National Library of Energy BETA

Sample records for hydrokinetic tidal energy

  1. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  2. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  3. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY...

    Office of Scientific and Technical Information (OSTI)

    ... Wind energy costs are significantly lower than natural gas, solar power, or coal with ... efficiency, reduced noise, and longer lifetimes, all this comes at an expensive price. ...

  4. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  5. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  6. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  7. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  8. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  9. Tidal Energy Research

    SciTech Connect (OSTI)

    Stelzenmuller, Nickolas; Aliseda, Alberto; Palodichuk, Michael; Polagye, Brian; Thomson, James; Chime, Arshiya; Malte, Philip

    2014-03-31

    This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.

  10. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  11. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  12. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  13. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  14. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa

  15. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on ...

  16. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that ...

  17. In-stream hydrokinetic resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Effects on the Physical Environment ...

  18. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is

  19. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn

  20. Marine and Hydrokinetic Technology Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and testing is being done

  1. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2015. 2008-2015 Marine and Hydrokinetic Power Projects (1.87 MB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and

  2. Marine and Hydrokinetic Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic Energy Projects This report covers the Wind and Water Power Technologies Office's marine and hydrokinetic projects from fiscal years 2008 to 2015. 2008-2015 Marine and Hydrokinetic Power Projects (1.87 MB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Water Power Program: 2011 Peer Review Report Before the House Science and

  3. Marine and Hydrokinetic Energy Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-03-24

    This report covers the Wind and Water Power Technologies Office's Marine and Hydrokinetic Energy Projects from 2008 to 2014.

  4. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  5. Department of Energy Awards $37 Million for Marine and Hydrokinetic...

    Energy Savers [EERE]

    ... Department of Energy Awards 37 Million for Marine and Hydrokinetic Energy Technology Development River Turbine Provides Clean Energy to Remote Alaskan Village New Wave Power ...

  6. Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Stream Jump to: navigation, search Name: Tidal Stream Address: 76 Dukes Ave Place: London Zip: W4 2 AK Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 01926...

  7. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  8. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  9. Sandia Energy - Numerical Simulations of Hydrokinetics in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...

  10. Marine and Hydrokinetic | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleMarineandHydrokinetic&oldid619739" Feedback Contact needs updating Image...

  11. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. PDF icon sitinghandbook2009.pdf ...

  12. Tidal Sails AS | Open Energy Information

    Open Energy Info (EERE)

    Sails AS Jump to: navigation, search Name: Tidal Sails AS Address: Standgaten 130 Place: Haugesund Zip: 5531 Region: Norway Sector: Marine and Hydrokinetic Phone Number: +32 474 98...

  13. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. siting_handbook_2009.pdf (2.43 MB) More Documents & Publications Siting Methodologies for Hydrokinetics EIS-0488: Final Environmental Impact Statement EIS-0493: Draft Environmental Impact Statement

  14. Marine and Hydrokinetic Technologies Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Fact Sheet Marine and Hydrokinetic Technologies Fact Sheet This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies. Marine and Hydrokinetic Technologies Fact Sheet (616.51 KB) More Documents & Publications 47688.pdf Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Leading the Nation in Clean Energy Deployment

  15. Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

  16. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. Assessment and Mapping of the Riverine Hydrokinetic Resource

  17. Severn Tidal Power Group STpg | Open Energy Information

    Open Energy Info (EERE)

    Severn Tidal Power Group STpg Jump to: navigation, search Name: Severn Tidal Power Group STpg Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is...

  18. Energy Department Awards More Than $20 Million for Wave and Tidal Energy

    Energy Savers [EERE]

    Projects | Department of Energy More Than $20 Million for Wave and Tidal Energy Projects Energy Department Awards More Than $20 Million for Wave and Tidal Energy Projects August 30, 2016 - 1:15pm Addthis The Energy Department today announced 10 organizations selected to receive more than $20 million in funding for new research, development, and demonstration projects that advance and monitor marine and hydrokinetic (MHK) energy systems, which generate electricity from ocean waves and tidal

  19. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  20. Sandia Energy - Marine Hydrokinetics Technology: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on aquatic organisms, with early emphasis on the effects of electromagnetic fields (EMF), acoustic noise from currenttidal, wave and riverine hydrokinetic generators, toxicity...

