Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Effects of Large Energetic Vortices on Axial-Flow Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Large scale coherent motions around marine and hydrokinetic (MHK) machines can significantly increase the structural loading and affect the overall performance of the machines. Characterization of the approach turbulence and their impact on the instantaneous response of MHK devices is essential for improving their design and performance. This preliminary study investigates the effect of turbulence and dominant energetic coherent structures induced by a vertical cylinder on the structural load and energy production in a model MHK turbine. Results show that the power generated by the turbine is significantly reduced by the presence of the cylinder. This reduction depends on the distance from the cylinder and the level of turbulence around the rotor area.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

2

Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model  

DOE Green Energy (OSTI)

Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

2012-01-01T23:59:59.000Z

3

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

4

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

5

Marine & hydrokinetic technology development.  

DOE Green Energy (OSTI)

The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

2010-06-01T23:59:59.000Z

6

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

7

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

8

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Hybrid) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

9

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Glossary Marine and Hydrokinetic Technology Glossary (Redirected from Attenuator) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

10

Designing Axial Flow Fan for Flow and Noise  

E-Print Network (OSTI)

A comprehensive finite element methodology is developed to predict the compressible flow performance of a non-symmetric 7-blade axial flow fan, and to quantify the source strength and sound pressure levels at any location in the system. The acoustic and flow performances of the fan are predicted simultaneously using a computational aero-acoustic technique combining transient flow analysis and noise propagation. The calculated sound power levels compare favorably with the measured sound power data per AMCA 300-96 code.

Subrata Roy; Phillip Cho; Fred Périé; International Off-highway

1999-01-01T23:59:59.000Z

11

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

12

Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis  

E-Print Network (OSTI)

OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

Ketcham, Jerod W

2010-01-01T23:59:59.000Z

13

A simplified sizing and mass model for axial flow turbines  

SciTech Connect

An axial flow turbine mass model has been developed and used to study axial flow turbines for space power systems. Hydrogen, helium-xenon, hydrogen-water vapor, air, and potassium vapor working fluids have been investigated to date. The impact of construction material, inlet temperature, rotational speed, pressure ratio, and power level on turbine mass and volume has been analyzed. This paper presents the turbine model description and results of parametric studies showing general design trends characteristic of any axial flow machine. Also, a comparison of axial flow turbine designs using helium-xenon mixtures and potassium vapor working fluids, which are used in Brayton and Rankine space power systems, respectively, is presented. 9 refs., 4 figs., 2 tabs.

Hudson, S.L.

1989-01-01T23:59:59.000Z

14

Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.  

DOE Green Energy (OSTI)

Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

2010-11-30T23:59:59.000Z

15

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

16

Submersible Generator for Marine Hydrokinetics  

SciTech Connect

A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: � Identified the conditions and requirements for MHK generators. � Defined a methodology for sizing and rating MHK systems. � Selected an MHK generator topology and form factor. � Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. � Investigated MHK generator manufacturing requirements. � Reviewed cost implications and financial viability. � Completed final reporting and deliverables

Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

2011-09-01T23:59:59.000Z

17

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

DOE Green Energy (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

18

Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-05-01T23:59:59.000Z

19

Effect of circumferential groove casing treatment parameters on axial compressor flow range  

E-Print Network (OSTI)

The impact on compressor flow range of circumferential casing grooves of varying groove depth, groove axial location, and groove axial extent is assessed against that of a smooth casing wall using computational experiments. ...

Hanley, Brian K. (Brian Kyle)

2010-01-01T23:59:59.000Z

20

Energy harvesting efficiency of piezoelectric flags in axial flows  

E-Print Network (OSTI)

Self-sustained oscillations resulting from fluid-solid instabilities, such as the flutter of a flexible flag in axial flow, can be used to harvest energy if one is able to convert the solid energy into electricity. Here, this is achieved using piezoelectric patches attached to the surface of the flag that convert the solid deformation into an electric current powering purely resistive output circuits. Nonlinear numerical simulations in the slender-body limit, based on an explicit description of the coupling between the fluid-solid and electric systems, are used to determine the harvesting efficiency of the system, namely the fraction of the flow kinetic energy flux effectively used to power the output circuit, and its evolution with the system's parameters. The role of the tuning between the characteristic frequencies of the fluid-solid and electric systems is emphasized, as well as the critical impact of the piezoelectric coupling intensity. High fluid loading, classically associated with destabilization by ...

Michelin, Sebastien

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Axial dispersion in segmented gas-liquid flow: Effects of alternating channel curvature  

E-Print Network (OSTI)

Axial dispersion in segmented gas-liquid flow: Effects of alternating channel curvature Metin of channel curvature on the axial dispersion in segmented gas-liquid flows are studied computationally.1063/1.3531742 I. INTRODUCTION Segmented gas-liquid flow also known as Taylor flow has been studied extensively

Muradoglu, Metin

22

NREL: Water Power Research - Marine and Hydrokinetic Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and...

23

Secondary air interaction with main flow in axial turbines.  

E-Print Network (OSTI)

??Secondary air, known as purge air, is injected through seals in the hub and shroud of axial turbines to prevent hot gas ingestion into the… (more)

Zlatinov, Metodi B. (Metodi Blagoev)

2011-01-01T23:59:59.000Z

24

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$37 Million for Marine and Hydrokinetic $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

25

Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $37 Million for Marine and Hydrokinetic Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than $37 million in funding to accelerate the technological and commercial readiness of emerging marine and hydrokinetic (MHK) technologies, which seek to generate renewable electricity from the nation's oceans and free-flowing rivers and streams. The 27 projects range from concept studies and component design research to prototype development and in-water device testing. This unprecedented level of funding will advance the ability of marine and hydrokinetic energy technologies to

26

A simple criterion for three-dimensional flow separation in axial compressors  

E-Print Network (OSTI)

Most modem blade designs in axial-flow compressors diffuse the flow efficiently over 20% to 80% of blade span and it is the endwall regions that set the limits in compressor performance. This thesis addresses the estimation, ...

Lei, Vai-Man

2006-01-01T23:59:59.000Z

27

Secondary air interaction with main flow in axial turbines  

E-Print Network (OSTI)

Secondary air, known as purge air, is injected through seals in the hub and shroud of axial turbines to prevent hot gas ingestion into the endwall cavities. An investigation into the interaction of purge ow with turbine ...

Zlatinov, Metodi B. (Metodi Blagoev)

2011-01-01T23:59:59.000Z

28

Marine and Hydrokinetic | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Marine and Hydrokinetic Marine and Hydrokinetic The Water Power Program's marine and hydrokinetic research and development (R&D) efforts focus on advancing technologies that capture energy from the nation's oceans and rivers. Unlike hydropower, marine and hydrokinetics represent an emerging industry with hundreds of potentially viable technologies. The program is therefore leading efforts to prove functionality; evaluate technical and economic viability; and generate cost, performance, and reliability data for a variety of devices. Marine and hydrokinetic energy technologies convert the energy of waves, tides, and river and ocean currents into electricity. The Department of Energy's "Marine and Hydrokinetic 101" video explains how these technologies work and highlights some of the Water Power Program's efforts

29

Multnomah County Hydrokinetic Feasibility Study: Final Feasibility Study Report  

Science Conference Proceedings (OSTI)

HDR has completed a study of the technical, regulatory, and economic feasibility of installing hydrokinetic turbines under the Morrison, Broadway, and Sellwood bridges. The primary objective of installing hydrokinetic turbines is a demonstration of in-stream hydrokinetic technologies for public education and outreach. Due to the low gradient of the Lower Willamette and the effects of the tide, velocities in the area in consideration are simply not high enough to economically support a commercial installation. While the velocities in the river may at times provide enough energy for a commercial turbine to reach capacity, the frequency and duration of high flow events which provide suitable velocities is not sufficient to support a commercial hydrokinetic installation. We have observed that over an 11 year period, daily average velocities in the Lower Willamette exceeded a nominal cut-in speed of 0.75 m/s only 20% of the time, leaving net zero power production for the remaining 80% of days. The Sellwood Bridge site was estimated to have the best hydrokinetic resource, with an estimated average annual production of about 9,000 kWh. The estimated production could range from 2,500 kWh to 15,000 kWh. Based on these energy estimates, the amount of revenue generated through either a power purchase agreement (PPA) or recovered through net metering is not sufficient to repay the project costs within the life of the turbine. The hydrokinetic resource at the Morrison and Broadway Bridges is slightly smaller than at the Sellwood Bridge. While the Broadway and Morrison Bridges have existing infrastructure that could be utilized, the project is not expected to generate enough revenue to repay the investment. Despite low velocities and energy production, the sites themselves are favorable for installation of a demonstration or experimental project. With high public interest in renewable energy, the possibility exists to develop a hydrokinetic test site which could provide developers and scientists a location to temporarily deploy and test hydrokinetic devices, and also function as an educational tool for the general public. Bridge piers provide an excellent pre-existing anchor point for hydrokinetic devices, and existing infrastructure at the Morrison and Broadway Bridges may reduce installation costs. Opportunity exists to partner with local universities with engineering and environmental interest in renewable energy. A partnership with Portland State University�¢����s engineering school could provide students with an opportunity to learn about hydrokinetics through senior design projects. Oregon State University and University of Washington, which are partnered through the Northwest National Marine Renewable Energy Center (NNMREC) to study and test hydrokinetic technology, are also relatively local to the site. In addition to providing an opportunity for both public and private entities to learn technically about in-stream kinetics, this approach will encourage grant funding for outreach, education, and product development, while also serving as a positive community relations opportunity for the County and its partners.

Stephen Spain

2012-03-15T23:59:59.000Z

30

Marine and Hydrokinetic Technology Database  

DOE Data Explorer (OSTI)

Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database is currently (2009) being updated to include ocean thermal energy technologies, companies, and projects.[Taken from http://www2.eere.energy.gov/windandhydro/hydrokinetic/

31

Active control of tip clearance flow in axial compressors  

E-Print Network (OSTI)

Control of compressor tip clearance flows is explored in a linear cascade using three types of fluidic actuators; Normal Synthetic Jet (NSJ; unsteady jet normal to the mean flow with zero net mass flux), Directed Synthetic ...

Bae, Jinwoo W

2001-01-01T23:59:59.000Z

32

A computational study of axial dispersion in segmented gas-liquid flow Metin Muradoglua  

E-Print Network (OSTI)

A computational study of axial dispersion in segmented gas-liquid flow Metin Muradoglua Department-dimensional gas-liquid flow is studied computationally using a finite-volume/front-tracking method. The effects models. © 2007 American Institute of Physics. DOI: 10.1063/1.2750295 I. INTRODUCTION Segmented gas-liquid

Muradoglu, Metin

33

Role of tip clearance flow on axial compressor stability  

E-Print Network (OSTI)

An examination of the fluid dynamic phenomena that link tip clearance flow to the formation of short length-scale (spike) rotating stall disturbances has been carried out. It is found that the onset of growth in tip clearance ...

Vo, Huu Duc, 1971-

2002-01-01T23:59:59.000Z

34

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

DOE Green Energy (OSTI)

Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

35

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

36

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

37

An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling  

Science Conference Proceedings (OSTI)

A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the ...

Derek J. Straub; Jeffrey L. Collett Jr.

2004-12-01T23:59:59.000Z

38

INL - Hydrokinetic & Wave Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Center Turbine (790KB PDF) Hydromatrix - Innovative Solution For Low Impact Hydropower at Existing Engineered Structures (2.2MB PDF) Hydraulic Cross-Flow Turbines (3.5MB...

39

US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing  

Science Conference Proceedings (OSTI)

Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

Neary, Vincent S [ORNL; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Sotiropoulos, Fotis [University of Minnesota

2012-01-01T23:59:59.000Z

40

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Impact of unsteady flow processes on the performance of a high speed axial flow compressor  

E-Print Network (OSTI)

This thesis examines the unsteady interactions between blade rows in a high Mach number, highly-loaded compressor stage. Two straight vane/rotor configurations with different axial spacing between vane and rotor are ...

Botros, Barbara Brenda

2008-01-01T23:59:59.000Z

42

Nonlinear Control and Modeling of Rotating Stall in an Axial Flow Compressor  

E-Print Network (OSTI)

This thesis focuses on understanding the use of air injection as a means of controlling rotating stall in an axial flow compressor, involving modeling, dynamical systems analysis, and experimental investigations. The first step towards this understanding was the development of a low order model for air injection control, the starting point of which was the Moore and Greitzer model for axial flow compressors. The Moore and Greitzer model was extended to include the effects of air injection and bifurcation analysis was performed to determine how the closed loop system dynamics are different from those of the open loop system. This low order model was then used to determine the optimal placement of the air injection actuators. Experimental work focused on verifying that the low order model, developed for air injection actuation, qualitatively captured the behavior of the Caltech compressor rig. Open loop tests were performed to determine how the placement of the air injectors on the rig a...

Robert L. Behnken; Robert L. Behnken

1997-01-01T23:59:59.000Z

43

Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-01T23:59:59.000Z

44

Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model  

Science Conference Proceedings (OSTI)

Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.

Sugiharto [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul [Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Abidin, Zainal [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2010-12-23T23:59:59.000Z

45

Interaction of a rotational motion and an axial flow in small geometries for a Couette-Taylor problem  

E-Print Network (OSTI)

We analyze the stability of a cylindrical Couette flow under the imposition of a weak axial flow in case of a very short cylinder with a narrow annulus gap. We consider an incompressible viscous fluid which is contained in the narrow gap between two concentric short cylinders, where the inner cylinder rotates with constant angular velocity. The caps of the cylinders have narrow tubes conically tapering to super narrow slits which allow for an axial flow along the surface of the inner cylinder. The approximated solution for the Couette flow for short cylinders was found and used for the stability analysis instead of the exact but bulky solution. The sensitivity of the Couette flow to general small perturbations and to the weak axial flow was studied. We demonstrate that perturbations coming from the axial flow cause the propagation of dispersive waves in the Taylor-Couette flow. The coexistence of a rotation and of an axial flow requires to study in addition to the energy and the angular momentum also the heli...

Bordag, L A; Froehner, M; Myrnyy, V

2003-01-01T23:59:59.000Z

46

Tests of a two-stage, axial-flow, two-phase turbine  

SciTech Connect

A two-phase-flow turbine with two stages of axial-flow impulse rotors was tested with three different working-fluid mixtures at a shaft power of 30 kW. The turbine efficiency was 0.55 with nitrogen-and-water of 0.02 quality and 94 m/s velocity, 0.57 with Refrigerant 22 of 0.27 quality and 123 m/s velocity, and 0.30 with steam-and-water of 0.27 quality and 457 m/s velocity. The efficiencies with nitrogen-and-water and Refrigerant 22 were 86% of theoretical. At that fraction of theoretical, the efficiencies of optimized two-phase turbines would be in the low 60% range with organic working fluids and in the mid 50% range with steam-and-water. The recommended turbine design is a two-stage axial-flow impulse turbine followed by a rotary separator for discharge of separate liquid and gas streams and recovery of liquid pressure.

Elliott, D.G.

1982-12-15T23:59:59.000Z

47

Marine and Hydrokinetic Technology Database | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Database Marine and Hydrokinetic Technology Database Jump to: navigation, search Introduction The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Using the Database (1) Map illustrates marine & hydrokinetic demonstration projects around the

48

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine and Hydrokinetic Energy Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy technologies ending with shots of ocean waves. We all know energy can come from the wind and the sun, but there's a plentiful renewable resource covering more than 75% of the planet that you might not have thought about: our water! The movement of the ocean's waves, tides, and currents carries energy that can be harnessed and converted into electricity to power our homes, buildings and cities. The words "Kinetic Energy" appear onscreen with shots of ocean scientists at sea. The words "Marine & Hydrokinetic" appear onscreen.

49

Category:Marine and Hydrokinetic Technology Projects | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Projects Marine and Hydrokinetic Technology Projects Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technology Projects. This category has the default of form Form:Marine and Hydrokinetic Technology Project. Pages in category "Marine and Hydrokinetic Technology Projects" The following 200 pages are in this category, out of 379 total. (previous 200) (next 200) 4 MHK Projects/40MW Lewis project A MHK Projects/ADM 3 MHK Projects/ADM 4 MHK Projects/ADM 5 MHK Projects/Admirality Inlet Tidal Energy Project MHK Projects/Agucadoura MHK Projects/Alaska 1 MHK Projects/Alaska 13 MHK Projects/Alaska 17 MHK Projects/Alaska 18 MHK Projects/Alaska 24 MHK Projects/Alaska 25

50

Form:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Marine and Hydrokinetic Technology Jump to: navigation, search Add a Marine and Hydrokinetic Technology Input the name of your Marine and Hydrokinetic Technology below to add it to the registry. If your technology is already in the registry, the form will be populated with that technology's fields and you may edit. MHK_Technologies/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Technologies/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the Marine and Hydrokinetic Database Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology&oldid=680669"

51

Category:Marine and Hydrokinetic Technologies | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Technologies Marine and Hydrokinetic Technologies Jump to: navigation, search Dictionary.png Looking for the Marine and Hydrokinetic Technology Database? Click here for a user-friendly list of Marine and Hydrokinetic Technologies. This category has the default of form Form:Marine and Hydrokinetic Technology. Pages in category "Marine and Hydrokinetic Technologies" The following 200 pages are in this category, out of 282 total. (previous 200) (next 200) 1 MHK Technologies/14 MW OTECPOWER A MHK Technologies/Aegir Dynamo MHK Technologies/AirWEC MHK Technologies/Anaconda bulge tube drives turbine MHK Technologies/AquaBuoy MHK Technologies/Aquanator MHK Technologies/Aquantis MHK Technologies/Archimedes Wave Swing MHK Technologies/Atlantis AN 150 MHK Technologies/Atlantis AR 1000

52

Energy 101: Marine & Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine & Hydrokinetic Energy Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn how the Energy Department is supporting research on a range of innovative marine and hydrokinetic energy technologies to capture energy from waves and currents. For more information on marine and hydrokinetic energy from the Office of Energy Efficiency and Renewable Energy, visit the Water Power Program

53

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

DOE Green Energy (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

54

Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines  

Science Conference Proceedings (OSTI)

Considerable efforts have been underway to develop hydrokinetic energy resources in tidal and riverine environments throughout North America. Potential for fish to be injured or killed if they encounter hydrokinetic turbines is an issue of significant interest to resource and regulatory agencies. To address this issue, flume studies were conducted that exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral reactions and avoidance. Also, a theoreti...

2011-11-29T23:59:59.000Z

55

MHK Technologies/In stream River Hydrokinetics | Open Energy Information  

Open Energy Info (EERE)

In stream River Hydrokinetics In stream River Hydrokinetics < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization ABS Alaskan Inc Technology Resource Click here Current Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description New Energy Corporation EnCurrent vertical axis turbine mounted on pontoon barge Technology Dimensions Device Testing Date Submitted 10:01.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/In_stream_River_Hydrokinetics&oldid=680959" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

56

Form:Marine and Hydrokinetic Technology Test | Open Energy Information  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Form:Marine and Hydrokinetic Technology Test Jump to: navigation, search Retrieved from "http:en.openei.orgw...

57

Category:Marine and Hydrokinetic Technology Tests | Open Energy...  

Open Energy Info (EERE)

Technology Tests Jump to: navigation, search Marine and Hydrokinetic Technology Test This category currently contains no pages or media. Retrieved from "http:...

58

River Hydrokinetic Resource Atlas | Open Energy Information  

Open Energy Info (EERE)

River Hydrokinetic Resource Atlas River Hydrokinetic Resource Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: River Hydrokinetic Resource Atlas Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Water Power Resource Type: Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/river_atlas Country: United States Web Application Link: maps.nrel.gov/river_atlas Cost: Free UN Region: Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Active Control of an Axial Flow Compressor via Pulsed Air Injection  

E-Print Network (OSTI)

This paper presents the use of pulsed air injection to control the onset of rotating stall in a low-speed, axial flow compressor. By measuring the unsteady pressures near the rotor face, a control algorithm determines the magnitude and phase of the first mode of rotating stall and controls the injection of air in the front of the rotor face. Experimental results show that this technique slightly extends the stall point of the compressor and eliminates the hysteresis loop normally associated with rotating stall. A parametric study is used to determine the optimal control parameters for suppression of stall. Analytic results---using a low-dimensional model developed by Moore and Greitzer combined with an unsteady shift in the compressor characteristic to model the injectors---give further insights into the operation of the controller. Based on this model, we show that the behavior of the experiment can be explained as a change in the bifurcation behavior of the system under non...

Raffaello D' Andrea; Robert L. Behnken; Richard M. Murray; Asme J. Turbomachinery

1996-01-01T23:59:59.000Z

60

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Power source for an axial-flow CO/sub 2/laser tube  

SciTech Connect

A power device is described for an axial-flow-type CO/sub 2/ laser shell comprising: a high voltage DC power source directly connected to a cathode of the laser shell, in which a discharge for laser pumping takes place, for applying a constant high DC voltage to the cathode; and a high voltage pulse power source connected through a ballast resistance to an anode of the laser shell for applying a high pulse voltage to the anode, the high voltage pulse power source having a DC power circuit, a switching element having a first terminal to receive a command signal instructing switching operation, and second and third terminals connected or disconnected by the switching operation, the second terminal being connected to the DC power circuit and the third terminal being connected to the anode of the laser shell through ballast resistance, and a PWM controller having an output terminal connected to the first terminal of the switching element, for outputting a pulsed voltage with a predetermined repetition frequency and width, as the command signal.

Koseki, R.

1988-12-27T23:59:59.000Z

62

HYDROKAL: A module for in-stream hydrokinetic resource assessment  

Science Conference Proceedings (OSTI)

A new tool for hydrokinetic energy potential assessment in rivers-HYDROKAL, which stands for a ''hydrokinetic calculator''-is presented. This tool was developed in the Fortran 90 programming language as an external module for the CCHE2D application, ... Keywords: Instantaneous power density, Numerical modeling, Resource assessment, Stream

Paul Duvoy; Horacio Toniolo

2012-02-01T23:59:59.000Z

63

Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation  

Science Conference Proceedings (OSTI)

A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

Singh, Punit; Nestmann, Franz [Institute for Water and River Basin Management (IWG), University of Karlsruhe, Kaiser Str. 12, D 76128 Karlsruhe (Germany)

2010-09-15T23:59:59.000Z

64

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

65

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinet...  

NLE Websites -- All DOE Office Websites (Extended Search)

easier. A screen capture of the MapSearch Map view option Marine & Hydrokinetic Maps Hydropower already provides 6-7% of the nation's electricity, and the ocean represents a...

66

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2011: Annual Progress Report  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL), in collaboration with the Applied Physics Laboratory at the University of Washington (APL-UW), has carried out a detailed preliminary fluid flow field study at site selected for testing of marine and hydrokinetic turbines using Acoustic Doppler Velocimetry (ADV) measurements, Acoustic Doppler Current Profiler (ADCP) measurements, and Conductivity, Temperature and Depth (CTD) measurements. In FY-2011 these measurements were performed continuously for two weeks, in order to collect data during neap and spring tides, as well as during diurnal tidal variations.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-06-09T23:59:59.000Z

67

Assessment and Mapping of the Riverine Hydrokinetic Resource in the  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Abstract This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the

68

Abrasion Testing of Critical Components of Hydrokinetic Devices  

SciTech Connect

The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

Worthington, Monty [ORPC Alaska] [ORPC Alaska; Ali, Muhammad [Ohio University] [Ohio University; Ravens, Tom [University of Alaska Anchorage] [University of Alaska Anchorage

2013-12-06T23:59:59.000Z

69

Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait  

SciTech Connect

The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

2012-06-01T23:59:59.000Z

70

Blade tip clearance effect on the performance and flow field of a three stage axial turbine  

E-Print Network (OSTI)

The effect of a 1.5 % blade tip clearance on a rotating three stage turbine under different operating points was investigated using radially and circumferentially traversed five hole pressure probes. The probes were used to obtain flow field total and static pressures, absolute and relative velocities and angles, as well as calculate the blade span distribution of total pressure loss coefficient. Total temperature thermocouple probes were traversed radially and circumferentially to obtain temperature profiles under running conditions. Results showed high discrepancies especially in the blade tip region which is due to high circulation flows occurring at the tip that produce an out of probe calibration range type flow. Engine efficiency and massflow rate was also measured using a venturi flow meter in order to discern the effect the blade tip clearance has on the engine efficiency and performance. Results have shown that the blade tip clearance losses appear to play a smaller role when compared to other losses such as exit losses. This was because the engine efficiency was slightly affected when run using a blade tip clearance.

