojave Desert,one in the Great Basin Desert, and six in the Transition

  12. Sandia National Laboratories California Environmental Monitoring Program Annual Report.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2007-03-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  13. Radiation Exposure Monitoring Systems Program Policy for Submitting of PII

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information | Department of Energy Exposure Monitoring Systems Program Policy for Submitting of PII information Radiation Exposure Monitoring Systems Program Policy for Submitting of PII information ‎December 17, ‎2015 The REMS Program Policy for submitting of PII information in accordance with the Office of Environment, Health, Safety and Security (EHSS) under DOE Order 231.1B and the REMS Reporting Guide. Radiation Exposure Monitoring Systems Program Policy for Submitting of PII

  14. Monitoring Plan for Weatherization Assistance Program, State Energy Program, Energy Efficiency and Conservation Block Grants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Monitoring Plan for Weatherization Assistance Program State Energy Program Energy Efficiency and Conservation Block Grants Revised: June 30, 2010 U.S. Department of Energy Office of Weatherization and Intergovernmental Program Monitoring Plan for Weatherization Assistance Program State Energy Program Energy Efficiency and Conservation Block Grants Concurrences:

  15. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and

  16. Ecological Monitoring and Compliance Program 2014 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent

    2015-05-12

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2014. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2014, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives. Sensitive and protected/regulated species of the NNSS include 42 plants, 1 mollusk, 2 reptiles, 236 birds, and 27 mammals. These species are protected, regulated, or considered sensitive according to state or federal regulations and natural resource agencies and organizations. The desert tortoise (Gopherus agassizii) and the western yellow-billed cuckoo (Coccyzus americanus) are the only species on the NNSS protected under the Endangered Species Act, both listed as threatened. However, only one record of the cuckoo has ever been documented on the NNSS, and there is no good habitat for this species on the NNSS. It is considered a rare migrant. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 18 projects. A total of 199.18 hectares (ha) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found during these surveys included a predator burrow, one sidewinder rattlesnake (Crotalus cerastes), two mating speckled rattlesnakes

  17. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a ``clean`` site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  18. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a clean'' site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  19. DATA MONITORING AND ANALYSIS PROGRAM MANUAL

    SciTech Connect (OSTI)

    Gravois, Melanie

    2007-07-06

    This procedure provides guidelines and techniques for analyzing and trending data using statistical methods for Lawrence Berkeley National Laboratory (LBNL). This procedure outlines the steps used in data analysis and trending. It includes guidelines for performing data analysis and for monitoring (or controlling) processes using performance indicators. This procedure is used when trending and analyzing item characteristics and reliability, process implementation, and other quality-related information to identify items, services, activities, and processes needing improvement, in accordance with 10 CFR Part 830, Subpart A, U.S. Department of Energy (DOE) Order 414.1C, and University of California (UC) Assurance Plan for LBNL. Trend codes, outlined in Attachment 4, are assigned to issues at the time of initiation and entry into the Corrective Action Tracking System (CATS) database in accordance with LBNL/PUB-5519 (1), Issues Management Program Manual. Throughout this procedure, the term performance is used to encompass all aspects of performance including quality, timeliness, efficiency, effectiveness, and reliability. Data analysis tools are appropriate whenever quantitative information describing the performance of an item, service, or process can be obtained.

  20. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  1. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    SciTech Connect (OSTI)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  2. Ecological Monitoring and Compliance Program Fiscal Year 2003 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2003-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2003.

  3. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-12-31

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  4. [A data collection program focused on hydrologic and meteorologic parameters in an Arctic ecosystem

    SciTech Connect (OSTI)

    Kane, D.

    1992-01-01

    The hydrologic cycle of an arctic watershed is dominated by such physical elements as snow, ice, permafrost, seasonally frozen soils, wide fluctuations in surface energy balance and phase change of snow and ice to water. At Imnavait basin, snow accumulation begins in September or early October and maximum snowpack water equivalent is reached just prior to the onset of ablation in mid May. No significant mid winter melt occurs in this basin. Considerable snowfall redistribution by wind to depressions and valley bottom is evident. Spring snowmelt on the North Slope of Alaska is the dominant hydrologic event of the year.This event provides most of the moisture for use by vegetation in the spring and early summer period. The mechanisms and timing of snowmelt are important factors in predicting runoff, the migrations of birds and large mammals and the diversity of plant communities. It is important globally due to the radical and abrupt change in the surface energy balance over vast areas. We were able to explore the trends and differences in the snowmelt process along a transect from the Brooks Range to the Arctic Coastal plain. Snowpack ablation was monitored at three sites. These data were analyzed along with meteorologic data at each site. The initiation of ablation was site specific being largely controlled by the complementary addition of energy from radiation and sensible heat flux. Although the research sites were only 115 km apart, the rates and mechanisms of snowmelt varied greatly. Usually, snowmelt begins at the mid-elevations in the foothills and progresses northerly toward the coast and southerly to the mountains. In the more southerly areas snowmelt progressed much faster and was more influenced by sensible heat advected from areas south of the Brooks Range. In contrast snowmelt in the more northerly areas was slower and the controlled by net radiation.

  5. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect (OSTI)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  6. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted "active" status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted "inactive" status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  7. Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report | Department of Energy Systems for EGS; 2010 Geothermal Technology Program Peer Review Report Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_026_normann.pdf (193.57 KB) More Documents & Publications Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

  8. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    SciTech Connect (OSTI)

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  9. The community environmental monitoring program: a historical perspective

    SciTech Connect (OSTI)

    Karr, L.H.; Hartwell, W.T.; Tappen, J.; Giles, K.

    2007-07-01

    With the Community Environmental Monitoring Program (CEMP) entering its 26. year of monitoring the offsite areas around the Nevada Test Site (NTS), a look back on the history and the hows and whys of its formation is in order. In March of 1979, the accident at Three-Mile Island Nuclear Power Generating Plant near Middletown, Pennsylvania occurred, and Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV), along with other governmental agencies such as the U.S. Department of Energy (DOE), was requested to provide monitoring personnel. Public concerns over the accident were high, especially for those living around the power plant. It was found that involving the local community in the sample collection process helped to ease some of the concerns, and the Citizens Monitoring Program (CMP) was instituted. This idea was brought back to Las Vegas and in 1981, the NTS Community Monitoring Program was started to involve the communities surrounding and downwind of the NTS, who were experiencing many of the same concerns, in the monitoring of the Nuclear Weapons Testing Program. By reviewing the history of the CEMP, one can see what the concerns of the local communities were, how they were addressed, and the effect this has had on them. From the standpoint of stakeholders, getting information on radiation safety issues from an informed local citizen rather than from a government agency official living elsewhere can only have a positive effect on how the public views the reliability of the monitoring data. (authors)

  10. Monitoring activities review of the Radiological Environmental Surveillance Program

    SciTech Connect (OSTI)

    Ritter, P.D.

    1992-03-01

    The 1992 Monitoring Activities Review (MAR) is directed at the Radiological Environment Surveillance Program (RESP) activities at the Radioactive Waste Management Complex (RWMC) of Idaho Engineering Laboratory (INEL). MAR panelists studied RESP documents and discussed their concerns with Environmental Monitoring Unit (EMU) staff and other panel members. These concerns were subsequently consolidated into a collection of recommendations with supporting discussions. Recommendations focus on specific monitoring activities, as well as the overall program. The MAR report also contains pertinent comments that should not require further action.

  11. WIPP Monitoring Program Ensures Worker Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring Program Ensures Worker Safety WIPP Monitoring Program Ensures Worker Safety March 3, 2011 - 12:00pm Addthis Media Contact Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - Officials with the U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) are citing the recent accreditation of the Waste Isolation Pilot Plant (WIPP) Laboratory as a cause for reflection on the important role environmental monitoring has played during WIPP's 12-year history. In

  12. The data collection component of the Hanford Meteorology Monitoring Program

    SciTech Connect (OSTI)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  13. WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance

    Broader source: Energy.gov [DOE]

    To issue the updated monitoring policy and procedures for the Weatherization Assistance Program (WAP) for both annual Appropriated awards and for the Recovery Act awards, which includes the Sustainable Energy Resources for Consumers (SERC) Awards. This updated Guidance excludes the Weatherization Innovative Pilot Program (WIPP) and Weatherization Training Centers (WTC).

  14. Process monitoring using a Quality and Technical Surveillance Program

    SciTech Connect (OSTI)

    Rafferty, C.A.

    1995-02-01

    The purpose of process monitoring using a Quality and Technical Surveillance Program was to help ensure manufactured clad vents sets fully met technical and quality requirements established by the manufacturer and the customer, and that line and program management were immediately alerted if any aspect of the manufacturing activities drifted out of acceptable limits. The Quality and Technical Surveillance Program provided a planned, scheduled approach to monitor key processes and documentation illuminated potential problem areas early enough to permit timely corrective actions to reverse negative trends that, if left uncorrected, could have resulted in deficient hardware. Significant schedule and cost impacts were eliminated.

  15. Planning aquatic ecosystem restoration monitoring programs

    SciTech Connect (OSTI)

    Thom, R.M.; Wellman, K.F.

    1997-01-01

    This study was conducted as part of the Evaluation of Environmental Investments Research Program (EEIRP). The EEIRP is sponsored by the US Army Corps of Engineers. The objectives of this work are to (1) identify relevant approaches and features for environmental investment measures to be applied throughout the project life; (2) develop methods to access the effectiveness of the approach or feature for providing the intended environmental output; (3) develop and provide guidance for formulating environmental projects; and (4) provide guidance for formulating and identifying relevant cost components of alternate restoration plans.

  16. Active sites environmental monitoring program FY 1997 annual report

    SciTech Connect (OSTI)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1998-03-01

    This report summarizes the activities conducted by the Active Sites Environmental Monitoring Program (ASEMP) from October 1996 through September 1997. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring results for fiscal year (FY) 1997 from SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), and (2) TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the FY 1997 results. Figures referenced in the text are found in Appendix A and data tables are presented in Appendix B.

  17. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect (OSTI)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  18. A reactor core on-line monitoring program - COMP

    SciTech Connect (OSTI)

    Wang, C.; Wu, H.; Cao, L.

    2012-07-01

    A program named COMP is developed for on-line monitoring PWRs' in-core power distribution in this paper. Harmonics expansion method is used in COMP. The Unit 1 reactor of Daya Bay Nuclear Power Plant (Daya Bay NPP) in China is considered for verification. The numerical results show that the maximum relative error between measurement and reconstruction results from COMP is less than 5%, and the computing time is short, indicating that COMP is capable for online monitoring PWRs. (authors)

  19. Citizen radiation monitoring program for the TMI area

    SciTech Connect (OSTI)

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  20. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect (OSTI)

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  1. Active sites environmental monitoring program FY 1995 annual report

    SciTech Connect (OSTI)

    Morrissey, C.M.; Cunningham, G.R.

    1996-07-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1994 though September 1995. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by DOE orders.

  2. Ecological Monitoring and Compliance Program Fiscal Year 1998 Report

    SciTech Connect (OSTI)

    Bechtel Nevada Ecological Services

    1998-10-01

    The Ecological Monitoring and Compliance program, funded through the U. S. Department of Energy/Nevada Operations Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 1998. Twenty-one sites for seven projects were surveyed for the presence of state or federally protected species. Three projects were in or near habitat of the threatened desert tortoise and required special clearance and transect surveys. All geospatial data collected were entered into Bechtel Nevada's Ecological Geographic Information system for use in ongoing ecosystem management of the NTS.

  3. Nonradiological liquid effluent monitoring program. 1992 annual report

    SciTech Connect (OSTI)

    Johnson, J.A.; Peterson-Wright, L.J.; Meachum, T.R.

    1993-08-01

    A monitoring program for nonradioactive parameters and pollutants in liquid effluents was initiated in October 1985 for facilities operated by EG&G Idaho, Inc., for the U.S. Department of Energy at the Idaho National Engineering Laboratory. Program design and implementation are discussed in this report. Design and methodologies for sampling, analysis, and data management are also discussed. Monitoring results for 28 liquid effluent streams from (October 1991 through December 1992) are presented with emphasis on calendar year 1992 activities. All parameter measurements and concentrations were below the Resource Conservation and Recovery Act toxic characteristics limits.

  4. Lake Roosevelt Fisheries Monitoring Program; 1988-1989 Annual Report.

    SciTech Connect (OSTI)

    Peone, Tim L.; Scholz, Allan T.; Griffith, James R.

    1990-10-01

    In the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program (NPPC 1987), the Council directed the Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries as partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam [Section 903 (g)(l)(C)]. The hatcheries will produce kokanee salmon for outplanting into Lake Roosevelt as well as rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen program. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) a year-round, reservoir-wide, creel survey to determine angler use, catch rates and composition, and growth and condition of fish; (2) assessment of kokanee, rainbow, and walleye (Stizostedion vitreum) feeding habits and densities of their preferred prey, and; (3) a mark and recapture study designed to assess the effectiveness of different locations where hatchery-raised kokanee and net pen reared rainbow trout are released. The above measures were adopted by the Council based on a management plan, developed by the Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and National Park Service, that examined the feasibility of restoring and enhancing Lake Roosevelt fisheries (Scholz et al. 1986). In July 1988, BPA entered into a contract with the Spokane Indian Tribe to initiate the monitoring program. The projected duration of the monitoring program is through 1995. This report contains the results of the monitoring program from August 1988 to December 1989.

  5. Monitoring and evaluation of green public procurement programs

    SciTech Connect (OSTI)

    Adell, Aure; Schaefer, Bettina; Ravi, Kavita; Corry, Jenny

    2013-10-15

    Effective procurement policies can help governments save considerable amounts of money while also reducing energy consumption. Additionally, private sector companies which purchase large numbers of energy-consuming devices can benefit from procurement policies that minimize life-cycle energy costs. Both public and private procurement programs offer opportunities to generate market-transforming demand for energy efficient appliances and lighting fixtures. In recent years, several governments have implemented policies to procure energy efficient products and services. When deploying these policies, efforts have focused on developing resources for implementation (guidelines, energy efficiency specifications for tenders, life cycle costing tools, training, etc.) rather than defining monitoring systems to track progress against the set objectives. Implementation resources are necessary to make effective policies; however, developing Monitoring and Evaluation (M and E) mechanisms are critical to ensure that the policies are effective. The purpose of this article is to provide policy makers and procurement officials with a preliminary map of existing approaches and key components to monitor Energy Efficient Procurement (EEP) programs in order to contribute to the improvement of their own systems. Case studies are used throughout the paper to illustrate promising approaches to improve the M and E of EEP programs, from the definition of the system or data collection to complementary instruments to improve both the monitoring response and program results.