  1. Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources

    SciTech Connect (OSTI)

    Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

    2010-07-30

    The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

  2. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Form Edit History Form:Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic...

  3. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development | Department of Energy $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to

  4. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStrai...

  5. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. More Documents & Publications Assessment and Mapping of the

  6. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressor–receptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and

  7. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    SciTech Connect (OSTI)

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  8. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop October 26-28, 2005 Washington, D.C. Sponsored by: U.S. Department of Energy OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY Wind and Hydropower Technologies Program March 24, 2006 To access this document and presentations made at the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop visit: http://hydropower.inl.gov/hydrokinetic_wave/ The production of

  9. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel marine hydrokinetic (MHK)...

  10. Tocardo Tidal Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tocardo Tidal Energy Ltd Jump to: navigation, search Name: Tocardo Tidal Energy Ltd Address: De Weel 20 Place: Zijdewind Zip: 1736KB Region: Netherlands Sector: Marine and...

  11. MHK Technologies/Underwater Electric Kite Turbines | Open Energy...

    Open Energy Info (EERE)

    Chitokoloki Project *MHK ProjectsCoal Creek Project *MHK ProjectsHalf Moon Cove Tidal Project *MHK ProjectsIndian River Tidal Hydrokinetic Energy Project *MHK Projects...

  12. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect (OSTI)

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  13. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  14. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  15. Tidal Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: Tidal Energy Limited (TEL) Place: Cardiff, Wales, United Kingdom Zip: CF23 8RS Product: Tidal stream device developer. Coordinates:...

  16. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  17. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Capabilities FAQ Request for Testing Safety Technical Staff Energy Storage Nuclear Power & Engineering Grid Modernization Resilient Electric Infrastructures Military...

  18. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  19. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel MHK coatings at Pacific...

  20. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power 16_life_revision_previsic_update.ppt (2.64 MB) More Documents & Publications 2014 Water Power Program Peer Review

  1. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tidal Energy Resource Assessment Tidal Energy Resource Assessment Tidal Energy Resource Assessment 51_tidalresource_gtrc_haas.ppt (8.56 MB) More Documents & Publications Ocean current resource assessment Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web)

  2. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  3. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearlymore » bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.« less

  4. Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S.; Colby, Jonathan

    2014-06-22

    This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

  5. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  6. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Map Reveals U.S. Tidal Energy Resources Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. ...

  7. Tidal Energy Test Platform | Open Energy Information

    Open Energy Info (EERE)

    Test Platform Jump to: navigation, search Basic Specifications Facility Name Tidal Energy Test Platform Overseeing Organization University of New Hampshire Hydrodynamics...

  8. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  9. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  10. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting electrical power from waves, water currents, and ...

  11. Hydra Tidal Energy Technology AS | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Technology AS Jump to: navigation, search Name: Hydra Tidal Energy Technology AS Address: PO Box 399 Place: Harstad Zip: 9484 Region: Norway Sector: Marine and...

  12. Verdant-Roosevelt Island Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Verdant-Roosevelt Island Tidal Energy Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleVerdant-RooseveltIslandTidalEnergy&oldid680702" ...

  13. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-06-09

    The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

  14. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  15. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Projects in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles

    2011-09-26

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progess to Investigate areas offshore southeast Florida that appeared most suitable for siting of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore of southeast Florida.

  16. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  17. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  18. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROPOWER TECHNOLOGIES PROGRAM December 2009 PREPARED IN RESPONSE TO THE ENERGY INDEPENDENCE AND SECURITY ACT OF 2007, SECTION 633(B) Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies NOTICE This report is being disseminated by the Department of Energy. As such, it was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Pub. L. No. 106- 554) and information guidelines

  19. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  20. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2011-05-09

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

  1. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is

  2. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy’s Wind and Hydropower Technologies Program’s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental

  3. List of Tidal Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  4. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models Preprint D. S. Jenne and Y.-H. Yu National Renewable Energy Laboratory V. Neary Sandia National Laboratories To be presented at the 3 rd Marine Energy Technology Symposium (METS 2015) Washington, D.C. April 27-29, 2015 Conference Paper NREL/CP-5000-64013 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government