Abdel-Fattah, Sharef Aly

2003-01-01T23:59:59.000Z

71

Marine and Hydrokinetic Technology Glossary | Open Energy Information  

Open Energy Info (EERE)

Technology Glossary Technology Glossary (Redirected from Axial Flow Turbine) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Wave Power 1.1 Point Absorber 1.1.1 Submerged Pressure Differential (Example of a Point Absorber) 1.2 Oscillating Water Column 1.3 Overtopping Device 1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example of a Reciprocating Device) 3 Ocean Thermal Energy Conversion (OTEC) 3.1 Closed-cycle 3.2 Open-cycle 3.3 Hybrid Wave Power Graphics adapted from Bedard and Thresher Point Absorber Pointabsorber.jpg Wave energy capture device, with principal dimension relatively small compared to the wavelength, and is able to capture energy from a wave front

72

Identifying How Marine and Hydrokinetic Devices Affect Aquatic Environments  

Science Conference Proceedings (OSTI)

Significant research is under way to determine the potential environmental effects of marine and hydrokinetic energy systems. This research, being guided and funded by the U.S. Department of Energy, is intended to address knowledge gaps and facilitate installation and operation of these systems.

Cada, G. F.; Copping, Andrea E.; Roberts, Jesse

2011-04-24T23:59:59.000Z

73

MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Piscataqua Tidal Hydrokinetic Energy Project Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

74

MHK Projects/Passamaquoddy Tribe Hydrokinetic Project | Open Energy  

Open Energy Info (EERE)

Passamaquoddy Tribe Hydrokinetic Project Passamaquoddy Tribe Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

75

MHK Projects/Atchafalaya River Hydrokinetic Project II | Open Energy  

Open Energy Info (EERE)

Atchafalaya River Hydrokinetic Project II Atchafalaya River Hydrokinetic Project II < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9828,"lon":-91.7994,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

76

MHK Projects/Sakonnet River Hydrokinetic Project | Open Energy Information  

Open Energy Info (EERE)

Sakonnet River Hydrokinetic Project Sakonnet River Hydrokinetic Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6224,"lon":-71.2153,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

77

MHK Projects/Yukon River Hydrokinetic Turbine Project | Open Energy  

Open Energy Info (EERE)

Yukon River Hydrokinetic Turbine Project Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.7883,"lon":-141.198,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

78

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support ...

Akkelin, S V; Karpenko, Iu A; Sinyukov, Yu M

2008-01-01T23:59:59.000Z

79

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

Marine and Hydrokinetic Technology Readiness Level Marine and Hydrokinetic Technology Readiness Level Jump to: navigation, search << Return to the MHK database homepage This field indicates the stage of development/deployment that technologies, which are undergoing partial or full-scale device testing, are currently in. Contents 1 TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering 2 TRL 4: Proof of Concept 3 TRL 5/6: System Integration and Technology Laboratory Demonstration 4 TRL 7/8: Open Water System Testing, Demonstration, and Operation 5 TRL 9: Commercial-Scale Production / Application TRL 1-3: Discovery / Concept Definition / Early Stage Development, Design, and Engineering The purpose of this stage is to evaluate, to the largest extent possible, the scientific or technical merit and feasibility of ideas that appear to

80

Free Flow 69 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Free Flow 69 Address Unit 9 Windmill Ind Est Windmill Place Fowey Zip PL23 1HB Sector Marine and Hydrokinetic Phone number 01726 833337 Website...

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473  

DOE Green Energy (OSTI)

This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

Driscoll, F.

2013-04-01T23:59:59.000Z

82

2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM PROGRAM � 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report March 1, 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

83

Template:Marine and Hydrokinetic Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This is the Marine and Hydrokinetic Technology template. It is designed for use by MHK Technologies Pages. To define an MHK Technology, please use this form. Parameters Image - Associated image file. (optional) Primary Organization - Field def missing! Project(s) where this technology is utilized - Field def missing! Technology Resource - Field def missing! Technology Type - Field def missing! Technology Readiness Level - Field def missing! Technology Description - Field def missing! Designed to Operate with Shore Connection - Field def missing! Power Transfer Method - Field def missing! Water Column Location - Field def missing! Mooring Configuration - Field def missing! Optimum Marine/Riverline Conditions - Field def missing!

84

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

85

JEDI Marine and Hydrokinetic Model: User Reference Guide  

SciTech Connect

The Jobs and Economic Development Impact Model (JEDI) for Marine and Hydrokinetics (MHK) is a user-friendly spreadsheet-based tool designed to demonstrate the economic impacts associated with developing and operating MHK power systems in the United States. The JEDI MHK User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the sources and parameters used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Goldberg, M.; Previsic, M.

2011-04-01T23:59:59.000Z

86

Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Interior the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment OCS EIS/EA BOEM 2013-01140 Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental Shelf Offshore Florida Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs Published by U.S. Department of the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs August 2013 iii FINDING OF NO SIGNIIFCANT IMPACT Lease Issuance for Marine Hydrokinetic Technology Testing on the Outer Continental

87

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network (OSTI)

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

2008-04-25T23:59:59.000Z

88

Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies  

Science Conference Proceedings (OSTI)

The potential for fish populations to be negatively impacted by hydrokinetic turbines is a major issue associated with the development and licensing of this type of renewable energy source. Such impacts may include habitat alteration, disruptions in migrations and movements, and injury and mortality to fish that encounter turbines. In particular, there is considerable concern for fish and other aquatic organisms to interact with hydrokinetic turbines in a manner that could lead to alterations in normal b...

2011-10-31T23:59:59.000Z

89

O{sub 2}({sup 1}{delta}) production in flowing He/O{sub 2} plasmas. I. Axial transport and pulsed power formats  

Science Conference Proceedings (OSTI)

Chemical oxygen-iodine lasers (COILs) have promising applications due to their high efficiency and ease of scaling to multikilowatt powers. Recent research has focused on pumping the iodine with O{sub 2}({sup 1}{delta}) produced by electric discharges. In a previous work, a global model was used to develop reaction mechanisms and determine the specific energy deposition (eV/O{sub 2}) required to obtain high O{sub 2}({sup 1}{delta}) yields for electric discharge COILs. Experiments have recently achieved positive laser gain and oscillation with these energy depositions and have highlighted the importance of axial expansion of the plasma in optimizing excitation of the O{sub 2}({sup 1}{delta}). In this work, the consequences of axial transport on O{sub 2}({sup 1}{delta}) yields have been computationally investigated in flowing He/O{sub 2} plasmas at a few Torrs using a one-dimensional plasma hydrodynamics and kinetics model. We show that the experimentally observed extension of the plasma glow upstream and downstream of the electrodes is due to electron diffusion and capacitive coupling of the radio-frequency power source. We also show that {approx_equal}50% higher O{sub 2}({sup 1}{delta}) yields can be achieved with a pulsed discharge combined with continuous-wave discharge.

Stafford, D. Shane; Kushner, Mark J. [Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2005-10-01T23:59:59.000Z

90

THORs Power Method for Hydrokinetic Devices - Final Report  

DOE Green Energy (OSTI)

Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

J. Turner Hunt; Joel Rumker

2012-08-08T23:59:59.000Z

91

Marine and Hydrokinetic Energy Development Technical Support and General Environmental Studies Report on Outreach to Stakeholders for Fiscal Year 2009  

DOE Green Energy (OSTI)

Report on activities working with stakeholders in the emerging marine and hydrokinetic energy industry during FY09, for DOE EERE Office of Waterpower.

Copping, Andrea E.; Geerlofs, Simon H.

2010-01-22T23:59:59.000Z

92

Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual  

SciTech Connect

In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

2011-09-01T23:59:59.000Z

93

Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus  

Science Conference Proceedings (OSTI)

Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 oC temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in particular.

Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

2006-09-15T23:59:59.000Z

94

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

95

Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes  

DOE Green Energy (OSTI)

There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary l

Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2012-03-01T23:59:59.000Z

96

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

97

MHK Projects/Indian River Tidal Hydrokinetic Energy Project | Open Energy  

Open Energy Info (EERE)

Tidal Hydrokinetic Energy Project Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6853,"lon":-75.0694,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

98

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Marine & Hydrokinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Data Marine & Hydrokinetic Data This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices. The total available energy resource along the U.S. continental shelf edge,

99

Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

Science Conference Proceedings (OSTI)

This report describes the methodology and results of the most rigorous assessment to date of the riverine hydrokinetic energy resource in the contiguous 48 states and Alaska, excluding tidal waters. The assessment provides estimates of the gross, naturally available resource, termed the theoretical resource, as well as estimates, termed the technically recoverable resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The ...

2012-12-12T23:59:59.000Z

100

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

Maniaci, D. C.; Li, Y.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint  

DOE Green Energy (OSTI)

This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

Maniaci, D. C.; Li, Y.

2012-04-01T23:59:59.000Z

102

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Free Flow Power Corporation (generators mounted on poles placed in the river bottom) * Hydro Green Energy (barge mounted generators) * MarMC Enterprises (generators submerged in...

103

Implementation of control system for hydrokinetic energy converter  

Science Conference Proceedings (OSTI)

At Uppsala University, a research group is investigating a system for converting the power in freely flowing water using a verticalaxis turbine directly connected to a permanent magnet generator. An experimental setup comprising a turbine, a generator, ...

Katarina Yuen, Senad Apelfröjd, Mats Leijon

2013-01-01T23:59:59.000Z

104

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

105

2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011  

SciTech Connect

This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

Li, Y.; Reed, M.; Smith, B.

2011-10-01T23:59:59.000Z

106

International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status  

DOE Green Energy (OSTI)

This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

Rondorf, Neil E.; Busch, Jason; Kimball, Richard

2011-10-29T23:59:59.000Z

107

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

108

Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources  

SciTech Connect

The world’s oceans and estuaries offer an enormous potential to meet the nation’s growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal- and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40° and 70° north latitude are ideal for MHK deployment, and recent estimates of energy potential for the coasts of Washington, Oregon, and California suggest that up to 25 gigawatts could be generated from wave and tidal devices in these areas. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others.

Ward, Jeffrey A.; Schultz, Irvin R.; Woodruff, Dana L.; Roesijadi, Guritno; Copping, Andrea E.

2010-07-30T23:59:59.000Z

109

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

DOE Green Energy (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

110

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

Science Conference Proceedings (OSTI)

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey K. Chandrashekhara

2012-09-21T23:59:59.000Z

111

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

112

Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida  

SciTech Connect

Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

2012-02-28T23:59:59.000Z

113

Environmentally Benign and Permanent Modifications to Prevent Biofouling on Marine and Hydrokinetic Devices  

DOE Green Energy (OSTI)

Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development of non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.

Zheng Zhang

2012-04-19T23:59:59.000Z

114

Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms  

Science Conference Proceedings (OSTI)

The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2011-05-01T23:59:59.000Z

115

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

DOE Green Energy (OSTI)

The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

Musial, W.; Lawson, M.; Rooney, S.

2013-02-01T23:59:59.000Z

116

Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound  

SciTech Connect

Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

2012-03-30T23:59:59.000Z

117

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

118

Small core axial compressors for high efficiency jet aircraft  

E-Print Network (OSTI)

This thesis quantifies mechanisms that limit efficiency in small core axial compressors, defined here as compressor exit corrected flow between 1.5 and 3.0 lbm/s. The first part of the thesis describes why a small engine ...

DiOrio, Austin Graf

2012-01-01T23:59:59.000Z

119

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2013-02-01T23:59:59.000Z

120

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

DOE Green Energy (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cyclone reactor with internal separation and axial recirculation  

DOE Patents (OSTI)

A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA)

1989-01-01T23:59:59.000Z

122

Cyclone reactor with internal separation and axial recirculation  

DOE Patents (OSTI)

A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

Becker, F.E.; Smolensky, L.A.

1988-07-19T23:59:59.000Z

123

PWR AXIAL BURNUP PROFILE ANALYSIS  

Science Conference Proceedings (OSTI)

The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

J.M. Acaglione

2003-09-17T23:59:59.000Z

124

The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Marine and Hydrokinetic Devices  

Science Conference Proceedings (OSTI)

Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale, and for commercial arrays. This work is carried out under the U.S. Department of Energy reference model project, with the costs for engineering, deployment strategies, mooring and anchoring configurations, and maintenance operations, being developed by a consortium of Department of Energy national laboratories and universities. The goal of the reference model is to assist the MHK industry to become a cost-competitive contributor of renewable energy, by identifying those aspects of MHK projects that contribute significantly to the cost of energy, and directing research funding towards lowering those costs.

Copping, Andrea E.; Geerlofs, Simon H.

2011-05-09T23:59:59.000Z

125

Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is planned for the first quarter of FY11. Once expert review is finalized, the screening analysis phase of ERES will be complete.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

2010-11-15T23:59:59.000Z

126

Save Energy with Axial Fans  

E-Print Network (OSTI)

There are several ways to save energy in wet cooling towers and air cooled heat exchangers using axial fans. This paper will discuss ways to improve fan system efficiency in wet and dry towers both during the design phase and after installation by specifying energy efficient equipment. Variable pitch fan versus fixed pitch fan operation is discussed in terms of energy savings and means of control. The areas of interest to wet cooling tower users would be the influence on fan diameter and operating point on horsepower, how and when are velocity recovery stacks effective, the effect of varying fan speed to improve efficiency, and tip clearance effects. The areas of interest to dry tower (air cooled heat exchanger) users would be the effect of inlet losses, approach velocity losses, and losses due to air recirculation.

Monroe, R. C.

1981-01-01T23:59:59.000Z

127

Orientation of stationary axial collectors  

SciTech Connect

Attention is drawn to the fact that stationary solar collectors with axial symmetry have a third degree of freedom which must be considered, in addition to their azimuth and tilt angles, if their orientation is to be optimized on an annual or seasonal basis. The authors set up the equations needed to describe collector orientation in terms of all angles, including this extra degree of freedom which they refer to as skewness. Examples of the use of these equations are then given, both for northern and southern latitudes, which illustrate the manner in which skewness may be taken into consideration and highlight the importance of doing this. For the sake of simplicity the illustrative examples treat only the direct beam component of the total insolation intercepted by the collector.

Faiman, D.; Mills, D.R. (Sydney Univ., New South Wales (Australia))

1992-10-01T23:59:59.000Z

128

Origin of axial current in scyllac  

SciTech Connect

The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong. (auth)

Sugisaki, K.

1975-12-01T23:59:59.000Z

129

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

DOE Green Energy (OSTI)

Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

130

Hydrodynamic design of axial hydraulic turbines  

Science Conference Proceedings (OSTI)

This paper presents a complete methodology of the hydrodynamic design for the runner of axial hydraulic turbines (Kaplan) using the finite element method. The procedure starts with the parametric design of the meridian channel. Next, the stream traces ... Keywords: QTurbo3D, axial hydraulic turbines, design, meridian channel, runner blade

Daniel Balint; Viorel Câmpian

2011-04-01T23:59:59.000Z

131

Axial interaction free-electron laser  

DOE Patents (OSTI)

Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

Carlsten, Bruce E. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

132

Effect of radial transport on compressor tip clearance flow structures and enhancement of stable flow range  

E-Print Network (OSTI)

The relation between tip clearance flow structure and axial compressor stall is interrogated via numerical simulations, to determine how casing treatment can result in improved flow range. Both geometry changes and flow ...

Nolan, Sean Patrick Rock

2005-01-01T23:59:59.000Z

133

A University of Alabama Axial-Gap Electric Motor Developmenty  

E-Print Network (OSTI)

­ Develop axial gap permanent-magnet electric Axial motor ­ Develop axial gap permanent-magnet electricCAVT A University of Alabama Axial-Gap Electric Motor Developmenty Research Center OBJECTIVE motor topologies with high torque and power densities MOTIVATION ­ Axial-gap ("pancake") motors have

Carver, Jeffrey C.

134

Inflow Characterization for Marine and Hydrokinetic Energy Devices. FY-2010 Annual Progress Report  

DOE Green Energy (OSTI)

Marine and Hydro Kinetic devices (MHK) are being widely studied as a source of renewable energy. The Marrowstone Island site is a potential location for installing MHK devices because the tidal currents observed that are sufficient for power generation. In order to quantify the effects of turbulence on MHK devices and the surrounding environment at this site, a prelimi- nary fluid flow field study was conducted here by the Pacific Northwest National Lab (PNNL) in collaboration with the Applied Physics Lab at the University of Washington (APL-UW). This study entailed continuous The Acoustic Doppler Velocimetry (ADV), Acoustic Doppler Current Profiler (ADCP) and Conductivity, Temperature and Depth (CTD) measurements from May 4, 2010 to May 22, 2010, in order to obtain information about turbulence effects during different tidal conditions. The instruments used for collecting the above measurements were deployed at the Marrowstone site using a R/V Jack Robertson provided by the University of Washington (APL-UW). All the measurements were taken at the site with an average depth of 22 m below the sea surface. ADV acquired velocity data at 32 Hz sampling frequency at 4.6 m above the seabed, and ADCP acquired velocity profile data at a sampling frequency of 2 Hz, from a height of 2.6 m above the seabed to the surface with a bin resolution of 0.5 m. The ADV and ADCP measurements showed that the horizontal velocity had a turbulence intensity of 10%. Further- more, the spectral analysis from ADV measurements showed that the flow is fully turbulent with -5/3 slope in the inertial sub-range of the spectra. Moreover, the temporal-frequency analysis showed presence of ”eddies” at high frequencies. These preliminary studies provided initial flow field and site characteristics, showed the limitations of the instruments used and highlighted changes that need to be made in the experimental setup for deployment in FY-2011 studies.

Richmond, Marshall C.; Durgesh, Vibhav; Thomson, Jim; Polagye, Brian

2011-01-31T23:59:59.000Z

135

A study of swirl and axial velocity profile effects on orifice flowmeters  

E-Print Network (OSTI)

The objective of this study is to measure the response of the orifice meter to known upstream flow field disturbances generated by a concentric tube flow conditioner and a vane-type swirl generator. These disturbances are characterized by flan measuring the axial and tangential velocity profiles at the upstream tap with no orifice plate present. Two different flow rates are examined which correspond to Reynolds numbers of 91,100 and 120,000 in a 50.8 mm diameter pipe. Eight orifice plates with [ ] ratios of 0.43, 0.45, 0.484, 0.55, 0.6, 0.65, 0.7 and 0.726 are studied at both flow rates. The response of each orifice meter to the disturbance is measured by determining the axial pressure distribution near the orifice plate, and by determining the discharge coefficient. The axial momentum distribution is quantified by calculating the second order moment of axial momentum (91 2[U]) from the velocity profile data. Swirl is quantified by determining the centripetal acceleration flux of the flow, also from the velocity profile data. Surface fits indicating the variation of discharge coefficient as a function of P ratio and 9i2[U] or swirl number are developed. These are useful in evaluating variations in the discharge coefficient for flows where the inlet velocity profile has been measured.

Hauglie, Jayden Edward

1994-01-01T23:59:59.000Z

136

Performance limits of axial turbomachine stages  

E-Print Network (OSTI)

This thesis assesses the limits of stage efficiency for axial compressor and turbine stages. A stage model is developed, consisting of a specified geometry and a surface velocity distribution with turbulent boundary layers. ...

Hall, David Kenneth

2011-01-01T23:59:59.000Z

137

Axial grading of inert matrix fuels  

Science Conference Proceedings (OSTI)

Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)

Recktenwald, G. D.; Deinert, M. R. [Dept. of Mechanical Engineering, Univ. of Texas, Austin, TX (United States)

2012-07-01T23:59:59.000Z

138

Hydro-FAST Axial Flow Simulation Code Development  

NLE Websites -- All DOE Office Websites (Extended Search)

strategy Summary of work to date * HydroTurbSim (turbulence) * MAP (mooring) * HydroFAST (hydro-servo-elastic) Path forward Aquantis Verdant NATIONAL RENEWABLE ENERGY LABORATORY...

139

Animated axial surface mapping: The multimedia companion  

SciTech Connect

This newly expanded version of AAPG`s first DataShare Disk brings to life the concepts and applications of a new method of structural trend analysis. Through the dynamic use of color, sound, animation, and humor, this multimedia companion to the May 1994 article on Axial Surface Mapping introduces the reader (or viewer) to the concepts of rigid-block translation, fault-bend folding, and axial surface mapping. Animated models of growing fault-bend folds allow the viewer to see in four dimensions. The axial surface map shows the horizontal plane; the folding lines show depth planes; and the animations show the structure and its two-dimensional map changing with time and increasing slip. The animations create theoretical map patterns under varying, but controlled conditions that can be compared to axial surface maps from real data. The model patterns are then used to interpret seismic data and axial surface maps from a producing gas field in offshore California and from an exploration play in Pennsylvania.

Hook, S.C.; Shaw, J.H. [Texaco EPTD, Houston, TX (United States); Suppe, J. [Princeton Univ., Princeton, NJ (United States)

1995-09-01T23:59:59.000Z

140

Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigating the Influence of Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National Renewable Energy Laboratory Presented at the Oceans 11 Conference Kona, Hawaii September 19-21, 2011 Conference Paper NREL/CP-5000-52306 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Signatures of confinement in axial gauge QCD  

SciTech Connect

A comparative dynamical study of axial gauge QED and QCD is presented. Elementary excitations associated with particular field configurations are investigated. Gluonic excitations analogous to linearly polarized photons are shown to acquire infinite energy. Suppression of this class of excitations in QCD results from quantization of the chromo-electric flux and is interpreted as a dual Meissner effect, i.e., as expulsion from the QCD vacuum of chromo-electric fields which are constant over significant distances. This interpretation is supported by a comparative evaluation of the interaction energy of static charges in the axial gauge representation of QED and QCD. {copyright} 1995 Academic Press, Inc.

Lenz, F. [Institute for Theoretical Physics, University of Erlangen-Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany)]|[Center for Theoretical Physics, Laboratory for Nuclear Science, MIT, Cambridge, Massachusetts 02139 (United States); Moniz, E.J. [Center for Theoretical Physics, Laboratory for Nuclear Science, MIT, Cambridge, Massachusetts 02139 (United States)]|[Institute for Theoretical Physics, University of Erlangen-Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Thies, M. [Institute for Theoretical Physics, University of Erlangen-Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany)

1995-09-01T23:59:59.000Z

142

Microfluidic gas flow profiling using remote detection NMR  

E-Print Network (OSTI)

The amount of axial dispersion as the gas flows within thetimes; A, three dispersion curves for gas originating atdispersion measurements. Pressurized hyperpolarized xenon gas

Hilty, Christian; McDonnell, Erin; Granwehr, Josef; Pierce, Kimberly; Han, Song-I Han; Pines, Alexander

2005-01-01T23:59:59.000Z

143

Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

2011-09-01T23:59:59.000Z

144

Piping inspection carriage having axially displaceable sensor  

DOE Patents (OSTI)

A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

Zollinger, W.T.; Treanor, R.C.

1994-12-06T23:59:59.000Z

145

Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations  

SciTech Connect

This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

Wagner, J.C.; DeHart, M.D.

2000-03-01T23:59:59.000Z

146

Axial Compressor Performance Maintenance Guide Update  

Science Conference Proceedings (OSTI)

To deal with volatile fuel prices and growing pressures to limit greenhouse gas (GHG) emissions, combustion turbine (CT) operators are striving for maximum fuel efficiency. The axial compressor is a leading cause of short term and long term CT efficiency losses due to fouling, corrosion, and erosion. This report reviews the technology being advanced for compressor maintenance to achieve improved compressor and the CT efficiencies.

2005-02-21T23:59:59.000Z

147

Cyclotron axial ion-beam-buncher system  

DOE Patents (OSTI)

Adiabatic ion bunching is achieved in a cyclotron axial ion injection system through the incorporation of a radio frequency quadrupole system, which receives ions from an external ion source via an accelerate-decelerate system and a focusing einzel lens system, and which adiabatically bunches and then injects the ions into the median plane of a cyclotron via an electrostatic quadrupole system and an inflection mirror.

Hamm, R.W.; Swenson, D.A.; Wangler, T.P.

1982-02-11T23:59:59.000Z

148

Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) Version 2  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine (CT) axial compressor performance. Utilities can use it to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash.

2000-11-29T23:59:59.000Z

149

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Flow Power Corporation Flow Power Corporation Jump to: navigation, search Name Free Flow Power Corporation Address 239 Causeway St Suite 300 Place Gloucester, Massachusetts Zip 1930 Sector Marine and Hydrokinetic, Ocean Product Massachusetts-based company that has developed a turbine generator designed to extract energy from tides, ocean currents, rivers, streams, canals and conduits. Free Flow has raised some initial funding and is prototype testing in rivers and tanks. Year founded 2007 Number of employees 28 Phone number 978-232-3536 Website http://www.free-flow-power.com Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties  

E-Print Network (OSTI)

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...

Hansen, B J; Klebaner, A; 10.1063/1.4706971

2012-01-01T23:59:59.000Z

151

Axial tomography from digitized real time radiography  

SciTech Connect

Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

Zolnay, A.S.; McDonald, W.M.; Doupont, P.A.; McKinney, R.L.; Lee, M.M.

