Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

2

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

3

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

4

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

5

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogen DeliveryEnergyDate:

6

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

SciTech Connect (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

7

Wind, Hydrogen and other Energy Technologies Similarities and Differences in Expectation Dynamics  

E-Print Network [OSTI]

Wind, Hydrogen and other Energy Technologies ­ Similarities and Differences in Expectation Dynamics But mostly a "storytelling" on expectations and wind energy Per Dannemand Andersen Head of Technology Scenarios research programme Risoe National Laboratory per.dannemand@risoe.dk #12;Expectations and Wind

8

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

9

Wind turbine tower for storing hydrogen and energy  

DOE Patents [OSTI]

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

10

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

11

Hydrogen Pilot Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place:Status In

12

Renewable Hydrogen From Wind in California  

E-Print Network [OSTI]

effective hydrogen until the cost of electrolysis has fallenElectrolysis Station 3.2 Long Term Costs of Wind Hydrogen Ofhydrogen available to them. Table 3.1: Assumptions for Capital and Energy Costs for Electrolysis

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

13

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to: navigation, search NameCompanyAmerican

14

Wind Energy  

Broader source: Energy.gov [DOE]

Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

15

Wind Electrolysis: Hydrogen Cost Optimization  

SciTech Connect (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

16

Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report  

SciTech Connect (OSTI)

Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

2008-04-01T23:59:59.000Z

17

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

18

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

19

20% Wind Energy 20% Wind Energy  

E-Print Network [OSTI]

(government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

Powell, Warren B.

20

Wind Electrolysis - Hydrogen Cost Optimization (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task and the examination of a grid-tied, co-located wind electrolysis hydrogen production facility.

Saur, G.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Hydrogen From Wind in California  

E-Print Network [OSTI]

SuitabilityforHydrogenProductionintheSacramentoAreaRenewableEnergy forHydrogenProductioninCaliforniamodel of renewable hydrogen production in California, which

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

22

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

23

Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study  

SciTech Connect (OSTI)

This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

Saur, G.

2008-12-01T23:59:59.000Z

24

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

25

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

26

Wind Energy Act (Maine)  

Broader source: Energy.gov [DOE]

The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

27

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

28

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

29

wind energy  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter |warhead protection|5/%2A en

30

Wind to Hydrogen in California: Case Study  

SciTech Connect (OSTI)

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

31

2015 Iowa Wind Power Conference and Iowa Wind Energy Association...  

Energy Savers [EERE]

2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

32

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

33

Liquid Hydrogen Production and Delivery from a Dedicated Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Dedicated Wind Power Plant Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant This May 2012 study assesses the costs and potential for remote renewable...

34

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

35

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

2014-01-01T23:59:59.000Z

36

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

37

A Feasibility Study of a Wind/Hydrogen System for Martha's Vineyard, Massachusetts  

E-Print Network [OSTI]

cells can convert hydrogen into useful power for transportation. The exhaust from these energy of Massachusetts, Renewable Energy Research Laboratory Amherst, Massachusetts ABSTRACT The use of wind generated using a specially developed system simulation model. The proposed wind-hydrogen system is designed

Massachusetts at Amherst, University of

38

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

39

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

40

Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies  

E-Print Network [OSTI]

.........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen and OUr Energy Future  

SciTech Connect (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

42

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

43

Wind energy applications guide  

SciTech Connect (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

44

American Wind Energy Association Wind Energy Finance and Investment...  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

45

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

46

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

47

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

48

Great Plains Wind Energy Transmission Development Project  

SciTech Connect (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

49

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

50

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

51

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

52

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

53

Wind Energy Systems Exemption  

Broader source: Energy.gov [DOE]

Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

54

Wind Energy Teachers Guide  

SciTech Connect (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

55

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

56

Wind Energy Kit | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

57

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

58

Wind Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

59

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

60

Wind | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative SolarVehiclesWind Wind EERE

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

62

Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Wind-to-Hydrogen Cost Modeling and Project Findings, originally presented on January 17, 2013.

63

SPRING 2014 wind energy's impact  

E-Print Network [OSTI]

SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

Tullos, Desiree

64

Wind Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | EnergyMayDepartment ofWind EnergyWind

65

Wind Program: Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

66

Wind Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

67

European Hydrogen Energy Conference, Maastricht, 18 -22 June 2007 Hydrogen for Grid Integration  

E-Print Network [OSTI]

Integration HYDROGEN AS A MEANS TO CONTROL AND INTEGRATE WIND POWER INTO ELECTRICITY GRIDS Robert Steinberger of wind energy into electricity grids will pose future challenges as the levels of production rise, power advantages towards these goals. The HyWindBalance project, which is described here, looks

Heinemann, Detlev

68

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

69

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

70

Wind Energy Information Guide 2004  

SciTech Connect (OSTI)

The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

anon.

2004-01-01T23:59:59.000Z

71

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar CoHydrogen Jump to:

72

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

73

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDaily wholesaleDepartment ofWind The

74

Version:April 2014 Wind Energy EFA  

E-Print Network [OSTI]

Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

Kusiak, Andrew

75

The Solar Wind Energy Flux  

E-Print Network [OSTI]

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

76

20% Wind Energy by 2030  

SciTech Connect (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

77

WINDExchange: Wind Energy Ordinances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and ShareDevelopmentWind

78

Wind Energy Program: Top 10 Program Accomplishments  

Broader source: Energy.gov [DOE]

Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

79

Wind Energy Status and Perspectives Senior Scientist in Aeroelastic Design  

E-Print Network [OSTI]

employees Systems Analysis Fuel cells Hydrogen storage PV polymer cells Bio Energy Materials #12;Risø, DTU Small Wind Turbines at Risø - 1979 #12;Aeroelastic Design #12;2D CFD Airfoil design (+ optimization

80

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WIND ENERGY POLICIES IN TURKEY  

E-Print Network [OSTI]

Energy is a strategic parameter, which demonstrates the development of a country. In Turkey, energy and energy politics are mainly based on the supply due to the inadequate fossil fuel resources. In the beginning of the 21 st century, due to the increase in the price of fossil fuels and environmental burdens, many countries showed renewed interest in alternative energy resources. Climate change and environmental problems caused by greenhouse gas emissions showed the importance of renewable energy resources and especially wind energy. The major reason for the interest in wind energy technologies out of many renewable energy resources is the bulk availability of this resource without any cost. In Turkey, the major solution to the dependency on foreign energy resources is: domestic production, development, and operation of renewable energy resources. However, in order to make these investments, suitable conditions and strategies must be generated. In order to accelerate the wind energy investments in Turkey: (i) the problems related to the interconnectivity of the wind power systems to the grid must be solved (ii) the guaranteed purchase price of the wind energy must be updated (iii) and the construction/operation of wind power plants must be subsidised by government initiatives. In this study, the politics related to wind energy is extensively reviewed and the possible suggestions/solutions related to the acceleration of wind energy production and investments in Turkey are given.

S?tk? Gner; Irem Firtina; Mehmet Meliko?lu; Ayhan Albostan

82

WIND ENERGY Wind Energ. 2013; 16:7790  

E-Print Network [OSTI]

energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

Papalambros, Panos

83

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. Wind Energy (9:12); pp. 141161.

Lantz, Eric

2014-01-01T23:59:59.000Z

84

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network [OSTI]

Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

Mountziaris, T. J.

85

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network [OSTI]

Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

86

Wind Energy Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2015-01-01T23:59:59.000Z

87

Commercial Wind Energy Property Valuation  

Broader source: Energy.gov [DOE]

Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

88

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies Loading

89

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies

90

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects PhotoWind-to-Hydrogen

91

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected to grow over the next  

E-Print Network [OSTI]

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements for the Certificate in Wind Energy

Kusiak, Andrew

92

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

93

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

94

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

95

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? zerdem

96

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

97

May, 2010DC/DC CONVERTER FOR A SMALL SCALE WIND HYDROGEN SYSTEM  

E-Print Network [OSTI]

An electronic converter is designed for an isolated renewable energy system. In this system, energy produced by a small wind turbine is used to extract hydrogen from water. Unique aspects of this application that affect the performance of the converter will be defined. Design considerations of the individual components will be discussed. Calculations on performance and validation of those calculations are also presented.

Joel M. Jacobs; Joel M. Jacobs; Joel Michael Jacobs; Adviser Jerry; L. Hudgins

98

Wind Energy R&D Opportunity: Energy Department Announces $125...  

Energy Savers [EERE]

Wind Energy R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Wind Energy R&D Opportunity: Energy Department Announces 125 Million for...

99

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind Energy

100

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

102

Compensation Packages Wind Energy Easements  

E-Print Network [OSTI]

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

103

Energy Department Announces 2016 Collegiate Wind Competition...  

Energy Savers [EERE]

Energy Department Announces 2016 Collegiate Wind Competition Participants Energy Department Announces 2016 Collegiate Wind Competition Participants February 18, 2015 - 1:30pm...

104

Searchlight Wind Energy Project DEIS Appendix A  

Broader source: Energy.gov (indexed) [DOE]

Searchlight Wind Energy Project DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT...

105

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Partnership Finalizes Hydrogen Energy Roadmap, World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

106

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

107

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

108

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

109

International Energy Agency 2011 Wind Energy Annual Report Available...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Energy Agency 2011 Wind Energy Annual Report Available for Download International Energy Agency 2011 Wind Energy Annual Report Available for Download October 1, 2012...

110

Community Renewable Energy Success Stories: Wind Energy in Urban...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version) Community Renewable Energy Success Stories: Wind Energy in Urban Environments...

111

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network [OSTI]

Rhaglen Ynni Gwynt Wind Energy Programme 1 WEP Internet Calculations Explained | 20/02/2013 Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) "The energy.2 Therefore 4.5kWh/d/p = approximately 160 cups of tea per day per person. Wind Energy Programme (page

112

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

113

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

114

Wind Energy at NREL's National Wind Technology Center  

SciTech Connect (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2010-01-01T23:59:59.000Z

115

Arnold Schwarzenegger California Wind Energy  

E-Print Network [OSTI]

Albany, New York Contract No. 500-03-006 Prepared For: Public Interest Energy Research (PIER) ProgramArnold Schwarzenegger Governor California Wind Energy Resource Modeling and Measurement Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: AWS Truewind

116

Wind Energy Permitting Standards  

Broader source: Energy.gov [DOE]

All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

117

Energy from Offshore Wind: Preprint  

SciTech Connect (OSTI)

This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

Musial, W.; Butterfield, S.; Ram, B.

2006-02-01T23:59:59.000Z

118

Wind Energy Conversion Systems (Minnesota)  

Broader source: Energy.gov [DOE]

This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

119

Wind energy systems: program summary  

SciTech Connect (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

120

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Below is the text version of the webinar...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Speed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. EnergyThe Economics of Wind Energy. Renewable and Sustainable

Lantz, Eric

2014-01-01T23:59:59.000Z

122

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

123

Paul S. Veers Wind Energy Technology Department  

E-Print Network [OSTI]

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

124

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

125

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm...

126

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America August 14, 2012 - 9:21am Addthis This infographic details key findings from the Energy Departments

127

Wind Success Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

clean, affordable, and reliable domestic wind power tap into enormous energy-saving potential across the United States. Explore EERE's wind power success stories below. February...

128

Wind Energy Permitting Standards (North Carolina)  

Broader source: Energy.gov [DOE]

North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated...

129

Wind Energy Career Development Program  

SciTech Connect (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

130

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Broader source: Energy.gov (indexed) [DOE]

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

131

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

132

Energy Department Announces Distributed Wind Competitiveness...  

Energy Savers [EERE]

for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy...

133

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2011-04-01T23:59:59.000Z

134

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...  

Open Energy Info (EERE)

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

135

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

136

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap Wind Energy. Paris, France:EWEA. (2011). Pure Power Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

137

Department of Energy Wind Vision: An Industry Preview | Department...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

138

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap Wind Energy. Paris, France:5) Cea, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

Wiser, Ryan

2013-01-01T23:59:59.000Z

139

EIS-0470: Cape Wind Energy Project, Final General Conformity...  

Broader source: Energy.gov (indexed) [DOE]

70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

140

Alternative Energy Provides a Second Wind  

E-Print Network [OSTI]

This report provides information for communities and other interested stakeholders about the development of wind energy at former mining sites. Local governments, residents and organizations may be interested in creating renewable energy resources and new economic opportunities at these sites. The report describes the mechanics of wind energy, details the various wind technology options, explores wind energys environmental, economic and social impacts at mining sites, and provides case studies and next steps to help get projects in place.

unknown authors

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind) Jump to:

142

Wind energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind) Jump

143

AWEA Wind Energy Regional Summit: Northeast  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

144

Comments of the American Wind Energy...  

Broader source: Energy.gov (indexed) [DOE]

and wind power development. Assuming a conservative 35MWh value for curtailed wholesale energy would put a value of over 100 million on the wind energy that was curtailed...

145

Currituck County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to...

146

Modular Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo,Energy Information Modoc High School Space HeatingWind

147

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

148

Energy in the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergyTricksJohnEnergy Provi

149

DEPARTMENT OF ENERGY HYDROGEN PROGRAM  

E-Print Network [OSTI]

1 DEPARTMENT OF ENERGY HYDROGEN PROGRAM MANUFACTURING R&D PRE-SOLICITATION MEETING FRIDAY, MAY 18 Devlin, Manager, Manufacturing R&D And Market Transformation, U.S. DOE Hydrogen Program 1:50 p.m. Break 20 21 22 23 3 P R O C E E D I N G S [Time Noted 1:30 p.m.] [Slide shown.] MR. DEVLIN: Okay. I've got

150

Examples of Wind Energy Curtailment Practices  

SciTech Connect (OSTI)

This report addresses examples of wind energy curtailment practices internationally and in regions across the United States.

Rogers, J.; Fink, S.; Porter, K.

2010-07-01T23:59:59.000Z

151

Wind energy systems information user study  

SciTech Connect (OSTI)

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

152

NREL: Learning - Wind Energy Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy SponsorsEnergyWind Energy

153

New energy, new hazards ? The hydrogen scenario  

E-Print Network [OSTI]

"energy carrier" ? Hydrogen based economy and associated energy converters fuel cell systems are said engines using hydrogen or hydrogen based mixtures, fuel cell systems), electrical plants, systems://www.eere.energy.gov ineris-00972421,version1-3Apr2014 #12;2.2 What is a fuel cell ? Fuel cells are the core of the hydrogen

Paris-Sud XI, Université de

154

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

155

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

156

Ris National Laboratory Wind Energy Department  

E-Print Network [OSTI]

and the wind power density 36 (Troen & Petersen, 1989). In screening for potential offshore wind 37farm sitesRisø National Laboratory Postprint Wind Energy Department Year 2006 Paper: www.risoe.dk/rispubl/art/2006_96.pdf Wind resource assessment from C-band SAR Merete Bruun Christiansen a, Wolfgang Koch b

157

Wind Energy Facility Reliability and Maintenance  

E-Print Network [OSTI]

Wind Energy Facility Reliability and Maintenance Eunshin Byon, Lewis Ntaimo, Chanan Singh and Yu related to wind energy facility reliability and mainte- nance focused more on qualitative aspects. In this chapter, we provide a comprehensive account of the existing research regarding wind energy facility

Ding, Yu

158

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 19, 2013 Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth The Energy Department released three new reports showcasing strong...

159

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirdevelop alternative hydrogen-energy scenarios. The scenariosof alternative hydrogen energy pathways to characterize an

Pigneri, Attilio

2005-01-01T23:59:59.000Z

160

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

Pigneri, Attilio

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWind Energy National Rotor

162

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWind Energy National

163

Wind Energy Education and Outreach Project  

SciTech Connect (OSTI)

The purpose of Illinois State University??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

David G. Loomis

2011-04-15T23:59:59.000Z

164

Innovative Wind Energy, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting aLianhe WindInformationWind Energy,

165

WindEnergyPEIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry2

166

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National ParkCimarron I SolarCisco Wind Energy

167

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

WIND ENERGY by as much as 270% when comparing todays turbinesTurbines in Denmark. Presentation to IEA Wind Task 26 (12) European Wind Energy

Wiser, Ryan

2013-01-01T23:59:59.000Z

168

http://digitalcommons.unl.edu/elecengtheses/6 DC/DC Converter for a Small Scale Wind Hydrogen System By  

E-Print Network [OSTI]

An electronic converter is designed for an isolated renewable energy system. In this system, energy produced by a small wind turbine is used to extract hydrogen from water. Unique aspects of this application that affect the performance of the converter will be defined. Design considerations of the individual components will be discussed. Calculations on performance and validation of those calculations are also presented.

Joel M. Jacobs; Joel M. Jacobs; Joel Michael Jacobs; Adviser Jerry; L. Hudgins

169

Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place: Los

170

Jasper Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"StartingInteruniversityIwasakiJasper Wind Jump

171

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Laboratory. Danish Energy Agency (DEA). (1999). Wind2009) and the Danish Energy Agency (DEA) (1999), illustratedata is from the Danish Energy Agency wind turbine

Lantz, Eric

2014-01-01T23:59:59.000Z

172

Searchlight Wind Energy Project FEIS Appendix B  

Office of Environmental Management (EM)

Bird and Bat Conservation Strategy Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550...

173

Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)  

SciTech Connect (OSTI)

Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

Baring-Gould, I.

2011-05-01T23:59:59.000Z

174

The communication dimension of wind energy  

E-Print Network [OSTI]

energy · People see the advantages of wind power as being more important than the disadvantagesThe communication dimension of wind energy: Challenges and opportunities #12;OPPORTUNITIES #12;Pew of industry Kick and Smith, 2008 #12;Other audience characteristics · A public relatively informed about wind

McCalley, James D.

175

Wind Energy Department Annual Progress Report 2002  

E-Print Network [OSTI]

Wind Energy Department Annual Progress Report 2002 Edited by Birgitte D. Johansen and Ulla Riis The new Test Station at Høvsøre Risø National Laboratory December 2003 Risø-R-1419(EN) #12;Wind Energy Aeroelastic Design (AED) p. 10 Atmospheric Physics (ATM) p. 15 Electrical Design and Control (EDS) p. 24 Wind

176

Wind Energy Department Annual Progress Report 2003  

E-Print Network [OSTI]

Wind Energy Department Annual Progress Report 2003 Edited by Birgitte D. Johansen and Ulla Riis 2003 p. 6 Projects of the Department Meteorology (MET) p. 11 Aeroelastic Design (AED) p. 30 Wind Turbines (VIM) p. 36 Wind Energy Systems (VES) p. 41 Test and Measurements (TEM) p. 53 Sparkær Blade Test

177

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

178

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

state. March 28, 2014 Renewables Portfolio Goal Utah enacted ''The Energy Resource and Carbon Emission Reduction Initiative'' (http:le.utah.gov2008billssbillenr...

179

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

180

2010 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Camden County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

182

Tyrrell County- Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

183

Hyde County- Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

184

Watauga County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

185

BP Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance DocumentsOperations |BPPurui NewBP Wind

186

Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision Addthis

187

Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows -Vision Wind Vision

188

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LED BriefWind Energy

189

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar (07) Wind FarmND

190

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:Wind Farm Jump to:

191

Perceived Socioeconomic Impacts of Wind Energy in West Texas  

E-Print Network [OSTI]

Wind power is a fast growing alternative energy source. Since 2000, wind energy capacity has increased 24 percent per year with Texas leading the U.S. in installed wind turbine capacity. Most socioeconomic research in wind energy has focused...

Persons, Nicole D.

2010-07-14T23:59:59.000Z

192

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Broader source: Energy.gov (indexed) [DOE]

5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

193

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

to International Journal of Hydrogen Energy (November 2005).0528 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

194

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Portfolio Standard As part of the Oregon Renewable Energy Act of 2007 (http:www.leg.state.or.us07regmeaspdfsb0800.dirsb0838.en.pdf Senate Bill 838), the state of...

195

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyI Wind

196

Wind Energy and Economic Development in Nebraska  

SciTech Connect (OSTI)

This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

Lantz, E.

2009-06-01T23:59:59.000Z

197

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.  

E-Print Network [OSTI]

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy. Wind's variability does increase the day-to-day and minute-to- minute operating costs of a utility system because the wind variations do affect the operation of other plants. But investigations by utility

Massachusetts at Amherst, University of

198

Mid-Atlantic Regional Wind Energy Institute  

SciTech Connect (OSTI)

As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

Courtney Lane

2011-12-20T23:59:59.000Z

199

Manzana Winds | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan, Kansas: Energy ResourcesManzana Winds

200

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPowerSohamBG Jump Place:

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Minster Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co LtdInformationMidwestMinster Wind Jump to:

202

National Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9InformationCenter Jump to:Wind

203

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LED BriefWind EnergyiNEMI

204

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LED BriefWind EnergyiNEMIDutch

205

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LED BriefWind

206

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Windwhite LED BriefWindNumerical

207

GL Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGS Home > GroupsGL Wind

208

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

209

Establishing a Comprehensive Wind Energy Program  

SciTech Connect (OSTI)

This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

Fleeter, Sanford [Purdue University

2012-09-30T23:59:59.000Z

210

Altech Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom EnergyEnergy Wind Farm Jump

211

Prairie Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCubePracticalPower,Wind Energy

212

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

konomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Wiser, Ryan

2013-01-01T23:59:59.000Z

213

Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)  

SciTech Connect (OSTI)

This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

Not Available

2012-04-01T23:59:59.000Z

214

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind...

215

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

216

U.S. Department of Energy Hydrogen Program  

E-Print Network [OSTI]

such as clean coal, nuclear energy, solar photovoltaics, and wind energy. Energy Security The increasing demand

217

Overview of Existing Wind Energy Ordinances  

Broader source: Energy.gov [DOE]

The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances.

218

Carteret County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process...

219

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and support innovative offshore installations for commercial deployment by 2017. Offshore wind is a large, untapped energy resource, with the potential to generate 4,000 gigawatts...

220

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar and Wind Energy Equipment Exemption  

Broader source: Energy.gov [DOE]

In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then...

222

Renewable Energy RFPs: Solicitation Response and Wind Contract Prices  

E-Print Network [OSTI]

Energy RFPs: Solicitation Response and Wind Contract Pricesenergy capacity (especially wind). Though detailed information on bid prices

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

223

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

224

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

in each of the wind energy markets around the globe. Alsoin each of the wind energy markets around the globe. Alsoprice of wind energy in wholesale markets. 13 3.1 Historical

Lantz, Eric

2014-01-01T23:59:59.000Z

225

Hydrogen Turbines | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy andAction CenterHumanHumanHydrogen

226

Hydrogen Delivery | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,HowHowScienceHydrogen

227

Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration  

SciTech Connect (OSTI)

The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

2009-03-01T23:59:59.000Z

228

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production for Energy Storage & Transportation Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant Final Solar and Wind H2 Report EPAct 812.doc...

229

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind Energy Center Jump to:

230

HTH Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form.Guizhou New Material DevHGEHTH Wind Energy

231

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form.Guizhou New MaterialHan Wind Energy

232

Suzlon Wind Energy Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation, search Name:STS JumpSuzlon EnergyWind Energy

233

Illinois Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI SolarIdanha, Oregon:IkeIllinois River EnergyWind

234

Upcoming Funding Opportunity to Develop and Field Test Wind Energy...  

Energy Savers [EERE]

and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable source of energy for communities throughout...

235

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Catalyst Development Water and Thermal Management Economic Analysis of PEM Fuel Cell Systems #12; Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12

236

Wind Energy Education and Training Programs (Postcard)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

Not Available

2012-07-01T23:59:59.000Z

237

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

238

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

239

IEA Wind Energy Annual Report 2000  

SciTech Connect (OSTI)

The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

Not Available

2001-05-01T23:59:59.000Z

240

The Solar Wind Charge-Exchange Production Factor for Hydrogen  

E-Print Network [OSTI]

The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z

242

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

U.S. Department of Energy (Wind and Hydropower Technologiesand Renewable Energy (Wind & Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

243

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

and Renewable Energy (Wind & Hydropower TechnologiesU.S. Department of Energy (Wind and Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

244

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning  

E-Print Network [OSTI]

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning J. Badger, N.G. Mortensen, J.C. Hansen Wind Energy Department Risø National Laboratory Great Wall World Renewable Energy Forum Beijing, 23-27 October 2006 #12;Wind Farm Planning National Wind Atlas Environmental Atlases Maps

245

Contract DE-AC36-83CH10093 Hydrogen Energy 1  

E-Print Network [OSTI]

Hydrogen, as an energy carrier, is anticipated to join electricity to become the foundation for a national sustainable energy system using renewable energy. Hydrogen can be made safe, environmentally friendly, and versatile, and it has many potential energy uses, including powering nonpolluting vehicles, heating homes and offices, and fueling aircraft. RESOURCE Energy from renewable sources--sunlight, wind, hydropower, and biomass--must be stored and transported so it is available when and where it is needed. Hydrogen potentially could be produced using renewable sources, then stored and used later in homes, factories, businesses, vehicles, and airplanes. Hydrogen can be produced from water using

246

Xcel Energy Wind and Biomass Generation Mandate  

Broader source: Energy.gov [DOE]

Minnesota law (Minn. Stat. 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

247

Distributed Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerlingEnergyDistributed Wind

248

Port Clair Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriot Wind IncAsiaPolls Home >

249

Minco Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilner Dam WindIII Jump to:OK

250

Mogul Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe Wind Farm Jump to: navigation,

251

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy Project

252

Ainsworth Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAiken Electric Coop IncAinsworth Wind

253

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane8031909°,Wales Wind Energy

254

EU Energy Wind Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatangGmbH Jump to:ENERCONEU Energy (Wind)

255

AMEC Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind Energy Jump to: navigation, search

256

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFORTechnologyGammaGary Wind

257

Oliver Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene GapWind Energy

258

Idaho Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtain EPAFormAdvisory GroupsWind

259

Wind energy and SAR wind mapping Charlotte Hasager(2) and merete christiansen(1)  

E-Print Network [OSTI]

offshore wind farms are operating and more are in construction. Thus the study is focussed on an area is ongoing, and the series of wind maps are used for investigation of offshore wind resources. In wind energy the siting of a wind farm is dependent upon reliable information about the wind climate within the area

260

20% Wind Energy By 2030 Meeting The Challenges Proceedings of...  

Office of Environmental Management (EM)

from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 U.S. Offshore Wind Manufacturing and Supply Chain Development Offshore Wind Projects...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hull Wind: A Community Gets Green | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hull Wind: A Community Gets Green Hull Wind: A Community Gets Green U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in...

262

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

263

Techno-Economic Analysis of Hydrogen Fuel Cell Systems Used as an Electricity Storage Technology in a Wind Farm with Large Amounts of Intermittent Energy.  

E-Print Network [OSTI]

??With the growing demand for electricity, renewable sources of energy have garnered a lot of support from all quarters. The problem with depending on these (more)

Sanghai, Yash

2013-01-01T23:59:59.000Z

264

Energy Department Announces New Regional Approach to Wind Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Initiates New Outreach Efforts to Address a Changing Wind Industry This map shows wind potential capacity for turbine hub heights at 140 meters. Mapping the Frontier of New...

265

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Broader source: Energy.gov (indexed) [DOE]

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

266

Deployment Barriers to Distributed Wind Energy: Workshop Report...  

Energy Savers [EERE]

Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010 Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010 This report...

267

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

Not Available

2012-10-01T23:59:59.000Z

268

NREL: Systems Engineering - 2015 Wind Energy Systems Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Systems Engineering Printable Version 2015 Wind Energy Systems Engineering Workshop The third NREL Wind Energy Systems Engineering Workshop took place on the 14th and 15th...

269

Chinas Wind Energy Development and Prediction.  

E-Print Network [OSTI]

??This thesis focuses on Chinas wind energy development, focusing on data pertaining to effects of wind energy development on economic, environmental, and social issues. It (more)

Wallin, Micah R.

2010-01-01T23:59:59.000Z

270

Wind Energy Status and R&D Challenges  

SciTech Connect (OSTI)

A presentation made to the European Wind Energy Conference in Athens, Greece, February 27--March 2, 2006, on wind energy technology.

Parsons, B.

2006-03-01T23:59:59.000Z

271

Expanding Educational Opportunities for the Wind Energy Workforce...  

Energy Savers [EERE]

Expanding Educational Opportunities for the Wind Energy Workforce Expanding Educational Opportunities for the Wind Energy Workforce April 11, 2013 - 12:00am Addthis The University...

272

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

273

Monitoring bat and bird fatalities at the Casselman Wind Energy...  

Broader source: Energy.gov (indexed) [DOE]

Monitoring bat and bird fatalities at the Casselman Wind Energy Center in Pennsylvania Monitoring bat and bird fatalities at the Casselman Wind Energy Center in Pennsylvania...

274

Managing R&D Risk in Renewable Energy  

E-Print Network [OSTI]

in solar, wind, geothermal and energy storage technologiesproducing energy from wind, solar, geothermal or certain$M) Energy Hydrogen Fuel Cells Storage Solar Wind Geothermal

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

275

WInd engineering and Renewable Energy laboratory Gnie Mcanique  

E-Print Network [OSTI]

WInd engineering and Renewable Energy laboratory Section de Génie Mécanique - Master Project - Wind tunnel investigations on wind farms Juliette Coëffé (juliette.coeffe@epfl.ch) ABSTRACT Wind energy efficient and optimized wind energy systems are needed. To this end, this master project, carried out

Lausanne, Ecole Polytechnique Fédérale de

276

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY  

E-Print Network [OSTI]

A COOLING SYSTEM FOR BUIDINGS USING WIND ENERGY Hamid Daiyan Islamic Azad University - Semnan in dray land, and only uses wind energy for conditioning. It technologies date back over 1000 years. Wind system, Wind energy, Temperature Fig.1 Wind tower of Doulat-Abad garden of Yazd with it's altitude is 33

277

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN  

E-Print Network [OSTI]

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

Pielke, Roger A.

278

Ris-R-1479(EN) Satellite information for wind energy  

E-Print Network [OSTI]

wind power potential. Scatterometer wind data are observed ~ twice per day, whereas SAR onlyRisø-R-1479(EN) Satellite information for wind energy applications Morten Nielsen, Poul Astrup Title: Satellite information for wind energy applications Department: Wind Energy Department Risø-R-1479

279

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailing40 6.2 20% Wind Energy: Wind Deployment System (and Renewable Energy (Wind & Hydropower Technologies

Mills, Andrew D.

2009-01-01T23:59:59.000Z

280

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy. Wiser, R. ; Lantz,Economics of Wind Energy. Renewable and Sustainable EnergyGolden, CO: National Renewable Energy Laboratory. Carbon

Lantz, Eric

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mountain Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyI Wind Farm JumpIIIkW

282

Mountain Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyI Wind Farm

283

Wind energy curriculum development at GWU  

SciTech Connect (OSTI)

A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.

Hsu, Stephen M [GWU

2013-06-08T23:59:59.000Z

284

2011 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

285

Wind Energy Guide for County Commissioners  

SciTech Connect (OSTI)

One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

Costanti, M.

2006-10-01T23:59:59.000Z

286

Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation...

287

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

288

Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.  

E-Print Network [OSTI]

??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind (more)

Pervez, Md Nahid

2013-01-01T23:59:59.000Z

289

NREL: Systems Engineering - 2010 Wind Energy Systems Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Wind Energy Systems Engineering Workshop The 1st NREL Wind Energy Systems Engineering Workshop took place on December 14, 2010, at the National Wind Technology Center (NWTC). The...

290

Aleutian Pribilof Islands Wind Energy Feasibility Study  

SciTech Connect (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

291

Model Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

292

American Wind Energy Association Offshore WINDPOWER Conference...  

Broader source: Energy.gov (indexed) [DOE]

Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

293

Overview of Existing Wind Energy Ordinances  

SciTech Connect (OSTI)

Due to increased energy demand in the United States, rural communities with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to ensure that ordinances will be established to aid the development of safe facilities that will be embraced by the community. The purpose of this report is to educate and engage state and local governments, as well as policymakers, about existing large wind energy ordinances. These groups will have a collection of examples to utilize when they attempt to draft a new large wind energy ordinance in a town or county without existing ordinances.

Oteri, F.

2008-12-01T23:59:59.000Z

294

Pitt County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting...

295

WIND ENERGY Wind Energ. 2001; 4:173181 (DOI: 10.1002/we.54)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. 2001; 4:173­181 (DOI: 10.1002/we.54) Research Article Comparison of Geography, Indiana University, Bloomington, IN 47405, USA R. J. Barthelmie, Department of Wind Energy Wiley & Sons, Ltd. Introduction With the announcement of plans to develop offshore wind energy in many

Pryor, Sara C.

296

European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting  

E-Print Network [OSTI]

European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

Paris-Sud XI, Université de

297

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy  

E-Print Network [OSTI]

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy Yan. As a result, many IDC operators have started using renewable energy, e.g., wind power, to power their data centers. Unfortunately, the utilization of wind energy has stayed at a low ratio due to the intermittent

298

National Hydrogen Energy Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergyDesign andNationalHydrogen

299

Air Liquide Hydrogen Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAiken Electric CoopCooling: AirHydrogen

300

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Cost of Energy From U.S. Wind Power Projects. PresentationTrust. (2008). Offshore Wind Power: Big Challenge, BigAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Lantz, Eric

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Wind Energy Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWind EnergyEnergyWind Energy

302

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

303

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song  

E-Print Network [OSTI]

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent Accepted 24 August 2009 Available online 22 September 2009 Keywords: Wind farm Wind turbine Layout design Optimization Evolutionary algorithms Operations research a b s t r a c t Wind is one of the most promising

Kusiak, Andrew

304

Nancy Rader, Executive Director California Wind Energy Association  

E-Print Network [OSTI]

Nancy Rader, Executive Director California Wind Energy Association Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities California Wind Energy Association Public Webinar Wind Energy Development 2008 CEC Research "Roadmap" on Impact Assessment Methods 2008 CEC PIER RFP 2009

305

Tools supporting wind energy trade in deregulated markets  

E-Print Network [OSTI]

Tools supporting wind energy trade in deregulated markets ´Ulfar Linnet Kongens Lyngby 2005 IMM.imm.dtu.dk IMM-THESIS: ISSN 0909-3192 #12;Abstract A large share of the wind energy produced in Scandinavia in a fine, called regulation cost. As wind energy comes from an uncontrollable energy source - the wind

306

Tools supporting wind energy trade in deregulated markets  

E-Print Network [OSTI]

Tools supporting wind energy trade in deregulated markets ?? Ulfar Linnet Kongens Lyngby 2005 IMM.imm.dtu.dk IMM­THESIS: ISSN 0909­3192 #12; Abstract A large share of the wind energy produced in Scandinavia in a fine, called regulation cost. As wind energy comes from an uncontrollable energy source ­ the wind

307

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network [OSTI]

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Patrick Slane

2008-11-12T23:59:59.000Z

308

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network [OSTI]

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Slane, Patrick

2008-01-01T23:59:59.000Z

309

Utilization of Wind Energy at High Altitude  

E-Print Network [OSTI]

Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

310

Chemical Hydrogen Storage R & D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient...

311

Cape Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV JumpBraselcoCMNACangnan Gelin WindWind

312

Wind Turbine Tribology Seminar | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06 WindofWind

313

Hydrogen-based electrochemical energy storage  

DOE Patents [OSTI]

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

Simpson, Lin Jay

2013-08-06T23:59:59.000Z

314

Ris Energy Report 5 Wind 2 In the past 20 years wind energy has proved itself as a  

E-Print Network [OSTI]

Risø Energy Report 5 Wind 2 6.1 Status In the past 20 years wind energy has proved itself all these achievements, wind energy remains on the fringes of power generation. For people working ignorance and emo- tional opposition. Wind energy is far from having been proved to lay people, large

315

Expedited Permitting of Grid-Scale Wind Energy Development (Maine)  

Broader source: Energy.gov [DOE]

Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in certain designated locations, known as expedited...

316

Assessment of Offshore Wind Energy Resources for the United States...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

317

An exploration of wind energy and wind turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,AnAn Exploration of Wind Energy and

318

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

y d r o g e n Energy Stations New York State Energy Researchin an effort led by the New York State Energy Research andNYSERDA) (2005), New York Hydrogen Energy Roadmap, NYSERDA

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

319

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation  

E-Print Network [OSTI]

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

Kammen, Daniel M.

320

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

322

Energy Independence for North America - Transition to the Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Energy Independence for North America - Transition to the Hydrogen Economy Energy Independence for North America - Transition to the Hydrogen Economy 2003 DEER Conference...

323

Cedar Point Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind FarmPoint Wind

324

Cedar Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek WindRidge Wind Farm

325

Moraine Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine II Wind Farm Jump to:Wind

326

Performance Indicators of Wind Energy Production  

E-Print Network [OSTI]

Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

D'Amico, G; Prattico, F

2015-01-01T23:59:59.000Z

327

Cedar Hills Wind Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind Farm IIFacility

328

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana Wind Resources WindTurbine-icon.png

329

Energy optimization of Hydrogen production from biomass  

E-Print Network [OSTI]

of energy dates back to 1820 when William Cecil proposed the idea of replacing steam engines by hydrogen based ones (Cecil, 1820). The use of hydrogen would also overcome some disadvantages of the steam engine Chemical Engineering Department. Carnegie Mellon University Pittsburgh PA 15213 Abstract

Grossmann, Ignacio E.

330

THE DANISH CONSORTIUM FOR WIND ENERGY RESEARCH Lars Landberg1  

E-Print Network [OSTI]

THE DANISH CONSORTIUM FOR WIND ENERGY RESEARCH Lars Landberg1 and Peter Hauge Madsen2 1 Risø National Laboratory, Wind Energy Department, DK-4000 Roskilde, Denmark; lars.landberg@risoe.dk 2 Siemens Wind Power, DK-7330 Brande, Denmark Abstract The Danish Wind Energy Research Consortium

331

NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

Not Available

2010-11-01T23:59:59.000Z

332

Strengthening America's Energy Security with Offshore Wind (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

Not Available

2012-02-01T23:59:59.000Z

333

Camp Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergyCameroon: WindCamp

334

Assessment of methods for hydrogen production using concentrated solar energy  

SciTech Connect (OSTI)

The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

Glatzmaier, G. [Peak Design, Evergreen, CO (United States); Blake, D. [National Renewable Energy Lab., Golden, CO (United States); Showalter, S. [Sandia National Lab., Albuquerque, NM (United States)

1998-01-01T23:59:59.000Z

335

Wind Energy Stakeholder Outreach and Education  

SciTech Connect (OSTI)

Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorados 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&As efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

2006-07-27T23:59:59.000Z

336

New England Wind Energy Education Project (NEWEEP)  

SciTech Connect (OSTI)

Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

2012-04-25T23:59:59.000Z

337

USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by  

E-Print Network [OSTI]

USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

338

Panel 4, Hydrogen Energy Storage Policy Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

339

New Report: Integrating Variable Wind Energy into the Grid |...  

Broader source: Energy.gov (indexed) [DOE]

Report: Integrating Variable Wind Energy into the Grid New Report: Integrating Variable Wind Energy into the Grid December 19, 2011 - 2:00pm Addthis The Energy Department and...

340

NREL: Wind Research - U.S. Department of Energy Wind Program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy Wind Program Announces New Round of Funding for 2016 Collegiate Wind Competition October 30, 2014 The U.S. Department of Energy's (DOE's) National...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Minnesota Wind Share Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilnerMinn-DakotaShare Wind

342

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy Information 2) Jump to:StereoscopyWind

343

Wind Power Partners '94 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector Wind energy

344

American Wind Energy Association Wind Energy Finance and Investment Seminar  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy| Department of Energy|

345

Wind Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareers »BatteriesVehiclesAboutMayEmissionsNews »Wind

346

Wind Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWind Program As a follow up to the

347

Rockland Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It is

348

Rollins Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It isRockwall,SectorIA) Jump

349

Scituate Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA Jump to:ScheringScituate Wind Jump to:

350

Danielson Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at NorthDaly International UK

351

Pacific Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT ResearchPacific Wind Facility

352

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 SectorWind forturbine:

353

Wiota Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County,WindspireLocationWinslowWiota Wind

354

Fairhaven Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-WellValley45. ItFairhaven Wind

355

Wind Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification Project AtOpenLabs Jump to:Wind Power

356

Harbor Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy |Hammerfest StromHarbor Wind

357

Kahuku Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview JumpJessi3bl'sJustin,KDOTKaheawa Wind

358

Kawailoa Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverviewKanematsuKas Farms Wind Farm Jump to:Jump

359

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Airjoin <Nacimiento,View GeothermalWinds

360

Hydrogen energy systems studies. Final technical report  

SciTech Connect (OSTI)

The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

1996-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wind Vision Presentation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind

362

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin: EnergyEdison,Wind EnergyWind Resources

363

Cameron Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergy

364

Ris National Laboratory DTU Wind Energy Department  

E-Print Network [OSTI]

wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

365

Wind energy resource atlas. Volume 4. The Northeast region  

SciTech Connect (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-09-01T23:59:59.000Z

366

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system, in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

367

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

and Renewable Energy (Wind & Hydropower Technologiesfor Understanding Public Perceptions of Wind Energy.Wind Energy. 8(2): 125 - 139. Durbin, J. and Watson, G. S. (

Hoen, Ben

2010-01-01T23:59:59.000Z

368

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

369

Massachusetts Wind Energy Predevelopment Support Feasibility Study for Marblehead, Massachusetts  

E-Print Network [OSTI]

Massachusetts Wind Energy Predevelopment Support Program & Feasibility Study for Marblehead.ceere.org #12;Wind Energy Predevelopment Support Program ABSTRACT The Renewable Energy Research Lab (RERL in performing the preliminary steps leading toward the implementation of a wind energy project. RERL has

Massachusetts at Amherst, University of

370

International Collaboration on Offshore Wind Energy Under IEA Annex XXIII  

SciTech Connect (OSTI)

This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

Musial, W.; Butterfield, S.; Lemming, J.

2005-11-01T23:59:59.000Z

371

The Potential for Wind Energy in Atlantic Canada  

E-Print Network [OSTI]

The Potential for Wind Energy in Atlantic Canada Larry Hughes and Sandy Scott Whale Lake Research World Renewable Energy Congress, Reading, September 1992. #12;Hughes/Scott: Wind Energy in Atlantic Canada 1 The Potential for Wind Energy in Atlantic Canada Abstract Canadians are among the highest per

Hughes, Larry

372

Contributed Paper Effects of Wind Energy Development on Nesting  

E-Print Network [OSTI]

Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

Sandercock, Brett K.

373

Avian interactions with wind energy facilities: A summary  

SciTech Connect (OSTI)

Currently, wind energy plants have been constructed or plans are being developed for projects in at least 13 states within the United States, also Canada, Sweden, Denmark, Germany, Netherlands, United Kingdom, Spain and Scotland (EPRI 1994, Winkelman 1994). Approximately, 16,000 wind turbines currently operate in California, making this area the largest concentration of wind energy development in the world. Notwithstanding its positive social values, wind energy has been shown to cause avian mortalities. Since the 1970`s many studies have been done to understand the interaction between wind energy development and birds. However our knowledge and understanding of bird interactions with wind energy development is incomplete.

Colson, E.W. [Colson & Associates, Alamo, CA (United States)

1995-12-31T23:59:59.000Z

374

Wind turbines application for energy savings in Gas transportation system.  

E-Print Network [OSTI]

?? The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the (more)

Mingaleeva, Renata

2014-01-01T23:59:59.000Z

375

Solar and Wind Energy Resource Assessment Programme's Renewable...  

Open Energy Info (EERE)

Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer...

376

The economic value of wind energy  

SciTech Connect (OSTI)

Today's wholesale electricity market passes intermittency costs to the ratepayer in the form of increased overall system cost, a hidden subsidy. Market managers need a competition that correctly allocates cost and provides consumers with the lowest price. One solution is for buyers to contract wind farms to provide energy on demand. (author)

Pavlak, Alex

2008-10-15T23:59:59.000Z

377

EWEC 2006 Wind Energy Conference and Exhibition Turbine Wake Model for Wind Resource Software  

E-Print Network [OSTI]

EWEC 2006 Wind Energy Conference and Exhibition 1 Turbine Wake Model for Wind Resource Software Ole) AT: #12;EWEC 2006 Wind Energy Conference and Exhibition 2 21 2 0TT C U= (1) 0 0(1 )wU a U= - (2); 1.5 0.75 AR Aw0 U0 Uw0 T #12;EWEC 2006 Wind Energy Conference and Exhibition 3 ( )2 0 1 ( , ) 1

378

Wind Gallery | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department of EnergyisWilliamForecastingGallery

379

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

SciTech Connect (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

380

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

advanced fuel cell and hydrogen technologies pave the way for the adoption of cleaner fuels and more efficient energy storage in vehicles and buildings. Explore EERE's hydrogen and...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Department Announces up to $4 Million to Advance Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Delivery Technology Development Energy Department Announces up to 4 Million to Advance Hydrogen Delivery Technology Development November 15, 2013 - 12:00am Addthis The...

382

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network [OSTI]

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective wind year is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the wind year in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rckversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the Scientific Measurement and Evaluation Programme (WMEP), which accompanies the 250 MW Wind project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

383

Wind Direct Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardale TaskEnergy LtdWhiteWindWind

384

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriot Wind IncAsia Wind Turbines

385

Wind Manufacturing Facilities | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 WindWind

386

Wind Turbine Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars toWind» Wind

387

Casper Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case WesternCasper Wind Farm

388

Cassia Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case WesternCasperCassia Wind

389

Cedar Rapids Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind FarmPoint

390

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont Vista CapitalMontanaMontana Wind

391

Moraine II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine II Wind Farm Jump to:

392

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbey JumpWind Farm

393

San Jacinto Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector Wind energyFarms

394

Story City Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy InformationStony Creek WindStorrs,Wind

395

CWEX (Crop/Wind-Energy Experiment): Measurements of the interaction between crop agriculture and wind power.  

E-Print Network [OSTI]

??The current expansion of wind farms in the U.S. Midwest promotes an alternative renewable energy portfolio to conventional energy sources derived from fossil fuels. The (more)

Rajewski, Daniel Andrew

2013-01-01T23:59:59.000Z

396

Model Ordinance for Siting of Wind-Energy Systems  

Broader source: Energy.gov [DOE]

In 2009, the South Dakota Public Utilities Commission (PUC) created a [http://puc.sd.gov/commission/twg/WindEnergyOrdinance.pdf model ordinance] for siting wind-energy systems. This nine-page model...

397

Distributed Wind - Economical, Clean Energy for Industrial Facilities  

E-Print Network [OSTI]

Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new...

Trapanese, A.; James, F.

2011-01-01T23:59:59.000Z

398

Federal Wind Energy Assistance through NREL (Fact Sheet)  

SciTech Connect (OSTI)

NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

Not Available

2009-09-01T23:59:59.000Z

399

Town of Kill Devil Hills- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

400

Tuning the plasmon energy of Palladium-Hydrogen systems by varying the Hydrogen concentration  

E-Print Network [OSTI]

Tuning the plasmon energy of Palladium-Hydrogen systems by varying the Hydrogen concentration V M of the resonance energy on the hydrogen concentration is roughly similar to that in bulk. PACS numbers: 71.20.Be on hydrogen uptake used in Reference [8] seems well grounded [10], there is no theoretical support for its

Muiño, Ricardo Díez

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Brown County Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockwayBrophy OccurrenceWind

402

Chamberlain Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CERChai Energy

403

Entegrity Wind Systems Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy SectorEnertechEntegrity Wind

404

Invenergy Wind LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewable Energy CouncilWind LLC Jump to:

405

Saturation wind power potential and its implications for wind energy  

E-Print Network [OSTI]

Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical. As the number of wind turbines increases over large geographic regions, power extraction first increases the number of wind turbines over a large geographic region, indepen- dent of societal, environmental

406

Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce  

SciTech Connect (OSTI)

This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

2009-08-01T23:59:59.000Z

407

Rural Communities Benefit from Wind Energy's Continued Success  

Broader source: Energy.gov [DOE]

John Stulp, Colorado Interbasin Compact Committee chairman, discusses how wind energy benefits rural communities, farms, and ranches.

408

Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

2013-06-01T23:59:59.000Z

409

Career Map: Wind Technician | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents Heal thePrepared for Energy Secretary SamuelresearchTwo wind

410

Camp Grove Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergyCameroon: EnergyGrove

411

America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced Biofuels |National Wind Technology Center - Colorado 1

412

American Wind Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced Biofuels |National Wind Technology Center -1 of 9

413

Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier  

E-Print Network [OSTI]

an energy carrier, Hydrogen Energy Progress XI, Proceedingsof the 11th World Hydrogen Energy Conference, Stuttgart,Strategies For Developing Hydrogen Energy Systems With CO 2

Ogden, Joan M; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

2005-01-01T23:59:59.000Z

414

TECHNICAL AND ECONOMIC ASSESSMENT OF TRANSITION STRATEGIES TOWARD WIDESPREAD USE OF HYDROGEN AS AN ENERGY CARRIER  

E-Print Network [OSTI]

an energy carrier, Hydrogen Energy Progress XI, Proceedingsof the 11th World Hydrogen Energy Conference, Stuttgart,Strategies For Developing Hydrogen Energy Systems With CO 2

Ogden, J; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

2005-01-01T23:59:59.000Z

415

Hydrogen Ventures | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place:Status

416

Wind energy calculated from SAR and scatterometer satellite data  

E-Print Network [OSTI]

. · Offshore wind resources estimated from SAR · On WASP · Wind indexing based on scatterometer · Wake effects footprint 62 m footprint Wind field maps from SAR are valid for 10 m height #12;7 Slide no. 62 m 10 m Upwind1 Slide no. 4 Wind energy calculated from SAR and scatterometer satellite data Charlotte Bay

417

Wind Energy Learning Curves for Reference in Expert Elicitations  

E-Print Network [OSTI]

Wind Energy Learning Curves for Reference in Expert Elicitations Sarah Mangels, Erin Baker. Abstract: This study presents future projections of wind energy capacity and cost based on historical data. The study will be used during wind- energy expert elicitations (formal interviews aimed to quantify

Mountziaris, T. J.

418

A New Approach To Wind Energy: Opportunities And Challenges  

E-Print Network [OSTI]

1 A New Approach To Wind Energy: Opportunities And Challenges John O. Dabiria , Julia R. Greera, Anchorage, AK 99508, USA Abstract. Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource--which is 20

Dabiri, John O.

419

Wind Energy Development and its Impacts on Wildlife  

E-Print Network [OSTI]

1 Wind Energy Development and its Impacts on Wildlife Carrie Lowe, M.S. Candidate UniversityOutline · Introduction · Wind energy in the U.S. I t ildlif· Impacts on wildlife · Guidelines · Future directions · References IntroductionIntroduction What is wind energy? · The process by which turbines convert the kinetic

Gray, Matthew

420

Ris-R-1239(EN) Wind Energy Department  

E-Print Network [OSTI]

Risø-R-1239(EN) Wind Energy Department: Scientific and Technical Progress 1999 - 2000 Birthe The activities of the Wind Energy Department fall within boundary layer meteorology, atmospheric turbulence-R-1239(EN) 3 Contents 1 Introduction 5 2 The Department of Wind Energy and Atmospheric Physics 5 3

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Management and Conservation Short-Term Impacts of Wind Energy  

E-Print Network [OSTI]

Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

Beck, Jeffrey L.

422

Assessing Desert Tortoise Survival and Reproduction at a Wind Energy  

E-Print Network [OSTI]

Assessing Desert Tortoise Survival and Reproduction at a Wind Energy Facility Near Palm Springs of their habitat are characterized by significant wind and solar energy potential. As a result, the species in the Mojave and Sonoran Deserts have preexisting wind energy facilities dating back over 25 years. One

423

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

424

Ris-R-1317(EN) Wind Energy Department  

E-Print Network [OSTI]

Risø-R-1317(EN) Wind Energy Department Annual Progress Report 2001 Birthe Skrumsager, Søren E The report describes the work of the Wind Energy Department at Risø National Laboratory in 2001. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate

425

2011-2012 Wind Energy Minor Form STUDENT INFORMATION  

E-Print Network [OSTI]

2011-2012 Wind Energy Minor Form STUDENT INFORMATION R Number (Current TTU Students Only Name First Name MI Choose 18 hours from the following list of courses in Wind Energy. All courses must be approved by a wind energy advisor and a grade of C or better achieved in each course. UNDERGRADUATE MINOR

Rock, Chris

426

A Vision for Systems Engineering Applied to Wind Energy (Presentation)  

SciTech Connect (OSTI)

This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

Felker, F.; Dykes, K.

2015-01-01T23:59:59.000Z

427

2006 European Wind Energy Conference 27th February-2nd  

E-Print Network [OSTI]

2006 European Wind Energy Conference 27th February-2nd March, Athens. Hybrid System Performance Wind Energy Conference 27th February-2nd March, Athens. 1/9 1 Introduction Uncertain and often, but not always, wind energy input as a means to reduce fuel consumption. There may be an element of storage

428

Wind Energy Applications of Unified and Dynamic Turbulence Models  

E-Print Network [OSTI]

Wind Energy Applications of Unified and Dynamic Turbulence Models Stefan Heinz and Harish Gopalan applicable as a low cost alternative. 1 Introduction There is a growing interest in using wind energy suggests the possibility of providing 20% of the electricity in the U.S. by wind energy in 2030

Heinz, Stefan

429

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis  

E-Print Network [OSTI]

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis Elie Al-Ahmar1,2 , Mohamed El, induction generator, Discrete Wavelet Transform (DWT), failure diagnosis. I. Introduction Wind energy the condition of induction machines. Fig. 1. Worldwide growth of wind energy installed capacity [1]. 1 E. Al

Paris-Sud XI, Université de

430

Horn Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace, North Dakota:Hormann Energie undHorn

431

RSE Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia Jump to: navigation, searchRRB EnergyRSE

432

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertz sources andwind energy Partnership

433

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

434

Variables Affecting Economic Development of Wind Energy  

SciTech Connect (OSTI)

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

435

Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration  

SciTech Connect (OSTI)

New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

Rodney Frehlich

2012-10-30T23:59:59.000Z

436

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

Wiser, Ryan

2014-01-01T23:59:59.000Z

437

Wind Vision | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarm Growth Through the

438

Distributed Wind | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ Title StandardsEngineersExports | Department ofResearch

439

Bravo Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTI PFAN)Brasilia, Brazil:

440

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr Geothermal Project Jump0.8948212°,Electric,

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Auwahi Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SA Aurantia

442

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirect Energy Services Place:Information

443

Spearville Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt WindAssociation

444

Weatherford Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & Associates Jump to: navigation, searchWind

445

Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: NameGroup Place:ofWind

446

Dunlap Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind

447

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:WindHighlandis

448

Howard Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWould You

449

Offshore Wind Power USA | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1EnergyFederalaimsOffshore Wind Power

450

Campbell Hill Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergyCameroon:Campa AG

451

Sandia National Laboratories: Wind Energy Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWind Energy

452

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b NoIllinois: Energy ResourcesDediniDeepwater

453

Royal Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and ReadyEnergyRoyal Palm Estates is

454

Galactic Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGSGWPSCavern

455

Garnet Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFORTechnologyGamma

456

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage (3) Solar (3) Energy Sources (3) Renewables (3) Consumption (2) Energy Efficiency (2) Geothermal (2) Water (2) Wind (2) Bioenergy (1) Homes (1) Hydrogen (1) Hydrogen...

457

Characterizations of Hydrogen Energy Technologies  

SciTech Connect (OSTI)

In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a ''sit around the table'' discussion in others; The format was left to the discretion of the PI; A tour of the facility featuring, whenever possible, a demonstration of the process in operation; Detailed discussions of the questions sent to the PI and other topics; and Writing a report on the visit. This compilation presents the reports for all the site-visits held between February 1996 and July 2001, each written shortly after the visit. While nothing has been changed in the actual content of any of the reports, reformatting for uniformity did occur. In each report, where the questions and their respective answers are discussed, the questions are shown in bold. In several cases, the PI chose to answer these questions in writing. When this occurs, the PI's answers are produced ''verbatim, in quotes, using a different font.'' Discussion of the questions, tour/demonstration, and anything else raised during the visit is presented in normal type. Comments that represent the opinion of Dr. Skolnik, including those added during the writing of the report are shown in italics. The reports compiled here, as stated, covers a period through July 2001. Since then, site-visits to various project locations and the accompanying evaluations have continued. Thus, a second compilation volume should follow in the fall of 2003. Following the compilation of reports, is an afterward that briefly discusses what has happened to some of the projects or project personnel since that particular report was written.

Energetics Inc

2003-04-01T23:59:59.000Z

458

Buffalo Bear Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower Jump to: navigation,Wind Farm

459

Bull Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepowerBull Creek Wind Farm Jump to:

460

Caprock Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Wind Farm Jumpphase

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carroll Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to: navigation, search Name

462

Central Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral

463

Century Wind Project Expansion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER es

464

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft RiverInformationColorado Wind

465

Combine Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbia Rural Elec Assn,(RedirectedWind

466

Affinity Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (CunniffAffinity Wind Farm

467

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestion deSolarWind

468

Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

469

Examining the benefits of renewable energy: wind power.  

E-Print Network [OSTI]

??This report provides a summary of the state of wind energy in the United States, the policy instruments used to encourage renewable energy and the (more)

Reker, Benjamin A.

2014-01-01T23:59:59.000Z

470

Proposed rule for Interconnection for Wind Energy and Other Alternativ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REGULATORY COMMISSION 18 CFR Part 35 (Docket No. RM05-4-000) Interconnection for Wind Energy and Other Alternative Technologies (January 24, 2005) AGENCY: Federal Energy...

471

What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy  

E-Print Network [OSTI]

What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy UCD-ITS-RR-04 95616 http://www.its.ucdavis.edu/publication.html #12;What Will Power the Hydrogen Economy? i from the UC Davis Hydrogen Pathways Program. I am appreciative of NRDC's timely support for this study

Kammen, Daniel M.

472

National Hydrogen Storage Project | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage » DOE R&D

473

Novel Hydrogen Carriers | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment511Laws & RequirementsHydrogen

474

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect (OSTI)

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

475

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

476

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

Wind Energy tics for Large Arrays Statis- of Wind Turbines (Wind Energy tics for Large Arrays Statis- of Wind Turbines (

Kay, J.

2009-01-01T23:59:59.000Z

477

Residual Energy Spectrum of Solar Wind Turbulence  

E-Print Network [OSTI]

It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 years of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of sigma_r = -0.19 and mean Alfven ratio of r_A = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cros...

Chen, C H K; Salem, C S; Maruca, B A

2013-01-01T23:59:59.000Z

478

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Techno-economic Analysis of Different Options for the Production of Hydrogen from Sunlight, Wind, and Biomass,

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

479

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

480

EA-1852: Cloud County Community College Wind Energy Project,...  

Energy Savers [EERE]

County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for...

Note: This page contains sample records for the topic "hydrogen wind energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Long Island Power Authority- Wind Energy Rebate Program  

Broader source: Energy.gov [DOE]

'''''Note: The program web site listed above is for the residential wind energy program; however, LIPA also offers [http://www.lipower.org/commercial/efficiency/wind.html incentives for non...

482

Analyses of Wind Energy Impact on WFEC System Operations: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory worked with the Western Farmers Electric Cooperative to analyze the impact of wind power from the Blue Canyon Wind Power Project on WFEC system operations.

Wan, Y.; Liao, J. R.

2006-03-01T23:59:59.000Z

483

Hydrogen as an Energy Carrier: Outlook for 2010, 2030, and 2050  

E-Print Network [OSTI]

of the 11th World Hydrogen Energy Conference, Stuttgart,Prospects for Building a Hydrogen Energy Infrastructure,Infrastructure for a Fossil Hydrogen Energy System with CO 2

Ogden, Joan M

2004-01-01T23:59:59.000Z

484

TECHNICAL AND ECONOMIC ASSESSMENT OF TRANSITION STRATEGIES TOWARD WIDESPREAD USE OF HYDROGEN AS AN ENERGY CARRIER  

E-Print Network [OSTI]

Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,

Ogden, J; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

2005-01-01T23:59:59.000Z

485

Hydrogen as an Energy Carrier: Outlook for 2010, 2030, and 2050  

E-Print Network [OSTI]

International Journal of Hydrogen Energy, v. 23, No. 6,of the 11th World Hydrogen Energy Conference, Stuttgart,Prospects for Building a Hydrogen Energy Infrastructure,

Ogden, Joan M

2004-01-01T23:59:59.000Z

486

Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier  

E-Print Network [OSTI]

Strategies For Developing Hydrogen Energy Systems With CO 2International Journal of Hydrogen Energy, vol. 24, pp.Prospects for Building a Hydrogen Energy Infrastructure,

Ogden, Joan M; Yang, Christopher; Johnson, Nils; Ni, Jason; Lin, Zhenhong

2005-01-01T23:59:59.000Z

487

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network [OSTI]

2. Define reliability in hydrogen energy systems 3.metrics to value reliability in hydrogen energy systems 4.Specify hydrogen energy systems to evaluate 5. Develop

McCarthy, Ryan

2004-01-01T23:59:59.000Z

488

Tomorrows Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet  

E-Print Network [OSTI]

Chronicles the progress of hydrogen energy from a vision torange of information about hydrogen energy issues. This bookReview: Tomorrow's Energy: Hydrogen, Fuel Cells, and the

Mirza, Umar Karim

2002-01-01T23:59:59.000Z

489

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), New York Hydrogen Energy Roadmap, NYSERDA

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

490

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 709BProspects for building a hydrogen energy infrastructure,[1999. U.S. Department of Energy, Hydrogen, fuel cells and

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

491

Broken Bow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockway Hot SpringsBow Wind

492

Calverton Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind Energy Center Jump to:Calverton

493

Calwind Resources Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind Energy Center JumpCalwa,CEC

494

Century Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER esMidAmerican Energy

495

National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure  

E-Print Network [OSTI]

· Technoeconomic Analysis ­ Hydrogen from biomass via gasification and pyrolysis: 1994, 1997, 2000, 2004 ­ Hydrogen assessment (now in Biomass Program) ­ Keith Wipke: ADVISOR (now leading tech validation project) · Current ­ Life cycle assessment of wind/electrolysis: 2001, 2004 ­ Life cycle assessment of biomass gasification

496

Hydrogen Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogen Solar Ltd Jump

497

Midwest Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont: EnergyMidwest Renewable Energy

498

Wind Energy Resource Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department of EnergyisWilliam

499

Proceedings of the National Hydrogen Energy Roadmap Workshop...  

Broader source: Energy.gov (indexed) [DOE]

National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Summary of...

500

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network [OSTI]

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z