National Library of Energy BETA

Sample records for hydrokinetic technology current

  1. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  2. Marine & Hydrokinetic Technologies (Fact Sheet) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Technologies (Fact Sheet) Marine & Hydrokinetic Technologies (Fact Sheet) This fact sheet describes the Wind and Water Power Program's current approach to...

  3. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  4. Marine and Hydrokinetic Technologies Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  5. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  6. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  7. Marine & Hydrokinetic Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Hydrokinetic Technologies Marine & Hydrokinetic Technologies This fact sheet describes the U.S. Department of Energy's Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. PDF icon mhk_factsheet.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program

  8. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  9. Form:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Form Edit History Form:Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic...

  10. Marine and Hydrokinetic Technology Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop ...

  11. Marine and Hydrokinetic Technology Development and Testing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Development and Testing Marine and Hydrokinetic Technology Development and Testing The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture

  12. Marine and Hydrokinetic Technology Instrumentation, Measurement, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer Modeling Workshop | Department of Energy Technology Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be

  13. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    Open Energy Info (EERE)

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  14. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Before the House Science and Technology Subcommittee on Energy and Environment Water Power Program: ...

  15. Proceedings of the Hydrokinetic and Wave Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Stefanie Damiani Stavrakas, U.S. Fish and Wildlife Service Douglas Hall, Idaho ... USFWS United States Fish and Wildlife Service HYDROKINETIC & WAVE ENERGY TECHNOLOGIES ...

  16. Template:Marine and Hydrokinetic Technology Project Milestone...

    Open Energy Info (EERE)

    :MarineandHydrokineticTechnologyProjectMilestone&oldid675523" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  17. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Aquatic Environments | Department of Energy Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments. PDF icon

  18. Sandia Energy - Marine Hydrokinetics Technology: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on aquatic organisms, with early emphasis on the effects of electromagnetic fields (EMF), acoustic noise from currenttidal, wave and riverine hydrokinetic generators, toxicity...

  19. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the NREL in Broomfield, Colorado from July 9 - 10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and to collect

  20. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  1. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  2. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

    Broader source: Energy.gov [DOE]

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

  3. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  4. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  5. Marine and Hydrokinetic Technology Development Risk Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Bureau of Shipping ALARA as low as reasonably achievable API ... of Knowledge PMI Project Management Institute PTO power ... TPL technology performance level TRL technology readiness ...

  6. Current Electric | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Current Electric Region: United States Sector: Marine and Hydrokinetic This company is listed in the Marine and Hydrokinetic Technology...

  7. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Computer Modeling Workshop The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy...

  8. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  9. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    Broader source: Energy.gov [DOE]

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources.

  10. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect (OSTI)

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  11. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Final Technical Report: June 26, 2012 Awardee: SUNLIGHT PHOTONICS INC. 600 Corporate Court South Plainfield, NJ 07080 Sub Awardee: NASA - JET PROPULSION LAB. 4800 Oak Grove Blvd. Pasadena, CA 91109 Principal Investigator: Dr. Allan J. Bruce, Sunlight Photonics Inc.

  12. Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs

  13. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (MHK) Databases and Systems Fact Sheet Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research. PDF icon Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on Energy and Natural Resourses 2014 Water Power Program

  14. Marine and Hydrokinetic Technology Development Risk Management Framework

    SciTech Connect (OSTI)

    Snowberg, David; Weber, Jochem

    2015-09-01

    Over the past decade, the global marine and hydrokinetic (MHK) industry has suffered a number of serious technological and commercial setbacks. To help reduce the risks of industry failures and advance the development of new technologies, the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) developed an MHK Risk Management Framework. By addressing uncertainties, the MHK Risk Management Framework increases the likelihood of successful development of an MHK technology. It covers projects of any technical readiness level (TRL) or technical performance level (TPL) and all risk types (e.g. technological risk, regulatory risk, commercial risk) over the development cycle. This framework is intended for the development and deployment of a single MHK technology—not for multiple device deployments within a plant. This risk framework is intended to meet DOE’s risk management expectations for the MHK technology research and development efforts of the Water Power Program (see Appendix A). It also provides an overview of other relevant risk management tools and documentation.1 This framework emphasizes design and risk reviews as formal gates to ensure risks are managed throughout the technology development cycle. Section 1 presents the recommended technology development cycle, Sections 2 and 3 present tools to assess the TRL and TPL of the project, respectively. Section 4 presents a risk management process with design and risk reviews for actively managing risk within the project, and Section 5 presents a detailed description of a risk registry to collect the risk management information into one living document. Section 6 presents recommendations for collecting and using lessons learned throughout the development process.

  15. Category:Marine and Hydrokinetic Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Centipod MHK TechnologiesCETO Wave Energy Technology MHK TechnologiesClosed Cycle OTEC MHK TechnologiesCoRMaT MHK TechnologiesCross Flow Turbine MHK TechnologiesCurrent...

  16. Quadrennial Technology Review 2015: Technology Assessments--Marine and Hydrokinetic Power

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Marine and hydrokinetic (MHK) technologies convert the energy of waves, tides, and river and ocean currents into electricity. With more than 50% of the U.S. population living within 50 miles of the nation’s coasts, MHK technologies hold significant potential to supply renewable electricity to consumers in coastal load centers, particularly in the near term in areas with high costs of electricity and longer term in high resource areas in close proximity to major coastal load centers. MHK resource assessments identify a total U.S. technical resource potential of approximately 1250–1850 terawatt-hours (TWh) of generation per year from ocean wave, ocean current, ocean tidal, and river current energy. Of this, the U.S. continental technical resource potential is approximately 500–750 TWh/year. For context, roughly 90,000 homes can be powered by 1 TWh of electricity generation each year. A cost-effective MHK industry could provide a substantial amount of electricity for the nation owing in large part to its unique advantages as a source of energy, including its vast resource potential, its close proximity to major coastal load centers, and its long-term predictability and near-term forecastability.

  17. MHK Technologies/In stream River Hydrokinetics | Open Energy...

    Open Energy Info (EERE)

    homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing...

  18. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101: Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101,

  19. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic...

  20. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies include current energy conversion (CEC) devices, e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance computing (HPC), advanced materials and coatings, nondestructive

  1. Report to Congress on the Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies

    SciTech Connect (OSTI)

    Cada, Glenn

    2009-12-01

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological relationships, and other marine and freshwater aquatic resources. The report does not address impacts to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e.g., construction and maintenance of transmission lines) or possible effects on the human environment, including: human use conflicts, aesthetics, viewsheds, noise in the terrestrial environment, light, recreation, transportation, navigation, cultural resources, socioeconomic impacts.

  2. Marine and Hydrokinetic Energy Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office’s marine and hydrokinetic projects from fiscal years 2008 to 2015.

  3. MHK Technologies/Hydrokinetic Power Barge | Open Energy Information

    Open Energy Info (EERE)

    design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest...

  4. Marine and Hydrokinetic Technology Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a horizontal shaft to form a rotor; the kinetic motion of the water current creates lift ... a vertical shaft to form a rotor; the kinetic motion of the water current creates lift ...

  5. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. ...

  6. In-stream hydrokinetic resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-stream hydrokinetic resource assessment In-stream hydrokinetic resource assessment In-stream hydrokinetic resource assessment Office presentation icon 46_instream_hydrokinetic_resource_assessment_epri_jacobson.ppt More Documents & Publications Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Assessment and Mapping of the Riverine Hydrokinetic Resource in

  7. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example...

  8. Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop

    Broader source: Energy.gov [DOE]

    The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry.

  9. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.

  10. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Hydrokinetic » Marine and Hydrokinetic Resource Assessment and Characterization Marine and Hydrokinetic Resource Assessment and Characterization With more than 50% of the population living within 50 miles of coastlines, there is vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. In order to understand the full potential for future electricity production that

  11. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  12. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  13. Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents

    Broader source: Energy.gov [DOE]

    Laboratory testing of new hydrokinetic energy device to harness energy in slow-moving water currents.

  14. Marine and Hydrokinetic Energy Research & Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is

  15. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  16. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect (OSTI)

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  17. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    SciTech Connect (OSTI)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  18. Impacts of electromagnetic fields associated with marine and hydrokinetic surrogate technologies on fish movements and behaviors.

    SciTech Connect (OSTI)

    Claisse, Jeremy T.; Pondella, Daniel J.; Williams, Chelsea M.; Zahn, Laurel A.; Williams, Jonathan P.

    2015-09-30

    Marine and hydrokinetic energy (MHK) and offshore wind devices are being developed and deployed in U.S. and international waters. Electric current flowing through subsea transmission cables associated with these devices will generate electromagnetic fields (EMF), which may interact with, and potentially impact, marine fishes. Some marine fishes can detect electric and/or magnetic fields and use them to navigate, orientate, and sense prey, mates and predators. Over the past five years there have been multiple comprehensive reviews and studies evaluating the potential vulnerability of marine fishes to EMF produced by MHK devices. Most documented effects involve sub-lethal behavioral responses of individual fish when in close proximity to EMF (e.g., fish being repelled by or attracted to fields). These reviews reach conclusions that the current state of research on this topic is still in its infancy and evaluations of potential impacts are associated with great uncertainty. A variety of MHK technologies are likely to be considered for deployment offshore of the Hawaiian Islands, and there is a need to be able to better predict and assess potential associated environmental impacts. The goal of this study was to provide a complementary piece to these previous reviews (e.g., Normandeau et al. 2011) by focusing on marine fish species in the Hawaii region. We compiled the relevant available information, then prioritized fish species as candidates for various paths of future research. To address this, we first developed a list of Hawaii Region Focal Species, which included fishes that are more likely to be sensitive to EMF. We then compiled species-specific information available in the literature on their sensitivity to EMF, as well as life history, movement and habitat use information that could inform an analysis of their likelihood of encountering EMF from subsea cables associated with MHK devices. Studies have only documented EMF sensitivity in 11 of the marine fish species in this region. There was also relatively little detailed information on fish movement and habitat use patterns for most of the focal species. Our last objective was to develop recommendations for research needs to close the important knowledge gaps. We describe species-independent baseline research that primarily consists of in situ quantification of EMF generated by MHK devices and undersea cables that can occur as pilot and commercial scale MHK devices are deployed in Hawaii. Then we propose a simple approach for prioritizing Hawaii Region Focal Species (ranked relative to each other) as candidates in multiple related research paths. The prioritization approach incorporates EMF sensitivity information with the likelihood of interacting with EMF generated undersea transmission cables associated with MHK devices. Finally, we discuss the types of research needed to help fill gaps in the scientific knowledge base for this region. These involve studies to better define species-specific EMF sensitivity thresholds under various environmental conditions, studies of life history, movement and habitat use patterns to improve our understanding of the likelihood and frequency fishes may be in the vicinity of EMF generated by subsea transmission cables, and studies of the potential for related population, community or ecosystem impacts. Many of these studies can and should occur opportunistically as pilot and commercial scale MHK devices are deployed in Hawaii.

  19. Marine and Hydrokinetic Energy Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-03-24

    This report covers the Wind and Water Power Technologies Office's Marine and Hydrokinetic Energy Projects from 2008 to 2014.