1985-01-18T23:59:59.000Z

152

Axial Tomography from Digitized Real Time Radiography  

DOE R&D Accomplishments (OSTI)

Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

1985-01-18T23:59:59.000Z

153

Optimization of Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Previous work has shown that active noise control is a feasible solution to attenuate tonal noise radiated by small axial cooling fans, such as those… (more)

Monson, Brian B 1979-

2006-01-01T23:59:59.000Z

154

Absorption of axially asymmetric waves in inhomogeneous plasma  

SciTech Connect

It is shown that the periphery of an inhomogeneous plasma is trasparent to axially asymmetric waves with certain azimuthal indices.(AIP)

Dnestrovskii, Y.N.; Kostomarov, D.P.; Pereverzev, G.V.

1976-08-01T23:59:59.000Z

155

Axial charges of the nucleon and N* resonances  

E-Print Network (OSTI)

The axial charges of the nucleon and the well-established N* resonances are studied within a consistent framework. For the first time the axial charges of the N* resonances are produced for the relativistic constituent quark model. The axial charge of the nucleon is predicted close to experiment, and the ones of N*(1535) and N*(1650), the only cases where such a comparison is possible, agree well with results from quantum chromodynamics on the lattice that have recently become available. The relevance of the magnitudes of the N* axial charges for the low-energy behavior of quantum chromodynamics is discussed.

Ki-Seok Choi; W. Plessas; R. F. Wagenbrunn

2009-08-27T23:59:59.000Z

156

Aging in the large CDF axial drift chamber  

DOE Green Energy (OSTI)

The Central Outer Tracker (COT) is a large axial drift chamber in the Collider Detector at Fermilab operating with a gas mixture that is 50/50 argon/ethane with an admixture of 1.7% isopropanol. In its first two years of operation the COT showed unexpected aging with the worst parts of the chamber experiencing a gain loss of {approx}50% for an accumulated charge of {approx}35 mC/cm. By monitoring the pulse height of hits on good tracks, it was possible to determine the gain as a function of time and location in the chamber. In addition, the currents of the high voltage supplies gave another monitor of chamber gain and its dependence on the charge deposition rate. The aging was worse on the exhaust end of the chamber consistent with polymer buildup as the gas flows through the chamber. The distribution in azimuth suggests that aging is enhanced at lower temperatures, but other factors such as gas flow patterns may be involved. Elemental and molecular analysis of the sense wires found a coating that is mostly carbon and hydrogen with a small amount of oxygen; no silicon or other contaminants were identified. High resolution electron microscope pictures of the wire surface show that the coating is smooth with small sub-micron nodules. In the course of working with the chamber gas system, we discovered a small amount of O{sub 2} is enough to reverse the aging. Operating the chamber with {approx}100 ppm of O{sub 2} reversed almost two years of gain loss in less than 10 days while accumulating {le} 2 mC/cm.

Allspach, D.; Ambrose, D.; Binkley, M.; /Fermilab; Bromberg, C.; /Michigan State U.; Burkett, K.; Kephart, R.; Madrak, R.; Miao, T.; Mukherjee, A.; Roser, R.; Wagner, R.L. /Fermilab

2004-12-01T23:59:59.000Z

157

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

158

High Power Co-Axial SRF Coupler  

SciTech Connect

There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Two-thirds of these designs are coaxial couplers using disk or cylindrical ceramics in various combinations and configurations. While it is well known that dielectric losses go down by several orders of magnitude at cryogenic temperatures, it not well known that the thermal conductivity also goes down, and it is the ratio of thermal conductivity to loss tangent (SRF ceramic Quality Factor) and ceramic volume which will determine the heat load of any given design. We describe a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. The mechanical designs will fit into standard-sized ConFlat® flanges for ease of assembly. Two windows will be used in a coaxial line. The distance between the windows is adjusted to cancel their reflections so that the same window can be used in many different applications at various frequencies.

M.L. Neubauer, R.A. Rimmer

2009-05-01T23:59:59.000Z

159

Conservative axial burnup distributions for actinide-only burnup credit  

SciTech Connect

Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit.

Kang, C.; Lancaster, D.

1997-11-01T23:59:59.000Z

160

Fluorescence Axial Localization with Nanometer Accuracy and Precision  

SciTech Connect

We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Axial thermal medium delivery tubes and retention plates for a gas turbine rotor  

SciTech Connect

In a multi-stage turbine rotor, tubes are disposed in openings adjacent the rotor rim for flowing a thermal medium to rotor buckets and returning spent thermal medium. The tubes have axially spaced lands of predetermined wall thickness with thin-walled tube sections between the lands and of increasing thickness from the forward to the aft ends of the tubes. A pair of retention plates are carried on the aft end face of the aft wheel and straddle the tube and engage against a shoulder on the tube to preclude displacement of the tube in an aft direction.

Mashey, Thomas Charles (Coxsackie, NY)

2002-01-01T23:59:59.000Z

162

Axial Compression of a Hollow Cylinder Filled with a Foam  

Science Conference Proceedings (OSTI)

Presentation Title, Axial Compression of a Hollow Cylinder Filled with a Foam: A Porcupine ... Characterization of (Ti,Mg)N Thin Film Coatings Produced Via Physical Vapor Deposition ... Non-Toxic SPD Processed Ti Alloys for Orthopaedics.

163

Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere  

Science Conference Proceedings (OSTI)

The structure of certain axially symmetric circulations in a stably stratified, differentially heated, rotating Boussinesq fluid on a sphere is analyzed. A simple approximate theory [similar to that introduced by Schneider (1977)] is developed ...

Isaac M. Held; Arthur Y. Hou

1980-03-01T23:59:59.000Z

164

Applications of axial and radial compressor dynamic system modeling  

E-Print Network (OSTI)

The presented work is a compilation of four different projects related to axial and centrifugal compression systems. The projects are related by the underlying dynamic system modeling approach that is common in all of them. ...

Spakovszky, Zoltán S. (Zoltán Sándor), 1972-

2001-01-01T23:59:59.000Z

165

PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1  

Science Conference Proceedings (OSTI)

Axial offset anomaly (AOA) is defined as a significant negative axial offset deviation from the predicted nuclear design value. AOA results from the incorporation of boron within corrosion product deposits on the upper spans of high-duty pressurized water reactor (PWR) fuel assemblies. The consequences of this process are an erosion of shutdown margin and loss of operational flexibility by control room operators, particularly during power transients.

2004-06-28T23:59:59.000Z

166

Axially staggered seed-blanket reactor fuel module construction  

DOE Patents (OSTI)

A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.

Cowell, Gary K. (Monroeville, PA); DiGuiseppe, Carl P. (West Mifflin, PA)

1985-01-01T23:59:59.000Z

167

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This document described the U.S. Department of Energy's Water Power Program efforts to promote the development and deployment of advanced water power devices.

Not Available

2011-07-01T23:59:59.000Z

168

Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Allan M. Cormack, Computerized Axial Tomography (CAT) Allan M. Cormack, Computerized Axial Tomography (CAT) and Magnetic Resonance Imaging (MRI) Resources with Additional Information magnetic resonance imaging system Computed axial tomography, commonly known as CAT scanning, was introduced in 1972. During a CAT scan, a large coil of x-ray tubes rotates around the patient's body, taking x-rays from all angles. A computer integrates all of these x-rays into a single, three-dimensional image on a television screen. The data can be saved on the computer. Allan M. Cormack, a high energy physicist at Tufts University, shared the 1979 Nobel Prize in Physiology and Medicine for his key work in developing the methods for CAT scanners. At the time of development, these methods were widely regarded as the most significant advance in medical radiography since the 1895 discovery of x-rays.

169

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network (OSTI)

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-03-28T23:59:59.000Z

170

Electrons Confined with an Axially Symmetric Magnetic Mirror Field  

Science Conference Proceedings (OSTI)

Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

Higaki, H.; Ito, K.; Kira, K.; Okamoto, H. [Graduate School of Advanced Sciences of Matter, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

2008-08-08T23:59:59.000Z

171

Stability of magnetic configurations containing the toroidal and axial fields  

E-Print Network (OSTI)

Stability properties of magnetic-field configurations containing the toroidal and axial field are considered. The stability is treated by making use of linear analysis. It is shown that the conditions required for the onset of instability are essentially different from those given by the necessary condition $d (s B_{\\phi})/ds > 0$, where $s$ is the cylindrical radius. The growth rate of instability is calculated for a wide range of the parameters. We argue that the instability can operate in two different regimes depending on the strength of the axial field and the profile of the toroidal field.

Bonanno, Alfio

2007-01-01T23:59:59.000Z

172

Proceedings of the Axial Offset Anomaly (AOA) Science Workshop  

Science Conference Proceedings (OSTI)

This report presents proceedings of the Axial Offset Anomaly (AOA) Science Workshop, held February 10-11 in Palo Alto, California. Twenty-two papers were presented on various aspects of AOA by utilities, EPRI Robust Fuel Program contractors, staff from EPRI and universities, international researchers, and equipment vendors.

2000-06-27T23:59:59.000Z

173

Calculation of the nucleon axial charge in lattice QCD  

SciTech Connect

Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.

D. B. Renner; R. G. Edwards; G. Fleming; Ph. Hagler; J. W. Negele; K. Orginos; A. V. Pochinsky; D. G. Richards; W. Schroers

2006-09-01T23:59:59.000Z

174

Inflationary Behaviour in Axial-symmetric Gravitational Collapse  

E-Print Network (OSTI)

We show that the interior of a charged, spinning black hole formed from a general axially symmetric gravitational collapse is unstable to inflation of both its mass and angular momentum parameters. Although our results are formulated in the context of $(2+1)$-dimensional black holes, we argue that they are applicable to $(3+1)$ dimensions.

J. S. F. Chan; R. B. Mann

1994-11-25T23:59:59.000Z

175

Hydrostatic self-aligning axial/torsional mechanism  

DOE Patents (OSTI)

The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint. 2 figs.

O' Connor, D.G.; Gerth, H.L.

1989-05-23T23:59:59.000Z

176

Hydrostatic self-aligning axial/torsional mechanism  

DOE Patents (OSTI)

The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

O' Connor, Daniel G. (Knoxville, TN); Gerth, Howard L. (Knoxville, TN)

1990-01-01T23:59:59.000Z

177

Proceedings of the Axial Offset Anomaly (AOA) Science Workshop  

SciTech Connect

This report presents proceedings of the Axial Offset Anomaly (AOA) Science Workshop, held February 10-11 in Palo Alto, California. Twenty-two papers were presented on various aspects of AOA by utilities, EPRI Robust Fuel Program contractors, staff from EPRI and universities, international researchers, and equipment vendors.

None

2003-06-01T23:59:59.000Z

178

Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor  

Science Conference Proceedings (OSTI)

An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

2013-09-10T23:59:59.000Z

179

Axial force imparted by a current-free magnetically expanding plasma  

SciTech Connect

The axial force imparted from a magnetically expanding, current-free, radiofrequency plasma is directly measured. For an argon gas flow rate of 25 sccm and an effective rf input power of {approx}800W, a maximum force of {approx}6mN is obtained; {approx}3mN of which is transmitted via the expanding magnetic field. The measured forces are reasonably compared with a simple fluid model associated with the measured electron pressure. The model suggests that the total force is the sum of an electron pressure inside the source and a Lorentz force due to the electron diamagnetic drift current and the applied radial magnetic field. It is shown that the Lorentz force is greatest near the magnetic nozzle surface where the radial pressure gradient is largest.

Takahashi, Kazunori [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan); Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

2012-08-15T23:59:59.000Z

180

Axial Ge/Si nanowire heterostructure tunnel FETs  

SciTech Connect

The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

Picraux, Sanuel T [Los Alamos National Laboratory; Daych, Shadi A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Axially staged combustion system for a gas turbine engine  

DOE Patents (OSTI)

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

182

Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties  

Science Conference Proceedings (OSTI)

Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters. A numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger was developed and the effect of various design parameters on overall heat exchanger size was investigated. It was found that highly conductive metals should be avoided in the design of compact JT heat exchangers. For the geometry considered, the optimal conductivity is around 3.5 W/m-K and can range from 0.3-10 W/m-K without a large loss in performance. The model was implemented with an isenthalpic expansion process. Increasing the cold side inlet temperature from 2K to 2.2 K decreased the liquid fraction from 0.856 to 0.839 which corresponds to a 0.12 g/s increase in supercritical helium supply needed to maintain liquid level in the cooling bath. Lastly, it was found that the effectiveness increased when the heat load was below the design value. Therefore, the heat exchanger should be sized on the high end of the required heat load.

Hansen, B.J.; White, M.J.; Klebaner, A.; /Fermilab

2011-06-10T23:59:59.000Z

183

Scale-up of oscillatory flow mixing  

E-Print Network (OSTI)

ratio* Baffle constric- tion % 1989 Brunold et al Flow visualisation 46 3.75 1.5 55 1989 Dickens et al RTD measurement 23 0.67 1.5 68 1990 Howes & Mackley Axial Dispersion 51 2.5 1.5 61 1990 Mackley et al Heat Transfer 12 1 1.5 66 1991 Mackley...

Smith, Keith Buchanan

2000-02-15T23:59:59.000Z

184

Axial inlet conversion to a centrifugal compressor with magnetic bearings  

Science Conference Proceedings (OSTI)

NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings have been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).

Novecosky, T. (NOVA Corp., Edmonton, Alberta (Canada))

1994-01-01T23:59:59.000Z

185

Flow-induced vibration of circular cylindrical structures  

SciTech Connect

This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs. (JDB)

Chen, S.S.

1985-06-01T23:59:59.000Z

186

Propagation of a Tropical Cyclone in a Meridionally Varying Zonal Flow: An Energetics Analysis  

Science Conference Proceedings (OSTI)

Tropical cyclone propagation (the beta drift) is driven by a secondary circulation associated with axially asymmetric gyres (beta gyres) in the vicinity of the cyclone center. In the presence of the beta effect, the environmental flow may ...

Bin Wang; Xiaofan Li

1995-05-01T23:59:59.000Z

187

Recovering partial conservation of axial current in diffractive neutrino scattering  

E-Print Network (OSTI)

A model of diffractive neutrino scattering is formulated in terms of the chiral hadronic current which is conserved in the limit of vanishing pion mass. This current has the correct singularity structure and, naturally, does not lead to contradictions with a partial conservation of the axial current (PCAC). In that respect we differ from earlier work in the literature, where a breakdown of PCAC had been reported. We show that such a breakdown of PCAC is an artifact of the hadronic current non-conservation in the model developed there.

V. A. Novikov; V. R. Zoller

2013-04-10T23:59:59.000Z

188

A conducting ball in an axial electric field  

E-Print Network (OSTI)

We describe the distribution of a charge, the electric moments of arbitrary order and the force acting on a conducting ball on the axis of the axial electric field. We determine the full charge and the dipole moments of the first order for a conducting ball in an arbitrary inhomogeneous harmonic electric field. All statements are formulated in the form of theorems with proofs basing on properties of the matrix of moments of the Legendre polynomials. The analysis and proof of these properties are presented in Appendix.

Alexander Savchenko

2012-12-26T23:59:59.000Z

189

Effect of axial exposure distributions in burnup credit criticality analyses  

Science Conference Proceedings (OSTI)

Burnup credit is the application of the effects of fuel exposure or burnup to nuclear criticality considerations in the design of spent fuel transport and storage facilities. One unique issue in this design approach is the proper treatment of the axial variation in burnup experienced by pressurized-water-reactor fuel assemblies. This paper describes calculations and results quantifying this effect in the criticality analysis of spent fuel array geometries. Recommendations are made to provide guidance in evaluating these effects via three different approaches. Final selection of the analysis methodology would be dependent on the specific application and the degree of accuracy required.

Marotta, C.R. (Sandia National Labs., Albuquerque, NM (United States)); Brady, M.C (Oak Ridge National Lab., TN (United States)); Napolitano, D.G. (Yankee Atomic Electric Co., Boston, MA (United States))

1992-01-01T23:59:59.000Z

190

Effect of axial exposure distributions in burnup credit criticality analyses  

Science Conference Proceedings (OSTI)

Burnup credit is the application of the effects of fuel exposure or burnup to nuclear criticality considerations in the design of spent fuel transport and storage facilities. One unique issue in this design approach is the proper treatment of the axial variation in burnup experienced by pressurized-water-reactor fuel assemblies. This paper describes calculations and results quantifying this effect in the criticality analysis of spent fuel array geometries. Recommendations are made to provide guidance in evaluating these effects via three different approaches. Final selection of the analysis methodology would be dependent on the specific application and the degree of accuracy required.

Marotta, C.R. [Sandia National Labs., Albuquerque, NM (United States); Brady, M.C [Oak Ridge National Lab., TN (United States); Napolitano, D.G. [Yankee Atomic Electric Co., Boston, MA (United States)

1992-02-01T23:59:59.000Z

191

Preliminary design of axial flow hydrocarbon turbine/generator set for geothermal applications  

DOE Green Energy (OSTI)

This report outlines the design of a 65 MW (e) gross turbine generator set in which a hydrocarbon gas mixture is used as the motive fluid. The turbine generator set is part of a geothermal binary cycle electric power plant proposed for the Heber site in the Imperial Valley, California. Aerodynamic design considerations and estimated unit performance for three hydrocarbon gas mixtures are presented. Real gas properties and equations of state are reviewed as they affect the turbine design and the thermodynamic cycle. The mechanical designs for the casing, rotor dynamics, shaft sealing and unit construction are detailed. Support systems such as the lube and seal supply system, turbine controls, etc., are reviewed. An extensive hydrocarbon turbine general specification is also included.

Barnes, B.; Samurin, N.A.; Shields, J.R.

1979-05-01T23:59:59.000Z

192

Integrated Approach to Computational and Experimental Flow Visualization of a Double Annular Confined Jet  

Science Conference Proceedings (OSTI)

The cold flow of a prototype industrial burner in a cylindrical combustion chamber is investigated. Two concentric annular axial jets simulate this complex flow field, which is investigated using Laser Sheet flow Visualization (LSV), Digital Particle ... Keywords: CFD, DPIV, LDV, LSV, annular jet, burner, database, quantitative visualization

B. K. Hazarika; D. Vucinic

2001-08-01T23:59:59.000Z

193

Radial flow nuclear thermal rocket (RFNTR)  

DOE Patents (OSTI)

A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

Leyse, Carl F. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

194

SCAMP Code -- Strategic Capacity Axial-Compressor Maintenance Program, Version 2.00  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine axial compressor and overall turbine performance. It can be used to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash. Important features of the SCAMP spreadsheet include the following: o Operates as a spreadsheet with m...

2000-12-12T23:59:59.000Z

195

PRE-SW Strategic Capacity Axial Compressor Maintenance Program (SCAMP) Version 3.0, Beta  

Science Conference Proceedings (OSTI)

The Strategic Capacity Axial-Compressor Maintenance Program (SCAMP) spreadsheet provides combustion turbine operators with a low-cost, easy-to-install, easy-to-use program for monitoring combustion turbine axial compressor and overall turbine performance.  It can be used to diagnose the condition of axial compressors and to determine the benefits of maintenance actions such as an off-line compressor wash.Benefits & ...

2012-09-23T23:59:59.000Z

196

Charmonium Decays to Axial-Vector Plus Pseudoscalar Mesons  

SciTech Connect

A sample of 3.79{times}10{sup 6} {psi}(2S) events is used to study the decays of charmonium to axial-vector plus pseudoscalar mesons. The branching fraction for the decay {psi}(2S){r_arrow}b{sup {plus_minus}}{sub 1} (1235){pi}{sup {minus_plus}} agrees with expectations based on scaling the corresponding J/{psi} branching fraction. Flavor-SU(3)-violating K{sub 1}(1270) -K{sub 1}(1400) asymmetries with opposite character for {psi}(2S) and J/{psi} decays are observed. This contrasting behavior cannot be accommodated by adjustments of the singlet-triplet mixing angle. {copyright} {ital 1999} {ital The American Physical Society}

Bai, J.Z.; Bian, J.G.; Chen, G.P.; Chen, J.C.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cui, X.Z.; Ding, H.L.; Dong, L.Y.; Du, Z.Z.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; He, J.; He, J.T.; He, K.L.; Hu, G.Y.; Hu, H.M.; Hu, J.L.; Hu, Q.H.; Hu, T.; Hu, X.Q.; Huang, Y.Z.; Jiang, C.H.; Jin, Y.; Ke, Z.J.; Lai, Y.F.; Lang, P.F.; Li, C.G.; Li, D.; Li, H.B.; Li, J.; Li, P.Q.; Li, R.B.; Li, W.; Li, W.G.; Li, X.H.; Li, X.N.; Liu, H.M.; Liu, J.; Liu, R.G.; Liu, Y.; Lu, F.; Lu, J.G.; Luo, X.L.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Nie, J.; Qi, N.D.; Qi, X.R.; Qiu, J.F.; Qu, Y.H.; Que, Y.K.; Rong, G.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Song, X.F.; Sun, F.; Sun, H.S.; Sun, Y.; Sun, Y.Z.; Tang, S.Q.; Tong, G.L.; Wang, F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, Y.Y.; Wei, C.L.; Wu, Y.G.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xie, Y.; Xie, Y.H.; Xu, G.F.; Xue, S.T.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, J.; Yang, X.F.; Ye, M.H.; Yu, C.S.; Yu, C.X.; Yu, G.W.; Yu, Z.Q.; Yuan, C.Z.; Yuan, Y.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, D.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, Q.J.; Zhang, S.Q.; Zhang, Y.Y.; Zhao, D.X.; Zhao, H.W.; Zhao, J.W.; Zhao, M.; Zhao, W.R.; Zhao, Z.G.; Zheng, J.P.; Zheng, L.S.; Zheng, Z.P.; Zhou, B.Q.; Zhou, G.P.; Zhou, H.S.; Zhou, L.; Zhu, K.J.; Zhu, Q.M.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A. [Institute of High Energy Physics, Beijing 100039, People`s Republic of (China)] [Institute of High Energy Physics, Beijing 100039, People`s Republic of (China); Hitlin, D.G.; Kelsey, M.H.; Oyang, J.; Panetta, J.; Porter, F.; Weaver, M. [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States); Chen, J.; Malchow, R.; Toki, W.; Yang, W. [Colorado State University, Fort Collins, Colorado 80523 (United States)] [Colorado State University, Fort Collins, Colorado 80523 (United States); Yu, Y.H. [Hangzhou Unv., Hangzhou 310028, People`s Republic of (China)] [Hangzhou Unv., Hangzhou 310028, People`s Republic of (China); Ban, Y. [Peking Unv. (China)] [Peking Unv. (China)

1999-09-01T23:59:59.000Z

197

Axial dipolar dynamo action in the Taylor-Green vortex  

E-Print Network (OSTI)

We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight in some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining the magnetic Prandtl number dependence of the super/sub critical nature of the dynamo transition is given.

Giorgio Krstulovic; Gentien Thorner; Julien-Piera Vest; Stephan Fauve; Marc Brachet

2011-09-19T23:59:59.000Z

198

Electro-deposition of Bi-axial Textured Layers on a Substrate ...  

The National Renewable Energy Laboratory has developed ... Solar Photovoltaic ... uniformly in one of the three axial directions in three-dimensional space, ...

199

Strangeness contribution to the vector and axial form factors of the nucleon  

E-Print Network (OSTI)

The strangeness contribution to the vector and axial form factors of the nucleon is presented for momentum transfers in the range $0.45Lab, and elastic $\

S. F. Pate; G. A. MacLachlan; D. W. McKee; V. Papavassiliou

2005-12-14T23:59:59.000Z

200

Feedback Applications in Active Noise Control for Small Axial Cooling Fans.  

E-Print Network (OSTI)

??Feedback active noise control (ANC) has been applied as a means of attenuating broadband noise from a small axial cooling fan. Such fans are used… (more)

Green, Matthew J 1978-

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

J. Ceomag. Geoelectr., 49, 1327-1342, 1997 Seafloor Electromagnetic Measurements above Axial Seamount,  

E-Print Network (OSTI)

in fractures or pipes. 1. Introduction AxialSeamountlieson the Juan deFucaRidge,about 500km westof-Eickelberg Seamount Chain (Johnson and Embley, 1990).Basalts fromAxial Seamount are broadly similar to those from-ocean ridge basalt (MORB) affinity. The volcano is the shallowestpart of the Juan de Fuca Ridge, indicating

Constable, Steve

202

The synchronous force control of a double-axial pneumatic actuating system  

Science Conference Proceedings (OSTI)

This paper presents the design of the synchronous force controller of a double-axial pneumatic actuating system. This system is ideally decomposed into two independent subsystems, and the coupling effect is considered as the noise effect. So, each ... Keywords: STC, double-axial pneumatic system, synchronous force control

Ying-Tsai Wang; Ming-Kun Chang

1999-07-01T23:59:59.000Z

203

Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy  

Science Conference Proceedings (OSTI)

This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not statistically significant. Additional species are currently planned for laboratory testing in the next fiscal year (e.g. an elasmobranch, American lobster) to provide a broader assessment of species important to stakeholders. The collective responses of all species will be assessed in terms of life stage, exposure scenarios, and biological relevance, to address current uncertainties related to effects of EMF on aquatic organisms.

Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

2012-05-01T23:59:59.000Z

204

Microfluidic gas-flow profiling using remote-detection NMR  

E-Print Network (OSTI)

and dispersion measurements. A pres- surized hyperpolarized xenon gas mixture containing 0.3% NMR-active 129Xe [1. The amount of axial dispersion as the gas flows within the enlarged section of the chip is immediately shown in A over all travel times. (C) Three dispersion curves for gas originating at different z

Pines, Alexander

205

Street-based Topological Representations and Analyses for Predicting Traffic Flow in GIS  

E-Print Network (OSTI)

It is well received in the space syntax community that traffic flow is significantly correlated to a morphological property of streets, which are represented by axial lines, forming a so called axial map. The correlation co-efficient (R square value) approaches 0.8 and even a higher value according to the space syntax literature. In this paper, we study the same issue using the Hong Kong street network and the Hong Kong Annual Average Daily Traffic (AADT) datasets, and find surprisingly that street-based topological representations (or street-street topologies) tend to be better representations than the axial map. In other words, vehicle flow is correlated to a morphological property of streets better than that of axial lines. Based on the finding, we suggest the street-based topological representations as an alternative GIS representation, and the topological analyses as a new analytical means for geographic knowledge discovery.

Jiang, Bin

2007-01-01T23:59:59.000Z

206

Anomalous recovery of damped radial modes in a circular?sector duct with locally heated flow  

Science Conference Proceedings (OSTI)

It is often desirable to predict acoustic propagation in a circular duct carrying a locally heated flow. Common examples include jet engines and certain industrial and commercial burners whose combustion?related noise can be an environmental problem if allowed to penetrate into the surroundings. In these cases axial gradients in the steady flow variables

J. R. Maham; S.?Y. Yeh

1984-01-01T23:59:59.000Z

207

Fluid flow monitoring device  

DOE Patents (OSTI)

This invention consists of a flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, M.D.; Sweeney, C.E.

1991-03-05T23:59:59.000Z

208

Axial couplings of heavy hadrons from domain-wall lattice QCD  

Science Conference Proceedings (OSTI)

We calculate matrix elements of the axial current for static-light mesons and baryons in lattice QCD with dynamical domain wall fermions. We use partially quenched heavy hadron chiral perturbation theory in a finite volume to extract the axial couplings g{sub 1}, g{sub 2}, and g{sub 3} from the data. These axial couplings allow the prediction of strong decay rates and enter chiral extrapolations of most lattice results in the b sector. Our calculations are performed with two lattice spacings and with pion masses down to 227 MeV.

W. Detmold, C.J.D. Lin, S. Meinel

2011-12-01T23:59:59.000Z

209

Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial  

Open Energy Info (EERE)

Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Details Activities (1) Areas (1) Regions (0) Abstract: A full-waveform inversion of two-ship, wide-aperture, seismic reflection data from a ridge-crest seismic line at the southern East Pacific Rise indicates that the axial magma chamber here is about 50 m thick, is embedded within a solid roof, and has a solid floor. The 50-60-m-thick roof is overlain by a 150-200-m-thick low-velocity zone that may correspond to a fracture zone that hosts the hydrothermal circulation,

210

European Fusion Theory Conference Non-local features of transport in the axial tokamak region  

E-Print Network (OSTI)

9th European Fusion Theory Conference Non-local features of transport in the axial tokamak region J.P. Christiansen and P. Helander EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB

211

Determination of the ?(1232) axial and pseudoscalar form factors from lattice QCD  

E-Print Network (OSTI)

We present a lattice QCD calculation of the ?(1232) matrix elements of the axial-vector and pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant form factors is carried ...

Alexandrou, Constantia

212

Axial Wind Effects on Stratification and Longitudinal Salt Transport in an Idealized, Partially Mixed Estuary  

Science Conference Proceedings (OSTI)

A 3D hydrodynamic model [Regional Ocean Model System (ROMS)] is used to investigate how axial wind influences stratification and to explore the associated longitudinal salt transport in partially mixed estuaries. The model is configured to ...

Shih-Nan Chen; Lawrence P. Sanford

2009-08-01T23:59:59.000Z

213

The effect of nonuniform axial heat flux distribution on the critical heat flux  

E-Print Network (OSTI)

A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

Todreas, Neil E.

1965-01-01T23:59:59.000Z

214

Short pulse high power microwave generation from an axially extracted virtual cathode oscillator  

Science Conference Proceedings (OSTI)

Preliminary experimental results of an axially extracted virtual cathode oscillator (vircator) built on the low impedance pulsed electron beam accelerator AMBICA-600 is reported. The AMBICA-600 pulsed power system mainly comprises of a coaxial waterline ...

Rishi Verma; Anurag Shyam; Tushar Patel; Y. C. Saxena

2011-02-01T23:59:59.000Z

215

Spin Polarized Photons and Di-leptons from Axially Charged Plasma  

E-Print Network (OSTI)

Axial charge in a QCD plasma is P- and CP-odd. We propose and study P- and CP-odd observables in photon and di-lepton emissions from an axially charged QCD plasma, which may provide possible experimental evidences of axial charge fluctuation and triangle anomaly in the plasma created in heavy-ion collisions. Our observables measure spin alignments of the emitted photons and di-leptons, and are shown to be related to the imaginary part of chiral magnetic conductivity at finite frequency-momentum, which ultimately arises from the underlying triangle anomaly of the QCD plasma with a finite axial charge density. We present an exemplar computation of these observables in strongly coupled regime using AdS/CFT correspondence.

Kiminad A. Mamo; Ho-Ung Yee

2013-07-30T23:59:59.000Z

216

Spin Polarized Photons and Di-leptons from Axially Charged Plasma  

E-Print Network (OSTI)

Axial charge in a QCD plasma is P- and CP-odd. We propose and study P- and CP-odd observables in photon and di-lepton emissions from an axially charged QCD plasma, which may provide possible experimental evidences of axial charge fluctuation and triangle anomaly in the plasma created in heavy-ion collisions. Our observables measure spin alignments of the emitted photons and di-leptons, and are shown to be related to the imaginary part of chiral magnetic conductivity at finite frequency-momentum, which ultimately arises from the underlying triangle anomaly of the QCD plasma with a finite axial charge density. We present an exemplar computation of these observables in strongly coupled regime using AdS/CFT correspondence.

Mamo, Kiminad A

2013-01-01T23:59:59.000Z

217

Subdiffusive axial transport of granular materials in a long drum mixer  

E-Print Network (OSTI)

Granular mixtures rapidly segregate radially by size when tumbled in a partially filled horizontal drum. The smaller component moves toward the axis of rotation and forms a buried core, which then splits into axial bands. Models have generally assumed that the axial segregation is opposed by diffusion. Using narrow pulses of the smaller component as initial conditions, we have characterized axial transport in the core. We find that the axial advance of the segregated core is well described by a self-similar concentration profile whose width scales as $t^\\alpha$, with $\\alpha \\sim 0.3 < 1/2$. Thus, the process is subdiffusive rather than diffusive as previously assumed. We find that $\\alpha$ is nearly independent of the grain type and drum rotation rate within the smoothly streaming regime. We compare our results to two one-dimensional PDE models which contain self-similarity and subdiffusion; a linear fractional diffusion model and the nonlinear porous medium equation.

Zeina S. Khan; Stephen W. Morris

2004-08-28T23:59:59.000Z

218

Hadley Circulations in Radiative–Convective Equilibrium in an Axially Symmetric Atmosphere  

Science Conference Proceedings (OSTI)

Hadley circulations in radiative–convective equilibrium are investigated using an idealistic axially symmetric model. Calculations show that the distribution of temperature in the Hadley cell is controlled by the moist process; the vertical ...

Masaki Satoh

1994-07-01T23:59:59.000Z

219

Sensitivity of 5-cm Wavelength Polarimetric Radar Variables to Raindrop Axial Ratio and Drop Size Distribution  

Science Conference Proceedings (OSTI)

The sensitivity of polarimetric variables at a 5-cm wavelength to raindrop size and axial ratio is examined using T-matrix modeling of the scattering process for gamma raindrop size distributions fitted to tropical rainfall collected at Darwin, ...

T. D. Keenan; L. D. Carey; D. S. Zrni?; P. T. May

2001-03-01T23:59:59.000Z

220

Global Circulation in an Axially Symmetric Shallow Water Model Forced by Equinoctial Differential Heating  

Science Conference Proceedings (OSTI)

Solutions of an axially symmetric inviscid shallow-water model (SWM) on the earth forced by equinoctial differential heating are constructed using numerical integration of the time-dependent equations and analysis of their steady states. The ...

Ori Adam; Nathan Paldor

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electron Diamagnetic Effect on Axial Force in an Expanding Plasma: Experiments and Theory  

SciTech Connect

The axial force imparted from a magnetically expanding current-free plasma is directly measured for three different experimental configurations and compared with a two-dimensional fluid theory. The force component solely resulting from the expanding field is directly measured and identified as an axial force produced by the azimuthal current due to an electron diamagnetic drift and the radial component of the magnetic field. The experimentally measured forces are well described by the theory.

Takahashi, Kazunori [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Electrical Engineering and Computer Science, Iwate University, Morioka 020-8551 (Japan); Lafleur, Trevor; Charles, Christine; Alexander, Peter; Boswell, Rod W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

2011-12-02T23:59:59.000Z

222

Vermont Yankee's benefits and concerns operating with Axially zoned GE9 fuel  

Science Conference Proceedings (OSTI)

Vermont Yankee (VY) is a 368-assembly, D-lattice, boiling water reactor (BWR)/4. The current cycle 16 contains 252 GE9 assemblies with axial zoning of gadolinium and enrichment, 112 GE8 assemblies with axially zoned gadolinium, and 4 Siemens 9 x 9-IX lead qualification assemblies. In this paper, the performance of the GE9-dominated core is evaluated against previous cores containing less sophisticated fuel designs.

Woehlke, R.A. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

223

Pressure balanced drag turbine mass flow meter  

DOE Patents (OSTI)

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, Michael W. (Gilbert, AR); Cole, Jack H. (Fayetteville, AR)

1982-01-01T23:59:59.000Z

224

Pressure balanced drag turbine mass flow meter  

DOE Patents (OSTI)

The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

Dacus, M.W.; Cole, J.H.

1980-04-23T23:59:59.000Z

225

Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses  

SciTech Connect

This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

Wagner, J.C.

2002-10-23T23:59:59.000Z

226

Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation S. You, G. S. Yun, and P. M. Bellan  

E-Print Network (OSTI)

) of the observed structures. We propose that the collimation of any, initially flared, current-carrying magnetic-flux the flared current profile drives axial plasma flows along the flux tube; the flows convect frozen-in magnetic flux from strong magnetic field regions to weak magnetic field regions; flow stagnation then piles

227

ANALYSIS OF THE AXIAL GAP VS FIBERBOARD MOISTURE CONTENT IN A 9975 SHIPPING PACKAGE  

SciTech Connect

The fiberboard assembly within a 9975 shipping package contains a modest amount of moisture, which can migrate to the cooler regions of the package when an internal heat load is present. Typically, this leads to increased moisture levels in the bottom fiberboard layers, along with elevated chloride levels which can leach from the fiberboard. Concerns have been raised that this condition could lead to corrosion of the stainless steel drum. It has been postulated that checking the axial gap at the top of the package against the current 1 inch maximum criterion provides a sufficient indication regarding the integrity of the fiberboard and drum. This report estimates the increase in axial gap that might be expected for a given moisture increase in the bottom fiberboard layers, and the likelihood that the increase will create a nonconforming condition that will lead to identification of the moisture increase. Using data relating the fiberboard moisture content with the degree of compaction under load, the present analysis indicates that the axial gap will increase by 0.282 inch as the bottom fiberboard layers approach the saturation point. This increase will cause approximately 58% of packages with otherwise nominal package component dimensions to fail the axial gap criterion, based on a survey of axial gap values recorded in K-Area surveillance activities. As the moisture content increases above saturation, the predicted increase in axial gap jumps to 0.405 inch, which would result in 92% or more of all packages failing the axial gap criterion. The data and analysis described in this report are specific to cane fiberboard. While it is expected that softwood fiberboard will behave similarly, such behavior has not yet been demonstrated.

Daugherty, W.

2013-09-30T23:59:59.000Z

228

Charged Axially Symmetric Solution, Energy and Angular Momentum in Tetrad Theory of Gravitation  

E-Print Network (OSTI)

Charged axially symmetric solution of the coupled gravitational and electromagnetic fields in the tetrad theory of gravitation is derived. The metric associated with this solution is an axially symmetric metric which is characterized by three parameters ``$ $the gravitational mass $M$, the charge parameter $Q$ and the rotation parameter $a$". The parallel vector fields and the electromagnetic vector potential are axially symmetric. We calculate the total exterior energy. The energy-momentum complex given by M{\\o}ller in the framework of the Weitzenb$\\ddot{o}$ck geometry ``$ ${\\it characterized by vanishing the curvature tensor constructed from the connection of this geometry}" has been used. This energy-momentum complex is considered as a better definition for calculation of energy and momentum than those of general relativity theory. The energy contained in a sphere is found to be consistent with pervious results which is shared by its interior and exterior. Switching off the charge parameter, one finds that no energy is shared by the exterior of the charged axially symmetric solution. The components of the momentum density are also calculated and used to evaluate the angular momentum distribution. We found no angular momentum contributes to the exterior of the charged axially symmetric solution if zero charge parameter is used.

Gamal G. L. Nashed

2005-01-01T23:59:59.000Z

229

MHK Technologies/Hydroomel | Open Energy Information  

Open Energy Info (EERE)

Hydroomel Hydroomel < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Hydroomel r composed of little modules that perfectly fits into natural and urban environments and on existing structures where it could be located Technology Dimensions Device Testing Date Submitted 59:09.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Hydroomel&oldid=680955" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

230

Axial seal system for a gas turbine steam-cooled rotor  

DOE Patents (OSTI)

An axial seal assembly is provided at the interface between adjacent wheels and spacers of a gas turbine rotor and disposed about tubes passing through openings in the rotor adjacent the rotor rim and carrying a thermal medium. Each seal assembly includes a support bushing for supporting a land of the thermal medium carrying tube, an axially registering seat bushing disposed in the opposed opening and a frustoconical seal between the seal bushing and seat. The seal bushing includes a radial flange having an annular recess for retaining the outer diameter edge of the seal, while the seat bushing has an axially facing annular surface forming a seat for engagement by the inner diameter edge of the seal.

Mashey, Thomas Charles (Anderson, SC)

2002-01-01T23:59:59.000Z

231

Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei  

SciTech Connect

Important insight into the symmetry properties of the nuclear ground-state (gs) shape is obtained from the characteristics of low-lying collective energy-level spectra. In the 1950s, experimental and theoretical studies showed that in the gs many nuclei are spheroidal in shape rather than spherical. Later, a hexadecapole component of the gs shape was identified. In the 1970-1995 time frame, a consensus that reflection symmetry of the gs shape was broken for some nuclei emerged. Here we present the first calculation across the nuclear chart of axial symmetry breaking in the nuclear gs. We show that we fulfill a necessary condition: Where we calculate axial symmetry breaking, characteristic gamma bands are observed experimentally. Moreover, we find that, for those nuclei where axial asymmetry is found, a systematic deviation between calculated and measured masses is removed.

Moeller, Peter [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bengtsson, Ragnar; Carlsson, B. Gillis; Olivius, Peter [Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund (Sweden); Ichikawa, Takatoshi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan)

2006-10-20T23:59:59.000Z

232

Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow  

SciTech Connect

Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo [Kumamoto University, 39-1, Kurokami 2-chome, Kumamoto 860-8555 (Japan)

2006-07-01T23:59:59.000Z

233

Effects of solution exposure on the combined axial-shear behaviour of unidirectional CFRP rods  

E-Print Network (OSTI)

This is the peer reviewed version of Scott, P. and Lees, J.M. (2012) "Effects of solution exposure on the combined axial-shear behaviour of unidirectional CFRP rods" Composites Part A: Applied science and manufacturing v. 43A, (9) 1599–1611 which... has been published on http://dx.doi.org/10.1016/j.compositesa.2012.03.027 Effects of solution exposure on the combined axial-shear behaviour of unidirectional CFRP rods P. Scott1 and J.M. Lees2 1 Department of Engineering, University...

Lees, J. M.; Scott, P

2012-04-06T23:59:59.000Z

234

Segmentation of female pelvic organs in axial magnetic resonance images using coupled geometric deformable models  

Science Conference Proceedings (OSTI)

The segmentation of pelvic structures in magnetic resonance (MR) images of the female pelvic cavity is a challenging task. This paper proposes the use of three novel geometric deformable models to segment the bladder, vagina and rectum in axial MR images. ... Keywords: Bladder, Image segmentation, Imaging appearance, Level set, Prior shape knowledge, Rectum, Vagina

Zhen Ma; Renato M. Natal Jorge; Teresa Mascarenhas; JoãO Manuel R. S. Tavares

2013-05-01T23:59:59.000Z

235

Original articles: Vortex states in axially symmetric superconductors in applied magnetic field  

Science Conference Proceedings (OSTI)

We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. ... Keywords: Axial magnetic field, Mesoscopic superconductivity, Nonlinear Ginzburg-Landau equation, Vortex

Andrei Ludu; Milorad V. Miloševi?; Francois M. Peeters

2012-03-01T23:59:59.000Z

236

Low inductance axial flux BLDC motor drive for more electric aircraft  

Science Conference Proceedings (OSTI)

As the aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing.12 Axial-flux BLDC motors are becoming popular in aero application because of their ability to meet the demand of light weight, ...

Sukumar De; Milan Rajne; Srikant Poosapati; Chintan Patel; K. Gopakumar

2011-03-01T23:59:59.000Z

237

Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches  

SciTech Connect

The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States); Rudakov, L. I. [Icarus Research Inc., Bethesda, Maryland 20824 (United States); Williamson, K. M. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Plasma Engineering Research Laboratory, Texas A and M University, Corpus Christi, TX 78412 (United States)

2011-10-15T23:59:59.000Z

238

The existence theorem for steady Navier--Stokes equations in the axially symmetric case  

E-Print Network (OSTI)

We study the nonhomogeneous boundary value problem for Navier-Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional bounded multiply connected domain. We prove that this problem has a solution in some axially symmetric cases, in particular, when all components of the boundary intersect the axis of symmetry.

Mikhail Korobkov; Konstantin Pileckas; Remigio Russo

2011-10-28T23:59:59.000Z

239

Analysis and Design of a High Power Density Axial Flux Permanent Magnet Linear Synchronous Machine Used for Stirling System  

Science Conference Proceedings (OSTI)

a high power density axial flux permanent magnet linear synchronous machine and the stirling system will be introduced. This machine is a tubular axial flux permanent magnet machine. It comprises two parts: stator and mover. With the 2D finite-element ... Keywords: permanent magnet, stirling engine, linear motor

Ping Zheng; Xuhui Gan; Lin Li

2010-09-01T23:59:59.000Z

240

Flow directing means for air-cooled transformers  

DOE Patents (OSTI)

This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

Jallouk, Philip A. (Oak Ridge, TN)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FLOW GATING  

DOE Patents (OSTI)

BS>This invention is a fast gating system for eiectronic flipflop circuits. Diodes connect the output of one circuit to the input of another, and the voltage supply for the receiving flip-flop has two alternate levels. When the supply is at its upper level, no current can flow through the diodes, but when the supply is at its lower level, current can flow to set the receiving flip- flop to the same state as that of the circuit to which it is connected. (AEC)

Poppelbaum, W.J.

1962-12-01T23:59:59.000Z

242

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

van den Engh, Ger (Seattle, WA)

1995-01-01T23:59:59.000Z

243

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

244

Theoretical and experimental investigation of axial power extraction from a magnetically insulated transmission line oscillator  

SciTech Connect

The utility of the magnetically insulated transmission line oscillator (MILO) as a high power microwave source depends on how efficiently power can be extracted from it. We have designed a slow-wave stepped transformer for the purpose of axially extracting microwave power from a 3.6 GHz coaxial MILO. The slow-wave transformer design was optimized using particle-in-cell simulation, and tested in experiments performed on the HPM Simulation Division's GEMINI and GYPSY water Blumlein pulse power sources. In this paper we summarize the slow-wave stepped transformer design, and describe MILO axial power extraction experiments which yielded up to 300 MW of radiated power. 10 refs., 4 figs., 2 tabs.

Lemke, R.W.; DeMuth, G.E.; Biggs, A.W. (Sandia National Labs., Albuquerque, NM (USA); Air Force Weapons Lab., Kirtland AFB, NM (USA); Alabama Univ., Huntsville, AL (USA). Dept. of Electrical and Computer Engineering)

1989-01-01T23:59:59.000Z

245

Electrophoretic Migration and Axial Diffusion of Individual Nanoparticles in Cylindrical Nanopores  

SciTech Connect

Membranes with straight, vertical nanopores have found widespread applications in chemical and biological sciences, including separation, detection, catalysis, and drug delivery. They can also serve as a model system to understand molecular behavior and fundamental mechanisms of separation, bridging the gap between conventional model systems such as flat surfaces and real chromatographic stationary phases such as micrometer-sized porous particles. We recently found that the axial motion of individual biomolecules inside nanopores can be significantly slower than in bulk solution. This suggests that either chromatographic adsorption was present and/or the viscosity inside the nanopores was unusually high. In this study, we measured the electrophoretic motion as well as the axial diffusion of individual nanoparticles in cylindrical alumina nanopores. We found that the electrophoretic mobilities and the diffusion coefficients of polystyrene nanoparticles were both substantially smaller compared to bulk solution independent of particle size or pore diameter. The results imply that the apparent solution viscosity in nanodomains is anomalous.

Han, Rui; Wang, Gufeng; Qi, Shengda; Ma, Changbei; Yeung, Edward S.

2012-08-01T23:59:59.000Z

246

Axial Flux, Modular, Permanent-Magnet Generator with a Toroidal Winding for Wind Turbine Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-500-24996 Ÿ UC Category: 1213 CP-500-24996 Ÿ UC Category: 1213 Axial Flux, Modular, Permanent- Magnet Generator with a Toroidal Winding for Wind Turbine Applications E. Muljadi C.P. Butterfield Yih-Huei Wan National Wind Technology Center National Renewable Energy Laboratory Presented at IEEE Industry Applications Conference St. Louis, MO November 5-8, 1998 National Renewable Energy Laboratory 1617 Cole Boulevard

247

Fe XII STALKS AND THE ORIGIN OF THE AXIAL FIELD IN FILAMENT CHANNELS  

SciTech Connect

Employing Fe XII images and line-of-sight magnetograms, we deduce the direction of the axial field in high-latitude filament channels from the orientation of the adjacent stalklike structures. Throughout the rising phase of the current solar cycle 24, filament channels poleward of latitude 30 Degree-Sign overwhelmingly obeyed the hemispheric chirality rule, being dextral (sinistral) in the northern (southern) hemisphere, corresponding to negative (positive) helicity. During the deep minimum of 2007-2009, the orientation of the Fe XII stalks was often difficult to determine, but no obvious violations of the rule were found. Although the hemispheric trend was still present during the maximum and early declining phase of cycle 23 (2000-2003), several high-latitude exceptions were identified at that time. From the observation that dextral (sinistral) filament channels form through the decay of active regions whose Fe XII features show a counterclockwise (clockwise) whorl, we conclude that the axial field direction is determined by the intrinsic helicity of the active regions. In contrast, generation of the axial field component by the photospheric differential rotation is difficult to reconcile with the observed chirality of polar crown and circular filament channels, and with the presence of filament channels along the equator. The main role of differential rotation in filament channel formation is to expedite the cancellation of flux and thus the removal of the transverse field component. We propose further that, rather than being ejected into the heliosphere, the axial field is eventually resubmerged by flux cancellation as the adjacent unipolar regions become increasingly mixed.

Wang, Y.-M.; Sheeley, N. R. Jr. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Stenborg, G., E-mail: yi.wang@nrl.navy.mil, E-mail: neil.sheeley@nrl.navy.mil, E-mail: guillermo.stenborg.ctr.ar@nrl.navy.mil [George Mason University, Fairfax, VA 22030 (United States)

2013-06-10T23:59:59.000Z

248

Experimental Verification of the Root Cause Mechanism for Axial Offset Anomaly  

Science Conference Proceedings (OSTI)

Researchers at the Georgia Institute of Technology built a test facility designed to experimentally verify the root cause mechanism for axial offset anomaly (AOA) in pressurized water reactors (PWRs). Tests consisted of depositing materials from the simulated PWR coolant on zircaloy-4 test elements, followed by rapid isolation from the boron-rich coolant to trap within the deposit layer any boron compounds having retrograde solubility. Although significant amounts of boron (up to 8 weight percent) were i...