  6. Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised: October 22, 2010 U.S. Department of Energy American Recovery and Reinvestment Act Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Appendix of Compliance Checklists Monitoring Plan for Weatherization Assistance Program State Energy Program Energy Efficiency and Conservation Block Grants U.S. Department of Energy Appendix of Compliance Checklists October 22, 2010 Concurrences: LeAnn M. Oliver Program Manager, Weatherization &

  7. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    SciTech Connect (OSTI)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned

  8. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM)more » Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM

  9. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  10. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  11. Environmental monitoring program for DOE Middlesex, New Jersey site

    SciTech Connect (OSTI)

    Poff, T.A.; Brown, J.A.; Ficker, C.F.

    1981-10-01

    The Middlesex Sampling Plant Site (MSPS) is a United States Department of Energy (DOE) owned facility formerly used for processing and storage of radioactive materials, and currently utilized for interim storage of low level radioactive residues resulting from the cleanup of surrounding properties. The site occupies 9.61 acres of industrial property at 239 Mountain Avenue in the Borough of Middlesex, New Jersey. As a result of work done at the site from 1943 to 1955, in processing uranium and thorium ores and concentrates, the site, as well as a number of properties in the vicinity, has been contaminated with radioactive residues. The purpose of this report is to describe environmental surveillance/monitoring programs previously and currently conducted at the MSPS. This information will be essential for interpretation of current data, and for developing and implementing future monitoring programs at the site. The program of environmental monitoring is divided into two phases: (1) routine long-term surveillance and (2) non-routine monitoring during remedial action. In the pre-remedial action period and during the time following remedial work, only routine surveillance of the site is necessary to ensure against contamination of offsite areas. While decontamination work is actually in progress, several changes in surveillance strategy are necessary. There is an increase both in parameters measured, as well as in frequency of measurements. Often this includes the addition of many new sampling stations, and parameters to be sampled, often on a one time only, or very limited basis.

  12. The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network

    SciTech Connect (OSTI)

    Hartwell, W.T.; Tappen, J.; Karr, L.

    2007-01-19

    This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to

  13. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect (OSTI)

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution

  14. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  15. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  16. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  18. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    SciTech Connect (OSTI)

    Rogers, C.D. )

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  19. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  20. Ecological Monitoring and Compliance Program Fiscal Year 2002 Report

    SciTech Connect (OSTI)

    C. A. Wills

    2002-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada (BN) during fiscal year 2002. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species and important biological resources were conducted for 26 NTS projects. These projects have the potential to disturb a total of 374 acres. Thirteen of the projects were in desert tortoise habitat, and 13.38 acres of desert tortoise habitat were disturbed. No tortoises were found in or displaced from project areas, and no tortoises were accidentally injured or killed at project areas or along paved roads. Compilation of historical wildlife data continued this year in efforts to develop faunal distribution maps for the NTS. Photographs associated with the NTS ecological landform units sampled to create the NTS vegetation maps were cataloged for future retrieval and analysis. The list of sensitive plant species for which long-term population monitoring is scheduled was revised. Six vascular plants and five mosses were added to the list. Plant density estimates from ten populations of Astragalus beatleyae were collected, and eight known populations of Eriogonum concinnum were visited to assess plant and habitat status. Minimal field monitoring of western burrowing owl burrows occurred. A report relating to the ecology of the western burrowing owl on the Nevada Test Site was prepared which summarizes four years of data collected on this species' distribution

  1. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  2. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect (OSTI)

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  3. PROGRESS REPORT ON THE BIOLOGICAL MONITORING PROGRAM FOR THE

    Office of Legacy Management (LM)

    PROGRESS REPORT ON THE BIOLOGICAL MONITORING PROGRAM FOR THE MONTICELLO, UTAH, MILL SITE: AUGUST 1996 SAMPLING PERIOD J. G. Smith M. J. Peterson M. G. Ryon G. R. Southworth Date: March 3, 1997 Prepared for G. A. Pierce Health and Safety Research Division Environmental Technology Section OakRidge National Laboratory Grand Junction, Colorado Prepared by Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the

  4. Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed

  5. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDRO-2014 Hydrological Investigations United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix HYDRO-2014 Table of Contents HYDRO-1.0 Hydrological Studies HYDRO-2.0 Optimization of Culebra Monitoring Well Network HYDRO-3.0 Geochemical Analyses HYDRO-4.0 Steel-Cased Well Reconfiguration and Replacement HYDRO-5.0 Geological Information HYDRO-6.0 Hydraulic Test Interpretation HYDRO-7.0 Monitoring

  6. Active Sites Environmental Monitoring Program FY 1994 annual report

    SciTech Connect (OSTI)

    Morrissey, C.M.; Cunningham, G.R.

    1998-04-01

    Chapter III of the US Department of Energy (DOE) Order 5820.2A (DOE 1988) specifies requirements for the management of facilities that were used for the disposal of radioactive solid low-level waste (LLW) on or after the date of the order (September 26, 1988). Activities in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) are governed by Chapter III. Chapter II of 5820.2A covers the transuranic (TRU) waste storage areas in SWSA 5 North at ORNL. Both chapters require environmental monitoring to provide early warning of leaks before such leaks pose a threat to human health or the environment. Chapter III also requires the monitoring of LLW disposal facilities so that their performance can be evaluated. In order to comply with this Order, the Environmental Sciences Division (ESD) at ORNL implements the Active Sites Environmental Monitoring Program (ASEMP) for the Radioactive Solid Waste Operations (RSWO) Department within the Waste Management and Remedial Action Division (WMRAD) at ORNL. The scope of the ASEMP includes all ORNL waste disposal sites that were active on or after the date of the Order and that are under the operational control of the RSWO Department of WMRAD. This report continues a series of annual and semiannual reports that present the results of ASEMP monitoring activities. This report details monitoring data for fiscal year (FY) 1994 and is divided into three major areas: SWSA 6, including the Interim Waste Management Facility (IWMF) and the Hillcut Disposal Test Facility (HDTF), the low-level Liquid-Waste Solidification Project (LWSP), and the TRU-waste storage areas in SWSA 5 N. This report presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1994. Tables of data collected are presented in Appendix A. Program-specific procedures used to collect the data are presented at the end of the report in Appendix B.

  7. Hydrologic Modeling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine

  8. Lake Roosevelt Fisheries Monitoring Program; 1990 Annual Report.

    SciTech Connect (OSTI)

    Griffith, Janelle R.; Scholz, Allan T.

    1991-09-01

    As partial mitigation for the loss of anadromous salmon and steelhead incurred by construction of Grand Coulee Dam, the Northwest Power Planning Council directed Bonneville Power Administration (BPA) to construct two kokanee salmon (Oncorhynchus nerka) hatcheries on Lake Roosevelt (NPPC 1987 [Section 903 (g)(l)(C)]). The hatcheries are to produce 8 million kokanee salmon fry or 3.2 million adults for outplanting into Lake Roosevelt as well as 500,000 rainbow trout (Oncorhynchus mykiss) for the Lake Roosevelt net-pen programs. In section 903 (g)(l)(E), the Council also directed BPA to fund a monitoring program to evaluate the effectiveness of the kokanee hatcheries. The monitoring program included the following components: (1) conduction of a year-round creel census survey to determine angler pressure, catch rates and composition, growth and condition of fish caught by anglers, and economic value of the fishery. Comparisons will be made before and after hatcheries are on-line to determine hatchery effectiveness; (2) conduct an assessment of kokanee, rainbow trout, and walleye feeding habits, growth rates, and densities of their preferred prey at different locations in the reservoir and how reservoir operations affect population dynamics of preferred prey organisms. This information will be used to determine kokanee and rainbow trout stocking locations, stocking densities and stocking times; (3) conduct a mark-recapture study designed to assess effectiveness of various release times and locations for hatchery-raised kokanee and net-pen raised rainbow so fish-loss over Grand Coulee Dam will be minimized, homing to egg collection sites will be improved and angler harvest will be increased. The above measures were adopted by the Council based on a management plan developed by Upper Columbia United Tribes Fisheries Center, Spokane Indian Tribe, Colville Confederated Tribes, Washington Department of Wildlife, and the National Park Service. This plan examined the

  9. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  10. Ecological Monitoring and Compliance Program Fiscal Year 2001

    SciTech Connect (OSTI)

    C. A. Wills

    2001-12-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2001. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, and (5) biological monitoring at the HAZMAT Spill Center. Biological surveys for the presence of sensitive species were conducted for 23 NTS projects. Eleven sites were in desert tortoise habitat. These projects have the potential to disturb a total of 588 acres, where 568 acres of disturbance would be off-road driving. No tortoises were found in or displaced from project areas, and no tortoise s were accidentally injured or killed at project areas. One tortoise was crushed by a vehicle on a paved road. A topical report describing the classification of habitat types on the NTS was completed and distributed. The report is the culmination of three years of field vegetation mapping and the analysis of vegetation data from over 1,500 ecological landform units. Compilation of historical wildlife data was initiated. A long-term monitoring plan for important plant species that occur on the NTS was completed. Site-wide monitoring was conducted for the western burrowing owl, bat species of concern, wild horses, and raptor nests. Sixty-nine of 77 known owl burrows were monitored. As in previous years, some owls were present year round on the NTS. An overall decrease in active owl burrows was observed within all three ecoregions (Mojave Desert, Transition, Great Basin Desert) from October through January. An increase in active owl burrows was observed from mid March to early April. A

  11. The community environmental monitoring program: a model for stakeholder involvement in environmental monitoring

    SciTech Connect (OSTI)

    Hartwell, William T.; Shafer, David S.

    2007-07-01

    Since 1981, the Community Environmental Monitoring Program (CEMP) has involved stakeholders directly in its daily operation and data collection, as well as in dissemination of information on radiological surveillance in communities surrounding the Nevada Test Site (NTS), the primary location where the United States (US) conducted nuclear testing until 1992. The CEMP is funded by the US Department of Energy's National Nuclear Security Administration, and is administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. The CEMP provides training workshops for stakeholders involved in the program, and educational outreach to address public concerns about health risk and environmental impacts from past and ongoing NTS activities. The network includes 29 monitoring stations located across an approximately 160,000 km{sup 2} area of Nevada, Utah and California in the southwestern US. The principal radiological instruments are pressurized ion chambers for measuring gamma radiation, and particulate air samplers, primarily for alpha/beta detection. Stations also employ a full suite of meteorological instruments, allowing for improved interpretation of the effects of meteorological events on background radiation levels. Station sensors are wired to state-of-the-art data-loggers that are capable of several weeks of on-site data storage, and that work in tandem with a communications system that integrates DSL and wireless internet, land line and cellular phone, and satellite technologies for data transfer. Data are managed through a platform maintained by the Western Regional Climate Center (WRCC) that DRI operates for the U.S. National Oceanic and Atmospheric Administration. The WRCC platform allows for near real-time upload and display of current monitoring information in tabular and graphical formats on a public web site. Archival data for each station are also available on-line, providing the ability to perform trending analyses or calculate

  12. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Elvado Environmental LLC

    2009-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on

  13. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  14. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2011

    SciTech Connect (OSTI)

    2011-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco site for the LTHMP on May 16 and 17, 2011. The samples were shipped to the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada, for analysis. All requested analyses were successfully completed, with the exception of the determination of tritium concentration by the enrichment method, because the laboratory no longer provides that service. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and tritium using the conventional method. Starting in 2012, DOE will retain a different laboratory that provides the enriched tritium analysis service.

  15. RWMC Performance Assessment/Composite Analysis Monitoring Program Report - FY 2002

    SciTech Connect (OSTI)

    Ritter, Paul David; Parsons, Alva Marie

    2002-09-01

    US DOE Order 435.1, Radioactive Waste Management, Chapter IV and the associated implementation manual and guidance require monitoring of low-level radioactive waste (LLW) disposal facilities. The Performance Assessment/Composite Analysis (PA/CA) Monitoring program was developed and implemented to meet this requirement. This report represents the results of PA/CA monitoring projects that are available as of September 2002. The technical basis for the PA/CA program is provided in the PA/CA Monitoring Program document and a program description document (PDD) serves as the quality assurance project plan for implementing the PM program. Subsurface monitoring, air pathway surveillance, and subsidence monitoring/control are required to comply with DOE Order 435.1, Chapter IV. Subsidence monitoring/control and air pathway surveillance are performed entirely by other INEEL programs - their work is summarized herein. Subsurface monitoring includes near-field (source) monitoring of buried activated beryllium and steel, monitoring of groundwater in the vadose zone, and monitoring of the Snake River Plain Aquifer. Most of the required subsurface monitoring information presented in this report was gathered from the results of ongoing INEEL monitoring programs. This report also presents results for several new monitoring efforts that have been initiated to characterize any migration of radionuclides in surface sediment near the waste.

  16. Sandia National Laboratories California Environmental Monitoring Program Annual Report for Calendar Year 2005.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2006-02-01

    The annual program report provides detailed information about all aspects of the SNL/CA Environmental Monitoring Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 Update program report describes the activities undertaken during the past year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/CA.

  17. Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2011-03-01

    The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

  18. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    SciTech Connect (OSTI)

    2006-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  19. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect (OSTI)

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  20. Load Monitoring CEC/LMTF Load Research Program

    SciTech Connect (OSTI)

    Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

    2007-11-30

    This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

  1. Guidance for State Energy Program Grantees on Sub-Recipient Monitoring

    Broader source: Energy.gov [DOE]

    EECBG 10-019 Guidance for Grantees on Sub-recipient Monitoring EECBG Program Notice 10-019 effective October 26, 2010

  2. Design of a basinwide monitoring program for the Tampa Bay estuary. Final technical pub

    SciTech Connect (OSTI)

    Hochberg, R.J.; Weisberg, S.B.; Frithsen, J.B.

    1992-10-30

    The Tampa Bay National Estuary Program (TBNEP) is developing a Comprehensive Conservation and Management Plan (CCMP) to recommend management actions for protecting the Tampa Bay estuary. The purpose of the document is to facilitate development of the monitoring program by assisting the TBNEP to define the objectives of a monitoring program for Tampa Bay identifying indicators and a sampling design that are appropriate to those objectives, and identifying how existing Tampa Bay monitoring programs can be incorporated and modified (if necessary) to meet the monitoring objectives.

  3. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    SciTech Connect (OSTI)

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; Fritz, Brad G.; Szecsody, Jim E.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoring strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.

  4. In Vivo Monitoring Program Manual, PNL-MA-574, Rev 5.1

    SciTech Connect (OSTI)

    Lynch, Timothy P.

    2011-09-12

    The following sections provide an overview of the administration for the In Vivo Monitoring Program (IVMP) for Hanford. This includes the organizational structure and program responsibilities; coordination of in vivo measurements; scheduling measurements; performing measurements; reporting results; and quality assurance.

  5. The Savannah River Site Groundwater Monitoring Program Fourth Quarter 2000 (October thru December 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-08-02

    This report summarizes the Groundwater Monitoring Program conducted by SRS during fourth quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program.

  6. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; et al

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  7. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  8. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  9. The Savannah River Site`s Groundwater Monitoring Program, First Quarter 1996, Volumes I and II

    SciTech Connect (OSTI)

    Rogers, C.D.