  20. Siting Methodologies for Hydrokinetics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2009 Siting Methodologies for Hydrokinetics Siting Methodologies for Hydrokinetics Navigating the Regulatory Framework Prepared by Pacific Energy Ventures, LLC on behalf of the U.S. Department of Energy December 2009 Siting Methodologies for Hydrokinetics: Navigating the Regulatory Framework 2009 December 2009 Siting Methodologies for Hydrokinetics Intentionally Left Blank Siting Methodologies for Hydrokinetics: Navigating the Regulatory Framework 2009 December 2009 Siting Methodologies

  1. Marine and Hydrokinetic Resources | Open Energy Information

    Open Energy Info (EERE)

    and Characterization 2 CurrentTidalRiverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more...

  2. Hydrokinetic Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Laboratory Jump to: navigation, search Name: Hydrokinetic Laboratory Region: United States Sector: Marine and Hydrokinetic Website: www.hklabllc.com This company is...

  3. Siting Methodologies for Hydrokinetics

    Broader source: Energy.gov [DOE]

    Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects.

  4. Marine and Hydrokinetic Energy Research & Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research & Development Marine and Hydrokinetic Energy Research &...

  5. Request for Information for Marine and Hydrokinetic Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring Technologies and Field Testing Opportunities | Department of Energy Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities June 22, 2015 - 12:13pm Addthis The Energy Department's Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research

  6. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  7. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments The article reviews the results of that workshop, focusing on potential effects on ...

  8. Notice of Intent to Fund Marine and Hydrokinetic Instrumentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters

  9. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...

    Broader source: Energy.gov (indexed) [DOE]

    Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS)." ... development, prepared to build and test technology at close to full-scale in the ...

  10. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  11. DOE’s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Broader source: Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  12. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Broader source: Energy.gov [DOE]

    This workshop focused on information about the technologies and identified potential environmental issues associated with deploying them, and outlined a list of research needs and possible approaches to addressing those issues.

  13. DOE Announces Webinars on Residential Energy Efficiency, Marine and Hydrokinetic Technology Development Risk Management, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are...

  14. Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development | Department of Energy 37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to

  15. Marine & Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM C L E A N C I T I E S WIND AND WATER POWER PROGRAM * April 2011 * Page 2 C L E A N C I T I E S DOEGO-102011-3299 * April 2011

  16. Gulfstream Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Gulfstream Technologies Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  17. Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (MHK) Databases and Systems Fact Sheet Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet The following online information resources are designed to provide the public access to information pertaining to MHK technologies, projects, and research. PDF icon Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on Energy and Natural Resourses Categorizing and Evaluating

  18. Muroran Institute of Technology | Open Energy Information

    Open Energy Info (EERE)

    Marine and Hydrokinetic Phone Number: 81 143 46 5200 Website: www.muroran-it.ac.jpenglish This company is listed in the Marine and Hydrokinetic Technology Database. This...

  19. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: • Identified the conditions and requirements for MHK generators. • Defined a methodology for sizing and rating MHK systems. • Selected an MHK generator topology and form factor. • Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. • Investigated MHK generator manufacturing requirements. • Reviewed cost implications and financial viability. • Completed final reporting and deliverables

  20. Siting Methodologies for Hydrokinetics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Methodologies for Hydrokinetics Report that provides an overview of the federal and state regulatory framework for hydrokinetic projects. PDF icon sitinghandbook2009.pdf ...

  1. Marine and Hydrokinetic | Open Energy Information

    Open Energy Info (EERE)

    Hydrokinetic Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleMarineandHydrokinetic&oldid619739" Feedback Contact needs updating Image...

  2. Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower Conference, 10 June 2010, rev 1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager BUILDING STRONG ® 1 What are Hydrokinetic Projects? Hydrokinetic hydropower projects convert the kinetic energy of flowing water into electrical energy. Applications are where adequate velocity of flowing water to generate electricity exists. This can be from tidal currents, wave energy, or in our case...the

  3. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  4. Enviro effects of hydrokinetic turbines on fish | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Enviro effects of hydrokinetic turbines on fish Office presentation icon ...

  5. Ecomerit Technologies LLC see Dehlsen Associates LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  6. Dehlsen Associates see Ecomerit Technologies LLC | Open Energy...

    Open Energy Info (EERE)

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  7. Geothermal Technologies Office Current Outlook | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Outlook Geothermal Technologies Office Current Outlook PDF icon 2015 GRC GTO ... GRC Annual Meeting 2015 Presentation: GTO Current Outlook Geothermal Technologies Office ...

  8. Current to Current | Open Energy Information

    Open Energy Info (EERE)

    Current Jump to: navigation, search Name: Current to Current Address: 35 Corporate Dr Place: Burlington Zip: 1803 Region: United States Sector: Marine and Hydrokinetic Phone...

  9. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  10. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect (OSTI)

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  11. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a ... for the full platform of light-duty automotive vehicles using fuel cell power plants. ...

  12. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    SciTech Connect (OSTI)

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  13. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi; Ryou, Albert S

    2012-06-01

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  14. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    419 Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual September 2011 Prepared by Vincent S. Neary, Ph.D., P.E. 1 Budi Gunawan, Ph.D. 1 Marshall C. Richmond, Ph.D. P.E. 2 Vibhav Durgesh, Ph.D. 2 Brian Polagye, Ph.D. 3 Jim Thomson, Ph.D. 3 Marian Muste, Ph.D. 4 Arnie Fontaine, Ph.D. 5 1 Oak Ridge National Laboratory 2 Pacific Northwest National Laboratory 3 Northwest National Marine Renewable Energy Center, University of Washington 4

  15. Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report

    SciTech Connect (OSTI)

    Stephen Spain

    2012-03-15

    HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University’s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

  16. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur during passage through a Welka UPG turbine at ambient current velocities less than about 2.5 m/s. Survival and Behavior of Juvenile Atlantic Salmon and Adult American Shad on Exposure to a Hydrokinetic Turbine This report describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon and upstream migrating adult American shad. Studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded in the presence of the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine the extent to which observed effects are likely to influence fish in riverine environments. Analysis is needed to assess the potential for multiple units to lead to greater mortality rates or impacts on fish movements and migrations. Additionally, future research should focus on expanding the existing data by developing better estimates of encounter and avoidance probabilities.

  17. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

  18. New Report States That Hydrokinetic Turbines Have Minimal Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August ...

  19. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel marine hydrokinetic (MHK)...

  20. Executive Summit on Marine and Hydrokinetic Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg PDF ...

  1. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United ...

  2. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States ...

  3. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume ...

  4. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  5. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  6. Modeling options for Current Energy Convertor Systems and Associated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Current Energy Converter Systems and Associated Challenges Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop Allie Cribbs Ocean Engineer ...

  7. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline, bottom/midwater/surface of channel) to ascertain potential interactions. In addition, we are collaborating and communicating with scientists at other national laboratories and industry who are also developing information useful to this task. For example, other studies being funded by DOE include evaluations of different in-current (hydrokinetic) turbine designs for their effects on rates and severity of blade strike and likelihood of cavitation. This report summarizes activities completed during the first year of a three-year study.

  8. Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake

    2013-05-01

    This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

  9. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  10. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  11. Sandia Energy - Marine Hydrokinetics Technology: Technology Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and currenttidal power devices. Areas of focus will be on coatings, composites, and molding processes. System Reliability and Survivability Similar to other early stage...

  12. MHK Technologies/Current Catcher | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Offshore Islands Ltd Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Description The Current...

  13. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. PDF icon Assessment and Mapping of the Riverine Hydrokinetic

  14. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Current Status of Concentrator Photovoltaic (CPV) Technology

    SciTech Connect (OSTI)

    Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

    2015-01-01

    This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

  16. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  17. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  18. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  19. Teamwork Technology See Tocardo | Open Energy Information

    Open Energy Info (EERE)

    Teamwork Technology See Tocardo Jump to: navigation, search Name: Teamwork Technology See Tocardo Region: Netherlands Sector: Marine and Hydrokinetic Website: http: This company is...

  20. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  1. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  2. MHK Technologies/EnCurrent Turbine | Open Energy Information

    Open Energy Info (EERE)

    EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy...

  3. New Airborne Technology Measures Ocean Surface Currents for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for ...

  4. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  5. MHK Technologies/CurrentStar | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine Technology Description The CurrentStar series is designed to harness the...

  6. THORs Power Method for Hydrokinetic Devices - Final Report

    SciTech Connect (OSTI)

    J. Turner Hunt; Joel Rumker

    2012-08-08

    Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

  7. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continental United States | Department of Energy and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Report that describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. More Documents & Publications Assessment and Mapping of the

  8. Executive Summit on Marine and Hydrokinetic Research and Development Agenda

    Energy Savers [EERE]

    | Department of Energy Executive Summit on Marine and Hydrokinetic Research and Development Agenda Executive Summit on Marine and Hydrokinetic Research and Development Agenda MHK-Summit-Agenda.jpg PDF icon Executive Summit on Marine and Hydrokinetic Research and Development 2016 Agenda More Documents & Publications Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda CX-005184: Categorical Exclusion Determination CX-011388: Categorical

  9. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Flume Studies | Department of Energy Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river

  10. Upcoming Funding Opportunity for Marine and Hydrokinetic Development

    Energy Savers [EERE]

    University Consortium | Department of Energy Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium March 21, 2014 - 4:05am Addthis On March 21, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Marine and Hydrokinetic (MHK) Research and Development University Consortium." The goal of this funding opportunity is to leverage

  11. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  12. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Open Energy Info (EERE)

    Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic...

  13. Sandia Energy - Biofouling Studies on Sandia's Marine Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic (MHK) Coatings Initiated at PNNL's Sequim Bay Sandia's Materials & Manufacturing Reliability Program has begun testing their novel MHK coatings at Pacific...

  14. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  15. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  16. University of Illinois uses Sandia Labs' reference hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... effects of hydrokinetic turbines on erosion of riverbeds ...

  17. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume ... 3 U.S.G.S. S.O. Conte Anadromous Fish Research Laboratory Executive Summary ...

  18. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  19. Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthony Falls Laboratory, College of Science & Engineering, University of Minnesota, Minneapolis, MN 55414. ABSTRACT Large scale coherent motions around marine and hydrokinetic ...

  20. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  1. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  2. Sandia Energy - Numerical Simulations of Hydrokinetics in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numerical Simulations of Hydrokinetics in the Roza Canal, Yakima Washington Home Renewable Energy Energy Water Power Computational Modeling & Simulation Numerical Simulations of...

  3. Current Status of VHTR Technology Development

    SciTech Connect (OSTI)

    David Petti; Hans Gougar; Richard Wright; William Windes; Steve Herring; Richard Schultz; Paul Humrickhouse

    2010-10-01

    Abstract – High Temperature Gas-cooled Reactors (HTGRs) featuring particle fuel reached the stage of commercial deployment in the mid-1980s with the Fort St.Vrain and Thorium HochTemperatur Reaktor feeding electricity to the grids in the United States and West Germany, respectively. The technology was then adopted by Japan and China with the operation of the High Temperature Test Reactor in Oarai, Japan and the High Temperature Reactor (HTR-10) in China. Increasing the outlet temperature of the HTGR to even higher temperatures above 900°C will improve the thermodynamic efficiency of the system and enable application of a new class of gas reactor, the very high temperature reactor, to provide process heat, electricity, and hydrogen to chemical industries with the attendant benefits of improved energy security and reduced CO2 emissions. However, the increase in coolant outlet temperature presents a number of technical challenges associated with fuel, materials, power conversion, and analysis methods for the reactor and hydrogen production. The U.S. Department of Energy is sponsoring a broad program of research and development with a goal of addressing the technical challenges over a broad range of outlet temperatures as part of the Next Generation Nuclear Plant Project. This paper describes the research and development activities that are currently underway to realize the technologies needed for an HTGR that features outlet temperatures of 750 to 950°C.