2002-12-03T23:59:59.000Z

249

EPRI Phased Array Performance Demonstration for Axial Entry Blade Attachment Inspection - Technical Update  

Science Conference Proceedings (OSTI)

The disk rim blade attachment area is one of the most highly stressed components of the steam turbine rotor. Reliable and accurate inspection of the disk rim blade attachment area is essential for the determination of rotor operability and remaining life. The purpose of the Electric Power Research Institute's (EPRI's) Phased Array Performance Demonstration for Axial Entry Blade Attachment Inspection Project is to determine the inspection performance levels of commercial entities offering these inspection...

2008-12-22T23:59:59.000Z

250

Charmless Hadronic B Decays into Vector, Axial Vector and Tensor Final States at BaBar  

SciTech Connect

We present experimental measurements of branching fraction and longitudinal polarization fraction in charmless hadronic B decays into vector, axial vector and tensor final states with the final dataset of BABAR. Measurements of such kind of decays are a powerful tool both to test the Standard Model and search possible sources of new physics. In this document we present a short review of the last experimental results at BABAR concerning charmless quasi two-body decays in final states containing particles with spin 1 or spin 2 and different parities. This kind of decays has received considerable theoretical interest in the last few years and this particular attention has led to interesting experimental results at the current b-factories. In fact, the study of longitudinal polarization fraction f{sub L} in charmless B decays to vector vector (VV), vector axial-vector (VA) and axial-vector axial-vector (AA) mesons provides information on the underlying helicity structure of the decay mechanism. Naive helicity conservation arguments predict a dominant longitudinal polarization fraction f{sub L} {approx} 1 for both tree and penguin dominated decays and this pattern seems to be confirmed by tree-dominated B {yields} {rho}{rho} and B{sup +} {yields} {Omega}{rho}{sup +} decays. Other penguin dominated decays, instead, show a different behavior: the measured value of f{sub L} {approx} 0.5 in B {yields} {phi}K* decays is in contrast with naive Standard Model (SM) calculations. Several solutions have been proposed such as the introduction of non-factorizable terms and penguin-annihilation amplitudes, while other explanations invoke new physics. New modes have been investigated to shed more light on the problem.

Gandini, Paolo; /Milan U. /INFN, Milan

2012-04-06T23:59:59.000Z

251

Behaviour of GFRP Adhesive Pipe Joints Subjected to Pressure and Axial Loadings  

E-Print Network (OSTI)

represent an attractive alternative for pipelines subjected to severe internal or external environments in onshore or offshore applications. One important issue in the design of GFRP pipe systems is the material anisotropy, which poses certain... properties, the fibre volume fraction and the winding angle. For pipe applications, ± 55° (with respect to the axial direction) fibre winding angles are commonly used. A further aspect in the design of any advanced composite system is the joint detail...

Lees, J. M.

2005-07-05T23:59:59.000Z

252

Development, Verification, and Validation of Multiphase Models for Polydisperse Flows  

Science Conference Proceedings (OSTI)

This report describes in detail the technical findings of the DOE Award entitled 'Development, Verification, and Validation of Multiphase Models for Polydisperse Flows.' The focus was on high-velocity, gas-solid flows with a range of particle sizes. A complete mathematical model was developed based on first principles and incorporated into MFIX. The solid-phase description took two forms: the Kinetic Theory of Granular Flows (KTGF) and Discrete Quadrature Method of Moments (DQMOM). The gas-solid drag law for polydisperse flows was developed over a range of flow conditions using Discrete Numerical Simulations (DNS). These models were verified via examination of a range of limiting cases and comparison with Discrete Element Method (DEM) data. Validation took the form of comparison with both DEM and experimental data. Experiments were conducted in three separate circulating fluidized beds (CFB's), with emphasis on the riser section. Measurements included bulk quantities like pressure drop and elutriation, as well as axial and radial measurements of bubble characteristics, cluster characteristics, solids flux, and differential pressure drops (axial only). Monodisperse systems were compared to their binary and continuous particle size distribution (PSD) counterparts. The continuous distributions examined included Gaussian, lognormal, and NETL-provided data for a coal gasifier.

Christine Hrenya; Ray Cocco; Rodney Fox; Shankar Subramaniam; Sankaran Sundaresan

2011-12-31T23:59:59.000Z

253

Design and market considerations for axial flux superconducting electric machine design  

E-Print Network (OSTI)

In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. This work was carried out as part of the University of Cambridge's Centre for Entrepreneurial Learning ETECH Project programme, designed to accelerate entrepreneurship and diffusion of innovations based on early stage and potentially disruptive technologies from the University. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricin...

Ainslie, Mark D; Shaw, Robert; Dawson, Lewis; Winfield, Andy; Steketee, Marina; Stockley, Simon

2013-01-01T23:59:59.000Z

254

Collimation of a Circulating Beam in the U_70 Synchrotron by Use of Reflections in Axially - Oriented Crystals  

E-Print Network (OSTI)

The possibilities of the extraction and collimation of a circulating beam by a new method due to the reflection of particles in crystals with axial orientation were experimentally investigated in the Fall-2010 run at the U_70 synchrotron. Such crystals have positive features, because the axial potential is five times larger than the planar potential. It has been shown that the collimation efficiency can reach 90% due to axial effects in the crystal. Losses of the circulating beam on a collimator have been reduced by several times; this makes it possible to suppress the muon jet near the steel collimator of the circulating beam.

Afonin, A G; Bulgakov, M K; Voinov, I S; Gorlov, V N; Ivanova, I V; Krylov, D M; Lunn'kov, A N; Maisheev, V A; Reshetnikov, S F; Savin, D A; Syshchikov, E A; Terekhov, V I; Chesnokov, Yu A; Chirkov, P N; Yazynin, I A

2011-01-01T23:59:59.000Z

255

Stratorotational instability in MHD Taylor-Couette flows  

E-Print Network (OSTI)

The stability of dissipative Taylor-Couette flows with an axial stable density stratification and a prescribed azimuthal magnetic field is considered. Global nonaxisymmetric solutions of the linearized MHD equations with toroidal magnetic field, axial density stratification and differential rotation are found for both insulating and conducting cylinder walls. Flat rotation laws such as the quasi-Kepler law are unstable against the nonaxisymmetric stratorotational instability (SRI). The influence of a current-free toroidal magnetic field depends on the magnetic Prandtl number Pm: SRI is supported by Pm > 1 and it is suppressed by Pm \\lsim 1. For too flat rotation laws a smooth transition exists to the instability which the toroidal magnetic field produces in combination with the differential rotation. This nonaxisymmetric azimuthal magnetorotational instability (AMRI) has been computed under the presence of an axial density gradient. If the magnetic field between the cylinders is not current-free then also the Tayler instability occurs and the transition from the hydrodynamic SRI to the magnetic Tayler instability proves to be rather complex. Most spectacular is the `ballooning' of the stability domain by the density stratification: already a rather small rotation stabilizes magnetic fields against the Tayler instability. An azimuthal component of the resulting electromotive force only exists for density-stratified flows. The related alpha-effect for magnetic SRI of Kepler rotation appears to be positive for negative d\\rho/dz <0.

G. Ruediger; D. A. Shalybkov

2008-08-05T23:59:59.000Z

256

MIT extraction method for measuring average subchannel axial velocities in reactor assemblies  

SciTech Connect

The MIT extraction method for obtaining flow split data for individual subchannels is described in detail. An analysis of the method is presented which shows that isokinetic values of the subchannel flow rates are obtained directly even though the method is non-isokinetic. Time saving methods are discussed for obtaining the average value of the interior region flow split parameter. An analysis of the method at low bundle flow rates indicates that there is no inherent low flow rate limitation on the method and suggests a way to obtain laminar flow split data.

Hawley, J.T.; Chiu, C.; Todreas, N.E.

1980-08-01T23:59:59.000Z

257

Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory  

Science Conference Proceedings (OSTI)

We calculate the nucleon form factors G{sub A} and G{sub P} of the isovector axial-vector current and the pion-nucleon form factor G{sub {pi}}{sub N} in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p{sup 4}). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a{sub 1} as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G{sub A}. The inclusion of the axial-vector meson results in an improved description of the experimental data for G{sub A}, while the contribution to G{sub P} is small.

Schindler, M. R.; Fuchs, T.; Scherer, S. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Gegelia, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia (United States)

2007-02-15T23:59:59.000Z

258

Prospecting for Hydrothermal Vents Using Moored Current and Temperature Data: Axial Volcano on the Juan de Fuca Ridge, Northeast Pacific  

Science Conference Proceedings (OSTI)

Tidal and inertial currents and profuse hydrothermal discharge at recently erupted Axial Volcano, Juan de Fuca Ridge, cause relatively large and rapid temperature (T) changes in the near-bottom water column. Measurements show short-term T ...

J. W. Lavelle; M. A. Wetzler; E. T. Baker; R. W. Embley

2001-03-01T23:59:59.000Z

259

Determing Degradation Of Fiberboard In The 9975 Shipping Package By Measuring Axial Gap  

SciTech Connect

Currently, thousands of model 9975 transportation packages are in use by the US Department of Energy (DOE); the design of which has been certified by DOE for shipment of Type B radioactive and fissile materials in accordance with Part 71, Title 10 Code of Federal Regulations (CFR), or 10 CFR 71, Packaging and Transportation of Radioactive Material. These transportation packages are also approved for the storage of DOE-STD-3013 containers at the Savannah River Site (SRS). As such, the 9975 has been continuously exposed to the service environment for a period of time greater than the approved transportation service life. In order to ensure the material integrity as specified in the safety basis, an extensive surveillance program is in place in K-Area Complex (KAC) to monitor the structural and thermal properties of the fiberboard of the 9975 shipping packages. The surveillance approach uses a combination of Non-Destructive Examination (NDE) field surveillance and Destructive Examination (DE) lab testing to validate the 9975 performance assumptions. The fiberboard in the 9975 is credited with thermal insulation, criticality control and resistance to crushing. During surveillance monitoring in KAC, an increased axial gap of the fiberboard was discovered on selected items packaged at Rocky Flats Environmental Technology Site (RFETS). Many of these packages were later found to contain excess moisture. Savannah River National Laboratory (SRNL) testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the fiberboard under storage conditions and during transport. In laboratory testing, the higher moisture content has been shown to correspond to higher total compaction of fiberboard material and compaction rate. The fiberboard height is reduced by compression of the layers. This change is observed directly in the axial gap between the flange and the air shield. The axial gap measurement is made during the pre-use inspection or during the annual recertification process and is a screening measurement for changes in the fiberboard.

2013-08-01T23:59:59.000Z

260

Axial force imparted by a conical radiofrequency magneto-plasma thruster  

SciTech Connect

Direct thrust measurements of a low pressure ({approx}0.133 Pa) conical radiofrequency (rf at 13.56 MHz) argon plasma source show a total axial force of about 5 mN for an effective rf power of 650 W and a maximum magnetic field of 0.018 T, of which a measured value of 2.5 mN is imparted by the magnetic nozzle. A simplified model of thrust including contributions from the electron pressure and from the magnetic field pressure is developed. The magnetic nozzle is modelled as a ''physical'' nozzle of increasing cross-sectional area.

Charles, C.; Takahashi, K.; Boswell, R. W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia)

2012-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Determination of the Axial-Vector Weak Coupling Constant with Polarized Ultracold Neutrons  

E-Print Network (OSTI)

A precise measurement of the neutron decay $\\beta$-asymmetry $A_0$ has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089 _{-0.00140}^{+0.00123}$, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon $g_A/g_V = -1.27590 _{-0.00445}^{+0.00409}$.

Liu, J; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; Garcia, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C -Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Galvan, A Perez; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R

2010-01-01T23:59:59.000Z

262

Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons  

E-Print Network (OSTI)

A precise measurement of the neutron decay $\\beta$-asymmetry $A_0$ has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089_{-0.00140}^{+0.00123}$, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon $g_A/g_V = -1.27590_{-0.00445}^{+0.00409}$.

UCNA Collaboration; J. Liu; M. P. Mendenhall; A. T. Holley; H. O. Back; T. J. Bowles; L. J. Broussard; R. Carr; S. Clayton; S. Currie; B. W. Filippone; A. Garcia; P. Geltenbort; K. P. Hickerson; J. Hoagland; G. E. Hogan; B. Hona; T. M. Ito; C. -Y. Liu; M. Makela; R. R. Mammei; J. W. Martin; D. Melconian; C. L. Morris; R. W. Pattie Jr.; A. Perez Galvan; M. L. Pitt; B. Plaster; J. C. Ramsey; R. Rios; R. Russell; A. Saunders; S. J. Seestrom; W. E. Sondheim; E. Tatar; R. B. Vogelaar; B. VornDick; C. Wrede; H. Yan; A. R. Young

2010-07-22T23:59:59.000Z

263

Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons  

Science Conference Proceedings (OSTI)

A precise measurement of the neutron decay {beta} asymmetry A{sub 0} has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A{sub 0}=-0.119 66{+-}0.000 89{sub -0.00140}{sup +0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{sub A}/g{sub V}=-1.275 90{sub -0.00445}{sup +0.00409}.

Liu, J. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Perez Galvan, A.; Russell, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Holley, A. T.; Hoagland, J.; VornDick, B. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Back, H. O.; Pattie, R. W. Jr.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Bowles, T. J.; Clayton, S.; Currie, S.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2010-10-29T23:59:59.000Z

264

Improved Fluid Flow Measurements: Feedwater Flow  

Science Conference Proceedings (OSTI)

This report describes the combined results of a utility survey and site visits concerning feedwater flow measurement in fossil-fueled power plants. In addition, a summary is provided of the technologies available to measure the volumetric feedwater flow rate in plants. This volumetric flow rate can be converted to a mass flow rate by knowing the pressure and temperature of the flow media. Velocity meters, differential pressure meters, and other closed-conduit flowmeters are discussed along with ...

2012-11-28T23:59:59.000Z

265

Analysis of the thorium axial blanket experiments in the proteus reactor  

SciTech Connect

Detailed analysis has been completed for the ThO/sub 2/ and Th-metal axial blanket experiments performed at the Swiss PROTEUS critical facility in order to compare reaction rates and neutron spectra measured in prototypic GCFR configurations with calculated results. The PROTEUS configurations allowed the analysis of infinitely dilute thorium data in a PuO/sub 2//UO/sub 2/ fast lattice spectrum at core center as well as the analysis of resonance self-shielding effects in the thorium-bearing axial blankets. These comparisons indicate that significant deficiencies still exist in the latest evaluated infinitely dilute thorium data file. Specifically, the analysis showed that the /sup 232/Th capture is underpredicted by ENDF/B-IV data, and the discrepancies are further exaggerated by ENDF/B-V data. On the other hand, ENDF/B-V /sup 232/Th fission data appear to be significantly improved relative to ENDF/B-IV data, while discrepancies are extremely large for the (n,2n) process in both data files. Finally, the (n,n') cross sections for thorium also appear improved in ENDF/B-V, except for a small energy range just above the 50 keV threshold. Therefore, these combined data deficiencies suggest that relatively large uncertainties should be associated with many of the results obtained from recent fast reactor alternate fuel cycle analyses. 38 figures, 12 tables.

White, J.R.; Ingersoll, D.T.

1980-12-01T23:59:59.000Z

266

Analysis and performance of radial flow rotary dessicant dehumidifiers  

SciTech Connect

A model is developed to predict the steady periodic performance of a radial flow desiccant wheel. The model is expressed in terms of the same dimensionless parameters that are commonly used in modeling of the conventional axial flow desiccant wheel. In addition a dimensionless geometrical ratio of the volume of the matrix to the volume of the wheel core is found to affect the performance of the wheel. A finite difference technique on staggered grid is used to discretize the governing dimensionless equations. The discretized equations are solved to predict the performance of the desiccant wheel at given values of operation parameters. A sensitivity study is carried out to investigate the effect of changing any of these parameters on the performance of the wheel. The performance of the radial flow desiccant wheel having the same values of the operation parameters.

Elsayed, M.M.; Chamkha, A.J. [Kuwait Univ., Safat (Kuwait). Mechanical and Industrial Engineering Dept.

1997-02-01T23:59:59.000Z

267

Effects of axial heat conduction and material properties on the performance characteristics of a thermal transient anemometer probe  

Science Conference Proceedings (OSTI)

This paper describes an investigation of the axial heat transfer within a thermal transient anemometer probe. A previous study, evaluated the performance characteristics of a thermal transient anemometer system. The study revealed discrepancies between a simplified theory and test results in the development of a universal calibration curve for probes of varying diameters. Although the cause of these discrepancies were left uncertain due to an inadequate theoretical model, the study suggested that axial conduction within the probe could account for the deviations. In this paper, computer simulations are used to further investigate axial heat conduction within the probes. The effect on calibration of axial variations of material properties along the probes is also discussed. Results from the computer simulation are used in lieu of the theoretical model used in the previous study to develop a satisfactory universal calibration curve. The computer simulations provide evidence that there is significant axial heat conduction within the probes, and that this was the cause of the discrepancies noted in the previous study.

Bailey, J.L.; Page, R.J. [Argonne National Lab., IL (United States); Acharya, M. [Illinois Inst. of Technology, Chicago, IL (United States). Fluid Dynamics Research Center

1995-07-01T23:59:59.000Z

268

Natural Circulation and Linear Stability Analysis for Liquid-Metal Reactors with the Effect of Fluid Axial Conduction  

SciTech Connect

The effect of fluid axial thermal conduction on one-dimensional liquid metal natural circulation and its linear stability was performed through nondimensional analysis, steady-state assessment, and linear perturbation evaluation. The Nyquist criterion and a root-search method were employed to find the linear stability boundary of both forward and backward circulations. The study provided a relatively complete analysis method for one-dimensional natural circulation problems with the consideration of fluid axial heat conduction. The results suggest that fluid axial heat conduction in a natural circulation loop should be considered only when the modified Peclet number is {approx}1 or less, which is significantly smaller than the practical value of a lead liquid metal-cooled reactor.

Piyush Sabharwall; Qiao Wu; James J. Sienicki

2012-06-01T23:59:59.000Z

269

Laboratory Measurements of Axial Pressures in Two-Celled Tornado-like Vortices  

Science Conference Proceedings (OSTI)

An experimental study of two-celled vortex flows was conducted in a Ward-type tornado vortex chamber (TVC). Time-averaged, stream-static pressure measurements on the vortex axis and observations of the visualized flow in two-celled vortices are ...

Randal L. Pauley

1989-11-01T23:59:59.000Z

270

An Axial Dispersion Model for Gas - Liquid Reactors Based on the Penetration Theory  

E-Print Network (OSTI)

An axial dispersion reactor model for gas -- liquid reaction systems is proposed in this paper based on the penetration theory. The mass transfer mechanism accompanied by a chemical irreversible first-order reaction is mathematically treated in a new way in order to use its results to develop the model conveniently. Analytical solutions can be obtained for the equation system involving linear differential equations by using of the eigenvalues of the equation system. In addition, an iteration procedure is given to solve the nonlinear differential equation system numerically. The influences of the important model parameters on the concentration profile, the mass transfer and the reactant conversion are also studied. 1997 Elsevier Science S.A.

Jinfu Wang; Shejiao Han; Fei Wei; Zhiqing Yu; Yong Jin

1997-01-01T23:59:59.000Z

271

Computed axial tomography (CAT) contribution for dosimetry and treatment evaluation in lung cancer  

SciTech Connect

The use of computed axial tomography (CAT) scans in postoperative patients with lung cancer was studied to evaluate its contribution in dosimetry and to study the late effects of irradiation. Comparisons were made between the treatment planning generated from CAT scan data and that obtained from two orthogonal radiographs. Both methods offered a good approximation but with orthogonal radiographs possible mediastinal and lung shift could not be seen and the dose delivered to the spinal cord was overestimated. A control CAT scan performed 6 to 18 months after treatment showed a lung fibrosis that was strictly correlated with the treatment planning and related with doses and volume treated. CAT scans allowed more accurate treatment planning.

Van Houtte, P.; Piron, A.; Lustman-Marechal, J.; Osteaux, M.; Henry, J.

1980-08-01T23:59:59.000Z

272

Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions  

DOE Green Energy (OSTI)

In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone.

Zielinski, R.E.; Stacy, E.; Burgan, C.E.

273

Constraining the Leading Weak Axial Two-body Current by SNO and Super-K  

E-Print Network (OSTI)

We analyze the Sudbury Neutrino Observatory (SNO) and Super-Kamiokande (SK) data on charged current (CC), neutral current (NC) and neutrino electron elastic scattering (ES) reactions to constrain the leading weak axial two-body current parameterized by L_1A. This two-body current is the dominant uncertainty of every low energy weak interaction deuteron breakup process, including SNO's CC and NC reactions. Our method shows that the theoretical inputs to SNO's determination of the CC and NC fluxes can be self-calibrated, be calibrated by SK, or be calibrated by reactor data. The only assumption made is that the total flux of active neutrinos has the standard ^8B spectral shape (but distortions in the electron neutrino spectrum are allowed). We show that SNO's conclusion about the inconsistency of the no-flavor-conversion hypothesis does not contain significant theoretical uncertainty, and we determine the magnitude of the active solar neutrino flux.

Jiunn-Wei Chen; Karsten M. Heeger; R. G. Hamish Robertson

2002-10-24T23:59:59.000Z

274

An imaging co-axial tube electrodynamic trap for manipulation of charged particles  

Science Conference Proceedings (OSTI)

A tubular particle trapping device was designed and fabricated using two co-axial electrically conductive tubes with diameters of 5 mm and 7 mm, respectively. The device was integrated with an imaging camera and optical fiber bundle for real time monitoring of trapped particle motion. Charged microparticles of 3 to 50 m diameter can be suspended in air at ambient pressure using the device utilizing a quadrupole potential with an alternating voltage of amplitude 300 V to 750 V and frequency of 30 Hz to 140 Hz. Controlled trapping of a single particle or multiple particles can be achieved by tuning the voltage amplitude. The particle remained trapped when the entire assembly was translated or rotated. The device can be used as a manipulator for charged particle transport and repositioning.

Jiang, Ms. Linan [University of Arizona; Whitten, William B [ORNL; Pau, Dr. Stanley [University of Arizona/Bell Labs

2011-01-01T23:59:59.000Z

275

Nonleptonic two-body B decays including axial-vector mesons in the final state  

SciTech Connect

We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-vector mesons in the final state. We calculate branching ratios of B{yields}PA, VA, and AA decays, where A, V, and P denote an axial vector, a vector, and a pseudoscalar meson, respectively. We assume a naive factorization hypothesis and use the improved version of the nonrelativistic Isgur-Scora-Grinstein-Wise quark model for form factors in B{yields}A transitions. We include contributions that arise from the effective {delta}B=1 weak Hamiltonian H{sub eff}. The respective factorized amplitudes of these decays are explicitly shown and their penguin contributions are classified. We find that decays B{sup -}{yields}a{sub 1}{sup 0}{pi}{sup -}, B{sup 0}{yields}a{sub 1}{sup {+-}}{pi}{sup {+-}}, B{sup -}{yields}a{sub 1}{sup -}K{sup 0}, B{sup 0}{yields}a{sub 1}{sup +}K{sup -}, B{sup 0}{yields}f{sub 1}K{sup 0}, B{sup -}{yields}f{sub 1}K{sup -}, B{sup -}{yields}K{sub 1}{sup -}(1400){eta}{sup (')}, B{sup -}{yields}b{sub 1}{sup -}K{sup 0}, and B{sup 0}{yields}b{sub 1}{sup +}{pi}{sup -}(K{sup -}) have branching ratios of the order of 10{sup -5}. We also study the dependence of branching ratios for B{yields}K{sub 1}P(V,A) decays [K{sub 1}=K{sub 1}(1270), K{sub 1}(1400)] with respect to the mixing angle between K{sub 1A} and K{sub 1B}.

Calderon, G.; Munoz, J. H.; Vera, C. E. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Coahuila, CP 27000, Torreon, Coahuila (Mexico); Departamento de Fisica, Universidad del Tolima, Apartado Aereo 546, Ibague (Colombia)

2007-11-01T23:59:59.000Z

276

Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results  

SciTech Connect

The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125/sup 0/C, 54,000 at 165/sup 0/C, 48,000 at 185/sup 0/C, and 8500 at 225/sup 0/C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125/sup 0/C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125/sup 0/C. It was concluded that, for a heat pipe temperature of 125/sup 0/C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125/sup 0/C) and 98% (based on 1,430,000 accelerated pipe-h at 125/sup 0/C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport. (LCL)

1979-08-01T23:59:59.000Z

277

Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR.  

SciTech Connect

We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.

Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

2007-03-01T23:59:59.000Z

278

Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume  

DOE Patents (OSTI)

An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

Alton, Gerald D. (Kingston, TN)

1996-01-01T23:59:59.000Z

279

New analytic solutions of the collective Bohr hamiltonian for a beta-soft, gamma-soft axial rotor  

E-Print Network (OSTI)

New analytic solutions of the quadrupole collective Bohr hamiltonian are proposed, exploiting an approximate separation of the beta and gamma variables to describe gamma-soft prolate axial rotors. The model potential is a sum of two terms: a beta-dependent term taken either with a Coulomb-like or a Kratzer-like form, and a gamma-dependent term taken as an harmonic oscillator. In particular it is possible to give a one parameter paradigm for a beta-soft, gamma-soft axial rotor that can be applied, with a considerable agreement, to the spectrum of 234U.

Lorenzo Fortunato; Andrea Vitturi

2003-12-18T23:59:59.000Z

280

flow_measurements_cryogenic  

Science Conference Proceedings (OSTI)

... A dynamic weighing system is used to measure ... using liquid nitrogen at flow rates of 1 ... For volumetric flow rate measurement, the uncertainty in fluid ...

2013-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science...

282

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

283

Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report  

SciTech Connect

This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225/sup 0/C without any signs of thermal performance degradation. (TFD)

Strazza, N.P.

1979-06-30T23:59:59.000Z

284

Department of Mechanical and Nuclear Engineering Fall 2011 Torque and Axial Measurement Device for Soil Abrasion Testing  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2011 Torque and Axial Measurement Device for Soil Abrasion Testing Overview The Penn State Department of Energy and Mineral Engineering to completely re-design with five weeks left. This left minimal time for machining, assembly, testing

Demirel, Melik C.

285

Calculation of the heavy-hadron axial couplings g1, g2, and g3 using lattice QCD  

SciTech Connect

In a recent paper [arXiv:1109.2480] we have reported on a lattice QCD calculation of the heavy-hadron axial couplings g{sub 1}, g{sub 2}, and g{sub 3}. These quantities are low-energy constants of heavy-hadron chiral perturbation theory (HH{chi}PT) and are related to the B*B{pi}, {Sigma}{sub b}*{Sigma}{sub b}{pi}, and {Sigma}{sub b}{sup (*)}{Lambda}{sub b}{pi} couplings. In the following, we discuss important details of the calculation and give further results. To determine the axial couplings, we explicitly match the matrix elements of the axial current in QCD with the corresponding matrix elements in HH{chi}PT. We construct the ratios of correlation functions used to calculate the matrix elements in lattice QCD, and study the contributions from excited states. We present the complete numerical results and discuss the data analysis in depth. In particular, we demonstrate the convergence of SU(4|2) HH{chi}PT for the axial current matrix elements at pion masses up to about 400 MeV and show the impact of the nonanalytic loop contributions. Finally, we present additional predictions for strong and radiative decay widths of charm and bottom baryons.

Will Detmold, David Lin, Stefan Meinel

2012-06-01T23:59:59.000Z

286

Global Circulation in an Axially Symmetric Shallow-Water Model, Forced by Off-Equatorial Differential Heating  

Science Conference Proceedings (OSTI)

An axially symmetric inviscid shallow-water model (SWM) on the rotating Earth forced by off-equatorial steady differential heating is employed to characterize the main features of the upper branch of an ideal Hadley circulation. The steady-state ...

Ori Adam; Nathan Paldor

2010-04-01T23:59:59.000Z

287

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

288

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

289

A malignant breast carcinoma size assessment using multiple orientation axial, lateral, and shear elastographies: the second stage of a pilot study  

Science Conference Proceedings (OSTI)

Elastography is the imaging modality focusing on detection of stiffness variation within inhomogeneous soft tissue. We extended a conventional 2D axial radio frequency (RF) spline correlation based elastography method to multiple orientations, and strengthened ... Keywords: 2D multiple orientation ultrasound elasticities, axial, lateral, malignant breast cancer, shear strains, size assessment

Ying Chi; Michael J. Brady; Ruth E. English; Junbo Li; J. Alison Noble

2010-09-01T23:59:59.000Z

290

Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids  

E-Print Network (OSTI)

Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.

I. V. Khalzov; A. I. Smolyakov; V. I. Ilgisonis

2007-12-11T23:59:59.000Z

291

MHK Technologies/Osprey | Open Energy Information  

Open Energy Info (EERE)

Osprey Osprey < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Osprey is a vertical axis turbine mounted to the bottom of a 30 aluminium catamaran test rig float Technology Dimensions Device Testing Date Submitted 57:37.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Osprey&oldid=681630" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version Permanent link

292

Ultra-high speed permanent magnet axial gap alternator with multiple stators  

DOE Patents (OSTI)

An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.

Hawsey, Robert A. (Oak Ridge, TN); Bailey, J. Milton (Knoxville, TN)

1991-01-01T23:59:59.000Z

293

Trapped and escaping orbits in an axially symmetric galactic-type potential  

E-Print Network (OSTI)

In the present article, we investigate the behavior of orbits in a time independent axially symmetric galactic type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical method of the surface of section, in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov Characteristic Exponent (LCE), is used in order to make an estimation of the degree of the chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic type potential, there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits which do not escape at all. Furthermore, a large number of orbits of the dynamical system, display chaotic motion. Among the chaotic orbits, there are orbits that escape fast and also orbits that remain trapped for vast time intervals. When the value of the test particle's energy exce...

Zotos, Euaggelos E

2012-01-01T23:59:59.000Z

294

Axial flux, modular, permanent-magnet generator with a toroidal winding for wind turbine applications  

SciTech Connect

Permanent-magnet generators have been used for wind turbines for many years. Many small wind turbine manufacturers use direct-drive permanent-magnet generators. For wind turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular permanent-magnet generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow up tests will be conducted in the lab to improve the design.

Muljadi, E.; Butterfield, C.P.; Wan, Y.H.

1998-07-01T23:59:59.000Z

295

Apparatus for positioning a sample in a computerized axial tomographic scanner  

SciTech Connect

An apparatus is described for positioning a sample in a radiation field of a computerized axial tomographic scanner (CAT) for scanning by the CAT, the apparatus comprising: a first support means positioned on a first side of the CAT having a first guide means; a first trolly means having means for engaging the first guide means; means for moving the first trolley means along the first guide means; a second support means positioned on a second side of the CAT, the second side being opposite the first side and the second support means having a second guide means; a second trolley means having means for engaging the second guide means; means for coupling the first trolley means to the second trolley means such that movement of the first trolley means causes similar movement of the second trolley means, the coupling means passing through the radiation field of the CAT; means attached to the coupling means for holding the sample; means for sensing the position of the sample holding means; and control means connected to the moving means and sensing means for controlling the positioning of the sample.

Vinegar, H.J.; Wellington, S.L.

1986-04-15T23:59:59.000Z

296

Axial strength of cement borehole plugs in granite and basalt. Topical report on rock mass sealing  

SciTech Connect

This report describes experimental and theoretical studies of the axial strength of cement plugs installed in boreholes drilled coaxially in granite and in basalt cylinders. Experimental work has consisted of loading the cement plugs to failure while measuring loads and displacements. Such tests have been performed on borehole plugs with a diameter and a length ranging from 2.5 cm to 10 cm. Results from over one hundred experiments show that the strength is high, sufficient for anticipated loads at repository depths, but very variable, complicating the design of very short plugs. Significant residual strength (thirty to fifty percent of the peak strength) is observed. A frictional model of the interface shear strength, tau = c + sigma(tan phi), in combination with the assumption of an exponential shear stress distribution or plug-rock load transfer, provides the simplest realistic model for plug strength characterization. The integrated strength thus calculated compares moderately well with experimental results. An extensive review is given of more sophisticated analysis procedures that should be of value for general plug design applications. Generic analyses and their implications for plug performance are included. Variability of experimental results complicates the assessment of their direct detailed applicability. 115 references, 70 figures, 19 tables.

Stormont, J.C.; Daemen, J.J.K.

1983-12-01T23:59:59.000Z

297

Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas  

DOE Green Energy (OSTI)

The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe the propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.

Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A. (Department of Nuclear Engineering Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (USA))

1990-04-01T23:59:59.000Z

298

Deformation Behavior and TExture Evolution of Steel Alloys under Axial-Torsional Loading  

SciTech Connect

Using hollow cylinder samples with suitable geometry obtained from round bar stock, the deformation behavior of bcc Fe based 12L14 steel alloy is evaluated under multi-axial conditions. A stacked strain gage rosette and extensometer mounted on the cylindrical surface at the mid height of the specimen provided strain tensor as a function of applied stress for pure tensile and torsion tests prior to yielding. This study examines elastic and yield behavior and effects of these with respect to texture evolution. Hollow cylinder specimen geometry (tubes) with small wall thickness and relatively (to its thickness) large inner diameter is used. The variation of observed yield surface in deviatoric plane and the effect on mode of deformation (tension versus torsion versus its combination) on stress-strain behavior is discussed. Bulk texture was studied using neutron time-of-flight diffractometer at High-Pressure-Preferred Orientation (HIPPO) - Los Alamos Neutron Science Center (LANSCE) instrument and the evolution of texture and related anisotropy for pure tension versus torsion are also included.

Siriruk, A.; Kant, M.; Penumadu, D.; Garlea, E.; Vogel, S.

2011-06-01T23:59:59.000Z

299

Constraints on Two-Body Axial Currents from Reactor Antineutrino-Deuteron Breakup Reactions  

E-Print Network (OSTI)

We discuss how to reduce theoretical uncertainties in the neutrino-deuteron breakup cross-sections crucial to the Sudbury Neutrino Observatory's efforts to measure the solar neutrino flux. In effective field theory, the dominant uncertainties in all neutrino-deuteron reactions can be expressed through a single, common, isovector axial two-body current parameterized by $L_{1,A}$. After briefly reviewing the status of fixing $L_{1,A}$ experimentally, we present a constraint on $L_{1,A}$ imposed by existing reactor antineutrino-deuteron breakup data. This constraint alone leads to an uncertainty of 6-7% at 7 MeV neutrino energy in the cross-sections relevant to the Sudbury Neutrino Observatory. However, more significantly for the Sudbury experiment, the constraint implies an uncertainty of only 0.7% in the ratio of charged to neutral current cross-sections used to verify the existence of neutrino oscillations, at the same energy. This is the only direct experimental constraint from the two-body system, to date, of the uncertainty in these cross-sections.

Malcolm Butler; Jiunn-Wei Chen; Petr Vogel

2002-06-11T23:59:59.000Z

300

Unsteady flow volumes  

SciTech Connect

Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

Becker, B.G.; Lane, D.A.; Max, N.L.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fluid mechanics experiments in oscillatory flow. Volume 1  

DOE Green Energy (OSTI)

Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

Seume, J.; Friedman, G.; Simon, T.W. [Univ. of Minnesota, Minneapolis, MN (United States)

1992-03-01T23:59:59.000Z

302

Structure of Offshore Flow  

Science Conference Proceedings (OSTI)

The horizontal and vertical structure of the mean flow and turbulent fluxes are examined using aircraft observations taken near a barrier island on the east coast of the United States during offshore flow periods. The spatial structure is ...

Dean Vickers; L. Mahrt; Jielun Sun; Tim Crawford

2001-05-01T23:59:59.000Z

303

Ultrasonic flow metering system  

DOE Patents (OSTI)

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

304

Elbow mass flow meter  

SciTech Connect

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

305

Design and Fabrication of a Vertical Pump Multiphase Flow Loop  

E-Print Network (OSTI)

A new centrifugal pump has been devised to handle two-phase flow. However, it requires full scale testing to allow further development. Testing is required to verify performance and to gain information needed to apply this design in the field. Further, testing will allow mathematical models to be validated which will allow increased understanding of the pump's behavior. To perform this testing, a new facility was designed and constructed. This facility consists of a closed flow loop. The pump is supplied by separate air and water inlet flows that mix just before entering the pump. These flows can be controlled to give a desired gas volume fraction and overall flow rate. The pump outlet flows into a tank which separates the fluids allowing them to re-circulate. Operating inlet pressures of up to three hundred PSIG will be used with a flow rate of twelve hundred gallons per minute. A two-hundred fifty horsepower electric motor is used to power the pump. The loop is equipped with instrumentation to measure temperature, pressure, flow rate, pump speed, pump shaft horsepower, shaft torque, and shaft axial load. The pump itself has a clear inlet section and a clear section allowing visualization of the second stage volute interior as well as numerous pressure taps along the second stage volute. This instrumentation is sufficient to completely characterize the pump. Design and construction details are provided as well as a history of the initial operating experiences and data collected. A discussion of lessons learned is given in the conclusions. Future projects intended to use this facility are also given. Finally, detailed design drawings are supplied as well as operating instructions and checklists.

Kirkland, Klayton 1965-

2012-12-01T23:59:59.000Z

306

Trapped and escaping orbits in an axially symmetric galactic-type potential  

E-Print Network (OSTI)

In the present article, we investigate the behavior of orbits in a time independent axially symmetric galactic type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical method of the surface of section, in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov Characteristic Exponent (LCE), is used in order to make an estimation of the degree of the chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic type potential, there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits which do not escape at all. Furthermore, a large number of orbits of the dynamical system, display chaotic motion. Among the chaotic orbits, there are orbits that escape fast and also orbits that remain trapped for vast time intervals. When the value of the test particle's energy exceeds slightly the energy of escape, the amount of the trapped regular orbits increases, as the the value of the angular momentum increases. Therefore, the extent of the chaotic regions observed in the phase plane decreases as the value of the energy increases. Moreover, we calculate the average value of the escape period of the chaotic orbits and we try to correlate it with the value of the energy and also with the maximum value of the z component of the orbits. In addition, we find that the value of the LCE corresponding to each chaotic region, for different values of the energy, increases exponentially as the value of the energy increases. Some theoretical arguments in order to support the numerically obtained outcomes are presented.

Euaggelos E. Zotos

2012-06-12T23:59:59.000Z

307

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

308

Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field  

E-Print Network (OSTI)

Ions stored in Penning traps may have useful applications in the field of quantum information processing. There are, however, difficulties associated with the laser cooling of one of the radial motions of ions in these traps, namely the magnetron motion. The application of a small radio-frequency quadrupolar electric potential resonant with the sum of the two radial motional frequencies has been shown to couple these motions and to lead to more efficient laser cooling. We present an analytical model that enables us to determine laser cooling rates in the presence of such an 'axializing' field. It is found that this field leads to an averaging of the laser cooling rates for the two motions and hence improves the overall laser cooling efficiency. The model also predicts shifts in the motional frequencies due to the axializing field that are in qualitative agreement with those measured in recent experiments. It is possible to determine laser cooling rates experimentally by studying the phase response of the cooled ions to a near resonant excitation field. Using the model developed in this paper, we study the expected phase response when an axializing field is present.

R. J. Hendricks; E. S. Phillips; D. M. Segal; R. C. Thompson

2007-09-24T23:59:59.000Z

309

Dissipative Taylor-Couette flows under the influence of helical magnetic fields  

E-Print Network (OSTI)

The linear stability of MHD Taylor-Couette flows in axially unbounded cylinders is considered, for magnetic Prandtl number unity. Magnetic fields varying from purely axial to purely azimuthal are imposed, with a general helical field parameterized by \\beta=B_\\phi/B_z. We map out the transition from the standard MRI for \\beta=0 to the nonaxisymmetric Azimuthal MagnetoRotational Instability (AMRI) for \\beta\\to \\infty. For finite \\beta, positive and negative wave numbers m, corresponding to right and left spirals, are no longer identical. The transition from \\beta=0 to \\beta\\to\\infty includes all the possible forms of MRI with axisymmetric and nonaxisymmetric modes. For the nonaxisymmetric modes, the most unstable mode spirals in the opposite direction to the background field. The standard (\\beta=0) MRI is axisymmetric for weak fields (including the instability with the lowest Reynolds number) but is nonaxisymmetric for stronger fields. If the azimuthal field is due in part to an axial current flowing through th...

Ruediger, G; Schultz, M; Hollerbach, R

2010-01-01T23:59:59.000Z

310

Lateral flow strip assay  

DOE Patents (OSTI)

A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

Miles, Robin R. (Danville, CA); Benett, William J. (Livermore, CA); Coleman, Matthew A. (Oakland, CA); Pearson, Francesca S. (Livermore, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2011-03-08T23:59:59.000Z

311

Energy 101: Marine and Hydrokinetic Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar --Wind...

312

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Development September 9, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced selections for more than 37 million...

313

Regulators approve first commercial hydrokinetic projects in the ...  

U.S. Energy Information Administration (EIA)

When the tube sections flex, hydraulic arms move in opposite directions and turn a generator that produces power. Sea snakes are being tested in Scotland and Portugal.

314

SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS  

Science Conference Proceedings (OSTI)

Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

2012-07-15T23:59:59.000Z

315

Assessment and Mapping of the Riverine Hydrokinetic Resource...  

Open Energy Info (EERE)

resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account...

316

Dynamic Modeling and Environmental Analysis of Hydrokinetic Energy Extraction.  

E-Print Network (OSTI)

??The world is facing an imminent energy supply crisis. Our well-being is linked to the energy supply, and energy is in high demand in both… (more)

Miller, Veronica Bree

2010-01-01T23:59:59.000Z

317

NREL Developing Numerical Simulation Tool to Study Hydrokinetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

M.; Li, Y.; Moriarty, P. (2012). "A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines." Accepted by Proceedings of the...

318

JEDI Marine and Hydrokinetic Model: User Reference Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

reductions in the short term. For the purpose of this assessment, it was assumed that no learning curve effects are present. Only effects of manufacturing multiple units for the...

319

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

320

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

Image courtesy of Ocean Renewable Power Company ORPC's TidGen(tm) turbine generator unit. R&D Opportunity Advanced water power technologies include devices capable of extracting...

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager...

322

A co-axially configured submillimeter spectrometer and investigations of hydrogen bound molecular complexes  

E-Print Network (OSTI)

The development of a co-axially configured submillimeter spectrometer is reported. The spectrometer has been constructed to observe molecular complexes that exhibit non-covalent interactions with energies much less than that of a traditional covalent bond. The structure of molecular complexes such as those formed between a rare gas and a hydrogen halide, Rg:HX where Rg is a rare gas (Rg=Ne, Ar and Kr) and HX (X=F, Cl, Br and I) can be determined directly and accurately. The center of mass interaction distance, RCM, as well as the angle of the hydrogen halide is determined, along with direct evaluation of the intermolecular vibrations as well as accurate isomerization energies between the hydrogen bound and van der Waals forms. The accuracy of the frequency determination of rovibrational transitions using the submillimeter spectrometer is also evaluated by direct comparison with the state-of-theart pulsed nozzle Fourier transform microwave spectrometer, and this accuracy is estimated to be less than 1 kHz at 300 GHz. The tunneling or geared bending vibration of a dimer of hydrogen bromide or hydrogen iodide has been investigated. The selection rules, nuclear statistics and intensity alternation for transitions observed in these dimmers, which is a consequence of interchanging two identical nuclei in the low frequency geared bending vibration of the molecular complex, are reported. Furthermore, the rotation and quadrupole coupling constants are used to determine a vibrationally averaged structure of the complex. The energy of the low frequency bending vibration can then be compared with ab initio based potential energy surfaces. A study of the multiple isomeric forms of the molecular complex OC:HI is also presented. Multiple isotopic substitutions are used to determine the relevant ground state structures and data reported evidence for an anomalous isotope effect supporting a ground state isotopic isomerization effect. All spectroscopic data that has been reported here has been additionally used to subsequently model and generate vibrationally complete morphed potential energy surfaces that are capable or reproducing the experimentally observed data. The utility of this procedure is evaluated on a predicative basis and comparisons made with newly observed data.

McElmurry, Blake Anthony

2008-12-01T23:59:59.000Z

323

Strange Quark Contribution to the Vector and Axial Form Factors of the Nucleon: Combined Analysis of G0, HAPPEx, and Brookhaven E734 Data  

E-Print Network (OSTI)

The strange quark contribution to the vector and axial form factors of the nucleon has been determined for momentum transfers in the range $0.45Lab, and elastic $\

S. F. Pate; D. W. McKee; V. Papavassiliou

2008-05-19T23:59:59.000Z

324

Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor  

DOE Patents (OSTI)

A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.

Pennell, William E. (Greensburg, PA)

1977-01-01T23:59:59.000Z

325

Study of laminar, unsteady piston-cylinder flows  

SciTech Connect

The present paper concerns numerical investigation of a piston-driven, axisymmetric flow in a pipe assembly containing a sudden expansion. The piston closes the larger of the two pipes. The impulsively starting intake flow is the topic of this investigation. Results of numerical calculations and laser-Doppler measurements are presented to provide an insight into the features of the flow. The calculation procedure employed in this study is based on a finite-volume method with staggered grids and SIMPLE algorithm for pressure-velocity coupling. The convection and diffusion fluxes in the Navier-Stokes equations are discretized with first order upwind and second order central differences, respectively. A fully implicit Euler scheme is used to discretize the temporal derivatives. The Navier-Stokes equations were suitably transformed to allow prediction of the flow within the inlet pipe and cylinder region simultaneously. Laser-Doppler measurements of both axial and radial velocity components were performed. Refractive index matching was used to eliminate the wall curvature effects. For each measuring point 20 cycles were measured, showing high repetition rates. Comparison of measured and predicted velocity profiles shows good agreement.

Stroell, H. [Wehrtechnische Dienststelle fuer Fernmeldewesen und Elektronik, Greding (Germany); Durst, F.; Peric, M. [Univ. Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik; Pereira, J.C.F. [Inst. Superior Tecnico, Lisboa (Portugal); Scheuerer, G. [Advanced Scientific Computing, Holzkirchen (Germany)

1993-12-01T23:59:59.000Z

326

Turbulent flow in graphene  

E-Print Network (OSTI)

We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.

Kumar S. Gupta; Siddhartha Sen

2009-11-03T23:59:59.000Z

327

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

328

Multiple sort flow cytometer  

DOE Patents (OSTI)

A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

1996-01-01T23:59:59.000Z

329

Droplet Laden Flow Data  

Science Conference Proceedings (OSTI)

... Flow Past a Heated Cylinder, Atomization and Sprays, 2006, 16(6 ... Numerical Modeling and Experimental Measurements of Water Spray Impact and ...

2013-07-15T23:59:59.000Z

330

Black String Flow  

E-Print Network (OSTI)

We give an exact description of the steady flow of a black string into a planar horizon. The event horizon is out of equilibrium and provides a simple, exact instance of a `flowing black funnel' in any dimension D>=5. It is also an approximation to a smooth intersection between a black string and a black hole, in the limit in which the black hole is much larger than the black string thickness. The construction extends easily to more general flows, in particular charged flows.

Emparan, Roberto

2013-01-01T23:59:59.000Z

331

Visualization of Fluid Flow  

Science Conference Proceedings (OSTI)

... Goujon and J. Devaney, Large Scale Simulations of Single and Multi- Component Flow in Porous Media in Proceedings of SPIE: The International ...

2010-12-15T23:59:59.000Z

332

Measurement of the axial distribution of radioactivity in the auxiliary charcoal bed of the Molten Salt Reactor Experiment at ORNL  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory commenced operation in 1964 and was shut down in 1969. It was fueled with {sup 233}UF{sub 4} in a carrier salt of LiF-BeF{sub 2}-ZrF{sub 4}, and it operated at 1,200 F. After it was shut down, the fuel was heated annually to 200 C to recombine fluorine (with the fuel) released due to radiation-induced reactions in the fuel salt. However, a competing reaction oxidized uranium to UF{sub 6}, which was released (along with F{sub 2}) from the fuel and trapped in one of four charcoal filters in the auxiliary charcoal bed (ACB). One of the tasks for decommissioning of the MSRE requires that at least 90% of the estimated 3 kg of {sup 233}U, and radioactive decay products, in this filter be removed, and one of the proposed methods is to vacuum the charcoal above a specified axial position in the filter. This requires that the axial distribution of activity in the filter be measured in a 60 rad/h radiation field to determine where this penetration can be made. To accomplish this, the shielded detector with a pinhole collimator, and with a laser positioning capability, was remotely translated to various axial positions to accomplish these measurements. Activities in the steel screen, and various regions of the charcoal bed, are estimated, and uncertainties in these estimates are generally {lt}1%. Results from this analysis are used for continued operational decisions for decommissioning of the MSRE.

Miller, L.F.; Buckner, M.; Buchanan, M.

1999-07-01T23:59:59.000Z

333

Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum  

Science Conference Proceedings (OSTI)

Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.

Singh, K. P. [Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504 (United States)

2006-08-15T23:59:59.000Z

334

Baryon-Number-Induced Chern-Simons Couplings of Vector and Axial-Vector Mesons in Holographic QCD  

Science Conference Proceedings (OSTI)

We show that holographic models of QCD predict the presence of a Chern-Simons coupling between vector and axial-vector mesons at finite baryon density. In the Anti de Sitter/Conformal Field Theory dictionary, the coefficient of this coupling is proportional to the baryon number density and is fixed uniquely in the five-dimensional holographic dual by anomalies in the flavor currents. For the lightest mesons, the coupling mixes transverse {rho} and a{sub 1} polarization states. At sufficiently large baryon number densities, it produces an instability, which causes the {rho} and a{sub 1} mesons to condense in a state breaking both rotational and translational invariance.

Domokos, Sophia K.; Harvey, Jeffrey A. [Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States)

2007-10-05T23:59:59.000Z

335

Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths  

DOE Patents (OSTI)

An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

Reichner, P.; Dollard, W.J.

1991-01-08T23:59:59.000Z

336

Capabilities for information flow  

Science Conference Proceedings (OSTI)

This paper presents a capability-based mechanism for permissive yet secure enforcement of information-flow policies. Language capabilities have been studied widely, and several popular implementations, such as Caja and Joe-E, are available. By making ... Keywords: capabilities, information flow control

Arnar Birgisson; Alejandro Russo; Andrei Sabelfeld

2011-06-01T23:59:59.000Z

337

Elbow mass flow meter  

DOE Patents (OSTI)

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

338

Interfacial structures of confined air-water two-phase bubbly flow  

SciTech Connect

The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

2000-08-01T23:59:59.000Z

339

Transition form factors of B decays into p-wave axial-vector mesons in the perturbative QCD approach  

Science Conference Proceedings (OSTI)

The B{sub u,d,s}{yields}V, A form factors are studied in the perturbative QCD approach (V, A denote a vector meson and two kinds of p-wave axial-vector mesons: {sup 3}P{sub 1} and {sup 1}P{sub 1} states, respectively). The form factors are directly studied in the large recoiling region and extrapolated to the whole kinematic region within the dipole parametrization. Adopting decay constants with different signs for the two kinds of axial vectors, we find that the two kinds of B{yields}A form factors have the same sign. The two strange mesons K{sub 1A} and K{sub 1B} mix with each other via the SU(3) symmetry breaking effect. In order to reduce the ambiguities in the mixing angle between K{sub 1A} and K{sub 1B}, we propose a model-independent way that utilizes the B decay data. Most of the branching fractions of the semilteptonic B{yields}Al{nu}{sub l} decays are of the order 10{sup -4}, which still need experimental tests in the ongoing and forthcoming experiments.

Li Rungui [Institute of High Energy Physics, P.O. Box 918(4) Beijing 100049 (China); School of Physics, Shandong University, Jinan 250100 (China); Lue Caidian [Institute of High Energy Physics, P.O. Box 918(4) Beijing 100049 (China); Kavli Institute for Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Wei [Institute of High Energy Physics, P.O. Box 918(4) Beijing 100049 (China)

2009-02-01T23:59:59.000Z

340

Heat flow of Oregon  

DOE Green Energy (OSTI)

An extensive new heat flow and geothermal gradient data set for the State of Oregon is presented on a contour map of heat flow at a scale of 1:1,000,000 and is summarized in several figures and tables. The 1:1,000,000 scale heat flow map is contoured at 20 mW/m/sup 2/ (0.5 HFU) intervals. Also presented are maps of heat flow and temperature at a depth of 1 km averaged for 1/sup 0/ x 1/sup 0/ intervals. Histograms and averages of geothermal gradient and heat flow for the State of Oregon and for the various physiographic provinces within Oregon are also included. The unweighted mean flow for Oregon is 81.3 +- 2.7 mW/m/sup 2/ (1.94 +- 0.06 HFU). The average unweighted geothermal gradient is 65.3 +- 2.5/sup 0/C/km. The average heat flow value weighted on the basis of geographic area is 68 +- 5 mW/m/sup 2/ (1.63 +- 0.12 HFU) and the average weighted geothermal gradient is 55.0 +- 5/sup 0/C/km.

Blackwell, D.D.; Hull, D.A.; Bowen, R.G.; Steele, J.L.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science Team develops physics-based simulation models to conduct applied scientific research. - Development of new theory - Extensive on-site and collaborative V&V efforts and testing - Engages in technology transfer - Applies the models to industrial scale problems. 3 Why is Multiphase Flow Science Needed? * Industry is increasingly relying on multiphase technologies to produce clean and affordable energy with carbon capture. * Unfortunately, the presence of a solid phase reduces the operating capacity of a typical energy device from its original design on average by 40% [1].

342

Shroud leakage flow discouragers  

SciTech Connect

A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

Bailey, Jeremy Clyde (Middle Grove, NY); Bunker, Ronald Scott (Niskayuna, NY)

2002-01-01T23:59:59.000Z

343

The ZaP Flow Z-Pinch Project  

Science Conference Proceedings (OSTI)

The results from the ZaP experiment are consistent with the theoretical predictions of sheared flow stabilization. Z pinches with a sheared flow are generated in the ZaP experiment using a coaxial accelerator coupled to an assembly region. The current sheet in the accelerator initially acts as a snowplow. As the Z pinch forms, plasma formation in the accelerator transits to a deflagration process. The plasma exits the accelerator and maintains the flow in the Z pinch. During the quiescent period in the magnetic mode activity at z=0 cm, a stable Z pinch is seen on the axis of the assembly region. The evolution of the axial velocity profile shows a large velocity shear is measured at the edge of the Z pinch during the quiescent period. The velocity shear is above the theoretical threshold. As the velocity shear decreases towards 0.1kV{sub A}, the predicted stability threshold, the quiescent period ends. The present understanding of the ZaP experiment shows that it may be possible for the Z pinch to operate in a steady state if the deflagration process can be maintained by constantly supplying neutral gas or plasma to the accelerator.

Shumlak, U.; Nelson, B. A.

2005-09-01T23:59:59.000Z

344

OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS  

SciTech Connect

It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

2001-09-04T23:59:59.000Z

345

RMOTC - Testing - Flow Assurance  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Assurance Flow Assurance RMOTC Flow Loop Facility Layout Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. Over a decade ago, RMOTC began cooperatively building a full-scale facility to test new flow assurance technology, mainly in the areas of hydrates and paraffins. Today, RMOTC's test facility consists of five individual loop

346

Casting Flow Chart  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 1 Simplified flow diagram of the basic operations for producing a steel casting. Similar diagrams can be applied to other ferrous and nonferrous alloys produced by sand

347

Modons in Shear Flow  

Science Conference Proceedings (OSTI)

Modons in shear flow are computed as equilibrium solutions of the equivalent barotropic vorticity equation using a numerical Newton–Kantorovich iterative technique with double Fourier spectral expansion. The model is given a first guess of an ...

Sue Ellen Haupt; James C. McWilliams; Joseph J. Tribbia

1993-05-01T23:59:59.000Z

348

Stochastically scalable flow control  

Science Conference Proceedings (OSTI)

Recent advances in the mathematical analysis of flow control have prompted the creation of the Scalable TCP (STCP) and Exponential RED (E-RED) algorithms. These are designed to be scalable under the popular deterministic delay ...

Thomas Voice

2009-10-01T23:59:59.000Z

349

Maple Sap Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

I know a little about this topic even though I am from Illinois which is far from the heart of maple syrup country. Sap flows from a maple tree by internal pressure caused by the...

350

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

351

Islands in Zonal Flow  

Science Conference Proceedings (OSTI)

The impact of a meridional gradient in sea surface temperature (warm toward the equator, cold toward the pole) on the circulation around an island is investigated. The upper-ocean eastward geostrophic flow that balances such a meridional gradient ...

Michael A. Spall

2003-12-01T23:59:59.000Z

352

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

353

RG flows and instantons  

Science Conference Proceedings (OSTI)

In these two lectures I discuss RG flow solutions in (1,0) six dimensional supergravity involving SU(2) Yang-Mills instantons. in the conformally flat part of the 6D metric. The solutions interpolate between two (4,0) supersymmetric AdS{sub 3} Multiplication-Sign S{sup 3} backgrounds with different values of AdS{sub 3} and S{sup 3} radii and describe RG flows in the dual 2D SCFT. The flows described are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension 2 in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.

Gava, Edi [INFN, Trieste (Italy)

2012-09-24T23:59:59.000Z

354

Increased Power Flow Guidebook  

Science Conference Proceedings (OSTI)

The Increased Power Flow (IPF) Guidebook is a state-of-the-art and best practices guidebook on increasing power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates alternatives with case studies, and analyzes costs and benefits of differe...

2005-11-16T23:59:59.000Z

355

Three dimensional flow processor  

DOE Patents (OSTI)

The 3D-flow processor is a general purpose programmable data stream pipelined device that allows fast data movement in six directions for digital signal processing applications such as identifying objects in a matrix in a programmable form. The 3D-flow processor can be used in one dimensional, two dimensional, and three dimensional topologies capable of sustaining an input data rate of up to 100 million data (or frames) per second in a parallel processing system.

Crosetto, D.B.

1992-01-01T23:59:59.000Z

356

Fluid Metrology Calibration Services - Water Flow  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Water Flow. Water Flow Calibrations 18020C. ... NIST provides calibration services for water flow meters. ...

2011-10-03T23:59:59.000Z

357

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

358

Meridional Flow Field of Axisymmetric Flows in a Rotating Annulus  

Science Conference Proceedings (OSTI)

Measurements of the flow field were made of the axisymmetric flow in a differentially heated rotating fluid annulus by using a long-term tracking of a tracer particle. Its meridional flow profile is composed of a flow circulating in a large ...

T. Tajima; T. Nakamura

2000-09-01T23:59:59.000Z

359

Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars  

E-Print Network (OSTI)

The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy $E_{sym}(\\rho)$ affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the $w_{II}$-mode is found to exist only for neutron stars having a compactness of $M/R\\geq 0.1078$ independent of the EOS used.

De-Hua Wen; Bao-An Li; Plamen G. Krastev

2009-02-26T23:59:59.000Z

360

Exact analysis of particle dynamics in combined field of finite duration laser pulse and static axial magnetic field  

Science Conference Proceedings (OSTI)

Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.

Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths  

DOE Patents (OSTI)

An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

Reichner, Philip (Plum Borough, PA); Dollard, Walter J. (Churchill Borough, PA)

1991-01-01T23:59:59.000Z

362

Computerized axial tomography of the chest for visualization of ''absent'' pulmonary arteries  

SciTech Connect

To expand the search for central pulmonary arteries in six patients with absence of cardiac-pulmonary continuity, computerized axial tomography (CAT) of the chest was performed. The CAT scans were compared with previous arteriograms and pulmonary vein wedge angiograms. Three patients with type IV truncus arteriosus were studied, and none had a central, right or left pulmonary artery on CAT scan. However, two patients with tetralogy of Fallot with pulmonary atresia and a patent ductus arteriosus to the right lung demonstrated the presence of a left pulmonary artery. In addition, one child with truncus arteriosus with ''absent'' left pulmonary artery demonstrated a left pulmonary artery on the CAT scan. The CAT scan may therefore enhance our ability to search for disconnected pulmonary arteries in children with complex cyanotic congenital heart disease.

Sondheimer, H.M. (Upstate Medical Center, Syracuse, NY); Oliphant, M.; Schneider, B.; Kavey, R.E.W.; Blackman, M.S.; Parker, F.B. Jr.

1982-05-01T23:59:59.000Z

363

Formation flow channel blocking  

SciTech Connect

A method is claimed for selectively blocking high permeability flow channels in an underground hydrocarbon material bearing formation having flow channels of high permeability and having flow channels of lesser permeability. The method includes the following steps: introducing a blocking material fluid comprising a blocking material in a carrier into the flow channels through an injection well in communication with the formation; introducing a buffer fluid into the formation through the injection well for the buffer fluid to displace the blocking material fluid away from the injection well; allowing the blocking material to settle in the channels to resist displacement by fluid flowing through the channels; introducing a quantity of an activating fluid into the channels through the injection well at a sufficient rate for the activating fluid to displace the buffer fluid and finger into the high permeability channels to reach the blocking material in the high permeability channels without reaching the blocking material in the low permeability channels, the activating fluid being adapted to activate the blocking material which it reaches to cause blocking of the high permeability channels.

Kalina, A.I.

1982-11-30T23:59:59.000Z

364

Two-phase flow studies  

DOE Green Energy (OSTI)

The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

365

Microwave fluid flow meter  

DOE Patents (OSTI)

A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

Billeter, Thomas R. (Richland, WA); Philipp, Lee D. (Richland, WA); Schemmel, Richard R. (Lynchburg, VA)

1976-01-01T23:59:59.000Z

366

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

367

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network (OSTI)

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

368

Mass-Loaded Flows  

E-Print Network (OSTI)

A key process within astronomy is the exchange of mass, momentum, and energy between diffuse plasmas in many types of astronomical sources (including planetary nebulae, wind-blown bubbles, supernova remnants, starburst superwinds, and the intracluster medium) and dense, embedded clouds or clumps. This transfer affects the large scale flows of the diffuse plasmas as well as the evolution of the clumps. I review our current understanding of mass-injection processes, and examine intermediate-scale structure and the global effect of mass-loading on a flow. I then discuss mass-loading in a variety of diffuse sources.

J. M. Pittard

2006-07-13T23:59:59.000Z

369

Loss mechanisms in turbine tip clearance flows  

E-Print Network (OSTI)

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

370

Flow cytometry apparatus  

DOE Patents (OSTI)

An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

Pinkel, D.

1987-11-30T23:59:59.000Z

371

Flow cytometry apparatus  

DOE Patents (OSTI)

An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

Pinkel, Daniel (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

372

US energy flow, 1991  

SciTech Connect

Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

Borg, I.Y.; Briggs, C.K.

1992-06-01T23:59:59.000Z

373

EFFECT OF NEUTRON IRRADIATION ON MATERIALS SUBJECTED TO MULTI-AXIAL STRESS DISTRIBUTIONS. Quarterly Report for the Period Ending June 30, 1962  

SciTech Connect

Activities in a program to determine the effects of neutron irradiation on A-302B steel are reported. Plans are discussed concerning performance tests on tensile, notched tensile, tube, and Charpy specimens. An irradiation capsule design was finalized. A theoretical analysis of the critical conditions arising in a tube subjected to both internal pressure and axial load is included. (J.R.D.)

Trozera, T A

1962-08-13T23:59:59.000Z

374

Atlas chamber, power flow channel, and diagnostic interface design  

DOE Green Energy (OSTI)

The Atlas pulsed-power machine, presently being designed at Los Alamos, will deliver a pulse of {approximately} 45 MA, in 4--5 {micro}sec, with energies of up to 6 MJ (from a bank of 36 MJ maximum) to a load assembly, located in vacuum. Design considerations for the vacuum vessel, power flow channel from the vessel inward, are presented. In contrast to Sandia`s PBFA II-Z, where 20 MA currents and 2--2.5 MJ of energy are delivered to ({approximately} 15 mg) loads in {approximately} 100 nsec, the Atlas structures will have to be designed for longer timescales and higher energies to drive heavy lines ({approximately} 70 g). Design issues for the chamber include materials stresses, formation of (and protection from) debris and molten jets, impulse loading, and survivability and ease of replacement of internal structures. For the power flow channel designs, issues are minimizing inductance, preventing movement of conductors during and after firing, damage mitigation, reducing the cost of materials and installation, and electrical insulation. A key issue for damage mitigation is the radius within which total destruction of material objects occurs. Choices of vessel size, insulator materials, cost and ease of manufacturing, and mechanical stability issues are presently in the conceptual design phase. Typical access requirements for diagnostics (including radial and axial X-ray backlighting, flux loops, spectroscopy, interferometry, bolometry, etc.) are provided for in the design.

Wurden, G.A.; Davis, H.A.; Taylor, A.; Bowman, D.; Ballard, E.; Ney, S.; Scudder, D.; Trainor, J.

1997-09-01T23:59:59.000Z

375

Self-Organized Network Flows  

E-Print Network (OSTI)

A model for traffic flow in street networks or material flows in supply networks is presented, that takes into account the conservation of cars or materials and other significant features of traffic flows such as jam formation, spillovers, and load-dependent transportation times. Furthermore, conflicts or coordination problems of intersecting or merging flows are considered as well. Making assumptions regarding the permeability of the intersection as a function of the conflicting flows and the queue lengths, we find self-organized oscillations in the flows similar to the operation of traffic lights.

Helbing, D; Lämmer, S; Helbing, Dirk; Siegmeier, Jan; L\\"{a}mmer, Stefan

2007-01-01T23:59:59.000Z

376

Computerized axial tomography: technology and equipment. January, 1977-May, 1981 (Citations from the International Information Service for the Physics and Engineering Communities data base). Report for January 1977-May 1981  

SciTech Connect

This retrospective bibliography contains citations concerning many recent developments in the instrumentation, technology, and application of computerized axial tomography (CAT). Production model CAT scanners are compared and evaluated for noise, spatial resolution, axial position sensitivity, artefact and dose. Research and development on new scanners are considered. (Contains 71 citations fully indexed and including a title list.)

1981-05-01T23:59:59.000Z

377

Challenges and Instrumentation Solutions to Understanding the Nature of Tidal Flows  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach to Characterization of Full-Spectrum Approach to Characterization of Full-Spectrum Turbulence Near Current Tidal Energy Devices Presented by Brett Prairie of Rockland Scientific at the Marine and Hydrokinetic Technology and Environmental Instrumentation, Measurement & Computer Modeling Workshop Broomfield, Colorado July 9 - 11, 2012 ©2012 Rockland Scientific Inc. Presentation Agenda ©2012 Rockland Scientific Inc. 1. Introduction & Background 2. The importance of full-spectrum turbulence characterization for current tidal energy project development 3. How non-acoustic measurements can characterize small-scale turbulence near current tidal energy devices 4. Development of a continuous monitoring system to measure full-spectrum turbulence for the National Renewable Energy Laboratory

378

Lattice Boltzmann modeling of microchannel flow in slip flow regime  

Science Conference Proceedings (OSTI)

We present the lattice Boltzmann equation (LBE) with multiple relaxation times (MRT) to simulate pressure-driven gaseous flow in a long microchannel. We obtain analytic solutions of the MRT-LBE with various boundary conditions for the incompressible ... Keywords: Gas flow through microchannel, Lattice Boltzmann equation with multiple relaxation times, Slip flow

Frederik Verhaeghe; Li-Shi Luo; Bart Blanpain

2009-01-01T23:59:59.000Z

379

Modeling Turbulent Flow  

National Nuclear Security Administration (NNSA)

Turbulent Turbulent Flow with Implicit LES L.G. Margolin 1 Proceedings of the Joint Russian-American Five Laboratory Conference on Computational Mathematics/Physics 19-23 June, 2005 Vienna, Austria 1 Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, len@lanl.gov 1 Abstract Implicit large eddy simulation (ILES) is a methodology for modeling high Reynolds' num- ber flows that combines computational efficiency and ease of implementation with predictive calculations and flexible application. Although ILES has been used for more than fifteen years, it is only recently that significant effort has gone into providing a physical rationale that speaks to its capabilities and its limitations. In this talk, we will present new theoret- ical results aimed toward building a justification and discuss some remaining gaps in our understanding and our practical

380

flow_loop.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

FLOW ASSURANCE TEST LOOP FLOW ASSURANCE TEST LOOP Objective O ver a decade ago, RMOTC began cooperatively building a full-scale facility to test new fl ow assurance technology, mainly in the areas of hydrates and paraffi ns. Today, RMOTC's test facility consists of fi ve individual loop sections, including chilling and heated pipe-in-pipe water sections, bare lines, and a mixing section. The facility was designed to represent typical deepwater production systems in order to simulate full-scale tests and apply the results to fl ow assurance fi eld applications and technology. The current facility design consists of a 6" x 3,600 maximum allowable operating pressure test pipeline in fi ve separate loops. The test loops begin and ter- minate at a central location just north

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Study of Flow, Turbulence and Transport on the Large Plasma Device  

E-Print Network (OSTI)

Axial versus Radial Transport . . . . . . . . . . . . .223 A LAPD Transport172 Turbulence and Transport

Schaffner, David A.

2013-01-01T23:59:59.000Z

382

TEP process flow diagram  

SciTech Connect

This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

383

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

384

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

385

Ginzburg-Landau phase diagram for dense matter with axial anomaly, strange quark mass, and meson condensation  

SciTech Connect

We discuss the phase structure of dense matter, in particular, the nature of the transition between hadronic and quark matter. Calculations within a Ginzburg-Landau approach show that the axial anomaly can induce a critical point in this transition region. This is possible because in three-flavor quark matter with instanton effects a chiral condensate can be added to the color-flavor locked phase without changing the symmetries of the ground state. In (massless) two-flavor quark matter such a critical point is not possible since the corresponding color superconductor (2SC) does not break chiral symmetry. We study the effects of a nonzero but finite strange quark mass which interpolates between these two cases. Since at ultrahigh density the first reaction of the color-flavor locked phase to a nonzero strange quark mass is to develop a kaon condensate, we extend previous Ginzburg-Landau studies by including such a condensate. We discuss the fate of the critical point systematically and show that the continuity between hadronic and quark matter can be disrupted by the onset of a kaon condensate. Moreover, we identify the mass terms in the Ginzburg-Landau potential which are needed for the 2SC phase to occur in the phase diagram.

Schmitt, Andreas; Stetina, Stephan [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Tachibana, Motoi [Department of Physics, Saga University, Saga 840-8502 (Japan)

2011-02-15T23:59:59.000Z

386

Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications  

SciTech Connect

Permanent-magnet (PM) generators have been used for wind turbines for many years. Many small wind-turbine manufacturers use direct-drive PM generators. For wind-turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable-speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular PM generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow-up tests will be conducted in the laboratory to improve the design.

Muljadi, E.; Butterfield, C.P.; Wan, Y.H.

1999-08-01T23:59:59.000Z

387

Momentum Balance of Gravity Flows  

Science Conference Proceedings (OSTI)

A unified scale analysis of the momentum balance of downslope gravity flows is developed to organize previous theories for the case of negligible ambient flow and fixed temperature deficit scale. The values of several nondimensional parameters ...

L. Mahrt

1982-12-01T23:59:59.000Z

388

HYDROLYZED WOOD SLURRY FLOW MODELING  

E-Print Network (OSTI)

LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on

Wrathall, Jim

2012-01-01T23:59:59.000Z

389

Katabatic Wind in Opposing Flow  

Science Conference Proceedings (OSTI)

This paper presents a one-dimensional model of katabatic winds in ambient flow and examines types of possible solutions. Results presented in dimensionless form indicate that 1) cooling along a slope with upslope ambient flow can lead to tranquil ...

David R. Fitzjarrald

1984-04-01T23:59:59.000Z

390

Motivation for a combined data flow-control flow processor  

Science Conference Proceedings (OSTI)

Data flow sequencing and the directed graph program representation provide two important tools for the development of computer architectures which can exploit problem parallelism. Classical (control flow) architecture deal efficiently with other problems such as serial sequences and data storage which are not handled so well by a data flow architecture. A hybrid which incorporates features of a data flow architecture along with features of a control flow architecture has the potential to become an effective parallel architecture for a wide class of problems. 10 references.

Oxley, D.W.

1981-01-01T23:59:59.000Z

391

Information flow analysis for javascript  

Science Conference Proceedings (OSTI)

Modern Web 2.0 pages combine scripts from several sources into a single client-side JavaScript program with almost no isolation. In order to prevent attacks from an untrusted third-party script or cross-site scripting, tracking provenance of data is ... Keywords: eval, hybrid program analysis, implicit flow, information flow control, unstructured control flow

Seth Just; Alan Cleary; Brandon Shirley; Christian Hammer

2011-10-01T23:59:59.000Z

392

Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor  

SciTech Connect

Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

Richard Schultz

2012-04-01T23:59:59.000Z

393

UZ Flow Models and Submodels  

SciTech Connect

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

394

FE Magnetic Field Analysis Simulation Models based Design, Development, Control and Testing of An Axial Flux Permanent Magnet Linear Oscillating Motor  

E-Print Network (OSTI)

Abstract- Development, finite element(FE) analysis of magnetic field distribution, performance, control and testing of a new axial flux permanent magnet linear oscillating motor (PMLOM) along with a suitable speed and thrust control technique is described in this paper. The PMLOM can perform precision oscillation task without exceeding the given limit on allowable average power dissipation. The use of new powerful permanent magnet materials such as Neodymium-Iron-Boron alloys can greatly improve the performance of electrical machines. Also its performance parameters, such as the force, current etc. are experimentally assessed. The objective of this paper is to determine the forces for aluminium mover embedded with rare earth permanent magnet experimentally and analytically through FEMM software and develop a microcontroller based IGBT Inverter for its control. Index Terms- Axial flux machine, finite element analysis, microcontroller based IGBT inverter, permanent magnet linear oscillating motor, rare earth permanent magnet. I.