  5. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  6. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual September 2011 Prepared by Vincent S. Neary, Ph.D., P.E. 1 Budi Gunawan, Ph.D. 1 Marshall C. Richmond, Ph.D. P.E. 2 Vibhav Durgesh, Ph.D. 2 Brian Polagye, Ph.D. 3 Jim Thomson, Ph.D. 3 Marian Muste, Ph.D. 4 Arnie Fontaine, Ph.D. 5 1 Oak Ridge National Laboratory 2 Pacific Northwest National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4

  7. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  8. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL A NUMERICAL MODELING ANALYSIS

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  9. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Cinq-Mars, Robert S; Burke, Timothy; Irish, James; Gustafson, Brian; Kirtley, James; Alawa, Aiman

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: Identified the conditions and requirements for MHK generators. Defined a methodology for sizing and rating MHK systems. Selected an MHK generator topology and form factor. Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. Investigated MHK generator manufacturing requirements. Reviewed cost implications and financial viability. Completed final reporting and deliverables

  10. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect (OSTI)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  11. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from...

  12. MHK Projects/Tidal Energy Project Portugal | Open Energy Information

    Open Energy Info (EERE)

    Organization Tidal Energy Pty Ltd Project Technology *MHK TechnologiesDavidson Hill Venturi DHV Turbine Project Licensing Environmental Monitoring and Mitigation Efforts See...

  13. MHK Projects/Astoria Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Astoria Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  14. MHK Projects/Cape Islands Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. MHK Projects/Angoon Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Angoon Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  16. MHK Projects/Kendall Head Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Kendall Head Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  17. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","t...

  18. MHK Projects/Roosevelt Island Tidal Energy RITE | Open Energy...

    Open Energy Info (EERE)

    Roosevelt Island Tidal Energy RITE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  19. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  20. MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  1. MHK Projects/Edgar Town Nantucket Tidal Energy | Open Energy...

    Open Energy Info (EERE)

    Town Nantucket Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  2. MHK Projects/Housatonic Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Housatonic Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  3. MHK Projects/East Foreland Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    East Foreland Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"...

  4. MHK Projects/Cuttyhunk Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Cuttyhunk Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. MHK Projects/Spieden Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  6. MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  7. MHK Projects/Nantucket Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Nantucket Tidal Energy Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  9. MHK Projects/Penobscot Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  10. MHK Projects/Cook Inlet Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Cook Inlet Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROA...

  11. MHK Projects/Guemes Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  12. MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Tacoma Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  13. MHK Projects/Seaflow Tidal Energy System | Open Energy Information

    Open Energy Info (EERE)

    been operating the Seaflow Tidal Energy System project since May 2003. This was an experimental test rig - the successor, SeaGen is intended for commercial applications Project...

  14. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    a pressure differential is induced within the device as the wave passes driving a fluid pump to create mechanical energy Oscillating Water Column OscillatingWaterColumn.jpg...

  15. MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy...

    Open Energy Info (EERE)

    Rhode Island Energy Group LLC Project Licensing FERC License Docket Number P-13092 Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  16. Marine and Hydrokinetic Technology Glossary | Department of Energy

    Energy Savers [EERE]

    energy from air forced through a turbine by the rising and falling motion of a wave. ... pressurizes and depressurizes the air column, pushing or pulling it through a turbine. ...

  17. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and...

  18. Category:Marine and Hydrokinetic Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Centipod MHK TechnologiesCETO Wave Energy Technology MHK TechnologiesClosed Cycle OTEC MHK TechnologiesCoRMaT MHK TechnologiesCross Flow Turbine MHK TechnologiesCurrent...

  19. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from ...

  20. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Tidal Energy Point absorbers generate electricity by converting the energy in waves using a float that rides the waves and is attached to a moored conversion ...

  1. Marine and Hydrokinetic Technology Development and Testing |...

    Energy Savers [EERE]

    The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, ...

  2. In-stream hydrokinetic power: Review and appraisal

    SciTech Connect (OSTI)

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year of extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.