    1996-10-22

    This report summarizes the Savanna River Site (SRS) Groundwater Monitoring Program conducted by EPD/EMS during the first quarter 1996. It includes the analytical data, field data, data review, quality control, and other documentation for this program. It also provides a record of the program`s activities and serves as an official record of the analytical results.

  10. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  11. The Savannah River site`s groundwater monitoring program: second quarter 1997

    SciTech Connect (OSTI)

    Rogers, C.D.

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  12. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  13. Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-03-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information required for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.

  14. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.

  15. Microsoft Word - WIPP Monitoring Program Ensures Worker Safety1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isolation Pilot Plant (WIPP) Laboratory as a cause for reflection on the important role environmental monitoring has played during WIPP's 12-year history. In February, the WIPP...

  16. The Savannah River Plant`s Groundwater Monitoring Program - second quarter 1987

    SciTech Connect (OSTI)

    1996-10-01

    This report is a summary of the groundwater monitoring program conducted by the Environmental Monitoring Group of the Health Protection Department in the second quarter of 1987 and includes the analytical results, field data, and detailed documentation for this program. The purpose of this report is twofold. First, the report provides a historical record of the activities and the rationale of the program; second, it provides an official document of the analytical results.

  17. The Savannah River Site`s Groundwater Monitoring Program. First quarter, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program`s activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  18. Model quality assurance program for environmental monitoring of reactor and nonreactor facilities

    SciTech Connect (OSTI)

    Khalil, M.M.; Hetrick, C.S.; Tuckfield, R.C. )

    1991-11-01

    The US Department of Energy (DOE) has raised specific concerns regarding the reliability of the work being performed by DOE's subcontract laboratories. This concern precipitated from the investigation of three major laboratories performing analyses for DOE sites during 1990. During the last 3 years, a comprehensive quality assurance (QA) improvement program was established for the radiological and nonradiological environmental monitoring programs at the Savannah River site (SRS). The primary objective of the program is to ensure that accurate, precise, and defensible environmental monitoring data are produced in house and within subcontract laboratories. The program is built into the routine activities of the environmental monitoring section (EMS) laboratory as established in DOE Order 5700.6B/NQA-1 and can be used as a model for environmental monitoring of reactor and nonreactor facilities, waste characterization, and analysis programs.

  19. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  20. The Savannah River Site's Groundwater Monitoring Program Third Quarter 1998 (July through September 1998)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-05-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  2. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    2000-09-05

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  3. The Savannah River Site's Groundwater Monitoring Program First Quarter 2000 (January through March 2000)

    SciTech Connect (OSTI)

    Dukes, M.

    2000-11-16

    This report summarizes the Groundwater Monitoring Program conducted by SRS during first quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  4. The Savannah River Site's Groundwater Monitoring Program Second Quarter 2000 (April through June 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-04-17

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  5. The Savannah River Site's Groundwater Monitoring Program Third Quarter 2000 (July through September 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-05-02

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  6. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-08

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  7. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-05-26

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  8. The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)

    SciTech Connect (OSTI)

    Hutchison, J B

    1999-02-10

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

  9. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2005-09-01

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  10. The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

  11. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  12. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Ritter, Jason C. ); Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-10-30

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001).

  13. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  14. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  15. Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrologic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of ... Cover Illustration: Schematic of time-lapse hydrological and geophysical monitoring data ...

  16. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  17. Program to monitor Department of Energy workers exposed to hazardous and radioactive substances

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 CHAPTER 42 SUBCHAPTER VI Part C 5 2733 Program to monitor Department of Energy workers exposed to hazardous and radioactive substances (a) In general The Secretary shall establish and carry out a program for the identification and on-going medical evaluation of current and former Department of Energy employees who are subject to significant health risks as a result of the exposure of such employees to hazardous or radioactive substances during such empIoyment. (b) Implementation of program (

  18. Monitored retrievable storage submission to Congress: Volume 3, Monitored retrievable storage program plan. [Contains glossary

    SciTech Connect (OSTI)

    1987-03-01

    This document presents the current DOE program objectives and the strategy for implementing the proposed program for the integral MRS facility. If the MRS proposal is approved by Congress, any needed revisions to the Program Plan will be made available to the Congress, the State of Tennessee, affected Indian tribes, local governments, other federal agencies, and the public. The proposal for constructing an MRS facility must include: the establishment of a federal program for the siting, development, construction, and operation of MRS facilities; a plan for funding the construction and operation of MRS facilities; site-specific designs, specifications, and cost estimates for the first such facility; a plan for integrating MRS facilities with other storage and disposal facilities authorized by the NWPA. 32 refs., 14 figs., 1 tab.

  19. RCRA and Operational Monitoring (ROM). Multi-Year Program Plan and Fiscal Year 95 Work Plan WBS 1.5.3

    SciTech Connect (OSTI)

    Not Available

    1994-09-17

    This document contains information concerning the RCRA and Operational Monitoring Program at Hanford Reservation. Information presented includes: Schedules for ground water monitoring activities, program cost baseline, program technical baseline, and a program milestone list.

  20. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.; Ebberts, Blaine D.; Tortorici, Cathy; Yerxa, Tracey; Leary, J.; Skalski, John R.

    2008-02-05

    The purpose ofthis document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision-making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows. 1. Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. 2. Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. 3. Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. 4. Maintain the food web to benefit salmonid performance. 5. Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. In conclusion, the estuary RME effort is designed to meet the research and monitoring needs of the estuary Program using an adaptive management process. Estuary RME's success and usefulness will depend on the actual conduct of adaptive management, as embodied in the objectives, implrementation, data, reporting, and synthesis, evaluation, and decision-making described herein.

  1. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    SciTech Connect (OSTI)

    Maxwell, D.R.

    1995-12-31

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

  2. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    SciTech Connect (OSTI)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  3. Monitoring energy use of copiers to determine program design and potential savings for the Energy Star Copier program

    SciTech Connect (OSTI)

    Dandridge, C.B.; Norford, L.K.; Nordman, B.

    1996-08-01

    In the past five years, considerable attention has been focused on the electricity use of office equipment in commercial office buildings. Several groups have monitored energy use of PCs, monitors, printers and fax machines. However, little attention has been paid to monitoring energy use of copiers. Procedures for testing energy usage and usage profiles of copiers are needed to make valid comparisons between machines and to determine overall energy use and potential energy savings. In this paper, the authors present a method to analyze the energy use and usage profiles of copiers. This method is determined through long-term measurements from a Watt-hour meter connected to the copier and by measuring light flashes from the copier. Energy use from the copier can also be estimated by using a test procedure developed by Dandridge. Results from using the long term monitoring methods will be presented for several different sized copiers, and compared to the estimated energy use derived from the American Society for Testing and Materials (ASTM) method. After summarizing these results, the authors determine criteria for a program to recognize energy-efficient copiers. These criteria were submitted as an Energy Star Copier program to the Environmental Protection Agency (EPA). The new Energy Star Copier Program was announced in July 1995, with criteria based on these suggestions. Using the final Energy Star Copier program criteria and this data, the authors determine potential future savings for the program. The ability to automatically turn the copier off at night is the greatest energy-saving feature most copiers can have. The best way to reduce overall office costs is to have the copier set automatically to make double-sided copies.

  4. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    SciTech Connect (OSTI)

    Blanchard, A.

    1999-03-26

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

  5. Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  6. Mitigation Monitoring and Reporting Program for continued operation of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    A Mitigation Monitoring and Reporting Program, required by the California Environmental Quality Act, was developed by UC as part of the Final EIS/EIR process. This document describing the program is a companion to the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). The Final EIS/EIR analyzes the potential environmental impacts of the proposed action, which for the purposes of NEPA is: continued operation, including near-term (within 5 to 1 0 years) proposed projects, of LLNL and SNL, Livermore. The proposed action for the EIR is the renewal of the contract between DOE and UC for UC`s continued operation and management of LLNL. The Mitigation Monitoring and Reporting Program is for implementing and monitoring progress of measures taken to mitigate the significant impacts of the proposed action. A complete description of the impacts and proposed mitigations is in Section 5 of Volume I of the Final EIS/EIR. This report summarizes the mitigation measures, identifies the responsible party at the Laboratory for implementing the mitigation measure, states when monitoring will be implemented, when the mitigation measure will be in place and monitoring completed, and who will verify that the mitigation measure was implemented.

  7. IRA-F, air quality monitoring program. Volume 2. Appendices. Version 2.0. Final report

    SciTech Connect (OSTI)

    1991-07-01

    This report focuses on activities of the Interim Response Action F (IRA-F) monitoring program at RMA. It provides an analysis of air quality conditions around Basin F, both during and after remedial activities. Included in this report are the details of the air monitoring and analytical procedures for IRA-F and a synopses of other air monitoring programs. The ambient air concentrations for a set of airborne target compounds are summarized. Targets include volatile organics, semi-volatile organics, metals (such as arsenic) and particulates. The results provide the information necessary to describe the potential impacts of Basin F operations and closure on ambient air quality and to characterize the potential sources of the observed concentrations of target compound.

  8. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  9. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.

  10. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect (OSTI)

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  11. Development of a Community Radiation Monitoring program near a nuclear industrial facility

    SciTech Connect (OSTI)

    Pauley, B.J.; Maxwell, D.R.

    1992-01-01

    The Community Radiation Monitoring (ComRad) program is a cooperative effort of the DOE, Rocky Flats Office (RFO), EG G, and surrounding communities. The intent of the ComRad program is to establish radiation and meteorological monitoring stations in the communities for their independent control and use. The primary objectives of the ComRad program are to provide (1) public education, (2) active participation of the public, and (3) better community relations. The ComRad program involves establishing new offsite environmental surveillance stations to be operated and managed by local community science teachers. The general public will be invited to inspect the air quality instrumentation and results displayed. The instrumentation for each station will include a gamma counter, weather station, high-volume (Hi-Vol) air sampler, and thermoluminescent dosimeter (TLD). The purpose of this paper is to describe the operation of the ComRad program emphasizing program objectives, organizational responsibility, participation by community technical representatives, station managers and alternate station managers training, and data dissemination to the public.

  12. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  13. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  14. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  15. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  16. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  17. Community Radiation Monitoring Program; Annual report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Cooper, E.N.; McArthur, R.D.

    1992-06-01

    The Community Radiation Monitoring Program is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (U of U). This eleventh year of the program began in the summer of 1991 and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which the DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of those efforts. One of the primary methods used to improve the communication link with the potentially impacted area has been the hiring and training of local citizens as Managers and program representatives in 19 communities adjacent to and downwind from the NTS. These Managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  18. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  19. Closer look at our neighbors to the south: Air quality trends, standards, and monitoring programs of Latin American countries

    SciTech Connect (OSTI)

    Childers, L.O.; Medina-Vera, M.; Mitchell, W.J.

    1997-09-01

    The Global Environment Monitoring System (GEMS/Air) is a program in which air monitoring data from over 50 countries throughout the world are collected and analyzed. The GEMS/Air program is sponsored by the United Nations Environment Program (UNEP) and the World Health Organization (WHO). As part of a technical systems agreement between the United States Environmental Protection Agency and the UNEP/WHO, collaborative reviews of eighteen Latin American cities were conducted over the past two years. The countries visited include Argentina, Brazil, Chile, Ecuador, and Venezuela. The findings of these reviews and the future direction of air pollution monitoring programs in these countries are presented.

  20. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program.

    SciTech Connect (OSTI)

    Johnson, Gary E.; Diefenderfer, Heida L.

    2008-02-20

    The purpose of this document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program, hereafter called 'the Estuary Program'. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows: (1) Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. (2) Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. (3) Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. (4) Maintain the food web to benefit salmonid performance. (5) Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. The goal leads to three primary management questions pertaining to the main focus of the Estuary Program: estuary habitat conservation and restoration. (1) Are the estuary habitat actions achieving the expected biological and environmental performance targets? (2) Are the offsite habitat actions in the estuary improving juvenile salmonid performance and which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives? (3) What are the limiting factors or threats in the estuary/ocean preventing the achievement of desired habitat or fish performance objectives? Performance measures for the

  1. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect (OSTI)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  2. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  3. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  4. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  5. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  7. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  8. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    SciTech Connect (OSTI)

    Rogers, C.D.

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  9. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    SciTech Connect (OSTI)

    Rogers, C.D.

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  10. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1988

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    The Environmental Monitoring Group of the Health Protection Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1988 (October--December), routine sampling of monitoring wells and drinking water locations was performed. The drinking water samples were collected from Savannah River Site (SRS) drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. The drinking water samples were analyzed for radioactive constituents.

  11. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  12. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  13. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  14. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect (OSTI)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  15. Annual Report of the Integrated Status and Effectiveness Monitoring Program: Fiscal Year 2008

    SciTech Connect (OSTI)

    Terraqua, Inc.

    2009-07-20

    This document was created as an annual report detailing the accomplishments of the Integrated Status and Effectiveness Monitoring Program (ISEMP) in the Upper Columbia Basin in fiscal year 2008. The report consists of sub-chapters that reflect the various components of the program. Chapter 1 presents a report on programmatic coordination and accomplishments, and Chapters 2 through 4 provide a review of how ISEMP has progressed during the 2008 fiscal year in each of the pilot project subbasins: the John Day (Chapter 2), Wenatchee/Entiat (Chapter 3) and Salmon River (Chapter 4). Chapter 5 presents a report on the data management accomplishments in 2008.

  16. Quality assurance plan for the Basic Environmental Compliance and Monitoring Program (BECAMP). Revision 1

    SciTech Connect (OSTI)

    Essington, E.H.

    1993-11-01

    This quality assurance plan (QAP) is designed ensure that the methodologies and the data used for environmental cleanup and treatment studies at the Nevada Test Site are both usable and defensible. The QAP serves two purposes in this regard: (1) to guide the preparation of procedures for carrying out the tasks of the Basic Environmental compliance and Monitoring program (BECAMP); and (2) to help management track the progress of those tasks.