Govindaraj T; Prof Dr; Ashoke K. Ganguli

2009-01-01T23:59:59.000Z

395

The Influence of Blank-Width Ratio on Stress Field during Heavy Axial Forgings Manufacturing with Horizontal V-Shaped Anvils  

Science Conference Proceedings (OSTI)

The forging method with horizontal V-shaped anvils (HVA) is effective in the control of inner stress states, metal tissue, etc. FEM numerical simulation is conducted for the HVA forging method, given the blank-width ratio 0.5, 1.0 and 1.2, respectively, ... Keywords: horizontal V-shaped anvil, anvil-width ratio, blank-width ratio, axial forging, stress field

Li Li; Wang Qian; Yu Suoqing; Ni Liyong

2010-01-01T23:59:59.000Z

396

Radial flow heat exchanger  

DOE Patents (OSTI)

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

397

Ellipsoidal cell flow system  

SciTech Connect

The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

Salzman, Gary C. (Los Alamos, NM); Mullaney, Paul F. (Los Alamos, NM)

1976-01-01T23:59:59.000Z

398

3-Dimensional Flow Modeling of a Proposed Hanford Waste Treatment Plant Ion-Exchange Column Design  

DOE Green Energy (OSTI)

Historically, it has been assumed that the inlet and outlet low activity waste plenums would be designed such that a nearly uniform velocity profile would be maintained at every axial cross-section (i.e., providing nearly 100 percent use of the resin bed). With this proposed design, we see a LAW outlet distributor that results in significant non-axial velocity gradients in the bottom regions of the bed with the potential to reduce the effectiveness'' of the overall resin bed. The magnitude of this efficiency reduction depends upon how far up-gradient of the LAW outlet these non-axial velocities persist and to what extent a ''dead-zone'' is established beneath the LAW outlet. This can impact loading and elution performance of the ion-exchange facility. Currently, no experimental studies are planned. The primary objective of this work was, through modeling, to assess the fluid dynamic impact on ''effective'' resin volume of the full-scale column based on its normal operation using a recently proposed LAW outlet distributor. The analysis effort was limited to 3-D flow only analyses (i.e., no follow on transport analyses) with 3-D particle tracking to approximate the impact that a nonaxial velocity profile would have on bed ''effectiveness''. Additional analyses were performed to estimate under nominal operating conditions the thermal temperature rise across a loaded resin bed and within its particles. Hydrogen bubble formation is not considered in the heat transfer analysis or in the determination of minimum flowrate. All modeling objectives were met.

ALEMAN, SEBASTIAN

2002-11-01T23:59:59.000Z

399

Numerical and Experimental Analysis of Multi-Stage Axial Turbine Performance at Design and Off-Design Conditions  

E-Print Network (OSTI)

Computational fluid dynamics or CFD isan importanttool thatis used at various stages in the design of highly complex turbomachinery such as compressorand turbine stages that are used in land and air based power generation units. The ability of CFD to predict the performance characteristics of a specific blade design is challenged by the need to use various turbulence models to simulate turbulent flows as well as transition models to simulate laminar to turbulent transition that can be observed in various turbomachinery designs. Moreover, CFD is based on numerically solving highly complex differential equations, which through the use of a grid to discretize the geometry introduces numerical errors. Allthese factors combine to challenge CFD’s role as a predictor of blade performance. It has been generallyfound that CFD in its current state of the art is best used to compare between various design points and not as a pure predictor of performances. In this study the capability of CFD, and turbulence modeling, in turbomachinery based geometry is assessed.Three different blade designs are tested, that include an advanced two-stage turbine blade design, a three stage 2D or cylindrical design and finally a three stage bowed stator and rotor design. Allcases were experimentally tested at the Texas A&Muniversity Turbomachinery Performance and Flow Research Laboratory (TPFL).In all cases CFD provided good insights into fundamental turbomachinery flow physics, showing the expected improvement from using 2D cylindrical blades to 3D bowed blade designs in abating the secondary flow effects which are dominant loss generators.However, comparing experimentally measured performance results to numerically predicted shows a clear deficiency, where the CFD overpredicts performance when compared to experimentallyobtained data, largely underestimating the various loss mechanisms. In a relative sense, CFD as a tool allows the user to calculate the impact a new feature or change can have on a baseline design. CFD will also provide insight into what are the dominant physics that explain why a change can provide an increase or decrease in performance. Additionally,as part of this study, one of the main factors that affect the performance of modern turbomachinery is transition from laminar to turbulent flow.Transition is an influential phenomena especially in high pressure turbines, and is sensitive to factors such asupstream incidentwake frequency and turbulence intensity.A model experimentally developed, is implemented into a CFD solver and compared to various test results showing greater capability in modeling the effects of reduced frequency on the transition point and transitional flow physics. This model is compared to industry standard models showing favorable prediction performance due to its abilityto account for upstream wake effects which most current model are unable to account for.

Abdelfattah, Sherif Alykadry

2013-08-01T23:59:59.000Z

400

Uranyl Nitrate Flow Loop  

Science Conference Proceedings (OSTI)

The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

Ladd-Lively, Jennifer L [ORNL

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Instrumentation for Increased Power Flow  

Science Conference Proceedings (OSTI)

This report is the second Technical Update of the Instrumentation for Managing Increased Power Flow project, part of EPRI's Increased Power Flow (IPF) program. The project, initiated in 2006 and expected to continue for several years, studies the feasibility of new instrumentation to support increased power flow strategies. In 2007 the work focused on two primary developments: the Backscatter Sensor for the real-time measurement of transmission line temperature and current and the Emissivity Test Instrum...

2007-12-06T23:59:59.000Z

402

HYDROCARBON LIQUID FLOW CALIBRATION SERVICE ...  

Science Conference Proceedings (OSTI)

... and is the cross correlation coefficient ... a NIST Hydrocarbon Liquid Flow Calibration Facility ... FED2004-56790, 2004 Heat Transfer/Fluids Engineering ...

2012-05-21T23:59:59.000Z

403

Flow Batteries: A Historical Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Marvin Warshay *1976 Shunt Current Model, Paul Prokopius *1976 Interfaced an RFB with solar cells *1977 Electrode-Membrane-Flow Battery Testing *Largest polarization @ negative...

404

EPRI Coal-Flow Loop  

Science Conference Proceedings (OSTI)

This report is targeted at plant personnel responsible for coal-flow measurement and mill balancing that are using or are considering the use of online, in situ measurement technologies. Optimum combustion in a boiler requires careful control of coal and air flow to individual burners. Measuring in near real-time the mass flow rate of pneumatically conveyed pulverized coal in burner feed pipes is a critical element of such control. This report summarizes the findings for two online coal-flow instruments ...

2006-12-01T23:59:59.000Z

405

Patterns in Flowing Sand: Understanding the Physics of Granular Flow  

E-Print Network (OSTI)

Dense granular flows are often unstable and form inhomogeneous structures. Although significant advances have been recently made in understanding simple flows, instabilities of such flows are often not understood. We present experimental and numerical results that show the formation of longitudinal stripes that arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding plug-like regions (stripes) on top of highly agitated boiling material - a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.

Tamas Borzsonyi; Robert E. Ecke; Jim N. McElwaine

2009-10-01T23:59:59.000Z

406

Split flow gasifier  

DOE Patents (OSTI)

A-moving bed coal gasifier for the production of tar-free, low ammonia fuel gas is described. The gasifier employs a combustion zone in a free-aboard area above the moving bed to burn coal fines to provide hot combustion gases for pyrolyzing and gasifying coal particulates in the moving bed to form fuel gas as the hot gases move co-currently with the downwardly moving coal particulates. The fuel gas contains entrained tars and ammonia compounds which contact hot char and ash in the moving bed and are cracked so that the fuel gas removed from the gasifier at a midpoint off-take is essentially tar-free and of low ammonia content. Concurrently with this gasification reaction, steam and an oxidant are introduced into a region below the moving bed to flow countercurrently to the downwardly moving bed to contact and react with carbon remaining in the char to create additional fuel gas which is also extracted from the gasifier at the mid-point off-take.

Halow, J.S.

1991-12-31T23:59:59.000Z

407

A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation  

Science Conference Proceedings (OSTI)

We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

Zhijie Xu

2012-07-01T23:59:59.000Z

408

A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation  

Science Conference Proceedings (OSTI)

We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

Xu, Zhijie

2012-07-01T23:59:59.000Z

409

A combined ultrasonic flow meter and binary vapour mixture analyzer for the ATLAS silicon tracker  

E-Print Network (OSTI)

An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) evaporative coolant to a blend containing 10-25% of C2F6 (hexafluoro-ethane). Such a change will reduce the evaporation temperature to assure thermal stability following radiation damage accumulated at full LHC luminosity. Central to this upgrade is a new ultrasonic instrument in which sound transit times are continuously measured in opposite directions in flowing gas at known temperature and pressure to deduce the C3F8/C2F6 flow rate and mixture composition. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. Several geometries for the instrument are in use or under evaluation. An instrument with a pinched axial geometry intended for analysis and measurement of moderate flow rates has demonstrated a mixture resolution of 3.10-3 for C3F8/C2F6 molar mixtures with 20%C2F6, and a flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of <5.10-5 to leaks of C3F8 into part of the ATLAS tracker nitrogen envelope (mw difference 160) has been seen. An instrument with an angled sound path geometry has been developed for use at high fluorocarbon mass flow rates of around 1.2 kgs-1 - corresponding to full flow in a new 60kW thermosiphon recirculator under construction for the ATLAS silicon tracker. Extensive computational fluid dynamics studies were performed to determine the preferred geometry (ultrasonic transducer spacing and placement, together with the sound crossing angle with respect to the vapour flow direction). A prototype with 45deg crossing angle has demonstrated a flow resolution of 1.9% of full scale for linear flow velocities up to 15 ms-1. The instrument has many potential applications.

R. Bates; M. Battistin; S. Berry; J. Berthoud; A. Bitadze; P. Bonneau; J. Botelho-Direito; N. Bousson; G. Boyd; G. Bozza; E. Da Riva; C. Degeorge; B. DiGirolamo; M. Doubek; D. Giugni; J. Godlewski; G. Hallewell; S. Katunin; D. Lombard; M. Mathieu; S. McMahon; K. Nagai; E. Perez-Rodriguez; C. Rossi; A. Rozanov; V. Vacek; M. Vitek; L. Zwalinski

2012-10-17T23:59:59.000Z

410

Turbine blade tip flow discouragers  

SciTech Connect

A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

Bunker, Ronald Scott (Niskayuna, NY)

2000-01-01T23:59:59.000Z

411

Physics of two-phase flow: choked flow  

DOE Green Energy (OSTI)

It is shown that the basic equations governing the flow of a two-phase fluid, i.e., liquid and vapor, are natural extensions of those equations that describe single-phase flow. The exact form of the equations depends on the particular assumptions used to characterize the two-phase flow, i.e., the equations depend on the model chosen. In general the mathematical model is selected so as to retain as much of the physics of the phenomena as possible while at the same time permitting solutions to be obtained without undue complexity. The following quantities were computed for saturated water substance over the temperature range 100 to 250/sup 0/C and for saturated Refrigerant -114 over the range -20 to +70/sup 0/C: choking velocity, critical or choking flow density, and saturation properties. Tables of the results are given along with graphs of selected functions.

Maeder, P.F.; DiPippo, R.; Delor, M.; Dickinson, D.

1981-05-01T23:59:59.000Z

412

The transition from two phase bubble flow to slug flow  

E-Print Network (OSTI)

The process of transition from bubble to slug flow in a vertical pipe has been studied analytically and experimentally. An equation is presented which gives the agglomeration time as a function of void fraction, channel ...

Radovcich, Nick A.

1962-01-01T23:59:59.000Z

413

HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL  

DOE Green Energy (OSTI)

The hybrid sulfur process (HyS) hydrogen electrolyzer consists of a proton exchange membrane (PEM) sandwiched between two porous graphite layers. An aqueous solution of sulfuric acid with dissolved SO{sub 2} gas flows parallel to the PEM through the porous graphite layer on the anode side of the electrolyzer. A flow distributor, consisting of a number of parallel channels acting as headers, promotes uniform flow of the anolyte fluid through the porous graphite layer. A numerical model of the hydraulic behavior of the flow distributor is herein described. This model was developed to be a tool to aid the design of flow distributors. The primary design objective is to minimize spatial variations in the flow through the porous graphite layer. The hydraulic data from electrolyzer tests consists of overall flowrate and pressure drop. Internal pressure and flow distributions are not measured, but these details are provided by the model. The model has been benchmarked against data from tests of the current electrolyzer. The model reasonably predicts the viscosity effect of changing the fluid from water to an aqueous solution of 30 % sulfuric acid. The permeability of the graphite layer was the independent variable used to fit the model to the test data, and the required permeability for a good fit is within the range literature values for carbon paper. The model predicts that reducing the number of parallel channels by 50 % will substantially improve the uniformity of the flow in the porous graphite layer, while maintaining an acceptable pressure drop across the electrolyzer. When the size of the electrolyzer is doubled from 2.75 inches square to 5.5 inches square, the same number of channels as in the current design will be adequate, but it is advisable to increase the channel cross-sectional flow area. This is due to the increased length of the channels.

Shadday, M

2006-09-28T23:59:59.000Z

414

Proper planning improves flow drilling  

Science Conference Proceedings (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

415

Use of additional fission sources or scattering sources to model inward axial leakages in fast-reactor analysis  

Science Conference Proceedings (OSTI)

When calculations of flux are done in less than three dimensions, bucklings are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. If the net leakage for a given energy group is outward (positive), the buckling is positive, and buckling methods work well. However, if the new leakage for a given energy group is inward (negative), the buckling is negative and can lead to numerical instabilities (oscillations in the iterative flux calculation). This report discusses two equivalent nonbuckling methods to model inward leakages. One method (the chi/sub g/ method) models these incoming neutrons by additional fission sources. The other method (the ..sigma../sub s/(1 ..-->.. g) method) models them by increased downscatter sources. The derivation of the two methods is shown, and the flux spectra obtained by their use are compared with those obtained from two-dimensional (RZ) calculations.

Grimm, K.N.; Meneghetti, D.

1981-10-01T23:59:59.000Z

416

Direct contact heat transfer between two immiscible liquids in laminar flow between parallel plates  

DOE Green Energy (OSTI)

The search for new sources of energy has prompted studies concerned with extracting energy from low temperature geothermal reservoirs which may include investigations into direct contact heat transfer due to the caustic nature of the geothermal brine. The heat transfer between two liquids of constant properties in laminar stable flow between infinite insulated horizontal parallel plates was studied. The formulation of the general problem involves two energy equations, one for each layer, which are coupled at the interfacial boundary by conditions of temperature and energy flux compatibility. The method of solution is to use the Laplace transform which then results in the necessity of using infinite series solutions with their associated recursion relationships for the coefficients. Special solutions are developed separately for the case where the fluid properties are the same and for the case of slug-flow or constant velocity. Results are presented for the dimensionless mean temperature profile of either fluid, as they are proven to be the same, as a function of the ratios of viscosities, Peclet numbers, volumetric flow rates and the axial location.

Johnson, R.W.; Jacobs, H.R.; Boehm, R.F.

1975-12-01T23:59:59.000Z

417

Force interaction of high pressure glow discharge with fluid flow for active separation control  

SciTech Connect

Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12 degree sign angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations.

Roy, Subrata; Gaitonde, Datta V. [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States); Computational Sciences Branch, Air Vehicles Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States)

2006-02-15T23:59:59.000Z

418

Quantitative characterizations of phasic structure developments by local measurement methods in two-phase flow  

SciTech Connect

An experimental study on the internal structure an a out in a 25.4 mm ID pipe. The local void fraction and interfacial area concentration were measured by a double-sensor probe. The flow structure development was visualized by measuring the radial distribution of these two parameters at three axial, locations (L/D = 12, 62, and 112). A more detailed study on the fully developed flow structure was conducted at L/D = 120. The interfacial structure were measured by the double- and four-sensor probes. A bubbly to-=slug transition region was defined according to the local data.The area-averaged void fraction measurements were given by a gamma densitometer. Other parameters such as the Taylor bubble film thickness, bubble length and slug unit length in slug flow were measured by a film robe. The redundant measurements were made to calibrate the local probe measurements. The quantitative representation of the phasic structure can then be used for modeling.

Eberle, C.S. [Argonne National Lab., IL (United States); Leung, W.H.; Wu, Q.; Ueno, T.; Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering

1995-06-01T23:59:59.000Z

419

Definition: Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Jump to: navigation, search Dictionary.png Flow Test Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened...

420

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Transitions between Baroclinic Flow Regimes  

Science Conference Proceedings (OSTI)

we use truncated spectral Eady models with two Ekman layers of different strength to investigate the baroclinic flow transitions observed in annulus experiments. Our analysis is both analytical and numerical As the dissipation parameter is varied ...

H-Y. Weng; A. Barcilon; J. Magnan

1986-08-01T23:59:59.000Z

422

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

423

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

Folta, James A. (Livermore, CA)

1997-01-01T23:59:59.000Z

424

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

Folta, J.A.

1997-07-01T23:59:59.000Z

425

Essays on international capital flows  

E-Print Network (OSTI)

This dissertation consists of three chapters on international capital flows. Chapter 1 emphasizes the importance of innovations in the investment opportunity set, captured by changes in expected asset returns, as an important ...

Brandão, Tatiana Glindmeier Didier

2008-01-01T23:59:59.000Z

426

Lattice splitting under intermittent flows  

E-Print Network (OSTI)

We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

Schläpfer, Markus

2010-01-01T23:59:59.000Z

427

Longitudinal dispersion in vegetated flow  

E-Print Network (OSTI)

Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

Murphy, Enda

2006-01-01T23:59:59.000Z

428

Parabolic flows on complex manifolds  

E-Print Network (OSTI)

Chapter 2 Convergence of the parabolic complex Monge-Amp`ere65] Streets, J. , Tian, G. A parabolic flow of pluriclosedGill, M. Convergence of the parabolic complex Monge-Amp` ere

Gill, Matthew Franklin

2012-01-01T23:59:59.000Z

429

Multiscale modeling in granular flow  

E-Print Network (OSTI)

Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...

Rycroft, Christopher Harley

2007-01-01T23:59:59.000Z

430

Subcooled flow boiling of fluorocarbons  

E-Print Network (OSTI)

A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

Murphy, Richard Walter

1971-01-01T23:59:59.000Z

431

Studies of Flows in Plasmas  

SciTech Connect

Note a pdf document "DOE-flow-final-report' should be attached. If it somehow is not please notify Walter Gekelman (gekelman@physics.ucla.edu) who will e mail it directly

Gekelman, Walter; Morales, George; Maggs, James

2009-03-07T23:59:59.000Z

432

2007 Estimated International Energy Flows  

Science Conference Proceedings (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

433

Expanding the One-Dimensional CdS-CdSe Composition Landscape: Axially Anisotropic CdS{sub 1-x}Se{sub x} Nanorods  

Science Conference Proceedings (OSTI)

We report the synthesis and characterization of CdS{sub 1–x}Se{sub x} nanorods with axial anisotropy. These nanorods were synthesized via single injection of a mixture of trioctylphosphine sulfur and selenium precursors to a cadmium–phosphonate complex at high temperature. Transmission electron microscopy shows nanoparticle morphology changes with relative sulfur and selenium loading. When the synthetic selenium loading is between 5% and 10% of total chalcogenides, the nanorods exhibit pronounced axial anisotropy characterized by a thick “head” and a thin “tail”. The nanorods’ band gap red shifts with increasing selenium loading. X-ray diffraction reveals that CdS{sub 1–x}Se{sub x} nanorods have a wurtzite crystal structure with a certain degree of alloying. High-resolution and energy-filtered transmission electron microscopy and energy-dispersive X-ray spectroscopy confirm the head of the anisotropic nanorods is rich in selenium, whereas the tail is rich in sulfur. Time evolution and mechanistic studies confirm the nanorods form by quick growth of the CdSe-rich head, followed by slow growth of the CdS-rich tail. Metal photodeposition reactions with 575 nm irradiation, which is mostly absorbed by the CdSe-rich segment, show effective electronic communication between the nanorod head and tail segments.

Ruberu, T. Purnima A.; Vela, Javier

2011-06-02T23:59:59.000Z

434

Increased Power Flow Guidebook - 2012  

Science Conference Proceedings (OSTI)

The EPRI Increased Power Flow (IPF) Guidebook is a state-of-the-art and best- practices reference and guidebook on increasing the power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment, without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates the alternatives with case ...

2012-12-31T23:59:59.000Z

435

Increased Power Flow Guidebook - 2013  

Science Conference Proceedings (OSTI)

The EPRI Increased Power Flow (IPF) Guidebook is a state-of-the-art and best- practices reference and guidebook on increasing the power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment, without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates the alternatives with case ...

2013-11-18T23:59:59.000Z

436

Acoustic concentration of particles in fluid flow  

DOE Patents (OSTI)

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

437

Analysis and Measurement of Bubble Dynamics and Associated Flow Field in Subcooled Nucleate Boiling Flows  

SciTech Connect

In recent years, subooled nucleate boiling (SNB) has attrcted expanding research interest owing to the emergence of axial offset anomaly (AOA) or crud-induced power shigt (CIPS) in many operating US PWRs, which is an unexpected deviation in the core axial power distribution from the predicted power curves. Research indicates that the formation of the crud, which directly leads to AOA phenomena, results from the presence of the subcooled nucleate boiling, and is especially realted to bubble motion occurring in the core region.

Barclay G. Jones

2008-10-01T23:59:59.000Z

438

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network (OSTI)

hydroelectric, and marine and hydrokinetic power, are notmarine and hydrokinetic facilities. For wind, closed-loop biomass, and geothermal power,

Bolinger, Mark

2009-01-01T23:59:59.000Z

439

Accuracy of flow hoods in residential applications  

SciTech Connect

To assess whether houses can meet performance expectations, the new practice of residential commissioning will likely use flow hoods to measure supply and return grille airflows in HVAC systems. Depending on hood accuracy, these measurements can be used to determine if individual rooms receive adequate airflow for heating and cooling, to determine flow imbalances between different building spaces, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. This paper discusses these flow hood applications and the accuracy requirements in each case. Laboratory tests of several residential flow hoods showed that these hoods can be inadequate to measure flows in residential systems. Potential errors are about 20% to 30% of measured flow, due to poor calibrations, sensitivity to grille flow non-uniformities, and flow changes from added flow resistance. Active flow hoods equipped with measurement devices that are insensitive to grille airflow patterns have an order of magnitude less error, and are more reliable and consistent in most cases. Our tests also show that current calibration procedures for flow hoods do not account for field application problems. As a result, a new standard for flow hood calibration needs to be developed, along with a new measurement standard to address field use of flow hoods. Lastly, field evaluation of a selection of flow hoods showed that it is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement.

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2002-05-01T23:59:59.000Z

440

Flow assurance and multiphase pumping  

E-Print Network (OSTI)

A robust understanding and planning of production enhancement and flow assurance is required as petroleum E&P activities are targeting deepwaters and long distances. Different flow assurance issues and their solutions are put together in this work. The use of multiphase pumps as a flow assurance solution is emphasized. Multiphase pumping aids flow assurance in different ways. However, the problem causing most concern is sand erosion. This work involved a detection-based sand monitoring method. Our objectives are to investigate the reliability of an acoustic sand detector and analyze the feasibility of gel injection as a method to mitigate sand erosion. Use of a sand detector coupled with twin-screw pumps is studied under varying flow conditions. The feasibility of gel injection to reduce slip and transport produced solids through twin-screw pump is investigated. A unique full-scale laboratory with multiphase pumps was utilized to carry out the experimental tests. The test results indicate that acoustic sand detection works in a narrow window around the calibration signature. An empirical correlation for predicting the twin-screw pump performance with viscous fluids was developed. It shows good agreement in the practical operational limits – 50% to 100% speed. The results indicate that viscous gel injection should be an effective erosion mitigation approach as it reduces slip, the principle cause of erosive wear. To correlate the performance of viscous fluid injection to hydroabrasive wear, further experimental investigation is needed.

Nikhar, Hemant G.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrokinetic axial flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

442

Visualization and Diagnostics of Thermal Plasma Flows  

Science Conference Proceedings (OSTI)

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques ... Keywords: d.c. plasma jet, enthalpy probe techniques, induction plasma, laser strobe, photographic techniques, schlieren, thermal plasma flows

M. I. Boulos

2001-01-01T23:59:59.000Z

443

Numerical length estimation for tubular flow reactors  

Science Conference Proceedings (OSTI)

Keywords: free boundary value problems, noniterative and iterative numerical methods, tubular flow reactors

Riccardo Fazio

1992-08-01T23:59:59.000Z

444

PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT  

Science Conference Proceedings (OSTI)

In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

Duignan, M.; Nash, C.; Poirier, M.

2011-01-12T23:59:59.000Z

445

Valve for controlling solids flow  

DOE Patents (OSTI)

A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

Staiger, M. Daniel (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

446

Monitoring probe for groundwater flow  

DOE Patents (OSTI)

A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

1994-01-01T23:59:59.000Z