  3. In-stream hydrokinetic power: Review and appraisal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less

  4. TidalStream | Open Energy Information

    Open Energy Info (EERE)

    TidalStream Jump to: navigation, search Name: TidalStream Place: Southam, United Kingdom Zip: CV47 0HF Product: UK-based developer of platforms for tidal turbines. Coordinates:...

  5. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  6. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions

  7. Tidal Energy System for On-Shore Power Generation

    SciTech Connect (OSTI)

    Bruce, Allan J

    2012-06-26

    Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for

  8. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

  9. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  10. Energy Department Announces Funding for Demonstration and Testing of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Wave and Tidal Energy Technologies | Department of Energy Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies March 11, 2014 - 9:11am Addthis The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources. Through the two funding opportunities

  11. US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing

    SciTech Connect (OSTI)

    Neary, Vincent S; Chamorro, Leonardo; Hill, Craig; Gunawan, Budi; Sotiropoulos, Fotis

    2012-01-01

    Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

  12. MHK Projects/Central Cook Inlet Alaska Tidal Energy Project ...

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  13. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project...

    Open Energy Info (EERE)

    Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice"...

  14. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine...

  15. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect (OSTI)

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  16. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Generation Ltd EMEC This company is involved in the following MHK Technologies: Deep Gen Tidal Turbines This article is a stub. You can help OpenEI by expanding it. Tidal...

  17. Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic control and component technologies. In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses across the country's coastal regions.

  18. Application to Export Electric Energy OE Docket No. EA-422 Tidal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Inc. | Department of Energy Application to Export Electric Energy OE Docket No. EA-422 Tidal Energy Marketing Inc. Application from Tidal to export electric energy to Canada. EA-422 Tidal Energy Mktg. (CN).pdf (282.23 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-422 Tidal Energy Marketing Inc.: Federal Register Notice, Volume 81, No. 133 - July 12, 2016 Application to Export Electric Energy OE Docket No. EA-258-D Brookefield Energy

  19. Energy Department Awards $7.4 Million to Develop Advanced Components for Wave and Tidal Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced four entities selected to receive $7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically for marine and hydrokinetic systems.

  20. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    of earth tide response of three deep, confined aquifers Earth Tidal Analysis At Raft River Geothermal Area (1980) Raft River Geothermal Area 1980 1980 Reservoir response to...

  1. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Generators Ltd Jump to: navigation, search Name: Tidal Hydraulic Generators Ltd Address: 14 Thislesboon Drive Place: Mumbles Zip: SA3 4HY Region: United Kingdom Sector:...

  2. Pennamaquan Tidal Power LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Pennamaquan Tidal Power LLC Address: 45 Memorial Circle PO Box 1058 Place: Augusta Zip: 4332 Region: United States Sector: Marine and...

  3. Request for Information Regarding the Testing of Marine and Hydrokinet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Request for Information on Strategy to Advance the Marine and Hydrokinetic Energy Industry Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

  4. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Broader source: Energy.gov (indexed) [DOE]

    ... Energy Laboratory's validation of the hydrokinetic energy resource values in the GIS database was different from NREL's previous validations of wind and wave power estimates. ...

  5. Assessment of Energy Production Potential from Tidal Streams...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of Energy Production Potential from Tidal Streams in the United States Final ... Award Number: DE-FG36-08GO18174 Project Title: Assessment of Energy Production Potential ...

  6. New Interactive Map Reveals U.S. Tidal Energy Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Interactive Map Reveals U.S. Tidal Energy Resources New Interactive Map Reveals U.S. Tidal Energy Resources July 7, 2011 - 10:50am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams | Source: Georgia Institute of Technology Michael Reed Michael Reed Director, Technical and

  7. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  8. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  9. Assessment of Energy Production Potential from Tidal Streams...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for ...

  10. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report that describes the methodology and results of the most rigorous assessment to date ... In-stream hydrokinetic resource assessment NSD Methodology Report An Assessment of Energy ...

  12. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology at Florida Atlantic University, are ... Marine & Hydrokinetic Technologies WIND AND WATER POWER ... Renewable Power Company's Turbine Generator Unit, NRELPIX ...