  17. Extended Community: An Oral History of the Community Environmental Monitoring Program (CEMP), 1989 - 2003

    SciTech Connect (OSTI)

    Susan DeSilva

    2004-07-01

    Studying the Community Environmental Monitoring Program (CEMP) provides a unique opportunity to trace a concept created by two nuclear industry originators from inception, as it transitioned through several stewardship agencies, to management by a non-profit organization. This transition is informed not only by changes over two decades in the views of the general populace toward nuclear testing but also by changing political climates and public policies. Several parallel histories accompanied the development of the CEMP: an administrative history, an environmental history, and a history of changing public perception of not only nuclear testing, but other activities involving radiation such as waste transportation, as well. Although vital, those histories will be provided only as background to the subject of this study, the oral histories gathered in this project. The oral histories collected open a window into the nuclear testing history of Nevada and Utah that has not heretofore been opened. The nuclear industry has generated a great deal of positive and negative reaction since its inception. The CEMP emerged with specific objectives. It was designed to provide information to potential downwind communities and counter negative perceptions by creating more community involvement and education about the testing. The current objectives of the program are to: (1) Manage and maintain the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) offsite monitoring program including 26 radiation and environmental monitoring stations with associated equipment. Provide air sample collection and analysis, radiological and meteorological data collection, interpretation and reporting. (2) Facilitate independent operation of radiological monitoring stations and data verification by private citizens living in communities in proximity to the Nevada Test Site (NTS). (3) Hire and initiate training of local citizens to serve as Community

  18. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    SciTech Connect (OSTI)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  19. Efficiency Improvement Opportunities for Personal Computer Monitors. Implications for Market Transformation Programs

    SciTech Connect (OSTI)

    Park, Won Young; Phadke, Amol; Shah, Nihar

    2012-06-29

    Displays account for a significant portion of electricity consumed in personal computer (PC) use, and global PC monitor shipments are expected to continue to increase. We assess the market trends in the energy efficiency of PC monitors that are likely to occur without any additional policy intervention and estimate that display efficiency will likely improve by over 40% by 2015 compared to todays technology. We evaluate the cost effectiveness of a key technology which further improves efficiency beyond this level by at least 20% and find that its adoption is cost effective. We assess the potential for further improving efficiency taking into account the recent development of universal serial bus (USB) powered liquid crystal display (LCD) monitors and find that the current technology available and deployed in USB powered monitors has the potential to deeply reduce energy consumption by as much as 50%. We provide insights for policies and programs that can be used to accelerate the adoption of efficient technologies to capture global energy saving potential from PC monitors which we estimate to be 9.2 terawatt-hours [TWh] per year in 2015.

  20. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  1. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    SciTech Connect (OSTI)

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  2. Fundamentals of successful monitoring, reporting, and verification under a cap-and-trade program

    SciTech Connect (OSTI)

    John Schakenbach; Robert Vollaro; Reynaldo Forte

    2006-11-15

    The U.S. Environmental Protection Agency (EPA) developed and implemented the Acid Rain Program (ARP), and NOx Budget Trading Programs (NBTP) using several fundamental monitoring, reporting, and verification (MRV) elements: (1) compliance assurance through incentives and automatic penalties; (2) strong quality assurance (QA); (3) collaborative approach with a petition process; (4) standardized electronic reporting; (5) compliance flexibility for low-emitting sources; (6) complete emissions data record required; (7) centralized administration; (8) level playing field; (9) publicly available data; (10) performance-based approach; and (11) reducing conflicts of interest. Each of these elements is discussed in the context of the authors' experience under two U.S. cap-and-trade programs and their potential application to other cap and-trade programs. The U.S. Office of Management and Budget found that the Acid Rain Program has accounted for the largest quantified human health benefits of any federal regulatory program implemented in the last 10 yr, with annual benefits exceeding costs by {gt} 40 to 1. The authors believe that the elements described in this paper greatly contributed to this success. EPA has used the ARP fundamental elements as a model for other cap-and-trade programs, including the NBTP, which went into effect in 2003, and the recently published Clean Air Interstate Rule and Clean Air Mercury Rule. The authors believe that using these fundamental elements to develop and implement the MRV portion of their cap-and-trade programs has resulted in public confidence in the programs, highly accurate and complete emissions data, and a high compliance rate. 2 refs.

  3. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Blaylock, B.G.; Boston, H.L.; Frank, M.L.; Garten, C.T.; Houston, M.A.; Kimmel, B.L.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Berry, J.B.; Talmage, S.S. ); Amano, H. ); Jimenez, B.D. ); Kitchings, J.T.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  4. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  5. Hood River Production Program : Hood River Fish Habitat Protection, Restoration, and Monitoring Plan.

    SciTech Connect (OSTI)

    Coccoli, Holly; Lambert, Michael

    2000-02-01

    Effective habitat protection and rehabilitation are essential to the long-term recovery of anadromous fish populations in the Hood River subbasin. This Habitat Protection, Restoration, and Monitoring Plan was prepared to advance the goals of the Hood River Production Program (HRRP) which include restoring self-sustaining runs of spring chinook salmon and winter and summer steelhead. The HRPP is a fish supplementation and monitoring and evaluation program initiated in 1991 and funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council Fish and Wildlife Program. The HRPP is a joint effort of the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO) and Oregon Department of Fish and Wildlife (ODFW). Using recent watershed assessment and federal watershed analysis reports, this Plan reviews the historic and current condition of riparian, instream and upland habitats; natural watershed processes; anadromous and resident fish populations; identifies limiting factors, and indicates those subbasin areas that need protection or are likely to respond to restoration. Primary habitat restoration needs were identified as (1) improved fish screening and upstream adult passage at water diversions; (2) improved spawning gravel availability, instream habitat structure and diversity; and (3) improved water quality and riparian conditions. While several early action projects have been initiated in the Hood River subbasin since the mid 1990s, this Plan outlines additional projects and strategies needed to protect existing high quality habitat, correct known fish survival problems, and improve the habitat capacity for natural production to meet HRPP goals.

  6. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  7. 2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  8. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake.

  9. Health and safety considerations for U. S. monitors in the Russian transparency program.

    SciTech Connect (OSTI)

    Boggs, C. J.

    1998-10-22

    In 1993 the US and the Russian Federation signed an agreement allowing the US to purchase highly enriched uranium (HEU) from Russia over a 20-year period. This Highly Enriched Uranium Purchase Agreement permits the purchase of 500 metric tons of HEU from dismantled Russian nuclear weapons in the form of low-enriched uranium (LEU) for use as power reactor fuel in the US. Under the HEU Agreement, the US and Russia are cooperating in a ''Transparency Program'' to ensure that arms control and nonproliferation objectives are being met. The Transparency Program measures, which are a departure from traditional, intrusive measures of verification, include sending individuals from the US to Russia to monitor the processing of the HEU.

  10. The Community Environmental Monitoring Program: Reducing Public Perception of Risk through Stakeholder Involvement

    SciTech Connect (OSTI)

    William T. Hartwell

    2007-05-21

    The Community Environmental Monitoring Program (CEMP) has promoted stakeholder involvement, awareness, and understanding of radiological surveillance in communities surrounding the Nevada Test Site (NTS) since 1981. It involves stakeholders in the operation, data collection, and dissemination of information obtained from a network of 29 stations across a wide area of Nevada, Utah and California. It is sponsored by the U.S. Department of Energy, National Nuclear Security Administration’s Nevada Site Office (NNSA/NSO) and administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. Integration of a near real-time communications system, a public web site, training workshops for involved stakeholders, and educational programs all help to alleviate public perception of risk of health effects from past activities conducted at the NTS.

  11. Baseline and Postremediation Monitoring Program Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-04-01

    This report was prepared in accordance with CERCLA requirements to present the plan for baseline and postremediation monitoring as part of the selected remedy. It provides the Environmental Restoration Program with information about the requirements to monitor for soil and terrestrial biota in the Lower East Fork Poplar Creek (LEFPC) floodplain; sediment, surface water, and aquatic biota in LEFPC; wetland restoration in the LEFPC floodplain; and human use of shallow groundwater wells in the LEFPC floodplain for drinking water. This document describes the monitoring program that will ensure that actions taken under Phases I and II of the LEFPC remedial action are protective of human health and the environment.

  12. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  13. Community Radiation Monitoring Program annual report, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Cooper, E.N.; McArthur, R.D.

    1991-07-01

    The events of FY 1990 indicate that another successful year in the evolution of the Community Radiation Monitoring Program is in the books. The agencies and organizations involved in the program have developed a sound and viable working relationship, and it appears that the major objectives, primarily dispelling some of the concerns over weapons testing and radiation on the part of the public, are being effectively addressed. The program is certainly a dynamic operation, growing and changing to meet perceived needs and goals as more experience is gained through our work. The change in focus on our public outreach efforts will lead us to contacts with more students and schools, service clubs and special interest groups in the future, and will refine, and hopefully improve, our communication with the public. If that can be accomplished, plus perhaps influencing a few more students to stay in school and even grow up to be scientists, engineers and better citizens, we will be closer to having achieved our goals. It is important to note that the success of the program has occurred only because the people involved, from the Department of Energy, the Environmental Protection Agency, the Desert Research Institute, the University of Utah and the Station Managers and Alternates work well and hard together. Our extended family'' is doing a good job. 9 refs., 1 fig., 3 tabs.

  14. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect (OSTI)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  15. ABSTRACT: The Community Environmental Monitoring Program: Reducing Public Perception of Risk Through Stakeholder Involvement

    SciTech Connect (OSTI)

    T. Hartwell

    2007-02-28

    Between 1951 and 1992, 928 nuclear tests were conducted at the Nevada Test Site (NTS), including 100 atmospheric and 828 underground tests. Initial public reaction to the tests was largely supportive, but by the late 1950s this began to change, largely as a result of fear of the potential for adverse health effects to be caused by exposure to ionizing radiation resulting from the tests. The nuclear power plant accident at Three Mile Island in 1979 served to heighten these fears, as well as foster a general distrust of the federal agencies involved and low public confidence in monitoring results. Modeled after a similar program that involved the public in monitoring activities around the Three Mile Island nuclear power plant, the Community Environmental Monitoring Program (CEMP) has promoted stakeholder involvement, awareness, and understanding of radiological surveillance in communities surrounding the NTS since 1981. It involves stakeholders in the operation, data collection, and dissemination of information obtained from a network of 29 stations across a wide area of Nevada, Utah, and California. It is sponsored by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and administered by the Desert Research Institute (DRI) of the Nevada System of Higher Education. Since assuming administration of the program in 2000, DRI has accomplished significant enhancements to the network's data collection and transmission capabilities. A robust datalogging and communications system allows for the near real-time transmission of data to a platform maintained by DRI's Western Regional Climate Center, where the data are uploaded and displayed on a publicly accessible web site (http://cemp.dri.edu/). Additionally, the CEMP can serve as part of an emergency response network in the event of an unplanned radiological release from the NTS, and also provides an excellent platform for testing new environmental sensor technologies

  16. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS For the ATLAS Collaboration, Shawn McKee 1 , Andrew Lake 2 , Philippe Laurens 3 , Horst Severini 4 , Tomasz Wlodek 5 , Stephen Wolff 6 and Jason Zurawski 6 1 University of Michigan Physics Department 2 Lawrence Berkeley National Laboratory 3 Michigan State University Physics and Astronomy Department 4 University of Oklahoma, Physics/IT 5 Brookhaven National Laboratory 6 Internet2 E-mail: smckee@umich.edu, andy@es.net,

  17. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992. Environmental Restoration Program

    SciTech Connect (OSTI)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described.

  18. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    SciTech Connect (OSTI)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  19. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992

    SciTech Connect (OSTI)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described.

  20. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment.

  2. Lake Roosevelt Fisheries Evaluation Program : Limnological and Fisheries Monitoring Annual Report 1999.

    SciTech Connect (OSTI)

    McLellan, Holly; Lee, Chuck; Scofield, Ben; Pavlik, Deanne

    1999-08-01

    the recreational visits to the region. An increase in popularity has placed Lake Roosevelt fifth amongst the most visited State and Federal parks in Washington. Increased use of the reservoir prompted amplified efforts to enhance the Native American subsistence fishery and the resident sport fishery in 1984 with hatchery supplementation of rainbow trout (O. mykiss) and kokanee salmon (O. nerka). This was followed by the formation of the Spokane Tribal Lake Roosevelt Monitoring Project (LRMP) in 1988 and later by formation of the Lake Roosevelt Data Collection Project in 1991. The Lake Roosevelt Data Collection Project began in July 1991 as part of the BPA, Bureau of Reclamation, and U.S. Army Corps of Engineers System Operation Review process. This process sought to develop an operational scenario for the federal Columbia River hydropower system to maximize the in-reservoir fisheries with minimal impacts to all other stakeholders in the management of the Columbia River. The Lake Roosevelt Monitoring/Data Collection Program (LRMP) is the result of a merger between the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 forming the Lake Roosevelt Monitoring Program (LRMP), which continues the work historically completed under the separate projects. The LRMP has two main goals. The first is to develop a biological model for Lake Roosevelt that will predict in-reservoir biological responses to a range of water management operational scenarios, and to develop fisheries and reservoir management strategies accordingly. The model will allow identification of lake operations that minimize impacts on lake biota while addressing the needs of other interests (e.g. flood control, hydropower generation, irrigation, and downstream resident and anadromous fisheries). Major components of the model will include: (1) quantification of entrainment and other impacts to phytoplankton

  3. Smolt Monitoring Program, Part II, Volume I, Migrational Characteristics of Columbia Basin Salmon and Seelhead Trout, 1985 Annual Report.

    SciTech Connect (OSTI)

    Fish Passage Center

    1986-02-01

    The annual Smolt Monitoring Program is the result of implementation of Section 304(d)(2) of the Northwest Power Planning Council Fish and Wildlife Program. This is the second year of the annual systemwide program conducted by the Fish Passage Center (formerly Water Budget Center). Index reaches have been established. Travel time indices are calculated for year to year comparison. Marked groups of steelhead, spring chinook, fall chinook, and summer chinook are monitored at sampling points throughout the system. Because this program is intended to be representative of the juvenile migration, marked groups represent major hatchery production stocks. Arrival time and duration of marked groups are reported. Annual travel time indices are reported from Rock Island Dam to McNary Dam, and from Lower Granite Dam to McNary Dam. Hatchery and brand release information is reported.

  4. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  5. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  6. ARM - The Hydrologic Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrologic Cycle Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans The Hydrologic Cycle The hydrologic cycle is the cycle through which water passes from sea to land and from land to sea. Water vapor enters the air through the evaporation of water. Water vapor in the air eventually condenses

  7. Ground Water Surveillance Monitoring Implementation Guide for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-06-24

    This Guide assists DOE sites in establishing and maintaining surveillance monitoring programs to detect future impacts on ground water resources from site operations, to track existing ground water contamination, and to assess the potential for exposing the general public to site releases. Canceled by DOE N 251.82.

  8. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-11

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  9. Mitigation Monitoring Program at Lawrence Livermore National Laboratory FY00 Annual Report

    SciTech Connect (OSTI)

    Mcguff, R R

    2003-12-01

    Lawrence Livermore National Laboratory (LLNL) has completed eight years of implementing the mitigation measures from the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of LLNL and Sandia National Laboratories (SNL), Livermore. This eighth annual report documents LLNL's implementation of the mitigation measures during the fiscal year ending September 30, 2000 (FY00). It provides background information on the mitigation measures, describes activities undertaken during FY00, and documents changes in the monitoring program. Table 1 on page 12, provides a numerical listing of each mitigation measure, the department responsible for implementing it, and the location within this report where the status is discussed. The discussion of the mitigation measures is organized by the University of California (UC)'s three categories of approaches to implementation: project-specific, service-level and administrative. Table 2 on page 19, Table 6 on page 55, and Table 7 on page 63 provide a detailed discussion of each mitigation measure, including LLNL's implementation strategy and the status as of the end of the fiscal year. Table 3 on page 37, Table 4 on page 46, and Table 5 on page 47 list each construction project undertaken in FY00 and the mitigation measures implemented.