  4. MHK Technologies/Zero Impact Water Current Turbine | Open Energy...

    Open Energy Info (EERE)

    Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp...

  5. Leaders in Future and Current Technology Teaming Up to Improve...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leaders in Future and Current Technology Teaming Up to Improve Ethanol Production For more ... with Broin and Associates, Inc., a major ethanol producer, to develop new technologies to ...

  6. Woodshed Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Address: Level 50 101 Collins St Place: Melbourne Zip: 3000 Region: Australia Sector: Marine and Hydrokinetic Phone Number: +613 96539264 Website:...

  7. Chevron Technology Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Chevron Technology Ventures LLC Address: 3901 Briarpark Drive Place: Houston Zip: 77042 Region: United States Sector: Marine and Hydrokinetic...

  8. Accelerating Climate Technologies: Innovative Market Strategies...

    Open Energy Info (EERE)

    that play a neutral broker role with the private sector. The final marine energy case study proposes a similar approach to accelerate hydrokinetic marine energy technology...

  9. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Capabilities FAQ Request for Testing Safety Technical Staff Energy Storage Nuclear Power & Engineering Grid Modernization Resilient Electric Infrastructures Military...

  10. Marine and Hydrokinetic Technology Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tethys Environmental Impacts Knowledge Management System The U.S. Department of Energy partnered with the International Energy Agency's Ocean Energy Systems initiative to create ...

  11. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and longevity of larger commercial tidal machine design. ... were addressed during the first plenary session. * How do ... what models are useful o Through failure comes learning. ...

  12. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    Open Energy Info (EERE)

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  13. biofouling studies on Sandia's marine hydrokinetic coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofouling studies on Sandia's marine hydrokinetic coatings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  14. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, P.

    2012-12-12

    This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account for all technical constraints on energy capture and conversion.

  15. Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

    Broader source: Energy.gov [DOE]

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

  16. Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Zheng Zhang

    2012-04-19

    Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

  17. Current Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    develop smart grid technology for delivering intelligent and distribution over power lines. These developments are also designed to increase the safety of the energy...

  18. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  19. Current Fuel Cell Technologies Office Financial Opportunities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Financial Opportunities » Current Fuel Cell Technologies Office Financial Opportunities Current Fuel Cell Technologies Office Financial Opportunities Current hydrogen-related funding opportunities through the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) are listed below. FCTO offers opportunities for both financial and technical assistance. Although FCTO attempts to maintain current information on these solicitations, the official source for funding

  20. Instrumentation of Current Technology Testing and Replicating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ORPC Technology o TideGen Power System (TGU) o Designed to generate electricity at water depths of 50 to 100 ... in sedimented (Cook inlet) salt water and, therefore, have no ...

  1. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? PDF icon aden_20090212.pdf More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  2. MHK Technologies/Sub Surface Counter Rotation Current Generator...

    Open Energy Info (EERE)

    that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology...

  3. New Airborne Technology Measures Ocean Surface Currents for Offshore Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Emergency Rescue Missions | Department of Energy Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions April 11, 2016 - 10:40am Addthis Ocean surface current velocities on image of sea surface temperatures, March 29, 2015. Figure from “Real Time Observing and Forecasting of Loop Currents in

  4. DOE Announces Marine and Hydrokinetic Open Data Effort

    Broader source: Energy.gov [DOE]

    DOE’s Water Power Program is standing up a Marine and Hydrokinetics (MHK) Data Repository to manage the receipt, protection, and dissemination of scientific and technical data generated by DOE funded awards.

  5. Request for Information for Marine and Hydrokinetic Field Measurements

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry regarding the verification and validation of advanced open source MHK design tools and models.

  6. MHK Technologies/Vortex Induced Vibrations Aquatic Clean Energy...

    Open Energy Info (EERE)

    or dams. VIVACE converts the horizontal hydrokinetic energy of currents into cylinder mechanical energy. The latter is then converted to electricity through electric power...

  7. BOEM Issues First Renewable Energy Lease for MHK Technology Testing in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Waters | Department of Energy BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters BOEM Issues First Renewable Energy Lease for MHK Technology Testing in Federal Waters June 23, 2014 - 2:30pm Addthis On June 3rd, 2014 the Bureau of Ocean Energy Management (BOEM) issued the first ever lease to test marine and hydrokinetic (MHK) energy devices in federal waters to Florida Atlantic University (FAU). Harnessing the power of ocean currents, FAU's Southeast

  8. The Current State of Energy Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Current State of Energy Technology The Current State of Energy Technology September 10, 2015 - 8:20pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Dr. John P. Holdren Dr. John P. Holdren Director of the White House Office of Science and Technology Policy This week, the newest iPhones were released to the world. For most of us, it is a reminder that in an age of rapid technological leaps, it can be hard to keep up with the latest advances. When it comes to energy, however,

  9. Before the House Science and Technology Subcommittee on Energy and Environment

    Broader source: Energy.gov [DOE]

    Subject: Marine and Hydrokinetic Energy Technology: Finding the Path to Commercialization By: Jacques Beaudry-Losique, Deputy Assistant Secretary for Renewable Energy

  10. New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish

    Broader source: Energy.gov [DOE]

    EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines.

  11. Emerging Resistive Switching Memory Technologies: Overview and Current

    Office of Scientific and Technical Information (OSTI)

    Status. (Conference) | SciTech Connect Resistive Switching Memory Technologies: Overview and Current Status. Citation Details In-Document Search Title: Emerging Resistive Switching Memory Technologies: Overview and Current Status. Abstract not provided. Authors: Marinella, Matthew Publication Date: 2014-05-01 OSTI Identifier: 1147687 Report Number(s): SAND2014-4459C 521502 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: ISCAS 2014 held June

  12. Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments

    SciTech Connect (OSTI)

    Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

    2011-04-24

    Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

  13. Evaluating Effects of Stressors from Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.; Brandt, Charles A.; Ward, Jeffrey A.; Brandenberger, Jill M.; Gill, Gary A.; Carlson, Thomas J.; Elster, Jennifer L.; Jones, Mark E.; Watson, Bruce E.; Jepsen, Richard A.; Metzinger, Kurt

    2012-09-30

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FY 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressorreceptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and biological consequences of different blade strike scenarios. Results of these analyses found the following: 1) a SRKW is not likely to experience significant tissue injury from impact by an OpenHydro turbine blade; and 2) if whale skin behaves similarly to the materials considered as surrogates for the upper dermal layers of whale skin, it would not be torn by an OpenHydro blade strike. The PNNL/SNL analyses could not provide insight into the potential for more subtle changes to SRKWs from an encounter with a turbine, such as changes in behavior, or inform turbine interactions for other whales or other turbines. These analyses were limited by the available time frame in which results were needed and focused on the mechanical response of whale tissues and bone to blade strike. PNNL proposes that analyses of additional turbine designs and interactions with other marine mammals that differ in size, body conformation, and mass be performed.

  14. EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Performance and Cost | Department of Energy Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April 9, 2013 - 12:00am Addthis During 2011, EERE worked with Free Flow Power to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. Free Flow

  15. EERE Success Story-New Report States That Hydrokinetic Turbines Have

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimal Environmental Impacts on Fish | Department of Energy Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish EERE Success Story-New Report States That Hydrokinetic Turbines Have Minimal Environmental Impacts on Fish August 22, 2013 - 12:00am Addthis EERE has released a report assessing likelihood of fish injury and mortality from the operation of hydrokinetic turbines. This report-completed by the Electric Power Research Institute in conjunction with

  16. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect (OSTI)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each specific need. There are products on the market for smart meters, industrial lighting control and home automation that can be applied to the Back End Fuel Cycle. With a little integration and innovation a cost effective solution is achievable.

  17. Investigations on Marine Hydrokinetic Turbine Foil Structural Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Presented at GMREC METS Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  18. JEDI Marine and Hydrokinetic Model: User Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCPOA NNSA Delivers Annual Reports to Congress on Progress for Stockpile Stewardship and Nuclear Nonproliferation WASHINGTON, D.C.-The Department of Energy's National Nuclear Security Administration (DOE/NNSA) today released the annual reports outlining the strategic direction for two of its vital and enduring missions-maintaining a safe, secure and effective nuclear deterrent and reducing the threat

    JEDI Marine and Hydrokinetic Model: User Reference Guide Marshall Goldberg MRG &

  19. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2013-06-01

    A primary issue of concern of regulatory and resource agencies is how the operation of hydrokinetic turbines will affect local and migratory fish populations. This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  20. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect (OSTI)

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  1. MHK Technologies/Current Power | Open Energy Information

    Open Energy Info (EERE)

    Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  2. Marine and Hydrokinetic (MHK) Databases and Systems

    SciTech Connect (OSTI)

    2015-01-01

    The online information resources included in this fact sheet were developed with support from the U.S. Department of Energy, and are designed to provide the public access to information pertaining to MHK technologies, projects, and research.

  3. JEDI Marine and Hydrokinetic Model: User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.; Previsic, M.

    2011-04-01

    The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

  4. A preliminary study of current multimedia information technology

    SciTech Connect (OSTI)

    Lee, J.C.

    1997-03-01

    This paper surveys more than 70 articles published in the IEEE Multimedia journal and other journals. The survey summarizes aspects of multimedia information technology and categorizes application areas of multimedia information technology and interesting research areas related to it.

  5. Category:Marine and Hydrokinetic Technology Projects | Open Energy...

    Open Energy Info (EERE)

    MHK ProjectsMicroturbine River In Stream MHK ProjectsMiette River MHK ProjectsMiller Bend Project MHK ProjectsMilliken Bend Project MHK ProjectsMinas Basin Bay of Fundy...

  6. Template:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    - No field def provided Project Resource - No field def provided Project Nearest Body of Water - No field def provided Coordinates - No field def provided Project Footprint - No...

  7. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from...

  8. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    64-9-970-4606 0800-456-270 NORWAY 47-21-590-025 800-18093 PANAMA 011-001-800-5072372 PERU 0800-53731 PHILIPPINES 63-2-858-3760 1800-111-42436 POLAND 00-800-1213476 PORTUGAL...

  9. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These centers, one run by Oregon State University and the University of Washington and one by the University of Hawaii, are planned with open-water test berths as well as ...

  10. Marine and Hydrokinetic Technology Database | Open Energy Information

    Open Energy Info (EERE)

    prod-http-80-800498448.us-east-1.elb.amazonaws.comwimagesdd2Red-marker.png","group":"","inlineLabel":"","visitedicon":"","text":"

  11. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    a pressure differential is induced within the device as the wave passes driving a fluid pump to create mechanical energy Oscillating Water Column OscillatingWaterColumn.jpg...

  12. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and...