  13. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  14. Upcoming Funding Opportunity for Marine and Hydrokinetic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium | Department of Energy Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium March 21, 2014 - 4:05am Addthis On March 21, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Marine and Hydrokinetic (MHK) Research and Development University Consortium." The goal of this funding

  15. Executive Summit on Marine and Hydrokinetic Research and Development Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg Executive Summit on Marine and Hydrokinetic Research and Development 2016 Agenda (746.5 KB) More Documents & Publications Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda CX-005184: Categorical Exclusion Determination CX-011388: Categorical

  16. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Notice of Intent to Fund Marine and Hydrokinetic Instrumentation Notice of Intent to Fund Marine and Hydrokinetic Instrumentation January 6, 2014 - 11:15am Addthis The Water Power Program recently issued a Notice of Intent for a funding opportunity expected to be posted early in 2014, pending congressional appropriations. The Notice of Intent, titled "Environmental Stewardship for Renewable Energy Technologies: Marine and Hydrokinetic (MHK) Environmental and

  17. Request for Information Regarding the Testing of Marine and Hydrokinetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Request for Information Regarding the Testing of Marine and Hydrokinetic Systems Request for Information Regarding the Testing of Marine and Hydrokinetic Systems January 14, 2015 - 10:30am Addthis The Energy Department's Water Power Program is seeking information from the marine and hydrokinetic (MHK) industry, academia, research laboratories, government agencies, and other stakeholders on the development details of MHK systems that have the greatest potential

  18. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework Webinar | Department of Energy Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar December 16, 2014 9:00AM to 10:30AM EST This webinar is also being offered on the same day in the afternoon at 2:00 p.m. EST. Marine and hydrokinetic (MHK) technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. The

  19. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    SciTech Connect (OSTI)

    Cada, Glenn

    2009-12-01

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources. The report does not address impacts to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e.g., construction and maintenance of transmission lines) or possible effects on the human environment, including: human use conflicts, aesthetics, viewsheds, noise in the terrestrial environment, light, recreation, transportation, navigation, cultural resources, socioeconomic impacts.

  20. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habitat, and potential for biofouling

  1. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2013-06-01

    A primary issue of concern of regulatory and resource agencies is how the operation of hydrokinetic turbines will affect local and migratory fish populations. This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  2. Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

    2011-01-31

    Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

  3. DOE Announces Marine and Hydrokinetic Open Data Effort | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy DOE Announces Marine and Hydrokinetic Open Data Effort DOE Announces Marine and Hydrokinetic Open Data Effort April 10, 2014 - 3:39pm Addthis In an effort to improve future data management and access, DOE's Water Power Program is standing up a Marine and Hydrokinetics (MHK) Data Repository to manage the receipt, protection, and dissemination of scientific and technical data generated by DOE funded awards. Capabilities of the proposed MHK Data Repository include: Secure and intuitive

  4. The environmental interactions of tidal and wave energy generation devices

    SciTech Connect (OSTI)

    Frid, Chris; Andonegi, Eider; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  5. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  6. Application to Export Electric Energy OE Docket No. EA-422 Tidal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Inc.: Federal Register Notice, Volume 81, No. 133 - July 12, 2016 | Department of Energy : Federal Register Notice, Volume 81, No. 133 - July 12, 2016 Application to Export Electric Energy OE Docket No. EA-422 Tidal Energy Marketing Inc.: Federal Register Notice, Volume 81, No. 133 - July 12, 2016 Application from Tidal to export electric energy. Federal Register Notice. EA-422 Tidal Energy Mktg. CN.pdf (170.02 KB) More Documents & Publications Application to Export Electric

  7. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    Broader source: Energy.gov [DOE]

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  8. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  9. Category:Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    Earth Tidal Analysis Jump to: navigation, search Geothermalpower.jpg Looking for the Earth Tidal Analysis page? For detailed information on Earth Tidal Analysis, click here....

  10. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect (OSTI)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  11. MHK Projects/Long Island Sound Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Long Island Sound Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemap...

  12. MHK Projects/San Juan Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  13. MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  14. MHK Projects/Icy Passage Tidal Energy Project | Open Energy Informatio...