  10. Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  11. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-01-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  12. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in

  13. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect (OSTI)

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  14. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  15. Guidance for State Energy Program Grantees on Sub-Recipient Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance for energy efficiency and conservation block grants grantees on sub-recipient ... Assistance Program, State Energy Program and Energy Efficiency and Conservation Block

  16. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  17. Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect (OSTI)

    Hinzman, R.L.; Adams, S.M.; Ashwood, T.L.

    1995-08-01

    As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.

  18. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  19. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-27

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  20. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    SciTech Connect (OSTI)

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  1. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  2. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  3. Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratores Under the Nuclear Energy Plant Optimization (NEPO) Program

    SciTech Connect (OSTI)

    K. Gillen; R. Assink; R. Bernstein

    2005-12-23

    This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is liked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from that research remained available and were subjected to further testing under the NEPO research effort.The documented results from the earlier research were complemented by subjecting the specimens to new condition monitoring tests. Additional aging regimens were applied to additional specimens to develop aging models for key cable jacket and insulation materials

  4. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David

    2015-02-19

    analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  5. Hydrologic Monitoring Summary Long Valley Caldera, California...

    Open Energy Info (EERE)

    Summary Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published ORMAT internal report, 2010 DOI Not Provided Check for DOI...

  6. GUIDANCE FOR STATE ENERGY PROGRAM GRANTEES ON SUB-RECIPIENT MONITORING.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT NOTICE 10-019 Effective Date: October 26, 2010 SUBJECT: GUIDANCE FOR ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS GRANTEES ON SUB-RECIPIENT MONITORING. 1.0 PURPOSE To provide guidance to Department of Energy's (DOE's) Energy Efficiency and Conservation Block Grants (EECBG) Grantees regarding sub-recipient monitoring. 2.0 SCOPE The provisions of this guidance apply to States, Territories, Tribes, local governments and the District of Columbia

  7. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect (OSTI)

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  8. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    SciTech Connect (OSTI)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  9. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    SciTech Connect (OSTI)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-07-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink{sup R} technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO{sup TM} automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the

  10. Status report: A hydrologic framework for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B.; Moore, G.K.; McMaster, W.M.

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management.

  11. Energy Efficiency and Conservation Loan Program Webinar Series-- #2 Evalution, Monitoring & Verification

    Broader source: Energy.gov [DOE]

    The second of a 6 part webinar series on the Rural Utility Service’s new Energy Efficiency and Conservation Loan Program (EECLP).

  12. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  13. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995

    SciTech Connect (OSTI)

    Kszos, L.A.

    1996-04-01

    The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

  14. Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program

    SciTech Connect (OSTI)

    Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V.

    1997-04-01

    This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

  15. Calendar Year 2000 Groundwater Monitoring Report for the Groundwater Protection Program, U.S. Department of Energy, Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2001-03-01

    This report contains the groundwater and surface water monitoring data that were obtained at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee, during calendar year (CY) 2000. These monitoring data were collected for the specific purposes of DOE Order 5400.1 site surveillance monitoring and exit pathway/perimeter monitoring, as described in the ''Environmental Monitoring Plan for the Oak Ridge Reservation'' (DOE 1996). Site surveillance monitoring provides data regarding the quality of groundwater and surface water in areas that are, or could be, affected by operations at Y-12. Exit pathway/perimeter monitoring provides data regarding the quality of groundwater and surface water where contaminants from Y-12 are most likely to migrate beyond the boundaries of the DOE Oak Ridge Reservation (ORR). The CY 2000 groundwater and surface water monitoring data presented in this report were obtained under the auspices of the Y-12 Groundwater Protection Program (GWPP), managed by Lockheed Martin Energy Systems, Inc. (LMES) (January-October, 2000) and by BWXT Y-12, L.L.C. (November-December, 2000), and the Water Resources Restoration Program (WRRP), which is managed by Bechtel Jacobs Company LLC. Combining the monitoring results obtained under both the Y-12 GWPP and the WRRP enables this report to serve as a consolidated reference for the groundwater and surface water monitoring data obtained at Y-12 during CY 2000.

  16. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Groundwater Monitoring LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge

  17. SWSA 6 interim corrective measures environmental monitoring: FY 1990 results. Environmental Restoration Program

    SciTech Connect (OSTI)

    Ashwood, T.L.; Spalding, B.P.

    1991-07-01

    This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levels in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.

  18. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  19. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  20. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    SciTech Connect (OSTI)

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  1. Groundwater monitoring plan for the proposed state-approved land disposal structure

    SciTech Connect (OSTI)

    Reidel, S.P.

    1993-10-13

    This document outlines a detection-level groundwater monitoring program for the state-approved land disposal structure (SALDS). The SALDS is an infiltration basin proposed for disposal of treated effluent from the 200 Areas of the Hanford Site. The purpose of this plan is to present a groundwater monitoring program that is capable of determining the impact of effluent disposal at the SALDS on the quality of groundwater in the uppermost aquifer. This groundwater monitoring plan presents an overview of the SALDS, the geology and hydrology of the area, the background and indicator evaluation (detection) groundwater monitoring program, and an outline of a groundwater quality assessment (compliance) program. This plan does not provide a plan for institutional controls to track tritium beyond the SALDS.

  2. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    SciTech Connect (OSTI)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  3. Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata

    DOE Patents [OSTI]

    Medizade, Masoud; Ridgely, John Robert

    2009-12-15

    An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

  4. Results of Detailed Hydrologic Characterization TestsFiscal and Calendar Year 2005

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2008-02-27

    This report provides the results of detailed hydrologic characterization tests conducted within selected Hanford Site wells during fiscal and calendar year 2005. Detailed characterization tests performed included groundwater-flow characterization, barometric response evaluation, slug tests, in-well vertical groundwater-flow assessments, and a single-well tracer and constant-rate pumping test. Hydraulic property estimates obtained from the detailed hydrologic tests include hydraulic conductivity, transmissivity, specific yield, effective porosity, in-well lateral and vertical groundwater-flow velocity, aquifer groundwater-flow velocity, and depth-distribution profiles of hydraulic conductivity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for a site where detailed well testing was performed. Results obtained from these tests provide hydrologic information that supports the needs of Resource Conservation and Recovery Act waste management area characterization as well as sitewide groundwater monitoring and modeling programs. These results also reduce the uncertainty of groundwater-flow conditions at selected locations on the Hanford Site.

  5. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  6. First report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect (OSTI)

    Smith, J.G.; Adams, S.M.; Kszos, L.A.; Ryon, M.G.; Southworth, G.R.; Loar, J.M.

    1993-08-01

    A modified National Pollutant Discharge Elimination System permit was issued to the Oak Ridge Gaseous Diffusion Plant (now referred to as the Oak Ridge K-25 Site) on September 11, 1986. The Oak Ridge K-25 Site is a former uranium-enrichment production facility, which is currently managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy. As required in Part III (L) of that permit, a plan for the biological monitoring of Mitchell Branch (K-1700 stream) was prepared and submitted for approval to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation [formerly the Tennessee Department of Health and Environment (Loar et al. 1992b)]. The K-25 Site Biological Monitoring and Abatement Program (BMAP) described biomonitoring activities that would be conducted over the duration of the permit. Because it was anticipated that the composition of existing effluent streams entering Mitchell Branch would be altered shortly after the modified permit was issued, sampling of the benthic invertebrate and fish communities (Task 4 of BMAP) was initiated in August and September 1986 respectively.

  7. Second report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    SciTech Connect (OSTI)

    Smith, J.G.; Adams, S.M.; Hinzman, R.L.; Kszos, L.A.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.; Crumby, W.D.

    1994-03-01

    On September 11, 1986, a modified National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site), a former uranium-enrichment production facility. As required in Part III of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed for the biological monitoring of Mitchell Branch (K-1700 stream) and submitted for approval to the US EPA and the Tennessee Department of Environment and Conservation. The plan described biomonitoring activities that would be conducted over the duration of the permit. The objectives of the BMAP are to demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life, and to document the effects on stream biota resulting from operation of major new pollution abatement facilities. The BMAP consists of four tasks: ambient toxicity testing; bioaccumulation studies; biological indicator studies; and ecological surveys of stream communities, including benthic macroinvertebrates and fish. This document is the second in a series of reports presenting the results of the studies that were conducted over various periods of time between August 1987 and June 1990.

  8. Seismic Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Safety and Resource Protection (PSRP) Seismic Monitoring Public Safety and Resource Protection (PSRP) Public Safety and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Seismic Monitoring Seismic Monitoring Hanford Site Seismic Monitoring provides an uninterrupted collection of

  9. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciTech Connect (OSTI)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  10. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect (OSTI)

    Hinzman, R.L.; Adams, S.M.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  11. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. ); Black, M.C. ); Gatz, A.J. Jr. ); Hinzman, R.L. ); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  12. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  13. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  14. Construction and installation summary for fiscal year 1992 of the hydraulic head monitoring stations at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Dreier, R.B.; Switek, J.; Couzens, B.A.

    1992-12-01

    During FY 1992, as part of the Hydraulic Head Monitoring Station (HHMS) Project, three multiport wells (HHMS 12, 13, and 14) were constructed along or near the boundaries of Waste Area Grouping (WAG) 2 at Haw Ridge water gap. The purpose of this report is to document well construction and multiport component installation activities. The hydraulic head monitoring stations (HHMS) are well clusters and single multiport wells that provide data required for evaluation of the transition between shallow and deep groundwater systems and of the nature of these systems. This information is used for required characterization of the hydrologic framework as dictated by state and federal regulatory agencies. Groundwater contaminants may move laterally across WAG boundaries or offsite; they may also move in a vertical direction. Because the HHMS Project was designed to address otential contamination problems, the project provides a means for defining the bounds of the uppermost aquifer; identifying potential pathways for offsite contamination for shallow; intermediate, and deep groundwater flow; and evaluating the capacity for contaminant transport in intermediate and deep groundwater flow systems.

  15. Current Hydrological Information (hydro/fcrps)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Hydrological Information For general hydrological information, see the National Weather Service Northwest River Forecast Center (NWRFC) Home Page (www.nwrfc.noaa.gov) For...

  16. Program Evaluation: Monitor Implementation

    Broader source: Energy.gov [DOE]

    Once you have chosen the evaluation contractor, the next step is to work with the contractor to get the evaluation plan finalized and to provide the lists and other assistance the contractor needs....

  17. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Compliance Monitoring Implementation Plan for 40 CFR §191.14(b), Assurance Requirement - DOE/WIPP 99-3119 Rev. 8 Effective date: 10/2014 Discharge Permit Renewal, DP-831, Waste Isolation Pilot Plant, July 29, 2014 Overview of the WIPP Effluent Monitoring Program - technical paper Provides an overview of the effluent air monitoring activities at WIPP. The Effluent Monitoring Program is designed to comply with the EPA radiation protection standards for management and storage of

  18. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect (OSTI)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  19. Technical summary of groundwater quality protection program at the Savannah River Site (1952--1986). Volume 2, Groundwater monitoring results

    SciTech Connect (OSTI)

    Heffner, J.D.

    1991-11-01

    Data is presented regarding ground water monitoring results from the Savannah River Plant for the years of 1952-1986. (CBS)

  20. Workshop on hydrology of crystalline basement rocks

    SciTech Connect (OSTI)

    Davis, S.N.

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  1. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  2. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Programming Compiling and linking programs on Euclid. Compiling Codes How to compile and link MPI codes on Euclid. Read More » Using the ACML Math Library How to compile and link a code with the ACML library and include the $ACML environment variable. Read More » Process Limits The hard and soft process limits are listed. Read More » Last edited: 2016-04-29 11:35:11

  3. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Programming The genepool system has a diverse set of software development tools and a rich environment for delivering their functionality to users. Genepool has adopted a modular system which has been adapted from the Programming Environments similar to those provided on the Cray systems at NERSC. The Programming Environment is managed by a meta-module named similar to "PrgEnv-gnu/4.6". The "gnu" indicates that it is providing the GNU environment, principally GCC,

  4. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Programming Tuning Options Tips for tuning performance on the Hopper system ... The ACML library is also supported on Hopper and Franklin. Read More PGAS Language ...

  5. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage & File Systems Application Performance Data & Analytics Job Logs & Statistics ... Each programming environment contains the full set of compatible compilers and libraries. ...

  6. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using MPI and OpenMP on NERSC systems, the same does not always exist for other supported parallel programming models such as UPC or Chapel. At the same time, we know that these...

  7. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  8. 2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    SciTech Connect (OSTI)

    2011-02-01

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

  9. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  10. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  11. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect (OSTI)

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  12. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  13. Wind Turbine Drivetrain Condition Monitoring (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2011-10-01

    This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

  14. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    H.H. Liu; C.F. Ahlers

    2001-12-20

    The purpose of this Analysis/Model Report (AMR) is to describe the methods used to determine hydrologic properties based on the available field data from the unsaturated zone at Yucca Mountain, Nevada. This is in accordance with the AMR Development Plan (DP) for U0090 Analysis of Hydrologic Properties Data (CRWMS M and O 1999c). Fracture and matrix properties are developed by compiling and analyzing available survey data from the Exploratory Studies Facility (ESF), Cross Drift of Enhanced Characterization of Repository Block (ECRB), and/or boreholes; air injection testing data from surface boreholes and from boreholes in ESF; in-situ measurements of water potential; and data from laboratory testing of core samples.

  15. Hydrological consequences of global warming

    SciTech Connect (OSTI)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  16. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    composition of water from selected stream sites, springs, and wells; pumpage from four geothermal wells; flow rates of selected springs and stream sites; mean daily water or gas...

  17. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in chemistry result from near surface boiling and...

  18. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  19. Beryllium Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site workers. Program Performance Assessments Beryllium Program inspection and corrective action documents Feedback & Suggestions A closely monitored area to submit questions,...

  20. Investigating coupled thermal-hydrological-mechanical processes...

    Office of Scientific and Technical Information (OSTI)

    processes in geothermal reservoirs Citation Details In-Document Search Title: Investigating coupled thermal-hydrological-mechanical processes in geothermal reservoirs ...

  1. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants

  2. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  3. Thermal-hydrologic-mechanical behavior of single fractures in...

    Office of Scientific and Technical Information (OSTI)

    Conference: Thermal-hydrologic-mechanical behavior of single fractures in EGS reservoirs Citation Details In-Document Search Title: Thermal-hydrologic-mechanical behavior of single ...

  4. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of ... Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization ...

  5. Characterization, monitoring, and sensor technology catalogue

    SciTech Connect (OSTI)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  6. PROJECT RULISON SUMMARY REPORT POST-SHOT A C T I V I T I E S AND. PROGRAMS

    Office of Legacy Management (LM)

    SUMMARY REPORT POST-SHOT A C T I V I T I E S AND. PROGRAMS A p r i l 1 9 7 2 Austral O i l Company Incorporated Houston, Texas TABLE OF CONTENTS I. '-INTRODUCTION 11. LITIGATION 111. RE-ENTRY DRILLING IV. ON-SITE RADIATION MONITORING V. SPECIAL GAS ANALYSES V I . WELL TESTING RESULTS & EVALUATIONS VII . PUBLIC. HEALTH & SAFETY EVAL,UATIONS VIII . HYDROLOGIC EVALUATIONS IX . REFERENCES page Number 1 PROJECT RULISON SUMMARY REPORT POST-SHOT ACTIVITIES AND PROGRAMS I . INTRODUCTION P r o j

  7. Manual for training reclamation inspectors in the fundamentals of hydrology

    SciTech Connect (OSTI)

    Curtis, W.R.; Dyer, K.L.; Williams, G.P.

    1988-01-01

    This handbook is intended to be a desk reference to help nonhydrologists achieve a basic understanding of hydrology as it relates to surface mining and reclamation. Surface coal mining and reclamation inspectors and other staff will find it useful in implementing regulatory programs. The handbook is not meant to be a comprehensive treatment of the subject. The handbook can be used in the training of surface-mining and reclamation inspectors, both Federal and State, and as a basic reference for inspectors in carrying out their assigned duties. The handbook describes clues and indicators of potential problems, suggests ways to prevent or mitigate them, and discusses various observation and sampling techniques.

  8. Development of Hydrologic Characterization Technology of Fault Zones

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

  9. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    SciTech Connect (OSTI)

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

    2012-03-22

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  10. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1993-07-01

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  11. Intelligent Shift Register Monitor Software

    Energy Science and Technology Software Center (OSTI)

    2001-01-19

    The ISR Monitor program is used to acquire data from a neutron detector connected to an AMSR electronics unit. The program stores all data collected in internal memory and dumps its stored data to an external computer upon request.

  12. Long-Term Monitoring of Permeable Reactive Barriers - Progress Report

    SciTech Connect (OSTI)

    Liang, L.

    2001-04-12

    The purpose of this project is to conduct collaborative research to evaluate and maximize the effectiveness of permeable reactive barriers (PRBs) with a broad-based working group including representatives from the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), and the U.S. Environmental Protection Agency (EPA). The Naval Facilities Engineering Service Center (NFESC) and its project partner, Battelle, are leading the DoD effort with funding from DoD's Environmental Security Technology Certification Program (ESTCP) and Strategic Environmental Research and Development Program (SERDP). Oak Ridge National Laboratory (ORNL) is coordinating the DOE effort with support from Subsurface Contaminant Focus Area (SCFA), a research program under DOEs Office of Science and Technology. The National Risk Management Research Laboratory's Subsurface Protection and Remediation Division is leading EPA's effort. The combined effort of these three agencies allows the evaluation of a large number of sites. Documents generated by this joint project will be reviewed by the participating agencies' principal investigators, the Permeable Barriers Group of the Remediation Technologies Development Forum (RTDF), and the Interstate Technology and Regulatory Cooperation (ITRC). The technical objectives of this project are to collect and review existing field data at selected PRB sites, identify data gaps, conduct additional measurements, and provide recommendations to DOE users on suitable long-term monitoring strategies. The specific objectives are to (1) evaluate geochemical and hydraulic performance of PRBs, (2) develop guidelines for hydraulic and geochemical characterization/monitoring, and (3) devise and implement long-term monitoring strategies through the use of hydrological and geochemical models. Accomplishing these objectives will provide valuable information regarding the optimum configuration and lifetime of barriers at specific sites. It will also permit

  13. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    L. Pan

    2004-10-04

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''.

  14. ARM - Field Campaign - SGP '97 (Hydrology) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP '97 (Hydrology) IOP Campaign Links NASA Archive Model Initialization Data Comments? We would love to hear from you Send us a note below or call us at ...

  15. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  16. Civil Engineer (Hydraulics/Hydrologic)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This position is located in the Oregon Implementation unit (EWL) of the Fish and Wildlife Program (EW), Environment, Fish and Wildlife (E), Bonneville Power Administration (BPA). The Fish and...

  17. Process Monitor

    Energy Science and Technology Software Center (OSTI)

    2003-12-01

    This library is used to get process information (eg memory and timing). By setting an environment variable, the runtime system loads libprocmon.so while loading your executable. This library causes the SIGPROF signal to be triggered at time intervals. The procmon signal handler calls various system routines (eg clock_gettime, malinfo, getrusage, and ioctl {accessing the /proc filesystem}) to gather information about the process. The information is then printed to a file which can be viewed graphicallymore » via procmon_plot.pl. This information is obtained via a sampling approach. As with any sampling approach, the information it gathers will not be completely accurate. For example, if you are looking at memory high-water mark the memory allocation and freeing could have occurred between samples and thus would not be "seen" by this program. See "Usage" below for environment variables that affect this monitor (eg time between sampling).« less

  18. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  19. ORISE: Radiological program assessment services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE focuses its radiological audit and assessment services in these key areas: Nondestructive assay (NDA) Radiological control programs Environmental monitoring programs ...

  20. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:30

  1. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  2. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status,...

  3. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  4. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants Open full screen to view more You are running an unsupported browser, some...

  5. High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technology Program Peer Review Report | Department of Energy temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report High-temperature Pump Monitoring - High-temperature ESP Monitoring; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review hightemp_018_dhruva.pdf (188.95 KB) More Documents & Publications Development of Tools for Measuring Temperature, Flow,

  6. Hydrological conditions at the 800 Area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Patton, T.L.; Pearl, R.H.; Tsai, S.Y.

    1990-08-01

    This study examined the hydrological conditions of the glacial till underlying the 800 Area sanitary landfill at Argonne National Laboratory (ANL) near Lemont, Illinois. The study's purpose was to review and summarize hydrological data collected by ANL's Environment, Safety, and Health Department and to characterize, on the basis of these data, the groundwater movement and migration of potential contaminants in the area. Recommendations for further study have been made based on the findings of this review. The 800 Area landfill is located on the western edge of ANL, just south of Westgate Road. It has been in operation since 1966 and has been used for the disposal of sanitary, general refuse. From 1969 through 1978, however, substantial quantities of liquid organic and inorganic wastes were disposed of in a French drain'' at the northeast corner of the landfill. The 800 Area landfill is underlain by a silty clay glacial till. Dolomite bedrock underlies the till at an average depth of about 45.6 m. Trace levels of organic contaminants and radionuclides have been detected in groundwater samples from wells completed in the till. Fractures in the clay as well as sand and gravel lenses present in the till could permit these contaminants to migrate downward to the dolomite aquifer. When this report was prepared, no chemical quality analysis have been made on groundwater samples from the dolomite. The study found that existing information about subsurface characteristics at the site is inadequate to identify potential pathways for contaminant migration. Recommended actions include installation of five new well clusters and one background well, thorough record-keeping, sample collection and analysis during borehole drilling, slug testing to measure hydraulic conductivity, topographic mapping, continued monitoring of groundwater levels and quality, and monitoring of the unsaturated zone. 17 refs., 13 figs., 4 tabs.

  7. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  8. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  9. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  10. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  11. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2003

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2004-09-13

    This report presents results obtained from detailed hydrologic characterization of the unconfined aquifer system conducted at the Hanford Site.

  12. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Enhanced Geothermal System Development and Production | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Project objective: Develop a novel Thermal-Hydrological-Mechanical-Chemical (THMC) modeling tool.

  13. Power consumption monitoring using additional monitoring device

    SciTech Connect (OSTI)

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  14. NRC Waste Incidental to Reprocessing Program: Overview of Consultation and Monitoring Activities at the Idaho National Laboratory and the Savannah River Site - What We Have Learned - 12470

    SciTech Connect (OSTI)

    Suber, Gregory

    2012-07-01

    In 2005 the U.S. Nuclear Regulatory Commission (NRC) began to implement a new set of responsibilities under the Ronald W. Reagan National Defense Authorization Act (NDAA) of Fiscal Year 2005. Section 3116 of the NDAA requires the U.S. Department of Energy (DOE) to consult with the NRC for certain non-high level waste determinations and also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2005, the NRC staff began consulting with DOE and completed reviews of draft waste determinations for salt waste at the Savannah River Site. In 2006, a second review was completed on tank waste residuals including sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center Tank Farm at the Idaho National Laboratory. Monitoring Plans were developed for these activities and the NRC is actively monitoring disposal actions at both sites. NRC is currently in consultation with DOE on the F-Area Tank Farm closure and anticipates entering consultation on the H-Area Tank Farm at the Savannah River Site. This paper presents, from the NRC perspective, an overview of how the consultation and monitoring process has evolved since its conception in 2005. It addresses changes in methods and procedures used to collect and develop information used by the NRC in developing the technical evaluation report and monitoring plan under consultation and the implementation the plan under monitoring. It will address lessons learned and best practices developed throughout the process. The NDAA has presented significant challenges for the NRC and DOE. Past and current successes demonstrate that the NDAA can achieve its intended goal of facilitating tank closure at DOE legacy defense waste sites. The NRC believes many of the challenges in performing the WD reviews have been identified and addressed. Lessons learned have been collected and documented throughout the review process. Future success will be contingent on each agencies commitment to

  15. Variation and correlation of hydrologic properties

    SciTech Connect (OSTI)

    Wang, J.S.Y.

    1991-06-01

    Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability and the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.

  16. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect (OSTI)

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  17. Idaho National Laboratory Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  19. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  20. A Basic Overview of Occupational Radiation Exposure Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Accreditation Program and DOE Radiation Exposure Monitoring System programs that aid in the oversight of radiation protection activities at DOE. Title 10, Code of ...

  1. Strengthening Line Management Oversight and Federal Monitoring...

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 4 - Nuclear Safety Basis Program Review During Facility ...

  2. BROOKHAVEN NATIONAL LABORATORY ENVIRONMENTAL MONITORING PLAN

    SciTech Connect (OSTI)

    DAUM,M.; DORSCH,WM.; FRY,J.; GREEN,T.; LEE,R.; NAIDU,J.; PAQUETTE,D.; SCARPITTA,S.; SCHROEDER,G.

    1999-09-22

    Triennial update that describes the BNL Environmental Monitoring Program for all media (air, surface water, ground water, etc.) in accordance with DOE ORDER 5400.5

  3. Shared performance monitor in a multiprocessor system

    DOE Patents [OSTI]

    Chiu, George; Gara, Alan G; Salapura, Valentina

    2014-12-02

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  4. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 2

    SciTech Connect (OSTI)

    Purtymun, W.D.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  5. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    2010-07-01

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides

  6. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

    2005-11-23

    The purpose of the environmental monitoring plan (EMP) is to promote the early identification of, and response to, potential adverse environmental impacts associated with DOE operations. Environmental monitoring supports the Integrated Safety Management System (ISMS) to detect, characterize, and respond to releases from DOE activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of the DOE activity. In addition, the EMP addresses the analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of radionuclide samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. Until recently, environmental monitoring at Lawrence Livermore National Laboratory (LLNL) was required by DOE Order 5400.1, which was canceled in January 2003. LLNL is in the process of adopting the ISO 14001 Environmental Management Systems standard, which contains requirements to perform and document environmental monitoring. The ISO 14001 standard is not as prescriptive as DOE Order 5400.1, which expressly required an EMP. LLNL will continue to prepare the EMP because it provides an organizational framework for ensuring that the work is conducted appropriately. The environmental monitoring addressed by the plan includes preoperational characterization and assessment, and effluent and surveillance monitoring. Additional environmental monitoring is conducted at LLNL as part of the compliance with the

  7. Appendix DATA: Monitoring Data and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Data and Reports United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix DATA-2014 Table of Contents DATA-1.0 Introduction DATA-1.1 Reported Data DATA-2.0 Delaware Basin Drilling Surveillance Program DATA-2.1 Program Overview DATA-2.2 Reported Data DATA-3.0 Subsidence Monitoring Program DATA-3.1 Program Overview DATA-3.2 Reported Data DATA-4.0 Geotechnical Monitoring Program DATA-4.1

  8. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  9. Multi-cluster processor operating only select number of clusters during each phase based on program statistic monitored at predetermined intervals

    DOE Patents [OSTI]

    Balasubramonian, Rajeev; Dwarkadas, Sandhya; Albonesi, David

    2009-02-10

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  10. On Approaches to Analyze the Sensitivity of Simulated Hydrologic...

    Office of Scientific and Technical Information (OSTI)

    Land Model Citation Details In-Document Search Title: On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model ...

  11. Persistence of Hydrologic Variables and Reactive Stream Solute...

    Office of Scientific and Technical Information (OSTI)

    Watershed Citation Details In-Document Search Title: Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed Time and ...

  12. Hydrology of the Geothermal System in Long Valley Caldera, California...

    Open Energy Info (EERE)

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  13. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect (OSTI)

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  14. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed jobs, ALPS logs and job summary statistics. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. To delete a job from the hopper xfer queue users must add an additional

  15. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  16. Vehicle Technologies Program Results

    SciTech Connect (OSTI)

    2009-06-19

    The Vehicle Technologies Program's progress is closely monitored by both internal and external organizations. The Program's results are detailed in a wide range of documents and tools that can be accessed through the PIR website. Descriptions of these materials are provided on this program results page.

  17. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Sensing & Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Monitoring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Fermilab | Directorate | Program Planning Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the future, by: Organizing and chairing weekly All Experimenters Meetings. Monitoring the progress of the program schedule implementation. Organizing and chairing Experiment...

  20. Monitoring: The missing piece

    SciTech Connect (OSTI)

    Bjorkland, Ronald

    2013-11-15

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: • NEPA statutes created profound environmental protection legislative framework. • Contrary to intent, NEPA does not provide for definitive project monitoring. • Robust project monitoring is essential for enhanced

  1. RWMC Performance Assessment/Composite Analysis Monitoring Report - FY-2002

    SciTech Connect (OSTI)

    Ritter, P.D.; Parsons, A.M.

    2002-09-30

    US DOE Order 435.1, Radioactive Waste Management, Chapter IV and the associated implementation manual and guidance require monitoring of low-level radioactive waste (LLW) disposal facilities. The Performance Assessment/Composite Analysis (PA/CA) Monitoring program was developed and implemented to meet this requirement. This report represents the results of PA/CA monitoring projects that are available as of September 2002. The technical basis for the PA/CA program is provided in the PA/CA Monitoring Program document and a program description document (PDD) serves as the quality assurance project plan for implementing the PM program. Subsurface monitoring, air pathway surveillance, and subsidence monitoring/control are required to comply with DOE Order 435.1, Chapter IV. Subsidence monitoring/control and air pathway surveillance are performed entirely by other INEEL programs - their work is summarized herein. Subsurface monitoring includes near-field (source) monitoring of buried activated beryllium and steel, monitoring of groundwater in the vadose zone, and monitoring of the Snake River Plain Aquifer. Most of the required subsurface monitoring information presented in this report was gathered from the results of ongoing INEEL monitoring programs. This report also presents results for several new monitoring efforts that have been initiated to characterize any migration of radionuclides in surface sediment near the waste.

  2. Environmental Monitoring Plan, Revision 6

    SciTech Connect (OSTI)

    Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

    2012-03-02

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting

  3. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at...

  4. Calendar Year 2004 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2005-09-01

    distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork

  5. Calendar Year 2005 Groundwater Monitoring Report, U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2006-09-01

    distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2005 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2005. Section 4 presents an a summary of the CY 2005 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2005 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2005 are in Appendix D (Bear Creek Regime), Appendix E (East Fork

  6. Application of EPA wetland research program approach to a floodplain wetland restoration assessment.

    SciTech Connect (OSTI)

    Kolka, R., K.; Trettin, C., C.; Nelson, E., A.; Barton, C., D.; Fletcher, D., E.

    2002-01-01

    Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS's Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.

  7. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  8. FY 1990 environmental research programs for the Nevada Operations Office. Work plan and quarterly reports, first through fourth quarter reports

    SciTech Connect (OSTI)

    1990-11-01

    This work includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies and site mitigation plans; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design activities. In addition to these, archaeological and other activities will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, derivative classification of DRI documents, and preparation of any special reports not included in the requirements of the individual projects.

  9. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    SciTech Connect (OSTI)

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  10. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status, completed jobs, and job summary statistics. Command Description qsub batch_script Submit batch script to queue; returns job_id. qdel job_id Delete job from queue. qhold job_id Place job on hold in queue. qrls job_id Release held job. qalter Change attributes of submitted job. qmove new_queue job_id Move job to a different

  11. Monitoring plan for Everest, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2009-03-23

    This transmittal is a response to your request of January 22, 2009, for a letter work plan outlining a program of annual groundwater and surface water monitoring at Everest, Kansas. Once yearly, they propose to conduct surface water sampling at the 5 locations shown in Figure 1 and groundwater sampling in the 16 wells identified in Figure 2. The wells will be sampled according to the low-flow procedure. The next sampling event is planned for April 2009. The surface water and groundwater samples collected will be preserved, shipped, and analyzed for volatile organic compounds as in previous work at Everest. Results will be reported to the KDHE. This monitoring program will continue until identified plume conditions at the site indicate a technical justification to change the monitoring program.

  12. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  13. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  14. Restoration Monitoring-A Simple Photo Monitoring Method | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method Restoration Monitoring-A Simple Photo Monitoring Method PDF icon ...

  15. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  16. Design Support of an Above Cap-rock Early Detection Monitoring...

    Office of Scientific and Technical Information (OSTI)

    information resources in energy science and technology. ... The monitoring program will include direct monitoring of the ... ISSN 1876-6102 Publisher: Elsevier Research Org: Pacific ...

  17. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  18. Assistance Program, State Energy Program, Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Block Grants | Department of Energy Assistance Program, State Energy Program, Energy Efficiency and Conservation Block Grants Assistance Program, State Energy Program, Energy Efficiency and Conservation Block Grants The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) publishes this monitoring plan for Weatherization Assistance Program, State Energy Program (SEP), and Energy Efficiency and Conservation Block Grant (EECBG) recipients in

  19. Environmental Monitoring Plan: Environmental Monitoring Section. Appendix A, Procedures

    SciTech Connect (OSTI)

    1995-02-01

    This document presents information about the environmental monitoring program at Lawrence Livermore National Laboratory. Topics discussed include: air sampling; air tritium calibrations; storm water discharge; non-storm water discharge; sampling locations; ground water sampling; noise and blast forecasting; analytical laboratory auditing; document retention; procedure writing; quality assurance programs for sampling; soil and sediment sampling; sewage sampling; diversion facility tank sampling; vegetation and foodstuff sampling; and radiological dose assessments.

  20. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  1. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe

    1994-01-01

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  2. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  3. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  4. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  5. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    Open Energy Info (EERE)

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  6. ARM - Field Campaign - Integrated Precipitation and Hydrology Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IPHEX): Cloud Spectrometer and Impactor (CSI) govCampaignsIntegrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Integrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) 2014.03.01 - 2014.07.01 Lead Scientist : Gerald Mace For data sets, see below. Abstract IPHEX -

  7. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal

  8. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  9. Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect (OSTI)

    Vitale, Angelo; Lamb, Dave; Peters, Ronald

    2002-11-01

    Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have

  10. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  11. Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Engineering Institute Structural Health Monitoring Structural Health Monitoring is the process of implementing a damage detection strategy for...

  12. Ecological Monitoring and Compliance Program 2014 Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitive and protectedregulated species of the NNSS include 42 plants, 1 mollusk, 2 ... site-specific data for all 17 sensitive plants on the NNSS and provided it to the Nevada ...

  13. Certificate in Environmental Monitoring Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    local high schools and colleges by providing them with local NEWNET stations. Some teaching curricula include a study of radiation and detection, data acquisition and...

  14. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  15. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30

  16. New technologies for item monitoring

    SciTech Connect (OSTI)

    Abbott, J.A.; Waddoups, I.G.

    1993-12-01

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  17. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and

  18. CB-EMIS MAINTENANCE MONITORING SYSTEM

    Energy Science and Technology Software Center (OSTI)

    2006-10-01

    This system continuously monitors all components of a CB-EMIS (ANL-02-078)installation such as signals for video cameras, detector, train data, meteorological data, computer and network equipment and reports exceptions to maintenance staff so that corrections can be made as soon as possible. This monitoring system is built within Nagios (www.nagios.org), a free open source host service and network monitoring program.

  19. Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib

    SciTech Connect (OSTI)

    Williams, Bruce A.; Chou, Charissa J.

    2003-09-29

    This plan provides updates the ongoing RCRA interim status groundwater monitoring program for the U-12 crib and provides a proposed RCRA final status post-closure groundwater monitoring program.

  20. 2002 WIPP Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-09-30

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  1. Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. Updating LANL’s Ambient Air Monitoring Network (Airnet)

    SciTech Connect (OSTI)

    Fuehne, David Patrick; Allen, Shannon Purdue

    2015-06-09

    Airnet, LANL's ambient air monitoring for radionuclides, is described both historically as well as the drivers involved in the need for updating the program.

  3. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...

  4. Driving Operational Changes Through an Energy Monitoring System

    Broader source: Energy.gov [DOE]

    Fact sheet describes a case study of IBM's corporate energy efficiency monitoring program that focuses on basic improvements in its real estate operations.

  5. ROLE OF TOXICITY ASSESSMENT AND MONITORING IN MANAGING THE RECOVERY...

    Office of Scientific and Technical Information (OSTI)

    The ambient tests were conducted as part of an extensive biological monitoring program that included routine surveys of fish, invertebrate and periphyton communities. WET testing, ...

  6. Long-Term Biological Monitoring of an Impaired Stream: Implications...

    Office of Scientific and Technical Information (OSTI)

    Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and ...

  7. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Appendix B to Attachment 3, Lithologic logs and monitor well construction information. Final report

    SciTech Connect (OSTI)

    1995-09-01

    This volume contains lithology logs and monitor well construction information for: NC processing site; UC processing site; and Burro Canyon disposal site. This information pertains to the ground water hydrology investigations which is attachment 3 of this series of reports.

  8. Environmental Monitoring Plan, Revision 5

    SciTech Connect (OSTI)

    Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

    2010-01-27

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for

  9. Simulation of hydrologic influences on wetland ecosystem succession. Master's thesis

    SciTech Connect (OSTI)

    Pompilio, R.A.

    1994-09-01

    This research focuses on the development of a simulation model to determine the affects of hydrological influences on a wetland ecosystem. The model allows perturbations to the inputs of various wetland data which in turn, influences the successional development of the ecosystem. This research consisted of converting a grassland ecosystem model to one which simulates wetland conditions. The critical factor in determining the success of wetland creation is the hydrology of the system. There are four of the areas of the original model which are affected by the hydrology. The model measures the health or success of the ecosystem through the measurement of the systems gross plant production, the respiration and the net primary production of biomass. Altering the auxiliary variables of water level and the rate of flow through the system explicitly details the affects hydrologic influences on those production rates. Ten case tests depicting exogenous perturbations of the hydrology were run to identify these affects. Although the tests dealt with the fluctuation of water through the system, any one of the auxiliary variables in the model could be changed to reflect site specific data. Productivity, Hazardous material management, Hazardous material pharmacy.

  10. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect (OSTI)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  11. 2013 Program Management Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Review 2013 Program Management Review BETO Project Management / 2013 Program Management Review program_management_review2013_aopsfoas_craig.pdf (755.77 KB) More Documents & Publications Better Buildings Residential Program Solution Center Demonstration Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems

  12. Hydrological, geochemical, and ecological characterization of Kesterson Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

  13. Luminosity monitor.

    SciTech Connect (OSTI)

    Underwood, D. G.

    1998-07-16

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10{sup {minus}3} raw asymmetry in an experiment, an error of 10{sup {minus}4} in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, {minus} and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come.

  14. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect (OSTI)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at

  15. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  16. Selecting chemical treatment programs

    SciTech Connect (OSTI)

    Miller, J.E. )

    1988-09-01

    Many process equipment performance and reliability problems can be solved economically by the proper selection and application of chemical treatment programs. It is important to choose an experienced chemical vendor and to work closely with the vendor to develop a good chemical treatment program. This requires devoting sufficient manpower to ensure that the treatment program development is thorough and timely. After the treatment program is installed, the system operation and performance should be routinely monitored to ensure that expected benefits are achieved and unexpected problems do not develop.

  17. EERE Program Management Guide- Chapter 7

    Broader source: Energy.gov [DOE]

    Chapter 7 of this guide includes general program analysis and evaluation concepts such as monitoring work performance, GPRA requirements, evaluation activities, and the EERE SMS program analysis and evaluation stage.

  18. Environmental Monitoring at the Savannah River Plant, Annual Report - 1981

    SciTech Connect (OSTI)

    Ashley, C.

    2001-07-26

    An environmental monitoring program has been in existence at SRP since 1951. The original preoperational surveys have evolved into an extensive environmental monitoring program in which sample types from approximately 500 locations are analyzed for radiological and/or nonradiological parameters. The results of these analyses for 1981 are presented in this report.

  19. INTEC Groundwater Monitoring Report 2006

    SciTech Connect (OSTI)

    J. R. Forbes S. L. Ansley M. Leecaster

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  20. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  1. Cultural Resource Program and Curation Services - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Safety and Resource Protection (PSRP) Cultural Resource Program and Curation Services Public Safety and Resource Protection (PSRP) Public Safety and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Cultural Resource Program and Curation Services Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Cultural Resource Program and

  2. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect (OSTI)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  3. A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting | Department of Energy A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting September 2012 This pamphlet is intended to provide a short summary of the Department of Energy Laboratory Accreditation Program and DOE Radiation Exposure Monitoring System programs that aid in the oversight of radiation protection activities at DOE. Title 10, Code of Federal

  4. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect (OSTI)

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  5. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    SciTech Connect (OSTI)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    2008-12-01

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

  6. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Althouse, P E; Biermann, A; Brigdon, S L; Brown, R A; Campbell, C G; Christofferson, E; Clark, L M; Folks, K J; Gallegos, G M; Gouveia, F J; Grayson, A; Harrach, R J; Hoppes, W G; Jones, H; Mathews, S; Merrigan, J R; Peterson, S R; Revelli, M; Rueppel, D; Sanchez, L; Tate, P J; Vellinger, R J; Ward, B; Williams, R

    2006-01-10

    Environmental monitoring personnel from Lawrence Livermore National Laboratory (LLNL) prepared this ''Environmental Monitoring Plan'' (EMP) to meet the requirements in the U.S. Department of Energy (DOE) ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE 1991) and applicable portions of DOE Orders 5400.1 and 5400.5 (see WSS B93 and B94 in Appendix B). ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' is followed as a best management practice; under Work Smart Standards, LLNL complies with portions of DOE Orders 5400.1 and 5400.5 as shown in Appendix B. This document is a revision of the May 1999 EMP (Tate et al. 1999) and is current as of March 1, 2002. LLNL is one of the nation's premier applied-science national security laboratories. Its primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable, and to prevent the spread and use of nuclear weapons worldwide. LLNL's programs in advanced technologies, energy, environment, biosciences, and basic science apply LLNL's unique capabilities and enhance the competencies needed for this national security mission. LLNL's mission also involves working with industrial and academic partners to increase national competitiveness and improve science education. LLNL's mission is dynamic and has changed over the years to meet new national needs. In keeping with the Laboratory's mission, the environment, safety, and health (ES&H) have top priority. LLNL's policy is to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage. The environment, safety, and health are to be priority considerations in the planning and execution of all work activities at the Laboratory (LLNL 2001). Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements

  7. STATE ENERGY PROGRAM NOTICE 10-015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STATE ENERGY PROGRAM NOTICE 10-015 STATE ENERGY PROGRAM NOTICE 10-015 GUIDANCE FOR STATE ENERGY PROGRAM GRANTEES ON SUB-RECIPIENT MONITORING. PDF icon sep10-015subgranteemonitor...

  8. Monitoring solar magnetic disturbances in power systems; A summary

    SciTech Connect (OSTI)

    Fagnan, D.R. ); Gattens, P.R.; Johnson, F.D. )

    1990-11-01

    This paper discusses how concerted efforts to monitor the effects of solar magnetic disturbances (SMD) in the United States began anew after the March 13, 1989, disturbance. Previous efforts to monitor SMD were undertaken in the early 1970s. This earlier program monitored 64 different locations throughout the continental United States during the period from March 1969 to September 1972. This work was done during sunspot cycle 21 involving monitoring, effects, and mitigation of geomagnetically induced currents (GIC).

  9. ASP Program Description

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ASP Program Description provides a general overview of the auditing, proficiency testing and field sampling planning activities in support of mission-critical DOE operations such as on-going environmental monitoring, environmental remediation, and long-term legacy management and surveillance of past field sites

  10. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater monitoring network Map of LANL's groundwater monitoring network

  11. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    SciTech Connect (OSTI)

    Alonzo, G M

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  12. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-05-15

    This report provides the resluts of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, verticla flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  13. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 1999

    SciTech Connect (OSTI)

    Spane, Frank A.; Thorne, Paul D.; Newcomer, Darrell R.

    2001-01-19

    This report provides the results of detailed hydrologic characterization tests conducted within newly constructed Hanford Site wells during FY 1999. Detailed characterization tests performed during FY 1999 included: groundwater flow characterization, barometric response evaluation, slug tests, single-well tracer tests, constant-rate pumping tests, and in-well vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include: transmissivity, hydraulic conductivity, specific yield, effective porosity, in-well lateral flow velocity, aquifer flow velocity, vertical distribution of hydraulic conductivity (within the well-screen section) and in-well vertical flow velocity. In addition, local groundwater flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed.

  14. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  15. New Production Reactors Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  16. H. R. 527: A Bill to authorize research and evaluation programs for monitoring, detecting, and abating lead based paint and other lead exposure hazards in housing, and for other purposes, introduced in the House of Representatives, One Hundred Second Congress, First Session, January 14, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Lead poses a significant environmental health problem since adverse effects have been conclusively demonstrated at relatively low exposures. H.R.527 was introduced into the US House of Representatives on January 14 1991 to authorize research and evaluation programs for monitoring, detecting, and abating lead based paint and other lead exposure hazards in housing. Attention is focused on the following: laboratory analysis standardization; detection technologies; research on abatement and in-place management techniques; abatement products; lead exposure in children; public education; and authorization of appropriations.

  17. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    SciTech Connect (OSTI)

    Spangler, Lee; Cunningham, Alfred; Lageson, David; Melick, Jesse; Gardner, Mike; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Bajura, Richard; McGrail, B Peter; Oldenburg, Curtis M; Wagoner, Jeff; Pawar, Rajesh

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  18. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    SciTech Connect (OSTI)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role of hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable

  19. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  20. SEP Program Planning Template ("Program Planning Template") ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Program Planning Template ("Program Planning Template") SEP Program Planning Template ("Program Planning Template") Program Planning Template More Documents & Publications...

  1. STATE ENERGY PROGRAM NOTICE 10-015

    Broader source: Energy.gov (indexed) [DOE]

    STATE ENERGY PROGRAM NOTICE 10-015 Effective Date: October 26, 2010 SUBJECT: GUIDANCE FOR STATE ENERGY PROGRAM GRANTEES ON SUB-RECIPIENT MONITORING. 1.0 PURPOSE To provide guidance to Department of Energy's (DOE's) State Energy Program (SEP) Grantees regarding sub-recipient monitoring. 2.0 SCOPE The provisions of this guidance apply to States, Territories and the District of Columbia (hereinafter "States") that receive SEP funds, pursuant to annual formula grants and the American

  2. Program Evaluation: Program Life Cycle

    Broader source: Energy.gov [DOE]

    In general, different types of evaluation are carried out over different parts of a program's life cycle (e.g., Creating a program, Program is underway, or Closing out or end of program)....

  3. Software solutions for emission monitoring

    SciTech Connect (OSTI)

    DeFriez, H.; Schillinger, S.; Seraji, H.

    1996-12-31

    Industry and state and federal environmental regulatory agencies are becoming ever more conciliatory due to the high cost of implementing the Clean Air Act Amendments of 1990 (CAAA) for the operation of Continuous Emissions Monitoring Systems (CEMS). In many cases the modifications do nothing to reduce emissions or even to measure the pollution, but simply let the source owner or operator and the permitting authority agree on a monitoring method and/or program. The EPA methods and standards developed under the Code of Federal Regulations (CFRs) have proven to be extremely costly and burdensome. Now, the USEPA and state agencies are making efforts to assure that emissions data has a strong technical basis to demonstrate compliance with regulations such as Title V.

  4. Lustre Monitoring Tools

    Energy Science and Technology Software Center (OSTI)

    2007-05-05

    The Lustre Monitoring Tools software package is a set of utilities developed to facilitate real-time and historical monitoring of the performance of a Lustre FileSystem.

  5. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  6. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  7. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S.; Weeks, John R.

    1980-01-01

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  8. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect (OSTI)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  9. Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3

    SciTech Connect (OSTI)

    Jannik, G.T.

    1994-10-01

    This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan`s purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements.

  10. Updating the US hydrologic classification: an approach to clustering and stratifying ecohydrologic data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updating the US hydrologic classification: an approach to clustering and stratifying ecohydrologic data Ryan A. McManamay, * Mark S. Bevelhimer and Shih-Chieh Kao Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA ABSTRACT Hydrologic classifications unveil the structure of relationships among groups of streams with differing streamflows and provide a foundation for drawing inferences about the principles that govern those relationships. Hydrologic classes provide a

  11. Brief summary of LADHS: Los Alamos distributed hydrologic modeling system.

    SciTech Connect (OSTI)

    Murray, R. E. (Regan E.); Winter, C. L. (C. Larrabee); Springer, E. P.; Costigan, K. R. (Keeley R.); Tseng, P. H. (Peng-Hsiang)

    2001-01-01

    This report describes the current state of the fourth Thrust Area of the NSF Science and Technology Center for the Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA). Sustainability of semi-arid regions has become a serious political and scientific concern. Increasing population has added stress to the water supply and other natural resources, notably, underground aquifers. Recent controversies in the Rio Grande Basin involving the competing interests of endangered species and humans for water have highlighted the delicate balance of biologically diverse southwestern riparian areas. Potentially, the warming climate may intensify summer storms and affect the amount and timing of snow melt, the largest renewable source of water in the southwest. It is, therefore, of great political, social and scientific interest to determine ways in which human activities can coexist with healthy riparian areas and a plentiful, clean water supply over the long run. An understanding of how all of these processes interrelate would allow regional decision-makers to consider a wide range of options and thereby develop useful plans for meeting societal needs. To make the best use of limited fresh water resources, decision makers must be able to make predictions about the entire hydrologic cycle, which is a complex combination of physical, chemical, and biological processes. Only then could they explore the potential effects of increased water use and of changes in the regional climate. The important processes in the hydrologic cycle include rainfall, snowmelt, storms, runoff, and flow in ephemeral streams, rivers, and underground aquifers. Riparian communities and evaporation play key roles in reducing the available water.

  12. Technical WOrk Plan for: Construction Effects Monitoring

    SciTech Connect (OSTI)

    S. Goodin

    2006-09-14

    This document is the technical work plan (TWP) for performing the Construction Effects Monitoring (CEM) activity, which is one of 20 testing and monitoring activities included in Performance Confirmation Plan (BSC 2004 [DIRS 172452]). Collectively, the 20 activities make up the Performance Confirmation Program described in the plan. Each of the other 19 activities will have a separate TWP. This plan, though titled Construction Effects Monitoring, in accordance with the Performance Confirmation Plan, also includes testing that may be performed in addition to monitoring, if required. Performance confirmation is required by regulation 10 CFR Part 63 [DIRS 173273], and was started during site characterization (consistent with the regulation) and will continue until permanent closure of the repository (10 CFR 63.13 1 (b) [DIRS 173273]). This CEM activity has two primary goals: (1) to collect, analyze, and report on repository rock properties data for the purpose of confirming geotechnical and design parameters used in repository design, and (2) to provide information intended to confirm that the ability to retrieve waste from the repository has been preserved. It will be necessary for information from this CEM activity to be evaluated in combination with that obtained from other Performance Confirmation Program activities to achieve these goals. These relationships with other Performance Confirmation Program activities (e.g., drift inspection, subsurface mapping, and seismicity monitoring) will be discussed in later sections of this TWP.

  13. DOE - NNSA/NFO -- Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Click to subscribe to NNSS News Monitoring Environmental Monitoring photo The Nevada Field Office's ...

  14. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  15. NNSA's Asset Management Program Completes First Pilot | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) NNSA's Asset Management Program Completes First Pilot December 22, 2015 Asset Management Program implementation team. The National Nuclear Security Administration (NNSA) today announced completion of a $520k pilot to replace a roof, as well as heating, ventilation and cooling (HVAC) system for the Core Library and Data Center at Mercury, Nevada (http://nevada.usgs.gov/mercury/). The library was established as a repository for geologic, hydrologic, and

  16. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  17. MeshMaker: Configurable Meshing Framework for Eco-Hydrology Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nathan Collier; Jitendra Kumar

    2016-02-09

    MeshMaker is a Python-based framework for generation of high quality structured and unstructured grid computational meshes for Eco-Hydrological models.

  18. A Large-Scale, High-Resolution Hydrological Model Parameter Data...

    Office of Scientific and Technical Information (OSTI)

    Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US Citation Details In-Document Search Title: A ...

  19. DOE Awards Nye County Grant for Community-Based Groundwater Monitoring |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nye County Grant for Community-Based Groundwater Monitoring DOE Awards Nye County Grant for Community-Based Groundwater Monitoring December 29, 2015 - 12:25pm Addthis Tour participants are briefed on the Nye County Community-Based Groundwater Monitoring Program before observing sampling at the Amargosa Valley RV Park. Tour participants are briefed on the Nye County Community-Based Groundwater Monitoring Program before observing sampling at the Amargosa Valley RV Park.

  20. Advanced Application Development Program Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Development Program Information Advanced Application Development Program Information Summary of the Tranmission Reliability program's Advanced Applications Research and Development activity area. This program develops and demonstrates tools to monitor and control the grid with advanced analysis, visualization, and situational awareness tools. Advanced Applications Development Program Factsheet.pdf (3.49 MB) More Documents & Publications EAC Recommendations for DOE Action

  1. Army energy conservation programs

    SciTech Connect (OSTI)

    Hutchinson, R.L.

    1983-06-01

    The Energy Engineering Analysis Program (EEAP) has been instrumented to reduce Army energy consumption by 20 percent by FY 1985. EEAP surveys and identifies high energy users, analyzes and applies conservation technologies, and submits a study report to the Director of Engineering and Housing. The Energy Conservation Investment Program (ECIP), which retrofits existing facilities with insulation, and monitoring systems, is the foundation of EEAP. The Energy Conservation and Management Plan (ECAM) is designed to do for GOCO's (government owned, contractor operated plants) what ECIP does for army plants. A few specific conversion projects are listed. An energy awareness program includes seminars, workshops, displays, and brochures. The Facilities Energy RDTandS program insures that the Army will be able to rapidly utilize the latest state-of-the-art energy technology.

  2. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-01-09

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) has been designed and constructed. The design of the full-scale laboratory prototype and associated test equipment is complete and the components are out for manufacture. Barring any unforeseen difficulties, laboratory testing should be complete by the end of March, as currently scheduled. We anticipate the expenses through March to be approximately equal to those budgeted for Phase I.

  3. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  4. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  5. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  6. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  7. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  8. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  9. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect (OSTI)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  10. Field Monitoring Protocol: Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Tomerlin, J.; Winkler, J.; Hancock, E.

    2011-03-01

    The report provides a detailed method for accurately measuring and monitoring performance of a residential Mini-Split Heat Pump. It will be used in high-performance retrofit applications, and as part of DOE's Building America residential research program.

  11. Field Monitoring Protocol. Mini-Split Heat Pumps

    SciTech Connect (OSTI)

    Christensen, Dane; Fang, Xia; Tomerlin, Jeff; Winkler, Jon; Hancock, E.

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  12. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    SciTech Connect (OSTI)

    C.T. Bastian

    2003-03-28

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES&H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters.

  13. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect (OSTI)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  14. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_025_fehler.pdf (195.11 KB) More Documents & Publications Analysis of Geothermal

  15. Program Administration

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume describes program administration that establishes and maintains effective organizational management and control of the emergency management program. Canceled by DOE G 151.1-3.

  16. Weatherization Program

    Broader source: Energy.gov [DOE]

    Residences participating in the Home Energy Rebate or New Home Rebate Program may not also participate in the Weatherization Program

  17. Monitoring SERC Technologies: On-Demand Tankless Water Heaters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Weatherization Assistance Program » Pilot Projects » Monitoring SERC Technologies: On-Demand Tankless Water Heaters Monitoring SERC Technologies: On-Demand Tankless Water Heaters On Oct. 4, 2011, Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, presented a Webinar about On-Demand Tankless Water Heaters and how to properly monitor their installation. View the webinar presentation. More Information Some resources and tools mentioned in the

  18. Monitoring and Modeling Fluid Flow in a Developing EGS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Peer Review Insert photo of your choice Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir April 24, 2013 Michael Fehler Massachusetts Institute of Technology Monitoring and Monitoring Fluid Flow This presentation does not contain any proprietary confidential, or otherwise restricted information. Relevance/Impact of Research 2 | US DOE Geothermal Program eere.energy.gov Project Objective Use Chevron's high-quality data from a long-term injection in the Salak geothermal field to

  19. Quality Assurance Program Plan for FFTF effluent controls. Revision 1

    SciTech Connect (OSTI)

    Seamans, J.A.

    1995-06-08

    This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification.

  20. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  1. DOE/NV/11718--449-REV1 INTEGRATED CLOSURE AND MONITORING PLAN

    National Nuclear Security Administration (NNSA)

    ... Provide a continuing assessment of pollution abatement programs; * 5b (1)(f) Identify ... 61 provides requirements for radiological air monitoring (including radon) and direct ...

  2. Visiting Faculty Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Faculty Program Program Description The Visiting Faculty Program seeks to increase the research competitiveness of faculty members and their students at institutions historically underrepresented in the research community in order to expand the workforce vital to Department of Energy mission areas. As part of the program, selected university/college faculty members collaborate with DOE laboratory research staff on a research project of mutual interest. Program Objective The program is

  3. Visiting Faculty Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covers stipend and travel reimbursement for the 10-week program. Teacherfaculty participants: 1 Program Coordinator: Scott Robbins Email: srobbins@lanl.gov Phone number: 663-5621...

  4. CEBAF - environmental protection program plan

    SciTech Connect (OSTI)

    1995-10-01

    An important objective in the successful operation of the Continuous Electron Beam Accelerator Facility (CEBAF) is to ensure protection of the public and the environment. To meet this objective, the Southeastern Universities Research Association, Inc., (SURA) is committed to working with the US Department of Energy (DOE) to develop, implement, and manage a sound and workable environmental protection program at CEBAF. This environmental protection plan includes information on environmental monitoring, long-range monitoring, groundwater protection, waste minimization, and pollution prevention awareness program plan.

  5. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  6. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  7. Sandia Energy - Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Wind (CREW) Database Energy, Monitoring, News, News & Events, Renewable Energy, Wind Energy Sandia Releases First Findings from Its Continuous Reliability Enhancement for Wind...

  8. Structural Health Monitoring Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 30, 2014 Example Usages Contents Data Set Descriptions Integrating Examples Modal Analysis Condition-Based Monitoring Active Sensing Outlier Detection Data Set Descriptions ...

  9. Environmental monitoring plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1997-02-01

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 52 refs., 10 figs., 12 tabs.

  10. Sandia Energy - Sensing & Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing & Monitoring Home Climate Permalink Gallery The Rush to Exploit an Increasingly Ice-Free Arctic Climate, Earth Sciences Research Center, Global, Global Climate & Energy,...

  11. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  12. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  13. Corral Monitoring System assessment results

    SciTech Connect (OSTI)

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  14. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    SciTech Connect (OSTI)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  15. Community Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Community Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Environmental Documents Tours Community Programs Friends of Berkeley Lab Community Education Programs Workforce Development & Education As part of the Lab's education mission to inspire and prepare the next generation of scientists and engineers, the Workforce Development & Education runs numerous education programs for all ages of students-from elementary

  16. Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting

    Broader source: Energy.gov [DOE]

    This pamphlet is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE, Department of Energy Laboratory Accreditation Program (DOELAP) and Radiation Exposure Monitoring Systems (REMS)

  17. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic...

    Office of Scientific and Technical Information (OSTI)

    The radiometers were used along with other instrumentation to estimate the liquid water ... in the region (by monitoring the liquid water path in the column) and observe the effect ...

  18. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect (OSTI)

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  19. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  20. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect (OSTI)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and