Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen transport membranes for dehydrogenation reactions  

DOE Patents [OSTI]

A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

Balachandran; Uthamalingam (Hinsdale, IL)

2008-02-12T23:59:59.000Z

2

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

3

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

4

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

5

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

6

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

Carl R. Evenson; Shane E. Roark

2006-03-31T23:59:59.000Z

7

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

2005-01-28T23:59:59.000Z

8

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

9

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

10

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

11

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

12

NETL: Gasification - Recovery Act: Scale-Up of Hydrogen Transport Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Eltron Research & Development Inc. Project Number: FC26-05NT42469 Project Description The Eltron Hydrogen Transport Membrane (HTM) technology uses composite metal alloy materials to separate H2 from coal-derived syngas (a mixture of H2, CO, CO2, and steam). Carbon dioxide on the feed side of the membrane remains at high pressure and in a concentrated form suitable for capture and re-use or storage. The Eltron HTM system is an enabling technology for the production of high purity H2 and the capture of CO2 at high pressure that is applicable to future integrated gasification combined cycle (IGCC) and central station H2 production plants. These novel membranes have an operating temperature of 280 to 440 degrees Celsius (°C), which is well-matched with emerging coal gas cleaning technologies and has the potential to significantly improve the overall efficiency and process economics for future gasification-based power, fuels, and chemical production plants. Eltron's membranes can withstand differential pressures of up to 1,000 pounds per square inch gauge (psig) without structural failure, allowing for successful integration into advanced, high-pressure coal gasification plants.

13

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

During this quarter of the no cost extension a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase was prepared for sealing and permeability testing. Several different types of seals were developed and tested. In addition membrane surface stability was characterized.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-01-31T23:59:59.000Z

14

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect (OSTI)

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

15

Hydrogen-Selective Membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

16

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

17

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

18

Microporous Inorganic Membranes for Hydrogen Purification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microporous Microporous Inorganic Membranes for Hydrogen Purification Brian L. Bischoff, Roddie R. Judkins, and Timothy R. Armstrong Oak Ridge National Laboratory Presented at: DOE Workshop on Hydrogen Separations and Purification Technologies Arlington, Virginia September 8, 2004 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Hydrogen Separation Membranes * Non-Porous - Palladium based films - Ion transport membranes * Porous - Ordered microporous membranes (IUPAC Recommendations 2001), e.g. zeolite membranes - Microporous membranes 3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Microporous Membranes * IUPAC defines micropores as pores smaller than 2nm in diameter * Generally a microporous membrane is made by applying 1 to 3 thin layers to a porous support * Porous support can be ceramic or metallic

19

Robust Polymer Composite Membranes for Hydrogen Separation |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

20

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ionically Conducting Membranes for Hydrogen Production and Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IONICALLY CONDUCTING MEMBRANES IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells Eltron Research Inc. Boulder, Colorado www.eltronresearch.com Presented at DOE Hydrogen Separations Workshop Arlington, Virginia September 8, 2004 ELTRON RESEARCH INC. TO BE DISCUSSED * Membranes for Hydrogen Production - Compositions - Feedstocks - Performance - Key Technical Hurdles * Membranes for Hydrogen Separation - Compositions - Ex Situ vs. In Situ WGS - Performance - Key Technical Hurdles ELTRON RESEARCH INC. OVERALL SCHEME FOR CONVERTING FEEDSTOCK TO HYDROGEN WITH SIMULTANEOUS CARBON DIOXIDE SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H 2 WGS H 2 O CO 2 /H 2 1618afs.dsf H 2 CO 2 ELTRON RESEARCH INC. INCENTIVES FOR OXYGEN TRANSPORT MEMBRANES FOR

22

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

23

Hydrogen purifier module with membrane support  

DOE Patents [OSTI]

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

2012-07-24T23:59:59.000Z

24

Novel, Ceramic Membrane System For Hydrogen Separation  

SciTech Connect (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

25

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

26

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect (OSTI)

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

27

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

28

Hydrogen Selective Exfoliated Zeolite Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Selective Exfoliated Zeolite Hydrogen Selective Exfoliated Zeolite Membranes Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic

29

Webinar: Hydrogen Production by Polymer Electrolyte Membrane...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotligh...

30

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

31

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

32

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

33

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

34

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

35

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

36

9 - Microporous silica membranes: fundamentals and applications in membrane reactors for hydrogen separation  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the research and development of membrane reactors, incorporating microporous silica-based membranes, specifically for hydrogen production. Microporous silica membranes are first introduced alongside a discussion of relevant gas transport mechanisms, membrane performance parameters, membrane reactor designs and membrane reactor performance metrics. This is followed by an in-depth analysis of the various research investigations where silica membrane reactors have been used to produce hydrogen and/or syngas from hydrocarbon reforming reactions. Of particular importance here is the hydrothermal instability of silica-based membranes at the required operating temperatures and so the chapter closes by presenting the future research trends and industrial design challenges and considerations of silica-based membrane reactors.

S. Smart; J. Beltramini; J.C. Diniz da Costa; S.P. Katikaneni; T. Pham

2013-01-01T23:59:59.000Z

37

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

38

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

39

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

40

IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND  

E-Print Network [OSTI]

operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells for Hydrogen Production ­ Compositions ­ Feedstocks ­ Performance ­ Key Technical Hurdles · Membranes

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oxygen Transport Membranes  

SciTech Connect (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

42

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-10-01T23:59:59.000Z

43

NETL: Hydrogen Selective Exfoliated Zeolite Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Selective Exfoliated Zeolite Membranes Hydrogen Selective Exfoliated Zeolite Membranes Project No.: DE-FE0001322 The University of Minnesota is developing a technically and economically viable membrane for carbon dioxide (CO2) separation from typical water-gas-shift (WGS) mixture feeds. The goal of this project is to further develop recently developed membrane technology based on exfoliated zeolite coatings as components for carbon capture in integrated gasification combined cycle plants. These membranes have the potential to contribute to carbon capture by high-temperature separation of hydrogen from CO2 and other gases present in shifted synthesis gas. Molecular sieve membrane for the pre-combustion capture of CO2. Molecular sieve membrane for the pre-combustion capture of CO2. Related Papers and Publications:

44

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

45

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

46

DOE Hydrogen Analysis Repository: Cost Analysis of Proton Exchange Membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Transportation Project Summary Full Title: Cost Analysis of Proton Exchange Membrane (PEM) Fuel Cell Systems for Transportation Project ID: 196 Principal Investigator: Eric Carlson Keywords: Fuel cells, fuel cell vehicles (FCV), transportation, costs Purpose Assess the cost of an 80 kW direct hydrogen fuel cell system relative to the DOE 2005 target of $125/kW. The system includes the fuel cell stack and balance-of-plant (BOP) components for water, thermal, and fuel management, but not hydrogen storage. Performer Principal Investigator: Eric Carlson Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140-2328 Telephone: 617-498-5903 Email: carlson.e@tiaxllc.com Additional Performers: P. Kopf, TIAX, LLC; J. Sinha, TIAX, LLC; S. Sriramulu, TIAX, LLC

47

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

48

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

49

Membrane separation advances in FE hydrogen program  

SciTech Connect (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

50

Hydrogen separation membrane on a porous substrate  

DOE Patents [OSTI]

A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

2011-06-14T23:59:59.000Z

51

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-11-01T23:59:59.000Z

52

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

53

Composite oxygen transport membrane  

DOE Patents [OSTI]

A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

Christie, Gervase Maxwell; Lane, Jonathan A.

2014-08-05T23:59:59.000Z

54

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-02-01T23:59:59.000Z

55

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

56

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-07-01T23:59:59.000Z

57

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

58

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

59

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-05-01T23:59:59.000Z

60

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

S. Bandopadhyay; T. Nithyanantham

2006-06-30T23:59:59.000Z

62

Membrane Transport Chloride Transport Across Vesicle and Cell  

E-Print Network [OSTI]

Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects the formation of an ion pair.[4a­g] Anion transport by purely electroneutral systems is still quite rare.[4j

Smith, Bradley D.

63

Oxygen Transport Ceramic Membranes Quarterly Report  

E-Print Network [OSTI]

/Reaction rates in Ion 21 Transport Membranes using Isotope Tracer and Transient Kinetic Techniques CONCLUSIONS 30Oxygen Transport Ceramic Membranes Quarterly Report January 2003 ­ March 2003 Principal Authors on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane

Eagar, Thomas W.

64

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

65

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-02-01T23:59:59.000Z

66

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

67

Costs of Storing and Transporting Hydrogen  

Broader source: Energy.gov [DOE]

An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

68

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

69

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

70

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

71

Development of mixed-conducting ceramic membranes for hydrogen separation.  

SciTech Connect (OSTI)

SrCeO{sub 3}- and BaCeO{sub 3}-based proton conductors have been prepared and their transport properties have been investigated by impedance spectroscopy in conjunction with open circuit voltage and water vapor evolution measurements. BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} exhibits the highest conductivity in a hydrogen-containing atmosphere; however, its electronic conductivity is not adequate for hydrogen separation in a nongalvanic mode. In an effort to enhance ambipolar conductivity and improve interfacial catalytic properties, BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} cermets have been fabricated into membranes. The effects of ambipolar conductivity, membrane thickness, and interfacial resistance on permeation rates have been investigated. In particular, the significance of interfacial resistance is emphasized.

Guan, J.

1998-05-18T23:59:59.000Z

72

Catalyst containing oxygen transport membrane  

SciTech Connect (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

73

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

74

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

75

Stable catalyst layers for hydrogen permeable composite membranes  

DOE Patents [OSTI]

The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

Way, J. Douglas; Wolden, Colin A

2014-01-07T23:59:59.000Z

76

NETL: Hydrogen Selective Exfoliated Zeolite Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Designing and Validating Ternay Pd Alloys for Optimum Sulfur/Carbon Resistance Designing and Validating Ternay Pd Alloys for Optimum Sulfur/Carbon Resistance Project No.: DE-FE0001181 Gas Permeation Cell and Test Stand Pall Corporation is developing an economically-viable hydrogen/carbon dioxide (H2/CO2) separation membrane system that would allow efficient capture of CO2 at high temperature and pressure from gasified coal in the presence of typical contaminants. Goals for the project include creating an advanced palladium alloy for optimum hydrogen separation performance using combinatorial material methods for high-throughput screening, testing, and characterization and demonstrating durability by long term testing of a pilot membrane module at a commercial coal gasification facility. The advantages of this technology are reduction of CO2 compression costs, lack of need for both upstream and downstream heat exchange and complex heat integration, and the potential for integration with water gas shift in a single compact membrane reactor system.

77

Anion Exchange Membranes - Transport/Conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fundamental understanding Fundamental understanding * Driving membranes towards applications Anion Exchange Membranes - Transport/Conductivity High Priority * A need for a standard/available AEM (similar to Nafion in PEMs) * Define standard experimental conditions and protocols * A need for much more fundamental studies in transport mechanisms and mechanical properties * A need to develop much more new AEMs with alternative chemistries (new cation and backbone chemistries) Fundamental Studies * TRANSPORT * Conductivity (pure OH - hard to measure) * Water content, λ * Diffusion coefficients, NMR * Drag coefficients * Transference * Solubility * Fundamental transport mechanisms for anion and water transport * Computational Modeling * MORPHOLOGY/CHEMISTRY * Vibrational Spectroscopy: FTIR, Raman

78

Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

79

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

80

Liners for ion transport membrane systems  

SciTech Connect (OSTI)

Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2010-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide  

SciTech Connect (OSTI)

The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that stea

Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

2008-05-31T23:59:59.000Z

82

ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel  

DOE Patents [OSTI]

The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

2013-04-02T23:59:59.000Z

83

Characterization of a plasma membrane zinc transporter in rat brain  

E-Print Network [OSTI]

Ireland Ltd. Keywords: Ion transport; Membrane vesicles; Excitotoxicity; Zinc homeostasis; TransitionCharacterization of a plasma membrane zinc transporter in rat brain Robert A. Colvin* Department transport in the brain. This report provides convincing evidence of a zinc transporter in plasma membrane

84

Oxy-combustion: Oxygen Transport Membrane Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

85

Hydrogen separation membranes - annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry.

Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-01-31T23:59:59.000Z

86

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Palladium Membrane Scale-up Palladium Membrane Scale-up for Hydrogen Separation Background Among the options being considered to establish greater U.S. independence from foreign energy sources is to increase the use of the nation's domestic coal reserves. The Department of Energy (DOE) is committed to supporting research and development of technologies for the reliable, efficient and environmentally friendly conversion of coal to hydrogen for utilization in advanced gasification-based electric power generation

87

Ion transport through cell membrane channels  

E-Print Network [OSTI]

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

88

Silica membranes for hydrogen separation from coal gas. Final report  

SciTech Connect (OSTI)

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

89

Hydrogen Ion and the Activation of Electrically Excitable Membranes  

Science Journals Connector (OSTI)

... excitable cells is rather confused1. Unless one postulates complete impermeability of the cell membrane to hydrogen ions, which is improbable, or active extrusion of ... ions, which is improbable, or active extrusion of hydrogen ions, for which there is no experimental evidence, one would expect to find a ...

W. G. S. STEPHENS

1969-11-08T23:59:59.000Z

90

Intracellular Hydrogen Transport in Ehrlich Ascites Tumor Cells  

Science Journals Connector (OSTI)

...Intracellular hydrogen transport...aerobic lactate production by malignant...MATERIALS AND METHODS Ehrlich ascites...a biuret method (14...Intracellular Hydrogen Transport...considerable lactate production, but failed...appreciable lactate production possess other...Borst, P. Hydrogen Transport...ed.), Methods of Enzymatic...

Edwin E. Gordon; Lars Ernster; and Gustav Dallner

1967-08-01T23:59:59.000Z

91

Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices  

SciTech Connect (OSTI)

Electrochemical hydrogen pumping using a high temperature (>100°C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO{sub 2}. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

Benicewicz, Brian

2014-02-26T23:59:59.000Z

92

Oxygen transport membrane system and method for transferring heat to catalytic/process reactors  

DOE Patents [OSTI]

A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

2014-01-07T23:59:59.000Z

93

Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1  

E-Print Network [OSTI]

1 Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1 , Jacek Mikisz2 , and Stanislaw various models of ion transport through cell membrane channels. Recent experimental data shows that sizes for the life of a cell. In particular, a fundamental phenomenon is a transport of ions through cell membranes

Miekisz, Jacek

94

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

SciTech Connect (OSTI)

This project is aimed at preparation of thin (1-10? m) membranes of a modified strontium ceramic material with improved hydrogen permeance on mesoporous substrates. The research work conducted in this reporting period was focused on the following three aspects: (1) preparation of thick proton-conducting ceramic membranes and synthesis of porous substrates as support for thin proton-conducting ceramic film, (2) setting up RF sputter deposition unit for deposition of thin ceramic films and performing deposition experiments with the sputter deposition unit, and (3) modeling hydrogen permeation through the proton-conducting ceramic membranes. Proton-conducting thulium doped strontium cerate membranes were reproducibly prepared by the citrate method. Mesoporous ceria membranes were fabricated by a sol-gel method. The membranes will be used as the substrate for coating thin strontium cerate films. A magnetron sputter deposition unit was set up and good quality thin metal alloy films were formed on the mesoporous substrates by an alternative deposition method with the sputter deposition unit. A theoretical model has been developed for hydrogen permeation through proton conducting ceramic membranes. This model can be used to quantitatively describe the hydrogen permeation data.

Jerry Y.S. Lin

2001-11-30T23:59:59.000Z

95

Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations  

SciTech Connect (OSTI)

Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

Way, J.; Wolden, Colin

2013-09-30T23:59:59.000Z

96

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

97

Modeling the Prospects for Hydrogen Powered Transportation Through 2100  

E-Print Network [OSTI]

Hydrogen fueled transportation has been proposed as a low carbon alternative to the current gasoline-powered

Sandoval, Reynaldo.

98

The influence of intercrystalline defects on hydrogen activity and transport in nickel  

SciTech Connect (OSTI)

The effect of high intercrystalline content on hydrogen activity and transport in nickel has been studied. The electroconcentration behavior of Ni has been determined in low concentration alkaline media with reference to the hydrogen evolution reaction (HER) by potentiostatic methods. The effect of structure on the Tafel parameters has been examined. Nanocrystalline Ni was found to exhibit enhanced electrocatalytic activity relative to cold worked, fine grained and fully annealed Ni electrodes. A supplementary investigation into the transport behavior of hydrogen in Ni was studied in order to determine hydrogen diffusivities and apparent concentrations as a function of intercrystalline content. Electrolytic charging of hydrogen was performed on Ni bi-electrodes in an electrochemical double cell. Detection of permeated hydrogen in Ni membranes of identical thickness is observed in the order: nanocrystalline, fine grained and single crystal structures. The apparent concentration of hydrogen determined from permeation transients is dramatically increased in nanocrystalline Ni.

Doyle, D.M.; Aust, K.T. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Palumbo, G. [Ontario Hydro Technologies, Toronto, Ontario (Canada)] [Ontario Hydro Technologies, Toronto, Ontario (Canada); El-Sherik, A.M.; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering] [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

1995-08-01T23:59:59.000Z

99

A Novel Membrane Reactor for Direct Hydrogen Production From Coal  

SciTech Connect (OSTI)

Gas Technology Institute has developed a novel concept of a membrane reactor closely coupled with a coal gasifier for direct extraction of hydrogen from coal-derived syngas. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under the coal gasification conditions. The best performing membranes were selected for preliminary reactor design and cost estimate. The overall economics of hydrogen production from this new process was assessed and compared with conventional hydrogen production technologies from coal. Several proton-conducting perovskite membranes based on the formulations of BCN (BaCe{sub 0.8}Nd{sub 0.2}O{sub 3-x}), BCY (BaCe{sub 0.8}Y{sub 0.2}O{sub 3-x}), SCE (Eu-doped SrCeO{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) were successfully tested in a new permeation unit at temperatures between 800 and 1040 C and pressures from 1 to 12 bars. The experimental data confirm that the hydrogen flux increases with increasing hydrogen partial pressure at the feed side. The highest hydrogen flux measured was 1.0 cc/min/cm{sup 2} (STP) for the SCTm membrane at 3 bars and 1040 C. The chemical stability of the perovskite membranes with respect to CO{sub 2} and H{sub 2}S can be improved by doping with Zr, as demonstrated from the TGA (Thermal Gravimetric Analysis) tests in this project. A conceptual design, using the measured hydrogen flux data and a modeling approach, for a 1000 tons-per-day (TPD) coal gasifier shows that a membrane module can be configured within a fluidized bed gasifier without a substantial increase of the gasifier dimensions. Flowsheet simulations show that the coal to hydrogen process employing the proposed membrane reactor concept can increase the hydrogen production efficiency by more than 50% compared to the conventional process. Preliminary economic analysis also shows a 30% cost reduction for the proposed membrane reactor process, assuming membrane materials meeting DOE's flux and cost target. Although this study shows that a membrane module can be configured within a fluidized bed gasifier, placing the membrane module outside the gasifier in a closely coupled way in terms of temperature and pressure can still offer the same performance advantage. This could also avoid the complicated fluid dynamics and heat transfer issues when the membrane module is installed inside the gasifier. Future work should be focused on improving the permeability and stability for the proton-conducting membranes, testing the membranes with real syngas from a gasifier and scaling up the membrane size.

Shain Doong; Estela Ong; Mike Atrosphenko; Francis Lau; Mike Roberts

2006-01-20T23:59:59.000Z

100

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect (OSTI)

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ionic (Proton) Transport Hydrogen Separation Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

102

Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer  

E-Print Network [OSTI]

not consume fossil fuels or pro- duce CO2 while producing highly pure hydrogen.1-10 Gaseous SO2 fedTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and Biological Systems Department, Albuquerque, New Mexico 87123, USA c Department of Materials Science

Weidner, John W.

103

Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports  

SciTech Connect (OSTI)

Thin and defect-free Pd–Cu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a Pd–Cu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the Pd–Cu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the Pd–Cu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense Pd–Cu composite layer with no visible defects. Cross-sectional views of the membrane showed that the Pd–Cu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

Lim, Hankwon; Oyama, S. Ted

2011-08-15T23:59:59.000Z

104

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-10-01T23:59:59.000Z

105

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-07-01T23:59:59.000Z

106

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2004-01-01T23:59:59.000Z

107

Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a,  

E-Print Network [OSTI]

Review Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a, , Stephen H 30 November 2011 Available online 8 December 2011 Keywords: Membrane protein structure Hydrogen bond Membrane protein dynamics Lipid­protein interactions Changes in inter-helical hydrogen bonding

White, Stephen

108

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

109

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reforming of Renewable Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) * U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris Energy Systems Division E-mail: balu@anl.gov * Work supported by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, Nov. 6, 2007. BILIWG Meeting, Nov. 6, 2007 2 Objective & Rationale Objective: Develop compact dense ceramic membrane reactors that enable the efficient and cost-effective production of hydrogen by reforming renewable liquid fuels using pure oxygen produced by water splitting and transported by an OTM. Rationale: Membrane technology provides the means to attack barriers to the

110

Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect (OSTI)

Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

2001-11-06T23:59:59.000Z

111

Permeation and Diffusion of Hydrogen Through Pd Membranes  

SciTech Connect (OSTI)

Hydrogen diffusion through Pd membranes has been measured under non-UHV conditions, i.e., the membranes are evacuated under non-UHV conditions. Despite this, the results indicate that bulk diffusion is the slow step and the diffusion constants agree with earlier workers results where UHV conditions obtained. The activation energy for H2 permeation in the dilute phase was determined from an Arrhenius plot over a series of temperatures from 423 to 503 K. The solubilities of H2 were determined over the same temperature range and from these data, the diffusion constants were determined.

Shanahan, K.L.

2003-01-29T23:59:59.000Z

112

HYDROGEN ISOTOPE RECOVERY USING PROTON EXCHANGE MEMBRANE ELECTROLYSIS OF WATER  

SciTech Connect (OSTI)

A critical component of tritium glovebox operations is the recovery of high value tritium from the water vapor in the glove box atmosphere. One proposed method to improve existing tritium recovery systems is to replace the disposable hot magnesium beds used to separate the hydrogen and oxygen in water with continuous use Proton Exchange Membrane Electrolyzers (PEMEs). This study examines radiation exposure to the membrane of a PEME and examines the sizing difference that would be needed if the electrolyzer were operated with a cathode water vapor feed instead of an anode liquid water feed.

Fox, E; Scott Greenway, S; Amy Ekechukwu, A

2007-08-27T23:59:59.000Z

113

Fabrication of catalyzed ion transport membrane systems  

DOE Patents [OSTI]

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

114

The supply security of hydrogen as transport fuel.  

E-Print Network [OSTI]

??The impact that hydrogen and fuel cell technology can have on the security of European transport fuel supply is addressed in this paper. This impact… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

115

Study of hydrogen isotopes super permeation through vanadium membrane on 'Prometheus' setup  

SciTech Connect (OSTI)

To develop the membrane pumping technology by means of superpermeable membranes at RFNC-VNIIEF in the 'Prometheus' setup, the experiments on superpermeation of hydrogen isotopes through metal membranes were carried out. The experimental results on superpermeation of thermal atoms of hydrogen isotopes including tritium through a cylindrical vanadium membrane are presented. The possibility of effective pumping, compression and recuperation of hydrogen isotopes by means of superpermeable membrane was demonstrated. The evaluation of membrane pumping rates and asymmetry degree of pure vanadium membrane was given. The work was performed under the ISTC-2854 project. (authors)

Musyaev, R. K.; Yukhimchuk, A. A.; Lebedev, B. S. [Russian Federal Nuclear Center-All-Russian Research Inst. of Experimental Physics RFNC-VNIIEF, 607188, Sarov, Nizhny Novgorod Region (Russian Federation); Busnyuk, A. O.; Notkin, M. E.; Samartsev, A. A.; Livshits, A. I. [St. Peterburg State Univ. of Telecommunications SUT, St. Peterburg (Russian Federation)

2008-07-15T23:59:59.000Z

116

Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants  

SciTech Connect (OSTI)

ITN Energy Systems, Inc. (ITN) and its partners, the Idaho National Engineering and Environmental Laboratory, Argonne National Laboratory, Nexant Consulting, LLC and Praxair, Inc. are developing composite membranes for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is pursuing a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into module fabrication designs; combining functionally-graded materials, monolithic module concept and thermal spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows for the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing techniques with low costs. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, are being assessed. This will result in an evaluation of the technical and economic feasibility of the proposed ICCM hydrogen separation approach for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of such plants. Of particular importance is that the proposed technology also results in a stream of pure carbon dioxide. This allows for the facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Schwartz, Michael

2001-11-06T23:59:59.000Z

117

Membranes for nanometer-scale mass fast transport  

DOE Patents [OSTI]

Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

2011-10-18T23:59:59.000Z

118

Advances in ion transport membrane technology for Syngas production  

Science Journals Connector (OSTI)

Abstract Ceramic, ion transport membranes for the production of Syngas (ITM Syngas) produce high pressure synthesis gas in a single unit operation from low pressure air and pre-reformed natural gas. Oxygen transport through ITM Syngas membranes occurs through a series of processes, including solid phase oxygen anion diffusion through the dense membrane and surface reactions on the air and reducing sides of the membrane. This paper focuses on the effect of adding porous layers to the syngas side or both sides of the membrane to increase the available surface area for the surface reactions. The highest fluxes are achieved by increasing the surface area on both sides of the membrane, indicating that both surface reactions are a significant resistance to oxygen transport.

C.F. Miller; Jack Chen; M.F. Carolan; E.P. Foster

2014-01-01T23:59:59.000Z

119

Low temperature thermal transport in partially perforated silicon nitride membranes.  

SciTech Connect (OSTI)

The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 {micro}m thick and 6 mm{sup 2} in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.

Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.; Divan, R.; Chang, C. L.; Downes, T. P.; Mcmahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

2009-05-04T23:59:59.000Z

120

Membrane porters of ATP-binding cassette transport systems are polyphyletic  

E-Print Network [OSTI]

in Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transport

Wang, Bin

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

122

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized  

E-Print Network [OSTI]

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane

Nerenberg, Robert

123

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

124

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

125

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

126

Structures for Three Membrane Transport Proteins Yield Functional Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structures for Three Membrane Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as channels or transporters-are the gatekeepers that control contact with the world outside the cell by catalyzing the flow of ions and molecules across cell membranes. Malfunctioning transport proteins can lead to cancer, inflammatory, and neurological diseases. Despite their importance in cell function and in a multitude of physiological processes such as sensing pain, there are still many unknowns about how they function. Recently, in an impressive series of three papers in Nature and Science, researchers at the Oregon Health and Science University delineated the structures of three transporter proteins, one of which had never before been characterized structurally in such detail. The structures were solved using ALS Beamlines 5.0.2, 8.2.1, and 8.2.2.

127

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

SciTech Connect (OSTI)

It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

2009-11-19T23:59:59.000Z

128

How the Membrane Protein AmtB Transports Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How the Membrane Protein AmtB Transports Ammonia Print How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a bacterial ammonia transporter (AmtB), determined by a team in the Stroud group from the University of California, San Francisco, it is now known that this family of transporters conducts ammonia by stripping off the proton from the ammonium (NH4+) cation and conducting the uncharged NH3 "gas."

129

Creation Of New Composite Materials For Hydrogen Energy Purposes. I. New Lines Of Membrane Production Technology  

Science Journals Connector (OSTI)

One of the main problems of hydrogen energy is separation and purification of hydrogen produced by various conversion methods from raw hydrocarbons. Carbon membranes can become ... and polymeric ones and enlarge ...

O. K. Alexeeva; M. M. Chelyak; A. A. Kotenko…

2008-01-01T23:59:59.000Z

130

Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton" on May 23, 2011.

131

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

132

Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cu-Pd Hydrogen Separation Membranes with Reduced Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance Opportunity This patent-pending technology, "Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance," consists of copper-palladium alloy compositions for hydrogen separation membranes that use less palladium and have a potential increase in hydrogen permeability and resistance to sulfur degradation compared to currently available copper-palladium membranes. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory. Overview NETL is working to help produce and deliver hydrogen from fossil fuels including coal in commercially applicable and environmentally

133

Engineering Development of Ceramic Membrane Reactor  

E-Print Network [OSTI]

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

134

Hydrogen Energy Storage for Grid and Transportation Services Workshop  

Broader source: Energy.gov [DOE]

View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 14–15, 2014, in Sacramento, California.

135

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

136

Membrane-based systems for carbon capture and hydrogen purification  

SciTech Connect (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

137

Nanostructured Silicon Membranes for Control of Molecular Transport  

SciTech Connect (OSTI)

A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure of the pores. Here, a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore-sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating.

Srijanto, Bernadeta R [ORNL] [ORNL; Retterer, Scott T [ORNL] [ORNL; Fowlkes, Jason Davidson [ORNL] [ORNL; Doktycz, Mitchel John [ORNL] [ORNL

2010-01-01T23:59:59.000Z

138

Durable pd-based alloy and hydrogen generation membrane thereof  

DOE Patents [OSTI]

A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

Benn, Raymond C. (Madison, CT); Opalka, Susanne M. (Glastonbury, CT); Vanderspurt, Thomas Henry (Glastonbury, CT)

2010-02-02T23:59:59.000Z

139

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

Science Journals Connector (OSTI)

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy ... Current status of ion exchange membranes for power generation from salinity gradients ...

Geoffrey M. Geise; Michael A. Hickner; Bruce E. Logan

2013-08-22T23:59:59.000Z

140

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network  

E-Print Network [OSTI]

emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anodeWater Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes

Fayer, Michael D.

142

Electrochemical control of ion transport through a mesoporous carbon membrane  

SciTech Connect (OSTI)

The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

Surwade, Sumedh P [ORNL] [ORNL; Chai, Songhai [ORNL] [ORNL; Choi, Jai-Pil [ORNL] [ORNL; Wang, Xiqing [ORNL] [ORNL; Lee, Jeseung [ORNL] [ORNL; Vlassiouk, Ivan V [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

143

Feed gas contaminant control in ion transport membrane systems  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

144

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect (OSTI)

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

145

Facilitated transport membrane hybrid systems for olefin purification  

SciTech Connect (OSTI)

A new membrane system has been developed by BP for refinery and chemical plant olefin purification and recovery. This facilitated transport system, coupled with distillation, offers lower capital and operating costs than conventional distillation alone. Initial results on lab scale hollow fiber devices indicate membrane flux ranging from 8.75 {times} 10{sup {minus}6} to 8 {times} 10{sup {minus}5} m{sup 3}/m{sup 2}/sec (2.5 to 23 scfd/ft{sub 2}) and selectivities from 150 to 300. Pilot plant experiments on propylene/propane and ethylene purge gas recovery over three to six months duration show membrane stability and product purity of 98.5% or greater using refinery grade propylene feed. Hybrid system optimization data for membranes and distillation indicate that using a side draw from the distillation tower provides advantages in terms of membrane area, purity of feed to the membrane, and low per-pass recovery coupled with high overall propylene recovery. Membrane performance data under various conditions are also presented. In addition to performance data, economic evaluation and energy savings are discussed.

Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E. [BP Research, Cleveland, OH (United States)

1993-01-01T23:59:59.000Z

146

L'hydrogene pour le transport sur route : réalisations et développements  

Science Journals Connector (OSTI)

Hydrogen for road transportation : achievements and developments. At the beginning of this millenium, hydrogen appears as a potential energy carrier for the future. Thus, it could serve as a storage medium for renewable energy forms, which should play an increasing part in the world energy supply. In a closer future, hydrogen could also become a fuel for prospective fuel-cell and internal-combustion vehicles. We present here an inventory of the various technologies related to the use of hydrogen in road transportation : propulsion type (fuel cell and electric motor, or internal combustion engine), hydrogen production, on-board storage, infrastructure. Safety, standardization and regulation aspects will also be addressed. Presently, the majority of hydrogen buses are equipped with polymer membrane fuel cells (PEMFC), directly supplied with hydrogen from pressurized vessels (300 bars). On the other hand, car manufacturers are developing various types of experimental vehicles : internal-combustion engine cars with liquid hydrogen storage, fuel cell (PEMFC) cars with storage of hydrogen (liquid, gaseous, hydride) or of methanol. The type of required infrastructured will depend on the type of fuel chosen by the car makers and on the requirements of the oil companies. Several hydrogen supply stations, of different technologies, have already been set up. They deliver gaseous or liquid hydrogen produced by reforming of natural gas or by electrolysis. The building of a hydrogen-based fueling system requires the development of specific means of production, transportation, storage and delivery. Public acceptance will have to be won by guaranteeing safety, reliability, performance and competitivity. Presently, research and development work is mainly carried out on : on-board storage of hydrogen ; on-board systems for the production of hydrogen from methanol and petrol ; standardization and regulation. Résumé En ce début de millénaire, l'hydrogène apparaît comme un vecteur énergétique potentiel du futur. Il pourrait, en effet, servir d'intermédiaire de stockage des énergies renouvelables dont la part dans l'approvisionnement énergétique mondial est amenée à croître. Dans un avenir bien plus proche, l'hydrogène pourrait également devenir un carburant pour les futurs véhicules, équipés de pile à combustible ou de moteur à combustion interne. Nous faisons ici un état des lieux des différentes technologies liées à l'utilisation de l'hydrogène dans le transport sur route : type de propulsion (pile à combustible et moteur électrique ou moteur à combustion interne), production d'hydrogène, stockage embarqué, infrastructure. Les aspects de sécurité, normalisation et réglementation sont également abordés. Actuellement, la majorité des bus à hydrogène est équipée de piles à membrane polymère (PEMFC) alimentées directement en hydrogène, stocké dans des réservoirs sous pression (300 bars). Par contre, les constructeurs d'automobiles développent différents types de prototypes : voitures à moteur à combustion interne avec stockage d'hydrogène liquide, voitures à pile PEM avec stockage d'hydrogène (liquide, gaz, hydrures) ou de méthanol. Le type d'infrastructure dépendra du combustible primaire choisi par les constructeurs d'automobiles et des impératifs des compagnies pétrolières. Plusieurs stations-service hydrogène, de différentes technologies, ont été réalisées. Elles délivrent de l'hydrogène gazeux ou liquide, produit par reformage de gaz naturel ou par électrolyse. La mise en place d'une filière « Hydrogène å nécessite, en effet, le développement de moyens de production, de transport, de distribution et de stockage spécifiques. L'acceptation du public devra être gagnée par des garanties de sécurité, de fiabilité, de performance et de compétitivité. Les travaux de recherche et développement se concentrent actuellement sur : le stockage embarqué d'hydrogène ; les systèmes embarqués de production d'hydrogène à partir de méthanol et d'essence ; la normalisa

Michel Junker; Laurence Bocquet; Madjid Bendif; Daniel Karboviac

2001-01-01T23:59:59.000Z

147

Beam transport of low temperature atomic hydrogen  

SciTech Connect (OSTI)

Analytic calculations and particle tracking simulations are presented for a polarized atomic hydrogen beam produced by extraction from an ultra-cold (T=300 mK) helium film coated cell in a large solenoidal magnetic field (12 T). Initial focusing of states 1 and 2 by the solenoidal field and subsequent focusing by a sextupole are examined within the constraints imposed by the requirements of the polarized jet for the experiments NEPTUN and NEPTUN-A at UNK.

Kaufman, W.A. (Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States))

1993-12-05T23:59:59.000Z

148

Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, Robert Nerenberg  

E-Print Network [OSTI]

1 Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, RobertCarty 2001). If soluble organic nitrogen can be held to a few tenths of a mg/L, the total N can

Nerenberg, Robert

149

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

SciTech Connect (OSTI)

The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at â?¥95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOEâ??s goals prior to down-selection for larger-scale (â??100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (â??1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex situ (laboratory) air regeneration at 450 °C could restore separator performance by burning out such deposits. Gasifier testing revealed that high molecular weight hydrocarbons have the potential to retard H2 separation. Unconverted coal tars with carbon numbers greater than 14 have a boiling point such that they can act as a reversible poison to the Pd-Cu membranes even at temperatures above 500 °C. The use of real-time, physics-based, performance models revealed the effect of these coal tars. It is believed that this project provided the first evidence for the impact of coal tars on H{sub 2} separator performance. Final down-selection of candidate alloys for non-membrane materials of construction proceeded by evaluating the alloys in both UTRC laboratory tests and testing downstream of an actual gasifier at the National Carbon Capture Center (NCCC). The overall alloy ratings were calculated by multiplying the projected cost of a 100 lb day{sup -1} H{sub 2} separator outer shell by the projected oxide scale thickness for 5 years of operation. The alloy with the lowest resulting rating parameter was stainless steel 309 (SS-309) followed by stainless steel 310 (SS-310). However, it was noted that approximately half of the alloys showed susceptibility to pitting and localized corrosion. SS-309 was one of the alloys that exhibited heavy localized attack after 2000 hours of laboratory testing. As this localized corrosion can potentially lead to accelerated end of life, it was determined that SS-310 would be the best alloy selection for this application as it does not show signs of localized pitting corrosion.

Sean Emerson; Neal Magdefrau; Ying She; Catherine Thibaud-Erkey

2012-10-31T23:59:59.000Z

150

Hydrogen and oxygen permeation through Nafion 117 and XUS 13204.10 fuel cell membranes  

E-Print Network [OSTI]

HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Submitted to the Office of Graduate Studies of Texas AdrM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1992 Major Subject Chemical Engineering HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Approved as to style and content by: Ralph E. White (Chair...

Lee, Steven Ray

1992-01-01T23:59:59.000Z

151

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

152

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network [OSTI]

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like ...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

153

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production  

Science Journals Connector (OSTI)

Design Aspects of Hybrid Adsorbent?Membrane Reactors for Hydrogen Production ... For hydrogen to replace fossil fuels as the fuel of choice for mobile applications, it will require the creation of a production and delivery infrastructure equivalent to those that currently exist for fossil fuels. ...

Babak Fayyaz; Aadesh Harale; Byoung-Gi Park; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2005-05-14T23:59:59.000Z

154

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane  

E-Print Network [OSTI]

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane Fuel Cells Sivagaminathan Balasubramanian, Charles E. Holland,* and John W. Weidner*,z Center in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so

Weidner, John W.

155

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

156

Ballistic electron transport in structured suspended semiconductor membranes  

SciTech Connect (OSTI)

We study ballistic electron transport in freely suspended AlAs/GaAs microstructures containing a high mobility two-dimensional electron gas with square lattice of antidots. We found that the magnetoresistance of the samples demonstrates commensurability oscillations both for the case of non-suspended and suspended devices. The temperature dependence of the commensurability oscillations is similar for both cases. However, the critical dc current, that suppresses these oscillations, in suspended samples is three times lower than in non-suspended ones. The observed phenomenon can be explained by peculiarities of the heat transport in membranes.

Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Pokhabov, D. A. [Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia and Novosibirsk State University, Novosibirsk (Russian Federation)

2013-12-04T23:59:59.000Z

157

HYDROGEN-BASED, HOLLOW-FIBER MEMBRANE BIOFILM REACTOR FOR REDUCTION OF PERCHLORATE AND OTHER OXIDIZED CONTAMINANTS  

E-Print Network [OSTI]

HYDROGEN-BASED, HOLLOW-FIBER MEMBRANE BIOFILM REACTOR FOR REDUCTION OF PERCHLORATE AND OTHER be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane biofilm reactor (MBfR) for reduction of perchlorate

Nerenberg, Robert

158

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

159

CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA  

SciTech Connect (OSTI)

Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

Krishna Sapru

2005-11-15T23:59:59.000Z

160

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

SciTech Connect (OSTI)

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Research and development of hydrogen separation technology with inorganic membranes  

SciTech Connect (OSTI)

Inorganic membrane technology has long been expected to provide new economical methods for industrial and waste management processes. At this time, the only commercially valuable inorganic membranes are the ultra filters derived from the French process that was used to produce the barrier for the French Gaseous Diffusion Plants. But these membranes are very expensive and have limited areas of application. Over the past fifteen years, scientists now in the Inorganic Membrane Technology Laboratory (IMTL) in Oak Ridge, Tennessee have developed theories and processes for inorganic membranes that can be used to design and produce inorganic membranes for a very broad range of applications. A part of the fabrication process is an adaptive spinoff from the still classified process used to manufacture barriers for the U.S. Gaseous Diffusion Process. Although that part of the process is classified, it is a very flexible and adaptable process and it can be used with a broad range of materials. With the theories and design capabilities developed in the last fifteen years, this new adaptive manufacturing technology can be used to manufacture commercial inorganic membranes that are not useful for the separation of uranium isotopes and they have little or no relation to the barriers that were used to separate uranium isotopes. The development and deployment of such inorganic membranes can be very beneficial to U.S. industry. Inorganic membranes can be specifically designed and manufactured for a large number of different applications. Such membranes can greatly improve the efficiency of a broad range of industrial processes and provide new technology for waste management. These inorganic membranes have the potential for major energy savings and conservation of energy. They can provide the means for significant improvements in the competitiveness of US Industry and improve the economy and health and welfare of the nation.

Fain, D.E.

1999-07-01T23:59:59.000Z

162

Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming  

E-Print Network [OSTI]

-gas-shift catalytic membrane reactor, and (2) a multi-layer design for bioethanol reforming. A two-dimensional model is developed to describe reaction and diffusion in the catalytic membrane coupled with plug-flow equations in the retentate and permeate volumes using...

Kuncharam, Bhanu Vardhan

2013-11-26T23:59:59.000Z

163

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

164

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled  

E-Print Network [OSTI]

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis 2013 Keywords: Microbial reverse-electrodialysis electrolysis cell Ammonium bicarbonate Hydrogen reverse electrodialysis (RED) stack into the MEC, which was called a microbial reverse-electrodialysis

165

Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy  

Broader source: Energy.gov [DOE]

Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

166

Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes  

SciTech Connect (OSTI)

CuPd alloys are among the most promising candidate materials for hydrogen separation membranes and membrane reactor applications due to their high hydrogen permeability and better sulfur resistance. In order to reduce the Pd content and, therefore, the cost of the membrane materials, efforts have been initiated to develop CuPdM ternary alloys having a bcc structure. The advantages of having Pd as a hydrogen separation membrane are: (1) high hydrogen selectivity; and (2) high hydrogen permeability. The disadvantages are: (1) high cost; (2) hydrogen embrittlement ({alpha} {yields} {beta} Pd hydride); and (3) sulfur poisoning. Experiments (XRD, SEM/EDS) verified that Mg, Al, La, Y and Ti are promising alloying elements to expand the B2 phase region in Cu-Pd binary system. HT-XRD showed that the B2 to FCC transition temperatures for Cu-Pd-X (X = Mg, Al, La, Y and Ti) are higher than that of Cu-Pd binary alloys. While the Cu-50Pd alloy had the highest corrosion resistance to the H2S containing syngas, the Cu-Pd-Mg alloy had a comparable resistance.

O.N. Dogan; M.C. Gao; B.H. Howard

2012-02-26T23:59:59.000Z

167

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

168

4.12 - Hydrogen and Fuel Cells in Transport  

Science Journals Connector (OSTI)

Abstract This chapter reviews the several applications of hydrogen and fuel cells in transport. Early fuel cell markets have tested hydrogen for auxiliary power applications, but other fuels such as methanol, natural gas, and propane have been preferred because they are more available. Until now, the best successes have been forklifts where battery propulsion can be inflexible and hydrogen competes economically. However, the mainstream medium-term market is in buses, taxis, and fleet vehicles with passenger cars following close behind as the infrastructure of hydrogen filling stations becomes more widespread. It is becoming clear that the hybrid fuel cell/battery combination works best in such fleets because there is a need for batteries or supercapacitors providing pulse power and also for regenerative braking. Boats and ships represent a possible application in later years if the leisure market can be tapped and extended. In ports, fuel cell auxiliary power has already proved attractive in terms of emission reductions, and the same is true for airports. Aircraft applications will take longer to develop fully but small lightweight planes are using hydrogen at the present time because it can be generated via solar cells on the wings. Unmanned air vehicles driven by fuel cells are more likely to use propane because such lightweight fuel is easily available

K. Kendall; B.G. Pollet

2012-01-01T23:59:59.000Z

169

Transport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt-Binding Receptor  

E-Print Network [OSTI]

in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high saltTransport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is

Smith, Bradley D.

170

pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons  

E-Print Network [OSTI]

pH dependence and compartmentalization of zinc transported across plasma membrane of rat corticalH dependence and compartmental- ization of zinc transported across plasma membrane of rat cortical neurons. Am; ion transport; transition elements; primary culture IT IS KNOWN THAT Zn2 can enter neurons by two

171

Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan Larry R. Gibson II  

E-Print Network [OSTI]

. Keywords Membranes Á Nanostructures Á Nanofluidics Á Microfluidics Á Ion transport Á Electrokinetics Á lREVIEW Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan · Larry R. Gibson / Accepted: 23 May 2012 � Springer Science+Business Media B.V. 2012 Abstract Species transport

172

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New CoNCept for the fAbriCAtioN of New CoNCept for the fAbriCAtioN of hydrogeN SeleCtive SiliCA MeMbrANeS Background As stated in the National Research Council report on Novel Approaches to Carbon Management, a novel membrane is needed that can achieve the separation of carbon dioxide (CO 2 ) and hydrogen (H 2 ) at a high temperature and pressure. Extensive efforts over the last several decades have explored high temperature H 2 -selective membranes made of silicon dioxide (SiO 2 ) and other oxides, palladium (Pd) and other metals or alloys and, more recently, various zeolites and non-aluminosilicate molecular sieves. Although promising separation results have been reported for many of them, these technologies, they all suffer from high production costs for membrane fabrication and from long term stability problems. This project revisits

173

Membrane vesicles: A simplified system for studying auxin transport  

SciTech Connect (OSTI)

Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA[sup [minus

Goldsmith, M.H.M.

1989-01-01T23:59:59.000Z

174

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

175

E-Print Network 3.0 - aeruginosa membrane transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr... of methanophenazine and function of phenazines in ... Source: Dietrich,...

176

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee and Prabir K. Dutta*  

E-Print Network [OSTI]

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee-photoresist-coated membranes were found. Accessibility of the intrazeolitic volume was examined by ion exchange and for optimally illuminated membranes was comparable to uncoated membranes. Charge transport through the membrane

Dutta, Prabir K.

177

Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes  

Science Journals Connector (OSTI)

...liquids supported in porous media, and the liquids typically cannot...35%. In conventional size-sieving polymers...separation based on strong size-sieving ability [where there...formerly, Texaco) quench gasifier (31). This mixture...membrane materials with weak size-sieving ability and...

Haiqing Lin; Elizabeth Van Wagner; Benny D. Freeman; Lora G. Toy; Raghubir P. Gupta

2006-02-03T23:59:59.000Z

178

Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994  

SciTech Connect (OSTI)

The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

1994-08-01T23:59:59.000Z

179

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

180

Hydrogen transport in a niobium-foil assembly under the action of high-temperature hydrogen plasma on a plasma focus setup  

Science Journals Connector (OSTI)

The process of hydrogen transport under the action of hydrogen-plasma pulses in the Plasma Focus (PF-4) setup in an assembly ... Nb foils under the action of the hydrogen plasma. These depths considerably exceed ...

A. Yu. Didyk; R. Wi?niewski…

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

membranes are in hydrogen fuel- cells and electrolyzers. Thefuel cells and electrolyzers used both for hydrogenhydrogen production and device geometry requirements dictated by the light absorption. In fuel cells,

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

182

ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes  

SciTech Connect (OSTI)

Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

Miao, Y.C.; Liu, C.

2010-12-28T23:59:59.000Z

183

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

Agenda for the Transitioning the Transportation Sector--Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

184

Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications  

SciTech Connect (OSTI)

Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

2013-02-28T23:59:59.000Z

185

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas  

Science Journals Connector (OSTI)

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas ... In order to distinguish between the two catalysts employed in this study, the catalyst over which the CSRM and CPOM reactions take place is considered catalyst 1 and that over which the CDRM reaction takes place is considered catalyst 2. The physical significance of catalyst 1 is that both reaction schemes of the CSRM and CPOM are catalyzed by this catalyst to produce hydrogen and syngas and to supply the necessary energy for the heat integration, though catalyst 2 plays an important role to steer the quality of the syngas and to enhance the hydrogen yield. ... In order to check the quality of the corresponding syngas produced in the reaction side, the hydrogen to carbon monoxide feed ratio (H2/CO) profile is presented in Figure 15. ...

Mohamed E. E. Abashar; Said S. E. H. Elnashaie

2014-03-05T23:59:59.000Z

186

Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl  

E-Print Network [OSTI]

is car- ried out in an electrolyzer similar to a H2-O2 polymer electrolyte membrane PEM fuel cell. The Du-coated Nafion 115 membrane was measured as a function of HCl flow rate and temperature at a constant cell 50% of the chlorine used in the chemical industry ends up as hydrogen chloride, a waste byproduct.2

Weidner, John W.

187

Transport coefficients of the D1-D5-P system and the membrane paradigm  

Science Journals Connector (OSTI)

I discuss a correspondence between string theory and the black hole membrane paradigm in the context of the D1-D5-P system. By using the Kubo formula, I calculate transport coefficients of the effective string model induced by two kinds of minimal scalars. Then, I show that these transport coefficients exactly agree with the corresponding membrane transport coefficients of a five-dimensional near-extremal black hole with three charges.

Yuya Sasai

2012-01-11T23:59:59.000Z

188

The role of hydrogen in powering road transport Alison Pridmore and Abigail Bristow  

E-Print Network [OSTI]

3.1 Greenhouse Gas Emissions From Hydrogen Powered Fuel Cell Vehicles ...9 3.2 Greenhouse GasThe role of hydrogen in powering road transport Alison Pridmore and Abigail Bristow April 2002 Tyndall Centre for Climate Change Research Working Paper 19 #12;The Role of Hydrogen in Powering Road

Watson, Andrew

189

Remarkable Improvement in Hydrogen Recovery and Reaction Efficiency of a Methanol Reforming?Membrane Reactor by Using a Novel Knudsen Membrane  

Science Journals Connector (OSTI)

In this study, we employed a methanol reforming?mesoporous membrane reactor combined with water gas shift reaction to achieve three important aims simultaneously:? methanol conversion improvement, high hydrogen recovery, and CO elimination. ... Colloidal silica sol of 100 nm in particle size was synthesized from base-catalyzed hydrolysis?condensation reaction of tetraethyl orthosilicate (TEOS) purchased from Aldrich. ... The feed side of the membrane was pressurized by pure hydrogen or nitrogen, while the permeate side of the membrane was under atmospheric pressure without a sweeping gas. ...

Dong-Wook Lee; Sang-Jun Park; Chang-Yeol Yu; Son-Ki Ihm; Kew-Ho Lee

2008-02-05T23:59:59.000Z

190

Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production  

SciTech Connect (OSTI)

IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a â??one-boxâ? process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactorâ??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered â?¥90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

Paul Liu

2012-05-01T23:59:59.000Z

191

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion were obtained during this program. In the area of materials synthesis, novel pyrochlore-based proton conductors were identified, synthesized and characterized. They exhibited conductivity as high as 0.03 S/cm at 900 C. Long-term stability under CO{sub 2} and H{sub 2} atmospheres was also demonstrated. In the area of membrane fabrication by plasma spray processing, the initial results showed that the pyrochlore materials could be processed in a spray torch. Although leak-tight membranes were obtained, cracking, most likely due to differences in thermal expansion, remained a problem. More modeling and experimental work can be used to solve this problem. Finally the techno-economic analyses showed that the ITN ICCM approach for separating H{sub 2} is comparable to conventional pressure swing adsorption (PSA) technology in efficiency and economics. Enhanced membrane flux and lower operating temperatures may make the ICCM approach superior to PSA.

Michael Schwartz

2004-12-01T23:59:59.000Z

192

How the Membrane Protein AmtB Transports Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

side of the membrane that recruits NH4+ and a narrower 20--long hydrophobic channel midway through the membrane that lowers the dissociation constant of NH4+, thereby forming...

193

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

E-Print Network [OSTI]

Materials Modeling in Pem Fuel Cells, A  Combination Model Ionomer Membranes for Pem?Fuel Cells," Electrochimica Acta, 

Kienitz, Brian

2010-01-01T23:59:59.000Z

194

HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers  

SciTech Connect (OSTI)

PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

1997-12-31T23:59:59.000Z

195

NOVEL DENSE MEMBRANE FOR HYDROGEN SEPARATION FOR ENERGY APPLICATIONS  

SciTech Connect (OSTI)

The main objectives of this project are: (1) Characterization of the thermo mechanical properties of the novel dense HTM bulk sample; (2) Development of a correlation among the intrinsic factors (such as grain size and phase distribution), and the extrinsic factors (such as temperature and atmosphere) and the thermo-mechanical properties (such as strengths and stress) to predict the performance of a HTM system (HTM membrane and porous substrate) ; and (3) Evaluation of the stability of the novel HTM membrane and its property correlations after thermal cycling. Based on all results and analysis of the thermo mechanical properties for the HTM cermet bulk samples, several important conclusions were made. The mean ?fs at room temperature is approximately 356 MPa for the HTM cermet. The mean ?fs value decreases to 284 MPa as the temperature increases to 850?C. The Difference difference in atmosphere, such as air or N2, had an insignificant effect on the flexural strength values at 850?C for the HTM cermet. The HTM cermet samples at room temperature and at 500?C fractured without any significant plastic deformation. Whereas, at 850?C, the HTM cermet samples fractured, preceded by an extensive plastic deformation. It seems that the HTM cermet behaves more like an elastic material such as a nonmetal ceramic at the room temperature, and more like a ductile material at increased temperature (850?C). The exothermic peak during the TG/DTA tests centered at 600?C is most likely associated with both the enthalpy change of transformation from the amorphous phase into crystalline zirconia and the oxidation of Pd phase in HTM cermet in air. The endothermic peak centered at 800?C is associated with the dissociation of PdO to Pd for the HTM cermet sample in both inert N2 environment and air. There is a corresponding weight gain as oxidation occurs for palladium (Pd) phase to form palladium oxide (PdO) and there is a weight loss as the unstable PdO is dissociated back to Pd and oxygen. The normal stress and shear stresses from the Mohr?s circle indicate that the residual stress in the HTM cermet sample is mainly as compressive residual stress in the magnitude of -135 to -155 MP, and with very little shear stress (in the magnitude of 10 MPa). The magnitude of change in the normal stress and the shear stress is insignificant in the HTM after 120 thermal cycles. However, the principle normal stress changes from compressive to tensile residual stress and there is a significant increase in the shear stress after 500 thermal cycles. The calculated value based on the equation and the Mohr?s circle is found to be consistent with the experimental value for the as-received HTM cermet samples. At some rotation (?) angle, the residual stress was found to be as tensile stress. Most ceramic material is weak in tension, and develops microscopic cracks. With treatment of 120 thermal cycles between 50?850?C, the HTM- sample exhibited thermally-induced cracks on the surface. Visually observable cracks appeared on the surface of HTM cermet with continuous thermal cycling, after 500 thermal cycles. The XRD powder diffraction analysis indicated an increased amount of crystalline PdO crystalline in HTM cermet after 120 and 500 thermal cycles as compare to the as-received samples. The Pd crystalline peaks were found to significantly decrease in peak intensity with thermal cycling. Higher peak intensity for PdO phase was observed with increased number of thermal cycles. A Monoclinic monoclinic zirconia phase was first identified in the as-received HTM as-received sample. However, with thermal cycling treatment of both 120 and 500 thermal cycles, the M-ZrO2 phase is transformed to the tetragonal YSZ, which is consistent with the thermal analysis results by TG/DTA. Correlations of the microstructural and thermo-mechanical properties of both selected reference material and ANL-3e HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size/distribution. The Young?s Modulus (E-value), especially, is positivel

Bandopadhyay, Sukumar [University of Alaska Fairbanks; Balachandran, Uthamalingam (Balu) [ANL; Nag, Nagendra [SURMET CORP.

2013-10-24T23:59:59.000Z

196

Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins are efficient water transporters, while  

E-Print Network [OSTI]

are efficient water transporters, while sustaining strict selectivity, even against protons, thereby maintaining509 Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins. Further insights, particularly with respect to the dynamics of water permeation and the filter mechanism

de Groot, Bert

197

Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof  

DOE Patents [OSTI]

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

2010-09-21T23:59:59.000Z

198

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

199

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network [OSTI]

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

200

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network [OSTI]

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network [OSTI]

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

202

Transport properties of separating membranes MF-4SK during alkaline electrolysis of water  

Science Journals Connector (OSTI)

The transport properties of separating membranes MF-4SK are studied during electrolysis of H2O in solutions of KOH. The effective diffusion coefficients of molecules of KOH and H2O and the transfer coefficients o...

A. N. Ponomarev; Yu. L. Moskvin; S. D. Babenko

2007-03-01T23:59:59.000Z

203

Antibiotic assisted molecular ion transport across a membrane in real time  

E-Print Network [OSTI]

Antibiotic assisted molecular ion transport across a membrane in real time Jian Liu, Xiaoming Shang of various chemical and physical phenomena as well as applications such as solar energy conversion, catalysis

Eisenthal, Kenneth B.

204

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

205

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

206

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. We designed and built a membrane reactor to study the reforming reaction. A two-dimensional pseudo-homogeneous reactor model was developed to study the performance of the membrane reactor parametrically. The important results are presented in this report.

Shamsuddin Illias

2002-06-10T23:59:59.000Z

207

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network [OSTI]

Hydrogen/ITS Evaluation Negotiations with automakers and fuel cell manufacturers to “ensure that hydrogen-powered cars,Hydrogen/ITS Evaluation • Negotiations with automakers and fuel cell manufacturers to “ensure that hydrogen-powered cars,

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

208

Supply chain network for hydrogen transportation in Spain  

E-Print Network [OSTI]

Hydrogen fuel is considered one of the major emerging renewable substitutes for fossil fuel. A crucial factor as to whether hydrogen will be successful depends on its cost as a substitute. Recently, there has been a growing ...

Liang, Li

2010-01-01T23:59:59.000Z

209

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

SciTech Connect (OSTI)

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

210

Diagnosis of hydrogen crossover and emission in proton exchange membrane fuel cells  

Science Journals Connector (OSTI)

Abstract When hydrogen leaks through holes in membrane-electrode assemblies (MEAs) in proton exchange membrane (PEM) fuel cells, it recombines directly with air. This recombination results in a reduction in oxygen concentration on the cathode side of the MEA. In this paper, the signatures of electrochemical impedance spectroscopy (EIS) are analyzed in different multi-cell stack configurations to show the relation between hydrogen leak rate and reduced oxygen concentrations. The reduction in concentration was made by mixing oxygen with nitrogen at different rates, and the increase in hydrogen leak rate was made by controlling the differential pressure (dP) between anode and cathode. To analyze the impedance signatures, we fit the data of oxygen concentration and dP with the parameters of a Randles circuit. The correlation between the parameters of the two data sets allows us to understand the change in impedance signatures with respect to reduction of oxygen in the cathode side. To have a better insight on the effect of insufficient oxygen at the cathode, a model that establishes a relationship between impedance and voltage was considered. Using this model along with the impedance signatures we were able to detect the reduction of oxygen concentrations at the cathode with the help of fuzzy rule-base. However, resolution of detection was reduced with the reduction of leak rate and/or increases in the stack cell count.

G. Mousa; J. DeVaal; F. Golnaraghi

2014-01-01T23:59:59.000Z

211

Diagnosis of hydrogen crossover and emission in proton exchange membrane fuel cells  

Science Journals Connector (OSTI)

Abstract When hydrogen leaks through holes or cracks in membrane-electrode assemblies (MEAs) in Proton Exchange Membrane (PEM) fuel cells, it recombines directly with air. This recombination results in a reduction in oxygen concentration on the cathode side of the MEA. In this paper, the signatures of electrochemical impedance spectroscopy (EIS) are analyzed in different multi-cell stack configurations to show the relation between hydrogen leak rate and reduced oxygen concentrations. The reduction in concentration was made by mixing oxygen with nitrogen at different rates, and the increase in hydrogen leak rate was made by controlling the differential pressure (dP) between anode and cathode. To analyze the impedance signatures, we fit the data of oxygen concentration and dP with the parameters of a Randles circuit. The correlation between the parameters of the two data sets allows us to understand the change in impedance signatures with respect to reduction of oxygen in the cathode side. To have a better insight on the effect of insufficient oxygen at the cathode, a model that establishes a relationship between impedance and voltage was considered. Using this model along with the impedance signatures we were able to detect the reduction of oxygen concentrations at the cathode with the help of fuzzy rule-base. However, resolution of detection was reduced with the reduction of leak rate and/or increases in the stack cell count.

G. Mousa; J. DeVaal; F. Golnaraghi

2014-01-01T23:59:59.000Z

212

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

SciTech Connect (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

213

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

214

Fuel Life-Cycle Analysis of Hydrogen vs. Conventional Transportation Fuels.  

E-Print Network [OSTI]

??Fuel life-cycle analyses were performed to compare the affects of hydrogen on annual U.S. light-duty transportation emissions in future year 2030. Five scenarios were developed… (more)

DeGolyer, Jessica Suzanne

2008-01-01T23:59:59.000Z

215

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect (OSTI)

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

216

Hydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang  

E-Print Network [OSTI]

conversion and 2) pyrolysis of biomass to form a bio-oil that can be subsequently converted to hydrogen viaHydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang Clark amounts of fossil-derived CO2 are released to the atmosphere. Renewable biomass is an attractive

217

Density Functional Theory Analysis of Metal/Graphene Systems As a Filter Membrane to Prevent CO Poisoning in Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Density Functional Theory Analysis of Metal/Graphene Systems As a Filter Membrane to Prevent CO Poisoning in Hydrogen Fuel Cells ... Fuel cells: principles, types, fuels, and applications ... Components for PEM fuel cell systems using hydrogen and CO containing fuels ...

Deborah J. D. Durbin; Cecile Malardier-Jugroot

2010-12-21T23:59:59.000Z

218

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 * November 2010 4 * November 2010 2-D image of a PEM fuel cell membrane sample measured with the NREL device (corresponding optical image in inset). The image shows bubble defects and a color shift in the sample. An area of approximately three inches by three inches is shown. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells Project: Fuel Cell MEA Manufacturing R&D NREL Team: Hydrogen Technologies & Systems Center and National Center for Photovoltaics Accomplishment: NREL developed a technique to measure the two-dimensional thickness of polymer electrolyte membrane (PEM) fuel cell membranes for in-line quality control during manufacturing (first reported in May 2009). The technique is based on an NREL-developed instrument currently used in continuous manufacturing of photovoltaic cells. This

219

Transport Modeling of Membrane Extraction of Chlorinated Hydrocarbon from Water for Ion Mobility Spectrometry  

SciTech Connect (OSTI)

Membrane-extraction Ion Mobility Spectrometry (ME-IMS) is a feasible technique for the continuous monitoring of chlorinated hydrocarbons in water. This work studies theoretically the time-dependent characteristics of sampling and detection of trichloroethylene (TCE). The sampling is configured so that aqueous contaminants permeate through a hollow polydimethylsiloxane (PDMS) membrane and are carried away by a transport gas flowing through the membrane tube into IMS analyzer. The theoretical study is based on a two-dimensional transient fluid flow and mass transport model. The model describes the TCE mixing in the water, permeation through the membrane layer, and convective diffusion in the air flow inside membrane tube. The effect of various transport gas flow rates on temporal profiles of IMS signal intensity is investigated. The results show that fast time response and high transport yield can be achieved for ME-IMS by controlling the flow rate in the extraction membrane tube. These modeled time-response profiles are important for determining duty cycles of field-deployable sensors for monitoring chlorinated hydrocarbons in water.

Zhang, Wei [ORNL; Du, Yongzhai [ORNL; Feng, Zhili [ORNL; Xu, Jun [ORNL

2010-01-01T23:59:59.000Z

220

Modelling Prospects for Hydrogen-powered Transportation Until 2100  

E-Print Network [OSTI]

explored. Hydrogen-powered fuel cell vehicles could make a significant contribution to de- carbonisation improvements, such as those promised by further penetration of electric­gasoline hybrid vehicles, are probably all-electric plug-in hybrids, and hydrogen fuel cell vehicles. Although large-scale

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transport of Gases in Carbon Molecular Sieve Membranes by Multinuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"difficult" separations of gas mixtures such as carbon dioxide methane and ethane ethylene separations. While there are many reports on macroscopic transport properties of CMS...

222

A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture  

E-Print Network [OSTI]

The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

2013-01-01T23:59:59.000Z

223

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

224

ECONOMIC FEASIBILITY ANALYSIS OF HYDROGEN PRODUCTION BY  

E-Print Network [OSTI]

. Shah and Raymond F. Drnevich Praxair, Inc. P.O. Box 44 Tonawanda, NY 14151 Abstract Praxair has on oxygen transport membrane (OTM) and hydrogen transport membrane (HTM). This system has a potential process option, both the OTM and the HTM were integrated into a single unit such that various processing

225

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

226

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic  

E-Print Network [OSTI]

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active

Giurgiutiu, Victor

227

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect (OSTI)

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

228

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents [OSTI]

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

229

Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes  

SciTech Connect (OSTI)

The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

2011-08-01T23:59:59.000Z

230

Hydrogen as transport fuel in Iceland. The political, technological and commercial story of ECTOS  

Science Journals Connector (OSTI)

Through the political, the technological and the commercial story of the early phases of the ECTOS project and its background, the implementation of hydrogen as transport fuel in Iceland is analysed. The presence of large amounts of geothermal energy is the resource basis for the governmental plans for converting Iceland into a hydrogen economy. Strong political commitment has established the framework for this transition. The goal of replacing the import of fossil fuels by 2030â??2040 has provided motivation and support for hydrogen R&D projects. The early public scepticism turned into general support when large multinational companies entered the scene.

Otto Andersen

2007-01-01T23:59:59.000Z

231

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive Xray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. Some of these results are discussed in this progress report.

Shamsuddin Ilias

2004-02-17T23:59:59.000Z

232

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

In the past quarter, significant progress has been made in optimize the deposition and release characteristics of ultrathin (less than 4 micron) membranes from rigid silicon substrates. Specifically, we have conducted a series of statistically designed experiments to examine the effects of plasma cleaning and compliant layer deposition conditions on the stress, release and pinhole density of membranes deposited on 4 inch and 6 inch round substrates. With this information we have progressed to the deposition and release of ultra-thin membranes from 12-inch diameter (113 sq. in.) rigid substrates, achieving a key milestone for large-area membrane fabrication. Idatech received and is beginning preparations to test the Pd alloy membranes fabricated at SwRI the previous quarter. They are currently evaluating alternate gasketing methods and support materials that will allow for effective sealing and mounting of such thin membranes. David Edlund has also recently left Idatech and Bill Pledger (Chief Engineer) has replaced him as the primary technical point of contact. At Idetech's request a small number of additional 16 sq. in, samples were provided in a 2 in. by 8 in. geometry for use in a new module design currently under development. Recent work at the Colorado School of Mines has focused on developing preconditioning methods for thin Pd alloy membranes (6 microns or less) and continuing tests of thin membranes produced at SwRI. Of particular note, a 300-hour short-term durability study was completed over a range of temperatures from 300-450 C on a foil that showed perfect hydrogen selectivity throughout the entire test. With a 20 psi driving force, pure hydrogen flow rates ranged from 500 to 700 cc/min. Calculated at DOE specified conditions, the H{sub 2} flux of this membrane exceeded the 2010 Fossil target value of 200 SCFH/ft{sup 2}.

J. Arps

2006-01-01T23:59:59.000Z

233

Simulation of Membrane and Cell Culture Permeability and Transport  

E-Print Network [OSTI]

for neutral and ionized species partitioning into the membrane - only non-ionized species. Donor bulk (D) Acceptor bulk (A) D w h w D w h w k i c N k o c N ?? = ? = ?+?? ? + ? + = == i 1p pKa-pHpj 1r pH1)r(jpKa Ux N x p 1s a s j rs b s 10101 1 cc c..., Kansas, 2006 Pgp expression in human SI Mouly, S., Paine, M.F. PharmRes-20(10):1595-1598 (2003) GPEN, Kansas, 2006 Talinolol Non-linear Dose Dependence Talinolol Dose Dependence de Mey et al. J. Cardio. Pharmacol. 26(6):879 (1995) 0 200 400 600 800 1000...

Bolger, Michael

2006-10-26T23:59:59.000Z

234

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network [OSTI]

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Volkov, Vadim

2012-01-01T23:59:59.000Z

235

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network [OSTI]

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Vadim Volkov

2012-12-18T23:59:59.000Z

236

Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media  

SciTech Connect (OSTI)

The aim of this work was to evaluate the transport of trivalent and hexavalent chromium through anion- and cation-selective membranes using two- and three-compartment electrodialysis cells. Tests were done with acidic solutions of trivalent chromium ions, Cr{sup 3+}, and hexavalent chromium ions, Cr{sub 2}O{sub 7}{sup 2{minus}}. In each situation the transport of metallic ions through the membrane was evaluated. In the tests with trivalent chromium, Nafion 417 and Selemion CMT cation-selective membranes were used, and in the tests with hexavalent chromium, Selemion AMT membrane was used. The influence of SO{sub 4}{sup 2{minus}} ions and of the concentration of H{sup +} ions in the solutions was also analyzed. Results showed the oxidation of the Cr{sup 3+} ion at the anode and the reduction of the Cr{sub 2}O{sub 7}{sup 2{minus}} ion at the cathode. The maximum yield in the process was reached when hexavalent chromium solutions were used in the absence of sulfate ions and a Selemion AMT membrane in a three-compartment cell.

Costa, R.F.D.; Rodrigues, M.A.S.; Ferreira, J.Z. [LACOR-PPGEM-UFRGS, Porto Alegre (Brazil)

1998-06-01T23:59:59.000Z

237

Transport of copper ammines through a cation-exchange membrane during electrodialysis  

SciTech Connect (OSTI)

Extraction of copper ammine complexes from waste waters in electroplating technology and in production of cuprammonium fibers is an important problem and electrodialysis with ion-exchange membranes is the most promising method of solving it. The authors aim was to study transport of copper(II) ammines through a commercial cation-exchange membrane of the MK-40 type. The electrodialyzer consisted of five Plexiglas compartments separated in alternating order by MK-40 cation-exchange and MA-40 anion-exchange membranes. The authors studied the dependence of the transport of copper(II) ammine complexes on the current density at copper concentration 0.025 M in the desalination compartment and 0.15 M ammonia concentration. The experiments lead to the conclusion that electrodialysis of copper(II) ammine complexes is possible only at current densities below the limiting values and that the transport is accompanied by decrease of the formation function of the complexes both in the membrane and in the solution of the concentrate receiving compartment.

Kireeva, L.D.; Shaposhnik, V.A.; Sorokina, V.I.

1987-09-10T23:59:59.000Z

238

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

239

Catalyzed CO.sub.2-transport membrane on high surface area inorganic support  

DOE Patents [OSTI]

Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

Liu, Wei

2014-05-06T23:59:59.000Z

240

The effect of electron induced hydrogenation of graphene on its electrical transport properties  

SciTech Connect (OSTI)

We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)] [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States) [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)

2013-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect (OSTI)

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

242

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

243

Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allow reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.

Lewis, Nathan S. [California Institute of Technology] [California Institute of Technology

2014-03-26T23:59:59.000Z

244

FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes  

SciTech Connect (OSTI)

During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

MURAD, SOHAIL [University of Illinois at Chicago] [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago] [University of Illinois at Chicago

2013-10-22T23:59:59.000Z

245

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

246

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

To overcome the issue of pinhole (defect) formation in membrane films over large areas, a process was developed and implemented for producing 6-12 {micro}m-thick, Pd-Cu alloy films on thermally oxidized silicon wafer substrates. The processing parameters on silicon are such that adhesion is poor and as-deposited Pd-Cu alloy films easily release from the oxidized silicon surface. Hydrogen permeation tests were conducted on 9 and 12 {micro}m-thick Pd-Cu alloy films and the hydrogen flux for 9 and 12 {micro}m-thick films were 16.8 and 8 cm{sup 3}(STP)/cm{sup 2} {center_dot} min respectively. The hydrogen permeability (corrected using data in McKinnley patent) of the 9 {micro}m-thick membrane is 7.4 {center_dot} 10{sup -5} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cm Hg{sup 0.5} at 350 C and compares very well to permeability reported by McKinnley for a 62.5% Pd membrane; this permeability is {approx}56% of the value reported for a Pd-Cu alloy membrane with optimum 60% Pd composition. Using XRD, we confirmed the presence of a two-phase, {alpha}/{beta}, structure and that the composition of our membrane was slightly higher than the optimum composition. We are making adjustments to the compositions of the Pd-Cu alloy target in order to produce films next quarter that match the ideal Pd{sub 60}Cu{sub 40} composition.

B. Lanning; J. Arps

2004-10-01T23:59:59.000Z

247

Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties  

SciTech Connect (OSTI)

Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes’ area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

2011-04-15T23:59:59.000Z

248

The Role of Partial Crystallinity on Hydrogen Permeation in Fe–Ni–B–Mo Based Metallic Glass Membranes  

SciTech Connect (OSTI)

A potentially exciting material for membrane separations are metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen embrittlement as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. This study reports on the investigation of time and temperature dependent crystalline phase formation in conjunction with in situ crystallization/hydrogen permeation experiments at elevated temperatures. At temperatures near 400 C a FeNi crystalline phase appears as 22 vol.% inside the host amorphous matrix and the resulting composite structure remains stable over 3 h at temperature. The hydrogen permeation at 400 C of the partially crystalline material is similar to the fully amorphous material near 5 x 10{sup -9} mol H{sub 2}/m s Pa{sup 1/2}, while ambient temperature electrochemical permeation at 25 C revealed an order of magnitude decrease in the permeation of partially crystalline materials due to differences in the amorphous versus crystalline phase activation energy for hydrogen permeation.

Brinkman, K.; Su, D.; Fox, E.; Korinko, P.; Missimer, D.; Adams, T.

2011-08-15T23:59:59.000Z

249

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments  

E-Print Network [OSTI]

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments The biological membrane is, in essence, a thermodynamically-nonequilibrium lipid bilayer [6, 30, 34, 43, 47] with a variety of molecular motors, ion pumps, or channels residing within [19

Young, Yuan N.

250

Application of various membranes to remove NOM typically occurring in Korea with respect to DBP, AOC and transport parameters  

Science Journals Connector (OSTI)

Bench- and pilot-scale membrane tests were performed to remove natural organic matter (NOM) originating from Paldang Lake in Korea. Membrane performance was demonstrated in terms of DOC, biodegradable organic carbon (BDOC), assimilable organic carbon (AOC), and transport parameters. Various membranes such as reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) were investigated for this study. Four different NF membranes were selected for pilot-scale filtration testing and investigated in terms of both flux decline and DOC removal. To demonstrate the effect of temperature on the source water seasonally, the flux of membranes was measured with pure water at different temperatures ranging from 25 to 7°C. Coagulation/sedimentation treated water was used as feed water without removing residual chlorine; related plants were located at the Suji water treatment plant of Yongin City. To investigate more rigorously the organic fouling for various NF membranes, mass transport behaviors of organic matter solutes were evaluated by an irreversible thermodynamic model. The pore sizes of the NF membranes tested in the pilot slightly increased due to the oxidation of the polymer structure of the membranes from residual chlorine during the 4-month tests. Periodic chemical cleaning with a caustic solution was made to prevent accumulation of foulants on the membrane surface. The NF membranes exhibited stable efficiencies in terms of DOC and AOC removal during the test for 4 months.

Noeon Park; Boksoon Kwon; Minjeong Sun; Hyowon Ahn; Chunghwan Kim; Changho Kwoak; Dongju Lee; Seonha Chae; Hoon Hyung; Jaeweon Cho

2005-01-01T23:59:59.000Z

251

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect (OSTI)

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

252

Silicon film formation by chemical transport in atmospheric-pressure pure hydrogen plasma  

Science Journals Connector (OSTI)

To prepare polycrystalline silicon (poly-Si) films at low temperatures ( atmospheric-pressure pure hydrogen plasma called the atmospheric-pressure enhanced chemical transport method. In this method high-pressure ( 200 – 760 Torr ) stable glow plasma of pure hydrogen was generated by a 150 MHz very high frequency power between the two parallel electrodes less than 2 mm apart. One of the electrodes is composed of the cooled Si solidsource and the other the heated substrate ( 200 – 400 ° C ) . According to the temperature dependence of hydrogen etching rate of Si Si H x species are mainly generated at the cooled Si solidsource by hydrogen atoms. These species are again decomposed in the plasma transported to the substrate to form Si films. In the present experiments on poly-Si film formation a high deposition rate of 300 nm ? min was achieved at 400 ° C and nearly ideal utilization efficiencies ( > 93 % ) of Si solidsource was realized in every condition. Si grains formed on a (001) Si substrate revealed anisotropic morphology elongated along ?110? directions and most of them had columnar structures epitaxially grown to the thickness of 2 ? m even at 200 ° C .

Hiromasa Ohmi; Hiroaki Kakiuchi; Yoshinori Hamaoka; Kiyoshi Yasutake

2007-01-01T23:59:59.000Z

253

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip-growing cells  

E-Print Network [OSTI]

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip at the same time. It is shown that these co-transporters destabilize generically the membrane voltage- tive dynamics and activity of membrane ion channels. Action potential and cardiac excitation spiral

Paris-Sud XI, Université de

254

Membranes for corrosive oxidations. Final CRADA report.  

SciTech Connect (OSTI)

The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

Snyder, S. W.; Energy Systems

2010-02-01T23:59:59.000Z

255

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells  

SciTech Connect (OSTI)

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

2000-03-20T23:59:59.000Z

256

Membrane vesicles: A simplified system for studying auxin transport. Final technical report  

SciTech Connect (OSTI)

Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA{sup {minus}} + nH{sup +}), driven by both the pH gradient and membrane voltage. Such a symport should be highly accumulative, however, with a lipophilic weak acid such as IAA, net diffusive efflux of IAAH whenever IAAHI{sub i} > IAAH{sub o} would constitute a leak. (3) A third model sees a pH change driven IAA uptake and saturable symport enhanced by internal binding sites. Following pH gradient-driven accumulation of IAA, the anion may bind to an intravesicular site, permitting further uptake of IAA. NPA, by blocking anion efflux, enhances this binding. We have reported that membrane vesicles isolated from actively growing plant tissues are a good system for studying the mechanisms involved in the transport and accumulation of auxin.

Goldsmith, M.H.M.

1989-12-31T23:59:59.000Z

257

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

258

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

259

Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets  

Broader source: Energy.gov [DOE]

This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

260

Thermal method for fabricating a hydrogen separation membrane on a porous substrate  

DOE Patents [OSTI]

A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ideal Desalination through Graphyne-4 Membrane: Nanopores for Quantized Water Transport  

E-Print Network [OSTI]

Graphyne-4 sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13L/cm2/day/MPa, about 10 times higher than the state-of-the-art nanoporous graphene reported previously (Nano Lett.s 2012, 12, 3602-3608). In addition, the membrane entails very low energy consumption for producing 1m3 of fresh water, i.e., 3.6e-3 kWh/m3, three orders of magnitude less than the prevailing commercial membranes based on reverse osmosis. Water flow rate across the graphyne-4 sheet exhibits intriguing nonlinear dependence on the pore size owing to the quantized nature of water flow at the nanoscale. Such novel transport behavior has important implications to the design of highly effective and efficient desalination membranes.

Chongqin Zhu; Hui Li; Xiao Cheng Zeng; Sheng Meng

2013-06-30T23:59:59.000Z

262

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

263

New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Earl H. Wagener (Primary Contact), Brad P. Morgan, Jeffrey R. DiMaio Tetramer Technologies L.L.C. 657 S. Mechanic St. Pendleton, SC 29670 Phone: (864) 646-6282 Email: earl.wagener@tetramertechnologies.com DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Contract Number: DE-SC0006172 Project Start Date: June 17, 2011 Project End Date: March 16, 2012 Fiscal Year (FY) 2012 Objectives Demonstrate water vapor transport membrane with * >18,000 gas permeation units (GPU) Water vapor membrane with less than 20% loss in * performance after stress tests Crossover leak rate: <150 GPU * Temperature Durability of 90°C with excursions to * 100°C Cost of <$10/m

264

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

During the last quarter, new procedures were developed and implemented to improve reliability and repeatability of release characteristics from the temporary substrate (i.e., silicon wafer) and to minimize through-thickness defects in a 6-inch diameter film, 3 microns in thickness. With the new procedures, we have been able to consistently produce essentially stress free films, with zero or minimal defects (less than 5) across a 6-inch diameter area. (It is important to note that for those films containing pinholes, a procedure has been developed to repair the pinholes to form a gas tight seal). The films are all within the identified tolerance range for composition (i.e., 60 {+-} 0.2 % Pd). A number of these films have subsequently been shipped to IdaTech for evaluation and integration into their test module. Colorado School of Mines continued their high temperature evaluation of 6 micron thick, sputtered Pd-Cu films. Pure hydrogen permeability increased up to 400 C while the membrane was in the {beta}-phase and dropped once the temperature increased to over 450 C. Above this temperature, as confirmed by the binary phase diagram, the film transforms into either a mixed {alpha}/{beta} or pure {alpha} phase. The same trend was observed for a baseline 25 micron-thick foil (from Wilkinson) where the pure hydrogen permeability increased with temperature while the membrane was in the {beta}-phase and then decreased upon transformation to the {alpha} phase.

B. Lanning; J. Arps

2005-10-28T23:59:59.000Z

265

Multidimensional Modeling of the Hydrogen-Based, Membrane Biofilm Reactor for Denitrification of Potable and Wastewater  

E-Print Network [OSTI]

of Potable and Wastewater Kelly Martin, Ph.D. Candidate, University of Notre Dame Monday, February 24, 2013 4 oxidized contaminants from drinking water and wastewater. A promising option, the membrane biofilm reactor

Kamat, Vineet R.

266

Affordable Hydrogen Fuel Cell Vehicles: Quaternary Phosphonium Based Hydroxide Exchange Membranes  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: The University of Delaware is developing a new fuel cell membrane for vehicles that relies on cheaper and more abundant materials than those used in current fuel cells. Conventional fuel cells are very acidic, so they require acid-resistant metals like platinum to generate electricity. The University of Delaware is developing an alkaline fuel cell membrane that can operate in a non-acidic environment where cheaper materials like nickel and silver, instead of platinum, can be used. In addition to enabling the use of cheaper metals, the University of Delaware’s membrane is 500 times less expensive than other polymer membranes used in conventional fuel cells.

None

2010-01-01T23:59:59.000Z

267

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

28 2.2.5.1. Hydrogen productionLifecycle Assessment of Hydrogen Production via Natural Gasconsidered: onsite hydrogen production via small-scale steam

Wang, Guihua

2008-01-01T23:59:59.000Z

268

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

of Energy, Hydrogen, fuel cells and infrastructureimproving health with hydrogen fuel-cell vehicles,[ Science,focus on hybrid and hydrogen-fuel cell technologies for

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

269

E-Print Network 3.0 - advanced hydrogen transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Hydrogen Codes and...

270

Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Paul KT Liu Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-3711 Email: pliu@mediaandprocess.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-05GO15092 Subcontractor: University of Southern California Project Start Date: July 1, 2005 Projected End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives The water-gas shift (WGS) reaction becomes less efficient when high CO conversion is required, such as for distributed hydrogen production applications. Our project

271

Ogden, Williams and Larson, Toward a Hydrogen-Based Transportation System, final draft, 8 May 2001 Toward a Hydrogen-Based Transportation System  

E-Print Network [OSTI]

................................................................................................................11 A Strategy for Pursuing Hydrogen Fuel Cell Vehicles as a Long-Term Option .........................................................................................................13 Methanol as an Initial Fuel for Fuel Cell Cars...............................................................................................................14 Hydrogen as an Initial Fuel for Fuel Cell Vehicles

272

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

273

Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers  

SciTech Connect (OSTI)

There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

2011-07-01T23:59:59.000Z

274

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

SciTech Connect (OSTI)

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

275

Dr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport and equilibrium properties of a cation exchange membrane (1983)  

E-Print Network [OSTI]

, (1996) 6. Magnar Ottøy, Mass and heat transfer in ion-exchange membranes (1996) 7. Belinda Flem, Peltier in the Polymer Electrolyte Membrane Fuel Cell (2007) 17. Isabella Inzoli, Coupled transports of heat and massDr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport

Kjelstrup, Signe

276

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)  

Broader source: Energy.gov [DOE]

Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

277

Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications  

SciTech Connect (OSTI)

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

278

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and  

E-Print Network [OSTI]

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation W M. Dudley Page, Janette Kropat, Patrice P. Hamel,1, California 90095-1569 Inducible high-affinity copper uptake is key to copper homeostasis in Chlamydomonas

Meier, Iris

279

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

280

Alternative Fuel Cell Membranes for Energy Independence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robson F. Storey (Primary Contact), Daniel A. Savin, Derek L. Patton The University of Southern Mississippi 118 College Drive #5050 Hattiesburg, MS 30406 Phone: (601) 266-4879 Email: Robson.Storey@usm.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO88106 Project Start Date: August 1, 2009 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Synthesize novel, low-cost hydrocarbon fuel cell * membrane polymers with high-temperature performance and long-term chemical/mechanical durability.

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen transport in nickel ,,111... Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel  

E-Print Network [OSTI]

Hydrogen transport in nickel ,,111... Roi Baer Department of Physical Chemistry and the Fritz Haber Received 13 November 1996; revised manuscript received 21 January 1997 The intricate dynamics of hydrogen of subsurface with surface hydrogen on the nickel host. The analysis is based on the embedded diatomics

Zeiri, Yehuda

282

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

Donald P. Malone; William R. Renner

2006-04-01T23:59:59.000Z

283

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

284

Preparation and Characterizaton of SiO2 Composite Membranes for Purification of Hydrogen for PEMFC  

Science Journals Connector (OSTI)

In recent years, the development of alternative drive systems such as fuel cells has attracted a great deal of interest, because of several problems of the drive system based on an internal combustion engine. ... However, PEMFC is extremely sensitive to even the low concentrations of carbon monoxide (CO) produced by methanol steam reforming due to severe poisoning of anode electrocatalysts of PEMFC in the presence of a low concentration of CO. ... To prevent CO gas produced by methanol steam reforming from poisoning anode electrocatalyst of PEMFC, the silica composite membranes as a CO removal method were prepared by sol?gel process. ...

Dong-Wook Lee; Bongkuk Sea; Kwan-Young Lee; Kew-Ho Lee

2002-06-26T23:59:59.000Z

285

Smart membranes for nitrate removal, water purification, and selective ion transportation  

DOE Patents [OSTI]

A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

Wilson, William D. (Pleasanton, CA); Schaldach, Charlene M. (Pleasanton, CA); Bourcier, William L. (Livermore, CA); Paul, Phillip H. (Livermore, CA)

2009-12-15T23:59:59.000Z

286

Hydrogen Production from Biomass-Derived Syngas Using a Membrane Reactor Based Process  

Science Journals Connector (OSTI)

(1) One of the benefits of adopting H2 as an energy source, in addition to reducing CO2 emissions, is that it can be produced from readily available and plentiful raw materials such as coal and renewable biomass; this then diminishes the need to use the world’s dwindling crude-oil resources. ... For that, coal must be first gasified with air or pure O2 at high temperatures(2) to produce coal-gasifier off-gas (or syngas), containing as key species H2, CO, CO2, H2O, CH4, and other byproducts such as organic vapors, tars, H2S, and NH3, etc.,(2) the exact composition depending on the operating conditions, e.g., pressure, temperature, type of coal and oxidant used and their flow rates, and gasifier configuration, etc.(2) ... A novel MR system termed as the “one-box” process, in which syngas cleanup, hydrogen production via the WGS reaction, and product separation are combined in the same unit, was successfully utilized for producing hydrogen from a feed with a simulated biomass-derived syngas containing common impurities such as H2S and NH3, a model organic vapor (toluene), and a model tar-like species (naphthalene). ...

Jiang Yu; Mingyang Tan; Paul K. T. Liu; Muhammad Sahimi; Theodore T. Tsotsis

2013-12-27T23:59:59.000Z

287

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

288

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect (OSTI)

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

D Freed; P Horanyi; M Wiener; D Cafiso

2011-12-31T23:59:59.000Z

289

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect (OSTI)

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

Freed, Daniel M.; Horanyi, Peter S.; Wiener, Michael C.; Cafiso, David S. (UV)

2010-09-27T23:59:59.000Z

290

Corrugated Membrane Fuel Cell Structures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Stephen Grot Ion Power Incorporated 720 Governor Lea Rd New Castle, DE 19720-5501 Phone: (302) 832 9550 Email: s.grot@ion-power.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Subcontractors: * Graftech International Holdings Inc., Parma, OH * General Motors Corporation, Flint, MI Contract Number: DE-EE0000462 Project Start Date: September 1, 2010 Project End Date: February 28, 2014 Fiscal Year (FY) 2012 Objectives

291

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

292

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs • Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

293

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

This report describes activities for the sixteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing now plans to deliver it by November 20, 2006 instead of October 20, 2006 as previously reported. MEFOS performed a hazardous operation review of pressurized testing. The current schedule anticipates above atmospheric pressure testing to begin during the week of April 16, 2007. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 3 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-09-30T23:59:59.000Z

294

Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic  

E-Print Network [OSTI]

REVIEW Membrane Porters of ATP-Binding Cassette Transportat Springerlink.com Abstract The ATP-binding cassette (ABC)classi?ed according to the ATP hydrolyzing constituents,

Wang, Bin; Dukarevich, Maxim; Sun, Eric I.; Yen, Ming Ren; Saier, Milton H.

2009-01-01T23:59:59.000Z

295

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation  

E-Print Network [OSTI]

and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

Goddard III, William A.

296

Modeling Investment Strategies in the Transition to a Hydrogen Transportation Economy  

E-Print Network [OSTI]

economy" personal vehicles will be powered by either fuel cells or hydrogen fueled internal combustion in hydrogen fueling stations. An investigation focusing on the driver agents and how they drive the demand for hydrogen fuel was reported at the 2008 NHA Conference. In this report we shift the focus to the investor

Kemner, Ken

297

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

298

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas • Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

299

Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes  

Science Journals Connector (OSTI)

...for membrane applications because of ultimate...deposition (CVD) has recently...synthesized via CVD has a polycrystalline...spray and spin coatings (16). GO films...after several coatings, both membrane...coated by a GO thin film without detectable...cracks under an optical microscope...

Hyo Won Kim; Hee Wook Yoon; Seon-Mi Yoon; Byung Min Yoo; Byung Kook Ahn; Young Hoon Cho; Hye Jin Shin; Hoichang Yang; Ungyu Paik; Soongeun Kwon; Jae-Young Choi; Ho Bum Park

2013-10-04T23:59:59.000Z

300

Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes  

DOE Patents [OSTI]

Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

Fujimoto, Cy H. (Albuquerque, NM); Hibbs, Michael (Albuquerque, NM); Ambrosini, Andrea (Albuquerque, NM)

2012-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

45 CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN7371. CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN2. CONTROLLING NANOROD SELF-ASSEMBLY IN POLYMER THIN-FILMS

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

302

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

of Hydrogen Supply Pathways on Urban Air Quality of Primaryair quality ..130, 192–201. AQS, 2006. Air Quality System. United States

Wang, Guihua

2008-01-01T23:59:59.000Z

303

Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell  

E-Print Network [OSTI]

Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

Park, Yong Hun

2009-05-15T23:59:59.000Z

304

Experimental characterization of water sorption and transport properties of polymer electrolyte membranes for fuel cells.  

E-Print Network [OSTI]

??L'objectif général de cette thèse de doctorat est de caractériser les propriétés de membranes PFSA de type Nafion N115 et Nafion NRE212 en termes de… (more)

Maldonado Sánchez, Libeth

2012-01-01T23:59:59.000Z

305

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network [OSTI]

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

306

The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation  

E-Print Network [OSTI]

The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

Fradera, Jorge

2013-01-01T23:59:59.000Z

307

E-Print Network 3.0 - anandamide membrane transporter Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the putative anandamide transporter that also... , Kaczocha M, Studholme KM, Deutsch DG (2003). Evidence against the presence of an ... Source: Cravatt, Benjamin -...

308

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

309

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama II.K.14 University of Alabama, Tuscaloosa: Protein-Templated Synthesis and Assembly of Nanostructuctures for Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 V.F.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 V.F.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 Arizona II.C.1 Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen

310

Assessing Reliability in Transportation Energy Supply Pathways: A Hydrogen Case Study  

E-Print Network [OSTI]

and 2) on-site electrolysis of water using electricitypoints of end use via electrolysis of water, so no transport

McCarthy, Ryan W.; Ogden, J

2005-01-01T23:59:59.000Z

311

Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor  

Science Journals Connector (OSTI)

In this work three mathematical models for methane steam reforming in membrane reactors were developed. The first ... , the influence of five important parameters on methane conversion (X ...

Leandro C. Silva; Valéria V. Murata; Carla E. Hori…

2010-09-01T23:59:59.000Z

312

Measurements of water uptake and transport properties in anion-exchange membranes  

E-Print Network [OSTI]

, the electro-osmotic drag (EOD) coefficient, and the mass-transfer coefficient of water at the cathode catalyst/membrane interface falls in the range of 1.0 Ã? 10Ã?6 to 1.0 Ã? 10Ã?5 m sÃ?1 . The EOD coefficients measured at 30 C

Zhao, Tianshou

313

Molecular Basis for Nanoscopic Membrane Curvature Generation from Quantum Mechanical Models and Synthetic Transporter  

E-Print Network [OSTI]

that an arginine-rich, 11AA sequence from the transactivator of transcription (TAT) protein of HIV, YGRKKRRQRRR (CPP) such as the TAT peptide can efficiently translocate across cellular membranes.1-6 Many types, now referred to as the TAT peptide, is sufficient for cellular uptake. It was soon realized by Wender

Tew, Gregory N.

314

Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen  

SciTech Connect (OSTI)

Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

K. Coulter

2008-03-31T23:59:59.000Z

315

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

316

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

mental costs of hydrogen production from fossil fuels.supportive of hydrogen production from renewable sources areNatural gas provider Hydrogen production/supply Frequency

Collantes, Gustavo O

2008-01-01T23:59:59.000Z

317

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

Natural gas provider Hydrogen production/supply Frequencyan oil company Hydrogen production/ dispensing equipmentCO 2 emissions from hydrogen production The external costs

Collantes, Gustavo Oscar

2008-01-01T23:59:59.000Z

318

BASELINE MEMBRANE SELECTION AND CHARACTERIZATION FOR AN SDE  

SciTech Connect (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05 and FY06, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small footprint that are crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and have a low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate commercial and experimental membranes for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated poly-etherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity. The use of Nafion{reg_sign} with EW 1100 is recommended for the present SDE testing due to the limited data regarding chemical and mechanical stability of experimental membranes. Development of new composite membranes by incorporating metal particles or by forming multilayers between PFSA membranes and hydrocarbon membranes will provide methods that will meet the SDE targets (SO{sub 2} transport reduction by a factor of 100) while decreasing catalyst layer delamination and membrane resistivity.

Colon-Mercado, H; David Hobbs, D

2007-04-03T23:59:59.000Z

319

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2011 Annual Progress Report II. Hydrogen Production This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Production Sub-Program Overview, Sara Dillich, DOE A. Distributed Bio-Derived Liquid Production Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming, David King, Pacific Northwest National Laboratory Distributed Bio-Oil Reforming, Stefan Czernik, National Renewable Energy Laboratory Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes (OTMs), Balu Balachandran, Argonne National Laboratory Back to Top B. Biomass Gasification A Novel Slurry-Based Biomass Reforming Process, Sean Emerson, United

320

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dynamic competition between plug-in hybrid and hydrogen fuel cell vehicles for personal transportation  

Science Journals Connector (OSTI)

This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage.

Nuno Bento

2010-01-01T23:59:59.000Z

322

NREL: Hydrogen and Fuel Cells Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

323

Hydrogen Production & Delivery  

Energy Savers [EERE]

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

324

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network [OSTI]

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

325

Microsoft PowerPoint - Nano Sep Membrane for H2 Flux brief.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane separations are a key enabling technology for energy conversion devices. Ionic transport Membrane separations are a key enabling technology for energy conversion devices. Ionic transport membranes must have both proton and electronic conductivity to function as hydrogen separation membranes without an external power supply. In addition, membrane materials electronic conductivity or material crystal stability should not be greatly affected by the presence of contaminant gases such as CO 2 , CO, CH 4 , and H 2 O that are associated with steam reforming/water gas shift reactions. SRNL is managed and operated for the U.S. Department of Energy by Savannah River Nuclear Solutions, LLC glance at a  improved electronic conduction  suitable for hydrogen separation  separates contaminant gases  patent pending Background SRNL-L5210-2011-00005

326

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

E-Print Network [OSTI]

such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange to address global energy needs, such as reverse electro- dialysis1-4 (RED), capacitive energy extraction based on Donnan potential5 (CDP), and capacitive reverse electro- dialysis6 (CRED), has encouraged

327

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

328

Hydrogen Storage Challenges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

329

Hydrogen and Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

330

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387, but shows strong  

E-Print Network [OSTI]

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387 in the maturation of FeS proteins. We found that under some conditions the Synechocystis NifU-like protein can oxidation of the cysteine side chains at NifU. The same reaction might have occurred in lysed chloroplasts

331

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

332

Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell  

Science Journals Connector (OSTI)

Abstract Open circuit losses encompass a set of phenomena that reduce PEM fuel cell (PEMFC) efficiency, especially at low current densities. Properly modelling these losses is crucial for obtaining PEMFC models that reproduce accurately the experimental behaviour of \\{PEMFCs\\} operating at low current densities. The open circuit losses can be disaggregated into three distinct contributions: mixed potential, hydrogen crossovers and internal short-circuits. The aim of this work is to obtain a model for the anodic and the cathodic pressure effects on the hydrogen crossovers and the internal short-circuits in a commercial PEMFC. In order to achieve this goal, the hydrogen crossovers and the internal short-circuit were measured experimentally on a commercial PEMFC by linear voltammetry. The measurements were performed at a given temperature and gas inlet humidification level, for different anodic and cathodic pressures.

J.J. Giner-Sanz; E.M. Ortega; V. Pérez-Herranz

2014-01-01T23:59:59.000Z

333

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

334

Techno-economic Assessment of Membrane Reactor Technologies for Pure Hydrogen Production for Fuel Cell Vehicle Fleets  

Science Journals Connector (OSTI)

In the pathway toward a future infrastructure based on renewable energy sources, a medium-term step would rely on the use of fossil fuels for on-site production of hydrogen, feeding small fleets of fuel cell vehicles. ... A fuel cell powered family car performing at approximately 105 km/kgH2,(11, 12) a value taken from real operation experiences and more conservative than typical results from standard driving cycles,(13) assuming a range of autonomy of 483 km, requires storage for 4.6 kgH2. ... European Association for Hydrogen and Fuel Cells and Electro-mobility in European Regions (HyER). ...

Leonardo Roses; Giampaolo Manzolini; Stefano Campanari; Ellart De Wit; Michael Walter

2013-03-05T23:59:59.000Z

335

NREL: Transportation Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and...

336

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

337

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03–0.53 MJeq/MJ emitting 0.7–27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

338

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Emory S. De Castro BASF Fuel Cell, Inc. 39 Veronica Avenue Somerset, NJ 08873 Phone: (732) 545-5100 ext 4114 Email: Emory.DeCastro@BASF.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000384 Subcontractor: Dr. Vladimir Gurau Case Western Reserve University, Cleveland, Ohio Project Start Date: July 1, 2009 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Reduce cost in fabricating gas diffusion electrodes * through the introduction of high speed coating technology, with a focus on materials used for the high- temperature membrane electrode assemblies (MEAs)

339

High-Temperature Membrane with Humidification-Independent Cluster Structure - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ludwig Lipp (Primary Contact), Pinakin Patel, Ray Kopp FuelCell Energy (FCE), Inc. 3 Great Pasture Road Danbury, CT 06813 Phone: (203) 205-2492 Email: llipp@fce.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Greg Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Contract Number: 36-06GO16033 Start Date: June 1, 2006 Projected End Date: August 31, 2012 Fiscal Year (FY) 2012 Objectives Develop humidity-independent, thermally stable, low * equivalent weight composite membranes with controlled ion-cluster morphology, to provide high proton- conductivity at up to 120 o C (overall goal: meet DOE

340

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 °C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

6 - Other nuclear energy applications: Hydrogen for transport desalination ships space research reactors for radioisotopes  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes several nuclear energy applications. Hydrogen itself is likely to be an important future fuel; like electricity, it is an energy carrier. Nuclear energy can be used to make hydrogen electrolytically; and in the future, high-temperature reactors are likely to be used for thermochemical production. Desalination is energy-intensive. Nuclear energy is already being used for desalination, and nuclear energy has the potential for much greater use. Nuclear power has also revolutionized the navy; it is particularly suitable for vessels that need to be at sea for long periods without refueling, or for powerful submarine propulsion. After a gap of several years, there is a revival of interest in the use of nuclear fission power for space missions as well. Many of the world's nuclear reactors are used for research and training, materials testing, or the production of radioisotopes for medicine and industry. Research reactors are much smaller than power reactors or those propelling ships, and many are on university campuses. Research reactors are simpler than power reactors and operate at lower temperatures.

Ian Hore-Lacy

2007-01-01T23:59:59.000Z

342

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Cortney Mittelsteadt (Primary Contact), Hui Xu, Junqing Ma (GES); John Van Zee, Sirivatch Shimpalee, Visarn Lilavivat (USC); James E. McGrath Myoungbae Lee, Nobuo Hara, Kwan-Soo Lee, Chnng Hyun (VT); Don Conners, Guy Ebbrell (Ballard); Kevin Russell (Tech Etch) Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0529 Email: cmittelsteadt@ginerinc.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000471 Subcontractors: * Tech-Etch, Plymouth, MA * Ballard Material Products, Inc., Lowell, MA

343

VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998 Spontaneous Onset of Coherence and Energy Storage by Membrane Transporters  

E-Print Network [OSTI]

of Coherence and Energy Storage by Membrane Transporters in an RLC Electric Circuit Imre Derényi and R. Dean that oscillating or fluctuating electric fields can drive thermodynami- cally uphill transport of ions catalyzed by a molecular ion pump, the Na,K-ATPase. Theory suggests that if the transport reaction is very far from

Derényi, Imre

344

Proton Transport in Triflic Acid Hydrates Studied via Path Integral Car?Parrinello Molecular Dynamics  

Science Journals Connector (OSTI)

Proton Transport in Triflic Acid Hydrates Studied via Path Integral Car?Parrinello Molecular Dynamics ... The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H3O+, H5O2+, and H9O4+ structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. ... Hydrogen is described as a promising future fuel if the fuel cell technol. ...

Robin L. Hayes; Stephen J. Paddison; Mark E. Tuckerman

2009-12-07T23:59:59.000Z

345

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

346

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

SciTech Connect (OSTI)

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

347

Model Cell Membranes  

Science Journals Connector (OSTI)

... are being used as model systems to test particular hypotheses in membrane transport. Thus, Tosteson and his colleagues (Andreoli et al., J. Gen. PhysioL, 50, 1729; ...

A Correspondent

1968-01-13T23:59:59.000Z

348

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Monjid Hamdan (Primary Contact), Tim Norman Giner, Inc. (Formerly Giner Electrochemical Systems, LLC.) 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0526 Email: mhamdan@ginerinc.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO18065 Subcontractors: * Virginia Polytechnic Institute and University, Blacksburg, VA * Parker Hannifin Ltd domnick hunter Division, Hemel Hempstead, United Kingdom Project Start Date: May 1, 2008

349

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

350

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

351

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

352

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

353

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Züttel

2007-03-01T23:59:59.000Z

354

EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER  

SciTech Connect (OSTI)

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

Hobbs, D.; Elvington, M.; Colon-Mercado, H.

2009-11-11T23:59:59.000Z

355

Perchlorate Degradation Using Partially Oxidized Titanium Ions and Ion Exchange Membrane Hybrid System  

E-Print Network [OSTI]

. To enhance the overall rate of reaction, high concentrations of acid and Ti(III) are needed, but transport of hydrogen ions through the anion permeable membrane was observed and would be greater at higher acid concentrations. The proposed mathematical model...

Park, Sung Hyuk

2011-08-08T23:59:59.000Z

356

Chapter 4 - Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, hydrogen and fuel cell systems are introduced. Hydrogen is closely related to fuel cells because fuel cells are very efficient devices for power generation which when supplied with hydrogen generate non-polluting effluents, mainly water or steam. A hydrogen economy is necessary in the context of continuous growth of population and per-capita energy consumption. In this context, renewable energy solutions—especially solar—become more important and their harvesting requires hydrogen as energy carrier. Therefore the role of hydrogen and fuel cell systems in power generation becomes very important. As detailed in the chapter, these systems are useful for converting the fluctuating and intermittent energy of renewable sources and providing power on demand. Hydrogen and fuel cell systems can work either as grid-connected or as independent power generators. Connection to the grid allows for better load leveling and major savings as well as for reduction of pollution associated with power generation. Hydrogen can also be used to power residences and to cogenerate heat or other commodities. In addition, hydrogen and fuel cell technologies are much required for the transportation sector, where they can contribute to pollution and cost reduction and increased efficiency. Hydrogen production methods are reviewed in this chapter with a focus on electrolysis and thermochemical cycles. These systems appear to be leading technologies for the future. Other revised hydrogen production methods are gasification and reforming, which are very relevant for biomass conversion into hydrogen. Photochemical and photo-biochemical hydrogen production methods are also discussed. All types of fuel cells are introduced; these include alkaline, proton-exchange-membrane, phosphoric acid, molten carbonate, solid oxide, direct methanol, and direct ammonia fuel cells. Construction and specific application for power generation are presented for each type. The modeling and optimization aspects of fuel cells and their systems are explained. Several power generation systems with fuel cells are discussed, in which each type of fuel cells has specific system requirements. The overall system must include various types of separators, pumps, and compressors depending on the case. In aqueous systems water must be recycled, e.g., in the case of proton-exchange membrane fuel cells water must be actually fed in excess so that the membrane is wetted. Also for a direct methanol fuel cell water must be recovered and recycled. In molten carbonate fuel cell systems carbon dioxide must be recovered and recycled. In solid oxide fuel cell systems, the fuel must be supplied in excess and is not completely consumed; therefore it is important to couple these systems with gas turbines.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

357

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

358

HyLights-- Tools to Prepare the Large-Scale European Demonstration Projects on Hydrogen for Transport  

Broader source: Energy.gov [DOE]

Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

359

Novel membrane technology for green ethylene production.  

SciTech Connect (OSTI)

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L. (Energy Systems); ( CSE)

2008-01-01T23:59:59.000Z

360

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect (OSTI)

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Role of Individual Positive Charges in the Membrane Orientation and Activity of Transporters of the Small Multidrug Resistance Family  

Science Journals Connector (OSTI)

†Molecular Microbiology and ‡Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ... *Molecular Microbiology, Nijenborgh 7, 9747AG Groningen, The Netherlands. ...

Magdalena A. Kolbusz; Dirk Jan Slotboom; Juke S. Lolkema

2012-10-08T23:59:59.000Z

362

Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method  

E-Print Network [OSTI]

High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

2014-01-01T23:59:59.000Z

363

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

364

Module 2: Hydrogen Use  

Broader source: Energy.gov [DOE]

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

365

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

366

Respiration-Linked Proton Transport, Changes in External pH, and Membrane Energization in Cells of Escherichia coli  

Science Journals Connector (OSTI)

...in untreated cells, and changing the atmosphere in the cuvette from N2 or Ar to air caused...1970. Acid-base titration across the plasma membrane of Micrococcus denitrifi- cans...of lactose-proton symport across the plasma membrane of Escherichia coli. Biochem...

J. Michael Gould

1979-04-01T23:59:59.000Z

367

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-05-01T23:59:59.000Z

368

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

2001-07-01T23:59:59.000Z

369

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion  

SciTech Connect (OSTI)

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

2012-08-14T23:59:59.000Z

370

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

371

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS.  

E-Print Network [OSTI]

??We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification… (more)

El-Azzami, Louei Abdel Raouf

2006-01-01T23:59:59.000Z

372

Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration  

Science Journals Connector (OSTI)

...February 1966 research-article Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration W. Beck J. O'M...of the diffusion of electrolytic hydrogen through membranes of: (1) polycrystalline...

1966-01-01T23:59:59.000Z

373

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

374

Batch methods for enriching trace impurities in hydrogen gas for their further analysis  

DOE Patents [OSTI]

Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

2014-07-15T23:59:59.000Z

375

Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report  

SciTech Connect (OSTI)

This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.

Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M. (Lummus)

2007-03-12T23:59:59.000Z

376

Evolution of Antiparallel Two-Domain Membrane Proteins. Swapping Domains in the Glutamate Transporter GltS  

Science Journals Connector (OSTI)

Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ... We thank Fabrizia Fusetti of The Netherlands Proteomics Centre/Membrane Enzymology group of the University of Groningen for analyzing samples by mass spectrometry. ...

Adam Dobrowolski; Juke S. Lolkema

2010-06-17T23:59:59.000Z

377

Identification and Characterization of Near-Term Direct Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange...

378

Materials Solutions for Hydrogen Delivery in Pipelines  

Broader source: Energy.gov [DOE]

Overall goal of the project is to develop materials technologies that would enable minimizing the problem of hydrogen embrittlement associated with the high-pressure transport of hydrogen

379

Mathematical Modeling of Cation Contamination in a Proton-exchange Membrane  

SciTech Connect (OSTI)

Transport phenomena in an ion-exchange membrane containing both H+ and K+ are described using multicomponent diffusion equations (Stefan-Maxwell). A model is developed for transport through a Nafion 112 membrane in a hydrogen-pump setup. The model results are analyzed to quantify the impact of cation contamination on cell potential. It is shown that limiting current densities can result due to a decrease in proton concentration caused by the build-up of contaminant ions. An average cation concentration of 30 to 40 percent is required for appreciable effects to be noticed under typical steady-state operating conditions.

Weber, Adam; Delacourt, Charles

2008-09-11T23:59:59.000Z

380

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Lessons Learned from the Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen- Fueled Transportation System M. Melendez, K. Theis, and C. Johnson Technical Report NREL/TP-560-40753 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-560-40753 August 2007 Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transport study of hafnium(IV) and zirconium(IV) ions mutual separation by using Tri-n-butyl phosphate-xylene-based supported liquid membranes  

SciTech Connect (OSTI)

A Hf transport study through supported liquid membranes has been carried out to determine flux and permeability data for this metal ion. Tri-n-butyl phosphate (TBP)-xylene-based liquid membranes supported in polypropylene hydrophobic microporous film have been used. These data for hafnium and the previous data for zirconium have furnished the Zr to Hf flux ratio (S) as a function of nitric acid and TBP concentrations of the order of 12 in a single stage at room temperature. Optimum conditions for the separation of these two metal ions appear to 5-6 TBP mol/dm{sup 3} HNO{sub 3}, concentrations {le} 2.93 mol/dm{sup 3}, and 10C. The value of S from an aqueous solution containing 2.4% Hf with respect to Zr has been found to be >125 at 10C and 1.78 mol/dm{sup 3} TBP concentration in the membrane. The technique appears to be feasible for purification of Zr respect to Hf or vice versa.

Chaudry, M.A.; Ahmed, B. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan))

1992-02-01T23:59:59.000Z

382

The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane  

SciTech Connect (OSTI)

The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

D Touw; D Patel; b van den Berg

2011-12-31T23:59:59.000Z

383

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

384

Projects Listings by State, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2007 Annual Progress Report DOE Hydrogen Program XV. Project Listings by State Alabama II.I.7 Production and Storage of Hydrogen from Coal Using C1 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . .207 IV.B.5k Main Group Element and Organic Chemistry for Hydrogen Storage and Activation . . . . . . . . . . . . . 514 V.D.21 Nanostructured Catalysts for Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .803 V.M.2 Membranes and MEA's for Dry, Hot Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .885 V.R.2 Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1042

385

Process for the production of hydrogen peroxide  

DOE Patents [OSTI]

An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

Datta, R.; Randhava, S.S.; Tsai, S.P.

1997-09-02T23:59:59.000Z

386

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburg’s “eagle-car” changed society. On the one hand, motor vehicle transportation is an integral thread of society’s fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

387

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory Presentation at thePresentation at the Hydrogen Storage Grand ChallengeHydrogen Storage expertise to hydrogen storage, fuel cells, and system integration issues ­Novel membranes and other

388

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

389

Materials Solutions for Hydrogen Delivery in Pipelines  

Broader source: Energy.gov [DOE]

Objective: Develop materials technologies to minimize embrittlement of steels used for high-pressure transport of hydrogen

390

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

analysis Costs of storing and transporting hydrogen A comprehensive comparison of fuel options for fuel cell vehicles

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

391

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network [OSTI]

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

392

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

393

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

394

Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation  

Science Journals Connector (OSTI)

Abstract The present research investigates deeply effect of 1-ethyl-3 methylimidazolium tetrafluoroborate ([Emim][BF4]) ionic liquid on separation performance and transport properties of poly(ether-b-amide6)(Pebax1657) at different operating pressures from 2 to 20 bar and temperatures from 25 to 65 °C. [Emim][BF4] showed interesting separation factor for CO2/light gases as a solvent and it was expected that its addition to Pebax1657 leads more amorphous structure, thereby diffusion and permeability of gases increase. [Emim][BF4] was added to the polymer solution up to 100 wt.% of Pebax1657 weight and permeation coefficients of CO2, H2, CH4 and N2 through the prepared membranes were measured. The results showed remarkable increment in permeation of all the tested gases, particularly CO2 and ideal selectivity of CO2/H2 enhanced significantly due to high solubility selectivity of the added compound. Effect of operating conditions on solubility coefficients were also investigated, thus sorption isotherms and activation energies of permeability, solubility and diffusion were calculated. In addition, the membranes were characterized by SEM, DSC, FT-IR spectroscopy and Tensile analysis to inspect changes in their physical and thermal properties, precisely.

Hesamoddin Rabiee; Ali Ghadimi; Toraj Mohammadi

2014-01-01T23:59:59.000Z

395

Studies on the in situ electrooxidation and selective permeation of cerium(IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter  

SciTech Connect (OSTI)

The results of experiments carried out to develop a liquid membrane (LM) technique for the extractive permeation of cerium from nitric acid solutions are described. In-situ electrooxidation of Ce{sup 3+} to extractable Ce{sup 4+} and its transport across bulk LM (BLM) composed of tri-n-butyl phosphate (TBP)/dodecane mixtures was systematically studied under varied hydrodynamical and chemical conditions. The permeability of metal ions across the BLM was dependent on the efficiency of extraction, ionic activity of feed solutions, stirring rate, composition of the receiving phase, etc. The transport rates were found to vary linearly (a log-log correlation) with the cation concentration in feed solutions and concentration of TBP in BLM. A permeation velocity equation for cerium ion through the membrane has been proposed. More than 90% permeation of Ce with a maximum flux of 8.63 x 10{sup {minus}5} mol/m{sup 2}/s could be accomplished under the experimental conditions: stirring rates at feed and strip solutions were 380 and 300 rpm, respectively; feed was 1 mol/dm{sup 3} of HNO{sub 3} containing 0.005 mol/dm{sup 3} Ce(NO{sub 3}){sub 3}; LM contained 30% TBP/dodecane; and the receiving phase was distilled water. Radiochemically pure Ce-144 was partitioned from the Ce-Am mixture obtained by extraction chromatographic fractioning of high level radioactive waste. This also resulted in the purification of Am-241 in the feed solution with a decontamination factor of {approximately} 12 from Ce.

Kedari, C.S.; Pandit, S.S.; Ramanujam, A. [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.] [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.

1999-06-01T23:59:59.000Z

396

Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks  

E-Print Network [OSTI]

,3,4 Selective transport of ions through the membranes creates an electric potential across pairs of AEMs by changing the membrane polymer chemistry and/or membrane form factor.9-13 The ion transport properties on either side of the membrane on ion transport properties must be studied to improve our under- standing

397

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network [OSTI]

concentration feed stock, not for low concentration � Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

398

Analysis and design of the internal mass transfer in oxygen-hydrogen fuel cell with a capillary membrane and with convective drainage of vaporous reaction products  

Science Journals Connector (OSTI)

The mechanism of mass transfer is analyzed by which water vapor drains convectively from an electrode-condenser system in a fuel cell with a capillary membrane. The problem of optimizing the mass-transfer para...

V. N. Serebryakov; M. V. Mel'nikov; V. S. Ovchinnikov…

1973-01-01T23:59:59.000Z

399

MEMBRANE FUNCTION, Part 2. Passive Movement: Diffusion, Osmosis, and Gibbs-Donnan Equilibrium 1  

E-Print Network [OSTI]

such as ion gradients or sunlight. I. Passive transport Passive transport is diffusion through a membrane of the membrane. This movement is entirely by the process of diffusion (to be covered below) · ions and polar. Mechanisms of Membrane Transport There are two general modes of transport across membranes: passive transport

Prestwich, Ken

400

Hydrogen Generation Via Fuel Reforming  

Science Journals Connector (OSTI)

Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2?based power generation via reforming is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2?enriched product stream such as carbon monoxide (CO) and hydrogen sulfide (H2S) can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC’s). Removal of such contaminants requires extensive processing of the H2?rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

John F. Krebs

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alkaline Membrane Fuel Cell Workshop  

Broader source: Energy.gov [DOE]

A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

402

A Discussion of Conductivity Testing in High Temperature Membranes...  

Broader source: Energy.gov (indexed) [DOE]

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport) A Discussion of Conductivity Testing in High Temperature Membranes...

403

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

404

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

405

Topical Review Fluctuations and Fractal Noise in Biological Membranes  

E-Print Network [OSTI]

and transport of ions and molecules across biological membranes. We know that ion transport through mem- branes in electrical properties associated with cell membrane ion transport. Key words: Brownian motion -- Cell membrane elec- trical properties -- Fractals -- Gaussian noise -- Ion transport -- Nonlinear dynamics

406

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

407

Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report  

SciTech Connect (OSTI)

Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

Luczak, F.

1998-03-01T23:59:59.000Z

408

Hollow porous-wall glass microspheres for hydrogen storage  

DOE Patents [OSTI]

A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

2010-02-23T23:59:59.000Z

409

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-9 3. Integrated Ceramic Membrane System for Hydrogen Production, Praxair, Inc. . . . . . . . . . . . II-14 4. Low Cost Hydrogen Production Platform, Praxair Inc

410

Quasi-elastic Neutron Scattering Investigation of the Hydrogen Surface Self-Diffusion on Polymer Electrolyte Membrane Fuel Cell Catalyst Support  

E-Print Network [OSTI]

Quasi-elastic Neutron Scattering Investigation of the Hydrogen Surface Self-Diffusion on Polymer-elastic neutron scattering (QENS) measurements have been performed to investigate the surface self- diffusion carbon nanomaterials have been tested after their introduction. Because neutron scattering is an

Kjelstrup, Signe

411

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

412

Synthesis and Characterization of Fullerene-based Hydrogen Storage Materials.  

E-Print Network [OSTI]

??Storing hydrogen safely and efficiently is an area of great interest for the utilization of hydrogen as an energy carrier in transportation applications. The feasibility… (more)

Ward, Patrick Alan

2013-01-01T23:59:59.000Z

413

Hydrogen Delivery R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Activities Hydrogen Delivery R&D Activities Hydrogen delivery technology may encompass several options over the short and long terms. The transportation and distribution...

414

Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Projects Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the...

415

PHYSICAL REVIEW B 84, 064303 (2011) Hydrogen transport in superionic system Rb3H(SeO4)2: A revised cooperative migration mechanism  

E-Print Network [OSTI]

conductors. This can be explained by great technological advances in the use of hydrogen conducting materials for applications in solid-state hydrogen fuel cells, hydrogen storage, and electrochemical devices.1­4 A central problem in fuel-cell and hydrogen batteries technology is the development of cheap and efficient materials

416

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

417

Ninth International Workshop on Plant Membrane Biology  

SciTech Connect (OSTI)

This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

Not Available

1993-12-31T23:59:59.000Z

418

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1991-01-01T23:59:59.000Z

419

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1990-01-01T23:59:59.000Z

420

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

Lilga, M.A.; Hallen, R.T.

1990-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

Lilga, M.A.; Hallen, R.T.

1991-10-15T23:59:59.000Z

422

Hydrogen Recovery from a H2?H2O?HBr Mixture Utilizing Silica-Based Membranes at Elevated Temperatures. 2. Calculation of Exergy Losses in H2 Separation Using Inorganic Membranes  

Science Journals Connector (OSTI)

(8) Steam in the permeate is condensed at 25 °C and 0.1 MPa and is heated again to 450 °C and 2 MPa. ... Figure 8 Distribution of exergy losses for one-stage separation (case I). ... When xf0 = 0.05, the sensible heat required for heating the steam to 450 °C at 2.0 MPa is 87 kJ/mol of recovered hydrogen. ...

Bong-Kuk Sea; Katsuki Kusakabe; Shigeharu Morooka

1998-05-15T23:59:59.000Z

423

Report of the DOE Workshop on Hydrogen Separations and Purification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Report of the DOE Workshop on Hydrogen Separations and Purification September 8-9, 2004 Arlington, VA U.S. Department of Energy Office of Hydrogen, Fuel Cells & Infrastructure Technologies CONTENTS INTRODUCTION ...............................................................................................1 Background ................................................................................................................. 1 Current Hydrogen Separation Technology .................................................................. 2 Hydrogen Membrane Separation Technologies .......................................................... 3 HYDROGEN MEMBRANE SEPARATION PERFORMANCE TARGETS.........................6

424

NREL: Transportation Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas...

425

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

426

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

427

Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities  

SciTech Connect (OSTI)

It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

Payne, Terry L [ORNL; Brown, Gilbert M [ORNL; Bogomolny, David [Sentech, Inc.

2010-01-01T23:59:59.000Z

428

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

429

Hydrogen Storage Workshop Argonne National Laboratory  

E-Print Network [OSTI]

hydrogen, fuel cells, and distribution..." #12;1. Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Energy & Water Appropriations #12;FY 2002 Budget = $47.425M Transportation Fuel Cell Stack Subsystem Rossmeissl Hydrogen, Fuel Cells & Infrastructure Technologies Program Energy Efficiency and Renewable Energy

430

Experimental and Modeling Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor.  

E-Print Network [OSTI]

??This dissertation describes the preparation of a novel inorganic membrane for hydrogen permeation and its application in a membrane reactor for the study of the… (more)

Hacarlioglu, Pelin

2007-01-01T23:59:59.000Z

431

Diffusion through Carbon Nanotube Semipermeable membranes  

SciTech Connect (OSTI)

The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization. Furthermore, advancement of many emerging nanotechnologies in chemistry and biology will undoubtedly be aided by an understanding confined water transport, particularly the details of hydrogen bonding and solvation that become crucial on this length scale. We can envision several practical applications for our devices, including desalination, gas separations, dialysis, and semipermeable fabrics for protection against CW agents etc. The single wall carbon nanotube membranes will be the key platform for applications because they will allow high transport rates of small molecules such as water and eliminate solvated ions or CW agents.

Bakajin, O

2006-02-13T23:59:59.000Z

432

Futile cycling at the plasma membrane: a hallmark of  

E-Print Network [OSTI]

. Transport systems catalyzing ion influx across the plasma membrane of root cells fall into two broadFutile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport Dev T. Britto-affinity transport systems in the plasma membranes of root cells. In this Opinion article, we illustrate that for six

Britto, Dev T.

433

Fuel Cell Membrane Electrode Assembly Manufacturing R&D - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Ulsh (Primary Contact), Guido Bender, Niccolo Aieta, Huyen Dinh National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3842 Email: michael.ulsh@nrel.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Partners: * Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA * Colorado School of Mines, Golden, CO * University of Hawaii, Hawaii Natural Energy Institute, Honolulu, HI * Rensselaer Polytechnic Institute, Troy, NY

434

Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sanjeev Mukerjee Department of Chemistry and Chemical Biology, Northeastern University (NEU) Boston, MA 02115 Phone: (617) 373-2382 Email: S.mukerjee@neu.edu DOE Managers HQ: Kathi Epping Martin Phone: (202) 586 7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000459 Subcontractors: * University of New Mexico, Albuquerque, NM (UNM) (Prof. Plamen Atanassov) * Michigan State University, East Lansing, MI (MSU) (Prof. Scott Barton) * University of Tennessee, Knoxville, TN (UTK)

435

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

hydrogen vehicles in public transportation, including taxis. This study exploring fuel cell powered pa