    Open Energy Info (EERE)

    Icy Passage Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","t...

  15. Assessment of Energy Production Potential from Tidal Streams in the United States

    SciTech Connect (OSTI)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.; Smith, Brennan T.; Neary, Vincent

    2011-06-29

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  16. Assessment of Energy Production Potential from Tidal Streams in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  17. DOE’s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Broader source: Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  18. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - ... Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring ...

  19. MHK Projects/Clarence Strait Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Project Country Australia Project Resource Click here Current Tidal Project Nearest Body of Water Clarence Strait Coordinates -12.083533792616, 131.04972839355 Project...

  20. Poseidon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Poseidon Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  1. Leviathan Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Leviathan Energy Region: Israel Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  2. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  3. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  4. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations at the Navy's Wave Energy Test Site (WETS) | Department of Energy Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) March 24, 2014 - 12:27pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity

  5. The Wash Tidal Barrier Corporation | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: The Wash Tidal Barrier Corporation Place: Cambridge, England, United Kingdom Zip: CB24 8RX Product: Company building a tidal barrier...

  6. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    Overseeing Organization Tidal Generation Ltd Project Technology *MHK TechnologiesDeep Gen Tidal Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See...

  7. MHK Technologies/Sihwa tidal barrage power plant | Open Energy...

    Open Energy Info (EERE)

    Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile...

  8. MHK Technologies/Tidal Delay | Open Energy Information

    Open Energy Info (EERE)

    Tidal Delay < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Delay.png Technology Profile Primary Organization Woodshed Technologies Ltd...

  9. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  10. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy...

    Open Energy Info (EERE)

    Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary...

  11. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization...

  12. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC)

  13. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  14. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available in the nation's waves, tidal and river currents, and ocean thermal gradients. ... and global wave, tidal, ocean thermal, and continental U.S. river hydrokinetic resources. ...

  15. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  16. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-30

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry. Objectives for Task 2.1.7 are the following: • to work with stakeholders to streamline the MHK regulatory permitting process • to work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development • to communicate research findings and directions to the MHK industry and stakeholders • to engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which is described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning. As MHK industry partners work with the regulatory community and stakeholders to plan, site, permit, and license MHK technologies, they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under Task 2.1.7 is to understand and work to address these varied interests, reduce conflict, identify efficiencies, and ultimately reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  17. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  18. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  19. DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are...

  20. Request for Information for Marine and Hydrokinetic Field Measurements

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

  1. Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy Project Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy Project Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal Energy Project 01_puget_snopud_presentation.pptx (4.28 MB) More Documents & Publications Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project Sunlight Photonics (TRL 4 System) - Tidal Energy

  2. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the NREL in Broomfield, Colorado from July 9 - 10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and to collect

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveerevideosenergy-101-hydroelectric-power Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the...

  4. Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications National Solar Thermal Test Facility ... Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines Transportation Energy Consortiums ...

  5. Calming the Waters: The Impact of Turbulence on Tidal Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    New research is helping the emerging tidal energy industry learn from their counterparts in the wind industry. By considering the effects of atmospheric turbulence when developing turbine designs,...

  6. All Eyes on Eastport: Tidal Energy Project Brings Change, Opportunity to Local Community

    Broader source: Energy.gov [DOE]

    As progress on a Maine-based tidal energy project moves forward, local community member Gerald Morrison reflects on its impact.

  7. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  8. MHK Technologies/Tidal Sails | Open Energy Information

    Open Energy Info (EERE)

    to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed...

  9. Marine and Hydrokinetic Technology Instrumentation, Measurement, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer Modeling Workshop | Department of Energy Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be

  10. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  11. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  12. Loria Emerging Energy Consulting | Open Energy Information

    Open Energy Info (EERE)

    search Name: Loria Emerging Energy Consulting Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  13. Arnold Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Arnold Energy Systems Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  14. Fieldstone Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Fieldstone Energy Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  15. Yu Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Yu Energy Corp Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  16. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is

  17. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi; Ryou, Albert S

    2012-06-01

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  18. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  19. Enviro effects of hydrokinetic turbines on fish | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish 47fish-hkturbineinteractionseprijacobs...