  13. Marine and Hydrokinetic Technology Readiness Level | Open Energy...

    Open Energy Info (EERE)

    to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to have commercial potential. * TRL 12: Scientific research...

  14. Template:Marine and Hydrokinetic Technology | Open Energy Information

    Open Energy Info (EERE)

    Patents - Field def missing Was This Project DOE Funded? - Field def missing Collaborators - Field def missing Usage It should be invoked using the corresponding form....

  15. Marine and Hydrokinetic (MHK) Technology Development Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0-800-81350 SOUTH AFRICA 080-09-82158 SOUTH KOREA 82-2-6744-1091 00798-14800-7797 SPAIN 34-91-414-21-70 800-300-907 SWEDEN 46-8-503-34-825 0200-899-946 SWITZERLAND...

  16. Form:Marine and Hydrokinetic Technology Project Milestone | Open...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  17. Form:Marine and Hydrokinetic Technology Project | Open Energy...

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Form Edit History...

  18. Identification and Prioritization of Analysis Cases for Marine and Hydrokinetic Energy Risk Screening

    SciTech Connect (OSTI)

    Anderson, Richard M.; Unwin, Stephen D.; Van Cleve, Frances B.

    2010-06-16

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of marine and hydrokinetic energy generation projects. The development process consists of two main phases of analysis. In the first phase, preliminary risk analyses will take the form of screening studies in which key environmental impacts and the uncertainties that create risk are identified, leading to a better-focused characterization of the relevant environmental effects. Existence of critical data gaps will suggest areas in which specific modeling and/or data collection activities should take place. In the second phase, more detailed quantitative risk analyses will be conducted, with residual uncertainties providing the basis for recommending risk mitigation and monitoring activities. We also describe the process used for selecting three cases for fiscal year 2010 risk screening analysis using the ERES. A case is defined as a specific technology deployed in a particular location involving certain environmental receptors specific to that location. The three cases selected satisfy a number of desirable criteria: 1) they correspond to real projects whose deployment is likely to take place in the foreseeable future; 2) the technology developers are willing to share technology and project-related data; 3) the projects represent a diversity of technology-site-receptor characteristics; 4) the projects are of national interest, and 5) environmental effects data may be available for the projects.

  19. Funding Opportunity Announcement for a Marine and Hydrokinetic Development University Consortium

    Broader source: Energy.gov [DOE]

    The Energy Department announced $4 million to engage America’s research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

  20. Live Webinar on the Funding Opportunity for Marine and Hydrokinetic Research and Development University Consortium

    Broader source: Energy.gov [DOE]

    On April 24, 2014 from 1:00 - 2:30 PM EDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Marine and Hydrokinetic (MHK) Research and...

  1. Maritime Hydrogen & SF-BREEZE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine and Hydrokinetic Technology Resources Marine and Hydrokinetic Technology Resources Marine and hydrokinetic (MHK) energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts in R&D in this area. Learn where marine and hydrokinetic technology research and testing is being done

  2. Current state of atmospheric fluidized-bed combustion technology

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This paper examines atmospheric fluidized-bed combustion (AFBC) technology, a coal burning method that has several environmental and technical advantages over the more conventional technologies, such as pulverized-coal methods. The AFBC approach injects an air stream into a boiler in such a way that it mixes with solid fuel and sorbent to create a dense phase region or fluidized bed. This method makes it possible to use a much wider range of low-quality fuels and to burn them at lower temperatures with less pollutant by-product. The paper presents a comprehensive overview of AFBC technology to date. It includes worldwide development of this technology since the 1950s necessary to meet ever-stricter emissions requirements while providing greater fuel flexibility.

  3. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  4. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect (OSTI)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative technologies.

  5. Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2010-01-22

    Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

  6. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  7. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  8. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    SciTech Connect (OSTI)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  9. Current status and future plan of uranium enrichment technology

    SciTech Connect (OSTI)

    Yonekawa, S.; Yamamoto, F.; Yato, Y.; Kishimoto, Y.

    1994-12-31

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been conducting extensive research and development (R&D) on the centrifuge process for more than a quarter of a century. This development program, designated as a national project in 1972, has resulted in the construction and operation of a pilot plant with a capacity of 50 t separative work unit (SWU) per year as well as a demonstration plant with a capacity of 200 t SWU/yr. Under the basic agreement of cooperation concluded in 1985, the technology developed in this program has been transferred to Japan Nuclear Fuel Limited (JNFL), which is now constructing and operating the commercial plant with a capacity of 1500 t SWU/yr at Rokkasho, Aomori. This paper describes the operational experiences of the demonstration plant, the status of a new material centrifuge, which will be introduced at a later stage of construction of the commercial plant, the development of an advanced centrifuge as a next-generation machine, and the research of a superadvanced centrifuge.

  10. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  11. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  12. Solid-State Lighting Technology: Current State of the Art and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the Art and Grand Challenges Solid-State Lighting Technology: Current State of the Art and ... The lamp is basically a blue LED coated with green and red phosphors. Some of the blue ...

  13. Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 TECHNICAL REPORT Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States 1026880 Final Report, December 2012 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT

  14. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Projects in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles

    2011-09-26

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progess to Investigate areas offshore southeast Florida that appeared most suitable for siting of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore of southeast Florida.

  15. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  16. Cost comparison modeling between current solder sphere attachment technology and solder jetting technology

    SciTech Connect (OSTI)

    Davidson, R.N.

    1996-10-01

    By predicting the total life-cycle cost of owning and operating production equipment, it becomes possible for processors to make accurate and intelligent decisions regarding major capitol equipment investments as well as determining the most cost effective manufacturing processes and environments. Cost of Ownership (COO) is a decision making technique based on inputting the total costs of acquiring, operating and maintaining production equipment. All quantitative economic and production data can be modeled and processed using COO software programs such as the Cost of Ownership Luminator program TWO COOL{trademark}. This report investigated the Cost of Ownership differences between the current state-of-the-art solder ball attachment process and a prototype solder jetting process developed by Sandia National Laboratories. The prototype jetting process is a novel and unique approach to address the anticipated high rate ball grid array (BGA) production requirements currently forecasted for the next decade. The jetting process, which is both economically and environmentally attractive eliminates the solder sphere fabrication step, the solder flux application step as well as the furnace reflow and post cleaning operations.

  17. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL: National Wind Technology Center National Wind Technology Center The National Wind Technology Center (NWTC) at NREL is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power

  18. US Synthetic Corp (TRL 4 Component)- The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

    Broader source: Energy.gov [DOE]

    US Synthetic Corp (TRL 4 Component) - The Development of Open, Water Lubricated Polycrystalline Diamond Thrust Bearings for use in Marine Hydrokinetic (MHK) Energy Machines

  19. Evaluation of behaviour and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen; Bevelhimer, Mark S; Cada, Glenn F; Giza, Daniel; Jacobsen, Paul; McMahon, Brian; Pracheil, Brenda M

    2015-01-01

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmoreturbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. Similarly, by combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.less

  20. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    SciTech Connect (OSTI)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HK turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.

  1. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmoreturbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage survival probabilities >0.90 but generally approaching 1.00 across different HK turbine types, fish species, and fish lengths.less

  2. Marine Energy Technology Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the 2 nd Marine Energy Technology Symposium METS2014 April 15-18, 2014, Seattle, WA FIELD MEASUREMENT TEST PLAN TO DETERMINE EFFECTS OF HYDROKINETIC TURBINE DEPLOYMENT ON CANAL TEST SITE IN YAKIMA, WA, USA Budi Gunawan 1 , Jesse Roberts, Ann Dallman, Vincent Neary Sandia National Laboratories Albuquerque, NM, U.S. Shane Grovue Instream Energy Systems Vancouver, BC, CA Josh Mortensen, Bryan Heiner US Bureau of Reclamation Denver, CO, U.S. 1 Corresponding author:

  3. Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Institute of Technology (OIT) commissioned a newly installed 1.75 MW of geothermal power. Combined with a 2 MW solar array, this clean energy makes OIT the first university in ...

  4. Current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The technique applied successfully in experi- ment is control of the inductive current density profile. A surface poloidal inductive electric field has been applied to drive edge ...

  5. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Marine & Hydrokinetic Maps Hydropower already provides 6-7% of the nation's electricity, and the ocean represents a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. There is significant opportunity for water power to provide large amounts of clean and renewable power. The Water Power Program is invested significantly in comprehensive analysis of ocean energy potential for future

  6. Sandia Labs participates in DOE Executive Summit on Marine and Hydrokinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Development DOE Executive Summit on Marine and Hydrokinetic Research and Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  7. Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Efficiency with Environmental Response Upgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  8. Solid-State Lighting Technology: Current State of the Art and Grand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges Technology: Current State of the Art and Grand Challenges - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  9. Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) - current technology and envisioning a mature technology

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Turhollow, Jr., Anthony; Mani, Sudhagar; Kumar, Amit; Bransby, David; Lynd, L.; Laser, Mark

    2009-03-01

    Switchgrass (Panicum virgatum L.) is a promising cellulosic biomass feedstock for biorefineries and biofuel production. This paper reviews current and future potential technologies for production, harvest, storage, and transportation of switchgrass. Our analysis indicates that for a yield of 10 Mg ha 1, the current cost of producing switchgrass (after establishment) is about $41.50 Mg 1. The costs may be reduced to about half this if the yield is increased to 30 Mg ha 1 through genetic improvement, intensive crop management, and/or optimized inputs. At a yield of 10 Mg ha 1, we estimate that harvesting costs range from $23.72 Mg 1 for current baling technology to less than $16 Mg 1 when using a loafing collection system. At yields of 20 and 30 Mg ha 1 with an improved loafing system, harvesting costs are even lower at $12.75 Mg 1 and $9.59 Mg 1, respectively. Transport costs vary depending upon yield and fraction of land under switchgrass, bulk density of biomass, and total annual demand of a biorefinery. For a 2000 Mg d 1 plant and an annual yield of 10 Mg ha 1, the transport cost is an estimated $15.42 Mg 1, assuming 25% of the land is under switchgrass production. Total delivered cost of switchgrass using current baling technology is $80.64 Mg 1, requiring an energy input of 8.5% of the feedstock higher heating value (HHV). With mature technology, for example, a large, loaf collection system, the total delivered cost is reduced to about $71.16 Mg 1 with 7.8% of the feedstock HHV required as input. Further cost reduction can be achieved by combining mature technology with increased crop productivity. Delivered cost and energy input do not vary significantly as biorefinery capacity increases from 2000 Mg d 1 to 5000 Mg d 1 because the cost of increased distance to access a larger volume feedstock offsets the gains in increased biorefinery capacity. This paper outlines possible scenarios for the expansion of switchgrass handling to 30 Tg (million Mg) in 2015 and 100 Tg in 2030 based on predicted growth of the biorefinery industry in the USA. The value of switchgrass collection operations is estimated at more than $0.6 billion in 2015 and more than $2.1 billion in 2030. The estimated value of post harvest operations is $0.6 $2.0 billion in 2015, and $2.0 $6.5 billion in 2030, depending on the degree of preprocessing. The need for power equipment (tractors) will increase from 100 MW in 2015 to 666 MW in 2030, with corresponding annual values of $150 and $520 million, respectively. 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

  10. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  11. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  12. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

  13. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities in Support of Marine and Hydrokinetic Energy Deployment

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Copping, Andrea E.; Van Cleve, Frances B.; Blake, Kara M.; Hanna, Luke A.

    2011-09-30

    This fiscal year 2011 progress report summarizes activities carried out under DOE Water Power Task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the marine and hydrokinetic (MHK) energy industry, including regulatory and resource management agencies, tribes, nongovernmental organizations, and industry. Objectives for Task 2.1.7 are the following: • to work with stakeholders to streamline the MHK regulatory permitting process • to work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development • to communicate research findings and directions to the MHK industry and stakeholders • to engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which is described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning. As MHK industry partners work with the regulatory community and stakeholders to plan, site, permit, and license MHK technologies, they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under Task 2.1.7 is to understand and work to address these varied interests, reduce conflict, identify efficiencies, and ultimately reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  14. Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. Gunawan 1 , V.S. Neary 1 C. Hill 2 and L.P. Chamorro 2 1 Energy-Water-Ecosystems Engineering, Wind and Water Power Technologies, Environmental Sciences Division, Oak Ridge...

  15. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    SciTech Connect (OSTI)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-06-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted ‘traditional’ fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET fuel fabrication technology as related to the GE 710 and ANL Nuclear Rocket Programs, in addition to discussing future plans, viable alternatives and preliminary investigations for W-UO2 CERMET fuel fabrication. The intention of the talk is to provide the brief history and tie in an overview of current programs and investigations as related to NTP based W-UO2 CERMET fuel fabrication, and hopefully peak interest in advanced fuel fabrication technologies.

  16. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  17. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    SciTech Connect (OSTI)

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  18. ORNL/TM-2012/221 Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL/TM-2012/221 Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait June 2012 Prepared by Vincent S. Neary, Ph.D., P.E., Budi Gunawan, Ph.D., Albert Ryou DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

  19. Levelized Cost of Energy Analysis of Marine and Hydrokinetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... open-ocean current turbine. The three WECs include a floating body point absorber, a pitching ... Although the marine resource is free, similar to wind and solar, the cost ...

  20. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    SciTech Connect (OSTI)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  1. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  2. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exponential Growth for Geothermal Energy | Department of Energy Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy April 15, 2013 - 1:50pm Addthis Nevada-based industry partner Ormat Technologies leveraged DOE funds to deploy the nation's first commercial EGS at Desert Peak, Nevada. photo courtesy of Ormat Nevada-based industry

  3. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Energy Savers [EERE]

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  4. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Energy Savers [EERE]

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  5. SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS

    SciTech Connect (OSTI)

    Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

    2012-07-15

    Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

  6. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    SciTech Connect (OSTI)

    J.L. Rovey K. Chandrashekhara

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

  7. Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources

    SciTech Connect (OSTI)

    Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

    2010-07-30

    The worlds oceans and estuaries offer an enormous potential to meet the nations growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

  8. Simulating Blade-Strike on Fish passing through Marine Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-06-16

    The study reported here evaluated the occurrence, frequency, and intensity of blade strike of fish on an axial-flow marine hydrokinetic turbine by using two modeling approaches: a conventional kinematic formulation and a proposed Lagrangian particle- based scheme. The kinematic model included simplifying assumptions of fish trajectories such as distribution and velocity. The proposed method overcame the need for such simplifications by integrating the following components into a computational fluid dynamics (CFD) model: (i) advanced eddy-resolving flow simulation, (ii) generation of ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The test conditions to evaluate the blade-strike probability and fish survival rate were: (i) the turbulent environment, (ii) the fish size, and (iii) the approaching flow velocity. The proposed method offered the ability to produce potential fish trajectories and their interaction with the rotating turbine. Depending upon the scenario, the percentile of particles that registered a collision event ranged from 6% to 19% of the released sample size. Next, by using a set of experimental correlations of the exposure-response of living fish colliding with moving blades, the simulated collision data were used as input variables to estimate the survival rate of fish passing through the operating turbine. The resulting survival rates were greater than 96% in all scenarios, which is comparable to or better than known survival rates for conventional hydropower turbines. The figures of strike probability and mortality rate were amplified by the kinematic model. The proposed method offered the advantage of expanding the evaluation of other mechanisms of stress and injury on fish derived from hydrokinetic turbines and related devices.

  9. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  10. Water Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Technologies Office leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering research and development efforts in marine and hydrokinetic and hydropower technologies, which hold the promise of clean, affordable electricity, and will move our nation toward energy independence. What We Do The Water Power Technologies Office supports a cutting- edge research portfolio aimed at producing the next

  11. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  12. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

  13. MHK Technologies/Device for the Power Advantage of Sea Currents...

    Open Energy Info (EERE)

    The project is a device for connection of turbines or hydraulic wheels in order to obtain energy from a water current variable in depth and direction of flow Its installation is...

  14. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    SciTech Connect (OSTI)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-07-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  15. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  16. Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms

    SciTech Connect (OSTI)

    Cada, Glenn F; Bevelhimer, Mark S

    2011-05-01

    The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

  17. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  18. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy Preprint M. Beam, B. Kline, B. Elbing, W. Straka, and A. Fontaine Pennsylvania State University M. Lawson, Y. Li, and R. Thresher National Renewable Energy Laboratory M. Previsic Re Vision Consulting, LLC To be presented at the 32 nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013) Nantes, France June 9-14, 2013 Conference Paper NREL/CP-5000-58092 February 2013 NOTICE

  19. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect (OSTI)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  1. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect (OSTI)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.

  2. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Ravens, Thomas M.; Cunningham, Keith W.; Scott, George

    2012-12-14

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

  3. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  4. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  5. We're Looking for Innovative Ideas in Building Technology! | Department

    Energy Savers [EERE]

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. PDF icon Accomplishments Report: Water Power for a Clean Energy Future More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on

  6. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  7. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  8. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  9. Able Technologies | Open Energy Information

    Open Energy Info (EERE)

    Address: 330 Audubon Road Place: Englewood Zip: 7631 Region: United States Sector: Marine and Hydrokinetic Phone Number: 201-569-2842 Website: www.abletechnologiesllc.com This...

  10. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices

    SciTech Connect (OSTI)

    Copping, Andrea E.; Geerlofs, Simon H.

    2011-05-09

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

  11. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A10-60528 March 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  12. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    SciTech Connect (OSTI)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  13. 2014 Water Power Program Peer Review Compiled Presentations: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic Technologies | Department of Energy Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24-27. The compiled 2014 Marine and Hydrokinetic Technologies Peer Review Presentations listed below are available for download. Introduction Marine and Hydrokinetics

  14. Effects on Freshwater Organisms of Magnetic Fields Associated with Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Cada, Glenn F; Bevelhimer, Mark S; Riemer, Kristina P; Turner, Julie W

    2011-07-01

    Underwater cables will be used to transmit electricity between turbines in an array (interturbine cables), between the array and a submerged step-up transformer (if part of the design), and from the transformer or array to shore. All types of electrical transmitting cables (as well as the generator itself) will emit EMF into the surrounding water. The electric current will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of animals. Because direct electrical field emissions can be prevented by shielding and armoring, we focused our studies on the magnetic fields that are unavoidably induced by electric current moving through a generator or transmission cable. These initial experiments were carried out to evaluate whether a static magnetic field, such as would be produced by a direct current (DC) transmitting cable, would affect the behavior of common freshwater fish and invertebrates.

  15. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  16. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  17. Perspective and current status on fuel cycle system of fast reactor cycle Technology development (FaCT) project in Japan

    SciTech Connect (OSTI)

    Funasaka, Hideyuki; Itoh, Masanori

    2007-07-01

    FaCT Project taking over from Feasibility Study on Commercialized FR cycle system (FS) has been launched in 2006 by Japanese joint team with the participation of all parties concerned in Japan. Combination system of (the sodium-cooled reactor,) the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) is evaluated as the most promising fuel cycle system concept so that it has potential conformity to the design requirements, as well as a high level of technical feasibility as the final report of Phase II in FS. Current status and R and D prospects for this combination system of the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) system until around 2015 have been studied. Then, it is anticipated that in FR reprocessing commercial facility will start to operate around same time that in LWR reprocessing subsequent plant will be required to replace Rokkasho Reprocessing Plant (provided that life time 40 years) around 2050. From the view point of the smooth transition from LWRs to FRs in approximately the year 2050 and beyond in Japan, some issues on fuel cycle have been also discussed. (authors)

  18. Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

    SciTech Connect (OSTI)

    James Wood; William Quinlan

    2008-09-30

    The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.

  19. Current to Current Corporation | Open Energy Information

    Open Energy Info (EERE)

    Zip: 1803 Sector: Ocean Product: Developing a technology which generates power from ocean currents : Submersible Power Generators (SPG). Coordinates: 44.446275,...

  20. Geospatial Technology Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location, Location0.pdf More Documents & Publications Hydrothermal Exploration Data Gap Analysis Update Assessment and Mapping of the Riverine Hydrokinetic Resource in the ...

  1. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  2. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  3. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  4. Marion Thurnauer | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technology Development and Testing Marine and Hydrokinetic Technology Development and Testing The Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. In order to meet its generation goals, the program supports the design, development, testing, and demonstration of technologies that can capture

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:energy.goveerevideosenergy-101-hydroelectric-power Video Energy 101: Marine and Hydrokinetic Energy See how marine and hydrokinetic technologies harness the...

  6. Warrior Girl Corporation | Open Energy Information

    Open Energy Info (EERE)

    Girl Corporation Region: United States Sector: Marine and Hydrokinetic Phone Number: 305-607-9518 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  7. RDZ Renewables | Open Energy Information

    Open Energy Info (EERE)

    Marine and Hydrokinetic Phone Number: (442) 210 45-85 Website: www.rdz-r.comnewenglish This company is listed in the Marine and Hydrokinetic Technology Database. This...

  8. Carmelo Vell n | Open Energy Information

    Open Energy Info (EERE)

    Carmelo Vell n Jump to: navigation, search Name: Carmelo Vell n Region: Spain Sector: Marine and Hydrokinetic This company is listed in the Marine and Hydrokinetic Technology...

  9. Before the Subcommittee on Water and Power - Senate Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Marine and Hydrokinetic Energy Projects Marine and Hydrokinetic (MHK) Databases and Systems Fact Sheet Before the House Science and Technology ...

  10. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  11. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  12. Current Financial Opportunities

    Broader source: Energy.gov [DOE]

    Current hydrogen-related funding opportunities through the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office are listed below. The Fuel Cell Technologies Office offers opportunities for both financial and technical assistance.

  13. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

  14. Aquantis 2.5 MW Ocean-Current Generation Device- MHK

    SciTech Connect (OSTI)

    Fleming, Alex

    2011-09-26

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to access Gulf Stream resource potential for marine and hydrokinetics devices.

  15. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  16. MHK Technologies/Underwater Electric Kite Turbines | Open Energy...

    Open Energy Info (EERE)

    Chitokoloki Project *MHK ProjectsCoal Creek Project *MHK ProjectsHalf Moon Cove Tidal Project *MHK ProjectsIndian River Tidal Hydrokinetic Energy Project *MHK Projects...

  17. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  18. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BYPASS 19 First National Technology First National Technology Center Center System Performance Specifications Fault Clearing Without Grid: 10-15 X Rated Current Overload: 150% ...

  19. Property:Technology Resource | Open Energy Information

    Open Energy Info (EERE)

    CurrentTidal MHK TechnologiesDeep Water Pipelines + Ocean Thermal Energy Conversion (OTEC) MHK TechnologiesDeltaStream + CurrentTidal MHK TechnologiesDenniss Auld Turbine +...

  20. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...

  1. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C.

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  2. Kaon and pion femtoscopy at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC) in a hydrokinetic model

    SciTech Connect (OSTI)

    Karpenko, Iu. A.; Sinyukov, Yu. M.

    2010-05-15

    The hydrokinetic approach that incorporates hydrodynamic expansion of the systems formed in A+A collisions and their dynamical decoupling is applied to restore the initial conditions and space-time picture of the matter evolution in central Au+Au collisions at the top Relativistic Heavy Ion Collider energy. The analysis is based on the detailed reproduction of the pion and kaon momentum spectra and femtoscopic data in whole interval of the transverse momenta studied by both the STAR and the PHENIX collaborations. The fitting procedure utilizes the two parameters: the maximal energy density at supposed thermalization time 1 fm/c and the strength of the prethermal flows developed to this time. The quark-gluon plasma and hadronic gas is supposed to be in complete local equilibrium above the chemical freeze-out temperature T{sub ch}=165 MeV with the equation of states (EoS) at high temperatures as in the lattice QCD. Below T{sub ch} the EoS in the expanding and gradually decoupling fluid depends on the composition of the hadron-resonance gas at each space-time point and accounts for decays of resonances into the nonequilibrated medium. A good description of the pion and kaon transverse momentum spectra and interferometry radii is reached at both used initial energy density profiles motivated by the Glauber and color glass condensate models, however, at different initial energy densities. The discussion as for the approximate pion and kaon m{sub T} scaling for the interferometry radii is based on a comparison of the emission functions for these particles.

  3. DOE Announces Webinars on Better Buildings Challenge K-12 Education Partners, a Marine and Hydrokinetic Funding Opportunity, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

  4. Current sensor

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  5. Sandia Energy - Daniel Laird

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories' Water Power Technologies department which includes Marine Hydrokinetic, Conventional Hydro, and Offshore Wind technologies. Daniel joined...

  6. Current status, research needs, and opportunities in applications of surface processing to transportation and utilities technologies. Proceedings of a December 1991 workshop

    SciTech Connect (OSTI)

    Czanderna, A.W.; Landgrebe, A.R.

    1992-09-01

    Goal of surface processing is to develop innovative methods of surface modification and characterization for optimum performance and environmental protection for cost-effective operational lifetimes of systems, materials, and components used in transportation and utilities. These proceedings document the principal discussions and conclusions reached at the workshop; they document chapters about the current status of surface characterization with focus on composition, structure, bonding, and atomic-scale topography of surfaces. Also documented are chapters on the current status of surface modification techniques: electrochemical, plasma-aided, reactive and nonreactive physical vapor deposition, sol-gel coatings, high-energy ion implantation, ion-assisted deposition, organized molecular assemblies, solar energy. Brief chapters in the appendices document basic research in surface science by NSF, Air Force, and DOE. Participants at the workshop were invited to serve on 10 working groups. Separate abstracts were prepared for the data base where appropriate.

  7. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  8. The Development of Open Water-lubricated Polycrystalline Diamond (PCD) Thrust Bearings for Use in Marine Hydrokinetic (MHK) Energy Machines

    SciTech Connect (OSTI)

    Cooley, Craig, H.; Khonsari, Michael,, M; Lingwall, Brent

    2012-11-28

    Polycrstalline diamond (PCD) bearings were designed, fabricated and tested for marine-hydro-kinetic (MHK) application. Bearing efficiency and life were evaluated using the US Synthetic bearing test facility. Three iterations of design, build and test were conducted to arrive at the best bearing design. In addition life testing that simulated the starting and stopping and the loading of real MHK applications were performed. Results showed polycrystalline diamond bearings are well suited for MHK applications and that diamond bearing technology is TRL4 ready. Based on life tests results bearing life is estimated to be at least 11.5 years. A calculation method for evaluating the performance of diamond bearings of round geometry was also investigated and developed. Finally, as part of this effort test bearings were supplied free of charge to the University of Alaska for further evaluation. The University of Alaska test program will subject the diamond bearings to sediment laden lubricating fluid.

  9. Energy Department Announces Funding for Demonstration and Testing of Advanced Wave and Tidal Energy Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10 million to strengthen the U.S. marine and hydrokinetic (MHK) energy industry, including wave and tidal energy sources.

  10. EERE Water Power Technologies FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean, domestic power generation from water resources across the United States (hydropower and marine and hydrokinetics). What We Do The Water Power Program strives to produce the ...

  11. Current Contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Awards Stewardship Science Academic Alliances (SSAA) Program Current Awards Under Construction

    Current Awards National Laser Users' Facility Grant Program Current Awards Under Construction

    Nuclear Waste Partnership (NWP) U.S. Department of Energy Carlsbad Field Office Management and Operating Contractor for the Waste Isolation Pilot Plant Contract Number DE-EM0001971 NWP Contract DE-EM0001971 Award/Contract Section B - Supplies or Services Prices / Costs Section C -

  12. Bioenergy Technologies Office Solicitations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Bioenergy Technologies Office Solicitations Bioenergy Technologies Office Solicitations To explore current financial opportunity solicitations, click on ...

  13. MHK Technologies/Enermar | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description The Enermar Kobold turbine is a unidirectional vertical axis...

  14. MHK Technologies/Atlantisstrom | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Atlantisstrom Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description Five drop shaped...

  15. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  16. Final Technical Report Advanced Anchoring Technology DOE Award Number DE-EE0003632 Project Period 09/10 -€“ 09/12

    SciTech Connect (OSTI)

    Meggitt, Dallas J.

    2012-11-09

    It is generally conceded that the costs associated with current practices for the mooring, anchoring, or foundation systems of Marine HydroKinetic (MHK) and Deepwater Floating Wind systems are a disproportionate portion of the total cost of an installed system. Reducing the cost of the mooring and anchoring components for MHK systems can contribute substantially to reducing the levelized cost of electricity (LCOE). Micropile anchors can reduce the LCOE both directly, because the anchors, associated mooring hardware and installation costs are less than conventional anchor and mooring systems, but also because micropile anchors require less extensive geotechnical surveys for confident design and proper implementation of an anchor or foundation system. This report presents the results of the development of critical elements of grouted marine micropile anchor (MMA) technology for application to MHK energy conversion systems and other ocean engineering applications that require fixing equipment to the seafloor. Specifically, this project identified grout formulations and developed designs for grout dispensing systems suitable for use in a seawater environment as a critical development need for successful implementation of practical MMA systems. The project conducted a thorough review of available information on the use of cement-based grouts in seawater. Based on this review and data available from commercial sources, the project selected a range of grout formulations for testing as part of a micropile system. The project also reviewed instrumentation for measuring grout density, pressure and flow rate, and integrated an instrumentation system suitable for use with micropile installation. The grout formulations and instrumentation system were tested successfully and demonstrated the suitability of MMA technology for implementation into anchor systems for MHK and other marine renewable energy systems. In addition, this project developed conceptual designs for micropile anchor systems and the associated drilling and grouting systems to demonstrate the feasibility and practicality of micropile anchors. This report presents several conceptual system designs for different applications. This project has concluded that grouted marine micropile anchor technology is practical and very attractive technically and financially for marine renewable energy applications. This technology is considered to be at a Technology Readiness Level 5.

  17. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  18. Marine Hydrokinetic Advanced Materials program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Fuel Choice for Ocean- Going Vessels within Emissions Control Areas June 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Marine fuel choice for ocean going vessels within emissions control areas i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  19. hydrokinetic | OpenEI Community

    Open Energy Info (EERE)

    relevant to instrumentation and sensors. Sharing information on MHK instrumentation and lessons learned from laboratory testing and field deployments will help the MHK community...

  20. Financial Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Financial Opportunities The Water Power Program focuses on technological development and deployment of innovative technologies capable of generating electricity from water. The program funds research and development activities through competitive solicitations. Current Opportunities Solicitation Title Open Date Close Date 2016 Guidance and Application for Hydroelectric Incentive Payments 4/25/2016 5/31/2016 Funding Opportunity Announcement: Marine and Hydrokinetic Energy

  1. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  2. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  3. Emerging Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    attic and roof systems Advanced heat pump ... Building Energy End-Use & Emerging Technologies (ET) ... due 4113, full applications due 52813 - Current ...

  4. Office of Wind and Hydropower Technologies Wind Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... assessing the effects of turbine noise on fish and marine mammals in the context of ... Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies 3.6 ...

  5. Energy Department Kicks Off MHK Technologies Coding Challenge

    Broader source: Energy.gov [DOE]

    The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices.

  6. Current Titles

    SciTech Connect (OSTI)

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  7. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  8. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  9. Current Portfolio Awardees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research » Current Portfolio Awardees Current Portfolio Awardees View the current portfolio of Small Business Innovation Research and Small Business Technology Transfer awardees below. Learn more about the program phases. View the FY2016 EERE Phase I Awardees Technology-to-Market Home About the Technology-to-Market Program Cleantech University Prize Energy Transition Initiative Lab-Corps Small Business Innovation Research Eligibility Funding Phases Funding Schedule

  10. Natural Currents Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Wiscasset Tidal Energy Plant This company is involved in the following MHK Technologies: RED HAWK Retrieved from "http:en.openei.orgwindex.php?titleNaturalCurrentsEnergySer...

  11. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Research NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as

  12. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  13. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  14. Siemens Corporate Technology CT | Open Energy Information

    Open Energy Info (EERE)

    Corporate Technology CT Jump to: navigation, search Name: Siemens Corporate Technology (CT) Place: Erlangan, Germany Sector: Solar Product: R&D lab for Siemens AG. Currently...

  15. OLED Deposition Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact PNNL About This Technology Technology Marketing SummaryLow-cost processing methods will be required if the small organic molecule materials currently under development...

  16. Transportation technology R&D?Steve Ciatti

    ScienceCinema (OSTI)

    Steve Ciatti

    2013-06-05

    Argonne researcher Steve Ciatti talks about the emerging technologies in transportation, as well as the current technology being developed at the lab and placed on the market.

  17. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  18. MHK Technologies/Evopod E35 | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 78: Open Water System Testing &...

  19. MHK Technologies/DeltaStream | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition ...

  20. Current Schedule of Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Schedule of Experiments Current Schedule of Experiments - Updated 4/2016

  1. CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION...

    Open Energy Info (EERE)

    CHEVROLET | ELECTRIC | GREEN | SPARK EV | TECHNOLOGY. INNOVATION & SOLUTIONS | GREENER VEHICLES Home There are currently no posts in this category. Syndicate...

  2. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chevron, GE form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology Alliance, which will develop and commercialize valuable technologies to solve critical needs for the oil and gas industry. The Alliance builds upon a current collaboration on flow analysis technology for oil and gas wells. It will leverage research and development from GE's newest Global Research Center,

  3. Superconducting fault current controller/current controller

    DOE Patents [OSTI]

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  4. MHK Atlas/User Guide | Open Energy Information

    Open Energy Info (EERE)

    Share Button The Share feature contains options for sharing the application via several social media networks. Resource Technologies Marine and hydrokinetic (MHK) technologies...

  5. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Info (EERE)

    other technologies. Biomass Biomass Energy Data Book Buildings Buildings Energy Data Book Hydrogen Hydrogen Energy Data Book Marine and Hydrokinetic Technology Marine and...

  6. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  7. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

    2011-09-01

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. Risk has two components: (1) The likelihood, or probability, of the occurrence of a given interaction or event, and (2) the potential consequence if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, consequence, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

  8. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  9. Commercial Current Promotions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture This page features all current special promotions for commercial programs....

  10. LED Essentials - Technology, Applications, Advantages, Disadvantages |

    Energy Savers [EERE]

    Department of Energy Essentials - Technology, Applications, Advantages, Disadvantages LED Essentials - Technology, Applications, Advantages, Disadvantages On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current applications, future potential, and evolving path of LED technology from indicator lights to general illumination. View

  11. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  12. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  13. Energy Department Announces $8 Million to Develop Advanced Components for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave, Tidal, and Current Energy Systems | Department of Energy 8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems Energy Department Announces $8 Million to Develop Advanced Components for Wave, Tidal, and Current Energy Systems January 12, 2015 - 11:00am Addthis The Energy Department today announced $8 million in available funding to spur innovation in next-generation marine and hydrokinetic (MHK) control and component technologies. In the United States,

  14. Current Job Openings | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Employment Opportunities Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Current Job Openings Engineering Head, Engineering Department Position Summary: The Head of Engineering is responsible for planning and

  15. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  16. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  17. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  18. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  19. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  20. Current Postdoctoral Researchers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Postdocs Current Postdoctoral Researchers Name Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial

  1. Energy Department Announces $22 Million for Marine Energy Demonstratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    marine and hydrokinetic (MHK) energy systems that generate electricity from waves, tides, and currents ... Advanced Components for Wave, Tidal, and Current Energy Systems 4 ...

  2. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  3. Current measuring system

    DOE Patents [OSTI]

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  4. Current measuring system

    DOE Patents [OSTI]

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  5. OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts Workshop September 27th 28th 2010 Clontarf Castle, Dublin Ireland

    SciTech Connect (OSTI)

    Copping, Andrea E.; O'Toole, Michael J.

    2010-12-02

    An experts' workshop was convened in Dublin Ireland September 27th 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: Developing the Annex IV database, with specific uses and audiences Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. Although the idea of cases representing the best practices was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as cases. There was also discomfort at the implication that best practices implied lesser practices; this being unhelpful to a new and emerging industry. Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

  6. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  7. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  8. Current measurement apparatus

    DOE Patents [OSTI]

    Umans, Stephen D.

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  9. Annual Technology Baseline

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  10. 2014 News | Community | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 News Below are news stories related to Community. RSS Learn about RSS. September 19, 2014 NREL Interns Look Toward the Future Forty-four interns spend summer at NREL researching topics from genetic engineering to technologies for hydrokinetic turbines. Archives Current News | 2014 Mission & Programs Technology Transfer Impact Leadership Community Education Center Community Involvement Economic Impact Sustainability Environment, Health, & Safety Visiting NREL Golden Laboratories

  11. Water Power Program Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Water Power Program Budget The U.S. Department of Energy (DOE) has allocated $70 million in fiscal year 2016 (FY16) funds for the Water Power Program to research and develop marine and hydrokinetic (MHK) and hydropower technologies. Current activities supported by this budget include: Hydropower HydroNEXT: Activities will focus on technologies and tools to improve performance and sustainably increase generation at existing water resources infrastructures, in addition to the development

  12. Energy Department Releases New Energy 101 Video on Ocean Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of

  13. Technology Transfer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Projects Patents Disclosures Contact Information Forms Strategic Partnership Projects (SPP) Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Current Projects Patents Disclosures Contact Information Forms Strategic Partnership Projects (SPP) Technology Transfer Overview Substantial physics, engineering, and technological efforts have been required to build

  14. Strain-assisted current-induced magnetization reversal in magnetic...

    Office of Scientific and Technical Information (OSTI)

    It is found that the critical current density for in-plane magnetization reversal ... ; Department of Physics, University of Science and Technology Beijing, Beijing 100083 ...

  15. Presentation: Introduction to Current & Prior Studies of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratories on current and prior studies of the DOE Laboratories delivered by Mark Taylor, Susannah Howieson, and Julian Zhu from the Science and Technology Policy ...

  16. Current-voltage characteristics of organic heterostructure devices...

    Office of Scientific and Technical Information (OSTI)

    Current-voltage characteristics of organic heterostructure devices with insulating spacer ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  17. Combined Electric Machine and Current Source Inverter Drive System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The current source inverter by itself can eliminate a large portion of the capacitors, but it requires additional inductors. This technology's integration reduces the dependency on ...

  18. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor ...

  19. Recent and Current Research & Roadmapping Activities: Overview (Presentation)

    SciTech Connect (OSTI)

    Darzins, A.

    2008-09-01

    December 2008 DOE Algal Biofuels Technology Roadmap Workshop plenary presentation: summarizes past and current algal biofuels activity, status of research funding, and recent roadmapping activities.

  20. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling ...

  1. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database

  2. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  3. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  4. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  5. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  6. High Impact Technology HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  7. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  8. Information Technology Project Execution Model Guide - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE G 415.1-1, Information Technology Project Execution Model Guide by Denise Hill Functional areas: Information Technology, Project Management The guide was developed in...

  9. MHK Technologies/RED HAWK | Open Energy Information

    Open Energy Info (EERE)

    RED HAWK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage RED HAWK.jpg Technology Profile Primary Organization Natural Currents Energy Services...

  10. EERE Success Story-Advancing Technology Readiness: Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will improve cost of electricity calculations for wave conversion technologies. ... performance, and reliability data for a variety of wave, tidal, and current energy technologies. ...

  11. Indian Institute of Technology Kharagpur | Open Energy Information

    Open Energy Info (EERE)

    Institute of Technology Kharagpur has a prominent staff who are currently researching the different aspects of renewable energies and technologies. Coordinates: 22.35158,...

  12. Alison LaBonte | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alison LaBonte About Us Alison LaBonte - Marine and Hydrokinetic Technology Manager Most Recent Ocean Energy Projects Developing On and Off America's Shores January 22

  13. Point the Gap | Open Energy Information

    Open Energy Info (EERE)

    company is listed in the Marine and Hydrokinetic Technology Database. Market research and competitive intelligence in power conversion made by electronics and semiconductor...

  14. Report to Congress on the Potential Environmental Effects of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e., rivers, estuaries, and oceans), fish and fish habitats, ecological ...

  15. Oscilla Power | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: CEO1 This company is listed in the Marine and Hydrokinetic Technology Database. This...

  16. University of Manchester | Open Energy Information

    Open Energy Info (EERE)

    Name: University of Manchester Address: Core Technology Facility 46 Grafton St Place: Manchester Zip: M13 9NT Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number:...

  17. Development of Reference Models and Design Tools (LCOE Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Effects on the Physical ...

  18. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity to millions of homes and businesses throughout the country. To boost deployment of marine and hydrokinetic (MHK) technologies that capture wave and tidal energy, the ...

  19. NREL: Wind Research - Guidelines Help Manage Risks and Encourage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Development of Marine and Hydrokinetic Technologies Photo of the TidGen Power System created by the Ocean Renewable Power Company. The device has horizontal,...

  20. Sandia Energy - Bernadette Hernandez-Sanchez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Hernandez-Sanchez is the project lead for the Advanced Materials Program and DOE's Marine and Hydrokinetic Technology Database (MHTDB). The Advanced Materials Program focuses...

  1. Report to Congress on the Potential Environmental Effects of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report focuses on potential impacts of marine and hydrokinetic technologies to aquatic environments (i.e. rivers, estuaries, and oceans), fish and fish habitats, ecological ...

  2. NREL: Water Power Research - Computer-Aided Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets of computer-aided engineering modeling tools to accelerate the development of marine hydrokinetic technologies and improve the performance of hydroelectric facilities. ...

  3. Memorandum of Understanding between the Dept. of Interior and...

    Office of Environmental Management (EM)

    2010 by the U.S. Department of Energy and the U.S. Department of the Interior to support offshore wind and marine and hydrokinetic technologies. mouoffshorewindhydrokineticdep...

  4. 47688.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    47688.pdf 47688.pdf 47688.pdf PDF icon 47688.pdf More Documents & Publications Marine and Hydrokinetic Technologies Fact Sheet Water Power for a Clean Energy Future (Fact Sheet),...

  5. Water Power Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

  6. Exploration Technologies Technology Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's Geothermal Technologies Program and prepared by Energetics Incorporated under the guidance of Hildigunnur (Hidda) Thorsteinsson, Technology Development Manager of the Exploration Technologies Subprogram, and Tim Reinhardt, Technology Development Manager of the Low-Temperature, Coproduced, and Geopressured Geothermal Subprogram. Amanda I. Greene of Energetics Incorporated was the lead author and designer of the

  7. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  8. Current Affiliates | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NECCES) - EFRC Northern Illinois University Paraclete Energy Pellion Technologies Pennsylvania State University PlugVolt PolyPlus Battery Company Proton OnSite Renewance Inc. ...

  9. Experimental Design of Hydrokinetic Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Iowa 5 Applied Research Laboratory, Penn State University DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the...

  10. Marine and Hydrokinetic Market Acceleration and Deployment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Economic Analysis The Water Power Program seeks to fill data gaps necessary for industry ... Impacts (JEDI) model to predict job creation and economic activity generated by ...

  11. General Engineer (MARINE & HYDROKINETIC ENGINEER) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ICTAP eligibles Veterans with VOW or VEOA eligibility Those eligible under an OPM interchange agreement or special appointing authority. This position is also being advertised...

  12. General Engineer (Marine & Hydrokinetic Engineer) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2-CR-1 Job Summary The Office of Energy Efficiency and Renewable Energy's (EERE), mission is to create and sustain American leadership in the global transition to a clean energy ...

  13. General Engineer (MARINE & HYDROKINETIC ENGINEER) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    4-CR-1 Job Summary The Office of Energy Efficiency and Renewable Energy's (EERE), mission is to create and sustain American leadership in the global transition to a clean energy ...

  14. Marine and Hydrokinetic (MHK) Executive Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  15. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  16. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at GMREC METS - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ... Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy ...

  17. Anomalous - viscosity current drive

    DOE Patents [OSTI]

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  18. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  19. Status of Hydrogen Storage Technologies

    Broader source: Energy.gov [DOE]

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  20. East Tennessee Technology Park Cleanup

    Broader source: Energy.gov [DOE]

    This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the East Tennessee Technology Park.

  1. About Direct Current

    Broader source: Energy.gov [DOE]

    Learn about Direct Current -- a podcast about the energy that lights our homes, powers our lives and shapes our world.

  2. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  3. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  4. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  5. CIRCUITS FOR CURRENT MEASUREMENTS

    DOE Patents [OSTI]

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  6. Clean Energy Manufacturing Initiative Current Activities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Current Activities Clean Energy Manufacturing Initiative Current Activities The Clean Energy Manufacturing Initiative (CEMI) takes concrete actions to build momentum around American innovation, growth, and competitiveness in clean energy manufacturing. Activity areas include technology research and development (R&D); new innovation models; competitiveness analysis; stakeholder engagement; and energy productivity technical assistance. Technology Research and Development Investment

  7. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing technologies and equipment for wind turbine blades up to 100 m in length September ... to the nation's current energy challenges by reducing dependence on foreign oil. ...

  8. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  9. Dual Functional Cathode Additives for Battery Technologies -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Lithium ion batteries are currently the most widely used ... The batteries must be able to charge and discharge quickly as they react to sudden changes ...

  10. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  11. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  12. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  13. MHK Technologies/Sabella River Generator | Open Energy Information

    Open Energy Info (EERE)

    Organization Sabella Energy Project(s) where this technology is utilized *MHK ProjectsSR 01 Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow...

  14. MHK Technologies/Open HydroTurbine | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Project(s) where this technology is utilized *MHK ProjectsPaimpol Brehat tidal farm Technology Resource Click here CurrentTidal Technology Description See Open...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Renewables Remove Renewables filter Video Remove Video filter Filter by...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Renewables Remove Renewables filter Consumers Remove Consumers filter Filter...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Energy Sources Remove Energy Sources filter Video Remove Video filter Filter...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Video Remove Video filter Consumers Remove Consumers filter Filter by...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Energy Sources Remove Energy Sources filter Consumers Remove Consumers filter...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nergy-101-marine-and-hydrokinetic-energy Current search Search found 2 items Water Remove Water filter Consumers Remove Consumers filter Filter by Resource Type All Results (2)...

  1. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available in the nation's waves, tidal and river currents, and ocean thermal gradients. ... and global wave, tidal, ocean thermal, and continental U.S. river hydrokinetic resources. ...

  2. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  3. Alternating Current Photovoltaic Building Block - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Alternating Current Photovoltaic Building Block Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (891 KB) Technology Marketing Summary This technology provides a fully integrated and self-containing alternating current (AC) photovoltaic (PV) Building Block device and method that allows photovoltaic applications to become true plug-and-play devices. The

  4. Electric current locator

    DOE Patents [OSTI]

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  5. Algal Biofuel Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Technologies Algal Biofuel Technologies At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Al Darzins (National Renewable Energy Laboratory) provided an update on the status of technologies to produce biofuels from Algae. PDF icon darzins_20081106.pdf More Documents & Publications Algae Biofuels Technology The Current State of Technology for Cellulosic Ethanol The Promise and Challenge of Algae as Renewable Sources of Biofuels

  6. Current Solicitations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-RL Contracts/Procurements Current Solicitations DOE-RL Contracts/Procurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Current Solicitations Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The Richland Operations Office uses Fedconnect (https://www.fedconnect.net) to post solicitations on FedBizOps. Quotes/proposals are also received using

  7. RF current sensor

    DOE Patents [OSTI]

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  8. Current Testbed Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Testbed Research Previous Testbed Research Proposal Process Terms and Conditions Dark Fiber Testbed Federated Testbed Circuits Test Circuit Service Performance (perfSONAR)...

  9. Current Annualized Request

    Office of Environmental Management (EM)

    Appropriation FY 2012 FY 2013 FY 2014 Current Annualized Request CR % Energy And Water Development, And Related Agencies Energy Programs Energy Efficiency and Renewable Energy...

  10. Geothermal Electricity Technology Evaluation Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the Geothermal Technologies Office in understanding the performance and the cost of the technologies it is seeking to improve. It is a detailed model of the estimated performance and costs of currently available U.S. geothermal power systems. GETEM can be used to analyze and evaluate currently available technologies and to

  11. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  12. MHK Technologies/Water Current Generator Motor | Open Energy...

    Open Energy Info (EERE)

    Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for...

  13. Current Transportation Models Used in the Vehicle Technologies Program

    SciTech Connect (OSTI)

    2009-04-06

    A summary of various transportation models (VISION, TRUCK, GREET, Oil Peaking Model, Feebate Model, Oil Security Metrics Model, ORNL PHEV Choice Model: Version 1, PSAT, PSAT-PRO,

  14. MHK Technologies/Tide Current Converter | Open Energy Information

    Open Energy Info (EERE)

    In this marine application the sea water itself is the conductive fluid A static antenna like structure generates the magnetic fields and at the same time taps the electrical...

  15. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  16. S

    Energy Savers [EERE]

    Ryan Sun Chee Fore About Us Ryan Sun Chee Fore - Marine and Hydrokinetic Technology Manager Most Recent Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16

    Select Hydraulic Institute Standards: Pump Operations, Efficiency, Testing & Systems 1 Allowable Operating Region - ANSI/HI 9.6.3 (Currently being updated. New version anticipated 3Q2012) Pump operating region This guideline discusses the effects of operating a rotodynamic pump at rates of flow that

  17. Steven Chalk | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Chalk About Us Steven Chalk - Deputy Assistant Secretary for Renewable Energy Photo of Steven Chalk. In his role as Deputy Assistant Secretary for Renewable Energy in the Office of Energy Efficiency and Renewable Energy (EERE), Steven Chalk oversees applied research, development, and demonstration for a diverse clean energy portfolio. This portfolio spans wind, solar, geothermal, conventional hydropower, marine and hydrokinetic, biomass, and hydrogen technologies. Prior to his current

  18. Ultracapacitor current collector

    DOE Patents [OSTI]

    Jerabek, Elihu Calfin (Glenmont, NY); Mikkor, Mati (Ann Arbor, MI)

    2001-10-16

    An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.

  19. Current level detector

    DOE Patents [OSTI]

    Kerns, Cordon R.

    1977-01-01

    A device is provided for detecting the current level of a DC signal. It includes an even harmonic modulator to which a reference AC signal is applied. The unknown DC signal acts on the reference AC signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown DC current.

  20. Voltage controlled current source

    DOE Patents [OSTI]

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  1. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  2. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  3. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  4. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  5. Supercapacitors specialities - Technology review

    SciTech Connect (OSTI)

    Münchgesang, Wolfram; Meisner, Patrick; Yushin, Gleb

    2014-06-16

    Commercial electrochemical capacitors (supercapacitors) are not limited to mobile electronics anymore, but have reached the field of large-scale applications, like smart grid, wind turbines, power for large scale ground, water and aerial transportation, energy-efficient industrial equipment and others. This review gives a short overview of the current state-of-the-art of electrochemical capacitors, their commercial applications and the impact of technological development on performance.

  6. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  7. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  8. Roberson Letter - June 25, 2003

    Office of Environmental Management (EM)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  9. Newseum Washington, D.C.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2016 Newseum Washington, D.C. Shaping the future of the marine and hydrokinetic energy industry EXECUTIVE SUMMIT ON MARINE AND HYDROKINETIC RESEARCH AND DEVELOPMENT LETTER FROM THE DIRECTOR Dear Industry Executive, I would like to take this opportunity to personally welcome you to the Executive Summit on Marine and Hydrokinetic (MHK) Research and Development presented by the U.S. Department of Energy Wind and Water Power Technologies Office. We are excited to bring together executive members

  10. Current control circuitry

    DOE Patents [OSTI]

    Taubman, Matthew S.

    2005-03-15

    Among the embodiments of the present invention is an apparatus that includes a transistor (30), a servo device (40), and a current source (50). The servo device (40) is operable to provide a common base mode of operation of the transistor (30) by maintaining an approximately constant voltage level at the transistor base (32b). The current source (150) is operable to provide a bias current to the transistor (30). A first device (24) provides an input signal to an electrical node (70) positioned between the emitter (32e) of the transistor (30) and the current source (50). A second device (26) receives an output signal from the collector (32c) of the transistor (30).

  11. CURRENT TRANSFER SYSTEMS

    DOE Patents [OSTI]

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  12. Current Annualized Request

    Office of Environmental Management (EM)

    Organization FY 2012 FY 2013 FY 2014 Current Annualized Request CR % National Security Weapons Activities* 7,214,834 7,557,342 7,868,409 +311,067 +4.1% Defense Nuclear...

  13. Current Testbed Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Testbed Research Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network

  14. Environmental technologies program, Fiscal year 1994

    SciTech Connect (OSTI)

    1994-12-31

    This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

  15. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  16. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  17. Adjustable direct current and pulsed circuit fault current limiter

    DOE Patents [OSTI]

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  18. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  19. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect (OSTI)

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  20. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  1. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  3. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  4. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  5. FAST ACTING CURRENT SWITCH

    DOE Patents [OSTI]

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  6. Clean Currents | Open Energy Information

    Open Energy Info (EERE)

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  7. Fault current limiter

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  8. Exploration Technologies Technology Needs Assessment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal Exploration Data Gap ...

  9. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FCEVs) | Department of Energy for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. PDF icon Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar Slides More Documents

  10. Comments of Current Group, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Group, LLC Comments of Current Group, LLC Comments of Current Group, LLC regarding the request for information: Addressing Policy and Logistical Challenges to Smart Grid Implementation PDF icon Comments of Current Group, LLC More Documents & Publications SGIG and SGDP Highlights: Jumpstarting a Modern Grid (October 2014) Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs (October 2014) Final Report- High Penetration Solar PV Deployment

  11. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Joined the Challenge: May 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 12 Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower

  12. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  13. Responder Technology Alert Monthly (December 2014)

    SciTech Connect (OSTI)

    Upton, Jaki F.; Stein, Steven L.

    2015-02-13

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  14. Responder Technology Alert Monthly (January 2015)

    SciTech Connect (OSTI)

    Upton, Jaki F.; Stein, Steven L.

    2015-02-01

    As part of technology foraging for the Responder Technology Alliance, established by the Department of Homeland Science and Technologies First Responders Group, this report summarizes technologies that are relevant in the area of “wearables,” with the potential for use by first responders. The content was collected over the previous month(s) and reproduced from a general Internet search using the term wearables. Additional information is available at the websites provided. This report is not meant to be an exhaustive list nor an endorsement of any technology described herein. Rather, it is meant to provide useful information about current developments in the areas wearable technology.

  15. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  16. Metal Current Collector Protected by Oxide Film - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a cost-efficient, structurally sound technology for current collection and cell-to-cell interconnection of high ... It is particularly useful for large cells (e.g. 1m x 1m ...

  17. Motor Current Data Collection System

    Energy Science and Technology Software Center (OSTI)

    1992-12-01

    The Motor Current Data Collection System (MCDCS) uses IBM compatible PCs to collect, process, and store Motor Current Signature information.

  18. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  19. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  20. SRNL LDRD - Current Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Projects Continuing Strategic Initiatives Long-Term, In-Situ Monitoring for Subsurface Contaminant Stability (Charles Turick) Spectroscopic Techniques for the Characterization of Particulates from Proliferation Activities (Eliel Villa-Aleman) Ternary Carbide Clad Coatings, and High-Conductivity Fuel System for Accident Tolerant Light Water Reactor Fuel (Robert Sindelar) Structural Integrity of Dual-Purpose Canister for Used Nuclear Fuel under Extended Storage and Transportation (Thad