  20. Energy Department Invests $16 Million to Harness Wave and Tidal...

    Broader source: Energy.gov (indexed) [DOE]

    Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the ...

  1. MHK Technologies/Tidal Stream | Open Energy Information

    Open Energy Info (EERE)

    Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The TidalStream SST (Semi-Submersible Turbine) is...

  2. MHK Projects/Town of Wiscasset Tidal Resources | Open Energy...

    Open Energy Info (EERE)

    Town of Wiscasset Tidal Resources < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  3. MHK Projects/Pennamaquan Tidal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Phase Phase ? PermitLicense Buildout (MW) 21 Main Overseeing Organization Pennamaquan Tidal Power LLC Project Licensing FERC License Docket Number P-13884 Environmental...

  4. MHK Projects/Turnagain Arm Tidal | Open Energy Information

    Open Energy Info (EERE)

    Turnagain Arm Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  5. MHK Projects/Avalon Tidal | Open Energy Information

    Open Energy Info (EERE)

    Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom...

  6. MHK Projects/Treat Island Tidal | Open Energy Information

    Open Energy Info (EERE)

    Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP"...

  7. MHK Projects/Paimpol Brehat tidal farm | Open Energy Information

    Open Energy Info (EERE)

    Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  8. MHK Technologies/Tidal Barrage | Open Energy Information

    Open Energy Info (EERE)

    < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Type Click here Cross Flow Turbine...

  9. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  10. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  11. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned...

  12. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Water Water America has vast wave, tidal and hydropower resources -- but much of this energy remains untapped. The Energy Department is committed to driving critical research and development efforts to expand electricity generation from these clean energy resources. This includes investments in existing hydropower facilities to equip them with the necessary infrastructure to produce electricity and leading marine and hydrokinetic technology advancements to generate energy from waves,

  13. MHK Technologies/Sabella subsea tidal turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    surface. These turbines are stabilised by gravity andor are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and...

  14. MHK Projects/Tidal Energy Device Evaluation Center TIDEC | Open...

    Open Energy Info (EERE)

    StateProvince Maine Project Country United States Project Resource Click here Current Tidal Coordinates 44.3879, -68.7998 Project Phase Phase 1 Device Nameplate Capacity (MW)...

  15. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    formerly Pulse Generation Jump to: navigation, search Name: Pulse Tidal (formerly Pulse Generation) Place: Hull, England, United Kingdom Zip: HU5 3LP Product: UK-based developer of...

  16. MHK Projects/Lubec Narrows Tidal | Open Energy Information

    Open Energy Info (EERE)

    Resource Click here Current Tidal Project Nearest Body of Water Lubec Narrows and Johnson Bay Coordinates 44.8652, -66.9828 Project Phase Phase 1 PermitLicense Buildout...

  17. MHK Projects/Fishers Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14395 Environmental Monitoring and...

  18. MHK Projects/Shelter Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  19. MHK Projects/Wiscasset Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  20. MHK Projects/Cohansey River Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14127 Environmental Monitoring and...

  1. MHK Projects/Salem Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-13849 Environmental Monitoring and...

  2. MHK Projects/Cape May Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14232 Environmental Monitoring and...

  3. MHK Projects/Killisnoo Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-13823 Environmental Monitoring and...

  4. MHK Projects/Rockaway Tidal Energy Plant | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  5. A modeling study of the potential water quality impacts from in-stream tidal energy extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system.more » Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. Furthermore, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.« less

  6. Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents

    Broader source: Energy.gov [DOE]

    Laboratory testing of new hydrokinetic energy device to harness energy in slow-moving water currents.

  7. University of Illinois uses Sandia Labs' reference hydrokinetic turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study potential bed erosion effects Illinois uses Sandia Labs' reference hydrokinetic turbine to study potential bed erosion effects - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  8. Funding Opportunity Announcement for a Marine and Hydrokinetic Development University Consortium

    Broader source: Energy.gov [DOE]

    The Energy Department announced $4 million to engage America’s research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

  9. Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments

    SciTech Connect (OSTI)

    Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

    2011-04-24

    Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

  10. Marine and Hydrokinetic Technology Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop ...