Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

2

Hydrogen transport membranes for dehydrogenation reactions  

DOE Patents [OSTI]

A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

Balachandran; Uthamalingam (Hinsdale, IL)

2008-02-12T23:59:59.000Z

3

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

4

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

5

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

6

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

7

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

8

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

9

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect (OSTI)

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

10

IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND  

E-Print Network [OSTI]

SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H2 WGS H2 operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2 Operational Experience Under High Pressure Differential SUMMARY OF ELTRON OXYGEN TRANSPORT MEMBRANE SYNGAS

11

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

SciTech Connect (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

12

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

13

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

14

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

15

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

16

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

17

Hydrogen purifier module with membrane support  

DOE Patents [OSTI]

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

2012-07-24T23:59:59.000Z

18

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

19

Novel, Ceramic Membrane System For Hydrogen Separation  

SciTech Connect (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

20

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect (OSTI)

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900C, and 2) Sequential OTM and HTM reactors in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

22

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

23

NREL: Transportation Research - Transportation and Hydrogen Newsletter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

24

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

25

New developments in hydrogen permselective membranes  

SciTech Connect (OSTI)

The objectives of the original project were to develop silica hydrogen permselective membranes and to evaluate the economic feasibility of these membranes in hydrogen production from coal gas. The objectives of the work reported here were to increase the membrane permeance by developing new precursors or deposition conditions, and to carry out fundamental permeability measurements of the membrane at different stages of pore narrowing.

Gavalas, G.R.

1994-10-01T23:59:59.000Z

26

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

27

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

28

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

29

Hydrogen separation membranes annual report for FY 2006.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

2007-02-05T23:59:59.000Z

30

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

31

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

32

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

33

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

34

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

35

Oxygen Transport Membranes  

SciTech Connect (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

36

Hydrogen separation membranes annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-17T23:59:59.000Z

37

Nanoengineered membranes for controlled transport  

DOE Patents [OSTI]

A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

2010-01-05T23:59:59.000Z

38

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-10-01T23:59:59.000Z

39

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

40

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

42

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

43

Membrane separation advances in FE hydrogen program  

SciTech Connect (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

44

Hydrogen separation membrane on a porous substrate  

DOE Patents [OSTI]

A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

2011-06-14T23:59:59.000Z

45

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-11-01T23:59:59.000Z

46

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

47

Composite oxygen transport membrane  

DOE Patents [OSTI]

A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

Christie, Gervase Maxwell; Lane, Jonathan A.

2014-08-05T23:59:59.000Z

48

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-02-01T23:59:59.000Z

49

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-07-01T23:59:59.000Z

50

High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors  

SciTech Connect (OSTI)

We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

Buxbaum, Robert

2010-06-30T23:59:59.000Z

51

Catalytic carbon membranes for hydrogen production  

SciTech Connect (OSTI)

Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

Damle, A.S.; Gangwal, S.K.

1992-01-01T23:59:59.000Z

52

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

53

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

54

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-05-01T23:59:59.000Z

55

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

56

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

S. Bandopadhyay; T. Nithyanantham

2006-06-30T23:59:59.000Z

57

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

58

Membrane Transport Chloride Transport Across Vesicle and Cell  

E-Print Network [OSTI]

Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects the formation of an ion pair.[4a­g] Anion transport by purely electroneutral systems is still quite rare.[4j

Smith, Bradley D.

59

Oxygen Transport Ceramic Membranes Quarterly Report  

E-Print Network [OSTI]

/Reaction rates in Ion 21 Transport Membranes using Isotope Tracer and Transient Kinetic Techniques CONCLUSIONS 30Oxygen Transport Ceramic Membranes Quarterly Report January 2003 ­ March 2003 Principal Authors on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane

Eagar, Thomas W.

60

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

62

Transportation and Stationary Power Integration with Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths,...

63

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network [OSTI]

@ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

64

Ionic (Proton) Transport Hydrogen  

E-Print Network [OSTI]

environments - #12;Technology Options -- Ionic Transport Separation Systems Central, Semi-Central (coal/Semi-Central Systems Coal is the cheapest fuel, but requires the greatest pre-conditioning Clean-up of syngas requires Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures #12;Performance

65

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

66

Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures to hydrogen separation membranes or other equipment for development and demonstration.

Schlasner, Steven

2012-03-01T23:59:59.000Z

67

Supported Molten Metal Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and permeation process in these molten metal membranes. For this, a comprehensive microkinetic model was developed for hydrogen permeation in dense metal membranes, and tested against data for Pd membrane over a broad range of temperatures.3 It is planned to obtain theoretical and experimental estimates of the parameters to corroborate the model against mental results for SMMM.

Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

2013-09-30T23:59:59.000Z

68

Development of mixed-conducting ceramic membranes for hydrogen separation.  

SciTech Connect (OSTI)

SrCeO{sub 3}- and BaCeO{sub 3}-based proton conductors have been prepared and their transport properties have been investigated by impedance spectroscopy in conjunction with open circuit voltage and water vapor evolution measurements. BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} exhibits the highest conductivity in a hydrogen-containing atmosphere; however, its electronic conductivity is not adequate for hydrogen separation in a nongalvanic mode. In an effort to enhance ambipolar conductivity and improve interfacial catalytic properties, BaCe{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} cermets have been fabricated into membranes. The effects of ambipolar conductivity, membrane thickness, and interfacial resistance on permeation rates have been investigated. In particular, the significance of interfacial resistance is emphasized.

Guan, J.

1998-05-18T23:59:59.000Z

69

Catalyst containing oxygen transport membrane  

SciTech Connect (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

70

Stable catalyst layers for hydrogen permeable composite membranes  

DOE Patents [OSTI]

The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

Way, J. Douglas; Wolden, Colin A

2014-01-07T23:59:59.000Z

71

Ion transport membrane module and vessel system  

SciTech Connect (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

72

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

73

Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

74

Hydrogen-permeable composite metal membrane and uses thereof  

DOE Patents [OSTI]

Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

1993-06-08T23:59:59.000Z

75

Array of planar membrane modules for producing hydrogen  

DOE Patents [OSTI]

A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.

Vencill, Thomas R. (Albuquerque, NM); Chellappa, Anand S. (Albuquerque, NM); Rathod, Shailendra B. (Hillsboro, OR)

2012-05-08T23:59:59.000Z

76

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

77

HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION  

E-Print Network [OSTI]

biomass, such as peanut shells, for urban transportation. The process involves pyrolysis of the biomassHYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION Collaborating Project Team Y. Yeboah (PI) and K and liquid fuels) · Potential sources of hydrogen include biomass, natural gas and other fossil fuels. #12

78

Liners for ion transport membrane systems  

SciTech Connect (OSTI)

Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2010-08-10T23:59:59.000Z

79

Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide  

SciTech Connect (OSTI)

The objective of the project was to develop a novel complementary membrane reactor process that can consolidate two or more downstream unit operations of a coal gasification system into a single module for production of a pure stream of hydrogen and a pure stream of carbon dioxide. The overall goals were to achieve higher hydrogen production efficiencies, lower capital costs and a smaller overall footprint than what could be achieved by utilizing separate components for each required unit process/operation in conventional coal-to-hydrogen systems. Specifically, this project was to develop a novel membrane reactor process that combines hydrogen sulfide removal, hydrogen separation, carbon dioxide separation and water-gas shift reaction into a single membrane configuration. The carbon monoxide conversion of the water-gas-shift reaction from the coal-derived syngas stream is enhanced by the complementary use of two membranes within a single reactor to separate hydrogen and carbon dioxide. Consequently, hydrogen production efficiency is increased. The single membrane reactor configuration produces a pure H{sub 2} product and a pure CO{sub 2} permeate stream that is ready for sequestration. This project focused on developing a new class of CO{sub 2}-selective membranes for this new process concept. Several approaches to make CO{sub 2}-selective membranes for high-temperature applications have been tested. Membrane disks using the technique of powder pressing and high temperature sintering were successfully fabricated. The powders were either metal oxide or metal carbonate materials. Experiments on CO{sub 2} permeation testing were also performed in the temperature range of 790 to 940 C for the metal carbonate membrane disks. However, no CO{sub 2} permeation rate could be measured, probably due to very slow CO{sub 2} diffusion in the solid state carbonates. To improve the permeation of CO{sub 2}, one approach is to make membranes containing liquid or molten carbonates. Several different types of dual-phase membranes were fabricated and tested for their CO{sub 2} permeation in reducing conditions without the presence of oxygen. Although the flux was quite low, on the order of 0.01-0.001 cc STP/cm{sup 2}/min, the selectivity of CO{sub 2}/He was almost infinite at temperatures of about 800 C. A different type of dual-phase membrane prepared by Arizona State University (ASU) was also tested at GTI for CO{sub 2} permeation. The measured CO{sub 2} fluxes were 0.015 and 0.02 cc STP/cm{sup 2}/min at 750 and 830 C, respectively. These fluxes were higher than the previous flux obtained ({approx}0.01 cc STP/cm{sup 2}/min) using the dual-phase membranes prepared by GTI. Further development in membrane development should be conducted to improve the CO{sub 2} flux. ASU has also focused on high temperature permeation/separation experiments to confirm the carbon dioxide separation capabilities of the dual-phase membranes with La{sup 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF6482) supports infiltrated with a Li/Na/K molten carbonate mixture (42.5/32.5/25.0 mole %). The permeation experiments indicated that the addition of O{sub 2} does improve the permeance of CO{sub 2} through the membrane. A simplified membrane reactor model was developed to evaluate the performance of the process. However, the simplified model did not allow the estimation of membrane transport area, an important parameter for evaluating the feasibility of the proposed membrane reactor technology. As a result, an improved model was developed. Results of the improved membrane reactor model show that the membrane shift reaction has promise as a means to simplify the production of a clean stream of hydrogen and a clean stream of carbon dioxide. The focus of additional development work should address the large area required for the CO{sub 2} membrane as identified in the modeling calculations. Also, a more detailed process flow diagram should be developed that includes integration of cooling and preheating feed streams as well as particulate removal so that stea

Micheal Roberts; Robert Zabransky; Shain Doong; Jerry Lin

2008-05-31T23:59:59.000Z

80

Separating hydrogen from coal gasification gases with alumina membranes  

SciTech Connect (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cu--Pd--M hydrogen separation membranes  

DOE Patents [OSTI]

The disclosure provides an H2 separation membrane comprised of an allow having the composition Cu.Sub.(100-x-y)Pd.sub.xM.sub.y, where x is from about 35 to about 50 atomic percent and where y is from greater than 0 to about 20 atomic percent, and where M consists of magnesium, yttrium, aluminum, titanium, lanthanum, or combinations thereof. The M elements act as strong stabilizers for the B2 phase of the allow, and extend the critical temperature of the alloy for a given hydrogen concentration and pressure. Due to the phase stabilization and the greater temperature range over which a B2 phase can be maintained, the allow is well suited for service as a H2 separation membrane, particularly when applicable conditions are established or cycled above about 600.degree. C. over the course of expected operations. In certain embodiments, the B2 phase comprises at least 60 estimated volume percent of the allow at a steady-state temperature of 400.degree. C. The B2 phase stability is experimentally validated through HT-XRD.

Do{hacek over (g)}an, Omer N; Gao, Michael C; Young, Rongxiang Hu; Tafen, De Nyago

2013-12-17T23:59:59.000Z

82

Process, including membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents [OSTI]

Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

83

ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel  

DOE Patents [OSTI]

The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

2013-04-02T23:59:59.000Z

84

Tubular hydrogen permeable metal foil membrane and method of fabrication  

DOE Patents [OSTI]

A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

2006-04-04T23:59:59.000Z

85

Hydrogen separation membranes - annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry.

Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-01-31T23:59:59.000Z

86

Characterization of a plasma membrane zinc transporter in rat brain  

E-Print Network [OSTI]

Ireland Ltd. Keywords: Ion transport; Membrane vesicles; Excitotoxicity; Zinc homeostasis; TransitionCharacterization of a plasma membrane zinc transporter in rat brain Robert A. Colvin* Department transport in the brain. This report provides convincing evidence of a zinc transporter in plasma membrane

87

Silica membranes for hydrogen separation from coal gas. Final report  

SciTech Connect (OSTI)

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

88

Systems and methods for selective hydrogen transport and measurement  

DOE Patents [OSTI]

Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

Glatzmaier, Gregory C

2013-10-29T23:59:59.000Z

89

Ion transport through cell membrane channels  

E-Print Network [OSTI]

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

90

Sol-Gel Based Polybenzimidazole Membranes for Hydrogen Pumping Devices  

SciTech Connect (OSTI)

Electrochemical hydrogen pumping using a high temperature (>100C) PBI membrane was demonstrated under non-humidified and humidified conditions at ambient pressures. Relatively low voltages were required to operate the pump over a wide range of hydrogen flow rates. The advantages of the high temperature capability were shown by operating the pump on reformate feed gas mixtures containing various amounts of CO and CO{sub 2}. Gas purity measurements on the cathode gas product were conducted and significant reductions in gas impurities were detected. The applicability of the PBI membrane for electrochemical hydrogen pumping and its durability under typical operating conditions was established with tests that lasted for nearly 4000 hours.

Benicewicz, Brian

2014-02-26T23:59:59.000Z

91

Catalytic carbon membranes for hydrogen production. Final report  

SciTech Connect (OSTI)

Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

Damle, A.S.; Gangwal, S.K.

1992-01-01T23:59:59.000Z

92

PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION  

SciTech Connect (OSTI)

This project is aimed at preparation of thin (1-10? m) membranes of a modified strontium ceramic material with improved hydrogen permeance on mesoporous substrates. The research work conducted in this reporting period was focused on the following three aspects: (1) preparation of thick proton-conducting ceramic membranes and synthesis of porous substrates as support for thin proton-conducting ceramic film, (2) setting up RF sputter deposition unit for deposition of thin ceramic films and performing deposition experiments with the sputter deposition unit, and (3) modeling hydrogen permeation through the proton-conducting ceramic membranes. Proton-conducting thulium doped strontium cerate membranes were reproducibly prepared by the citrate method. Mesoporous ceria membranes were fabricated by a sol-gel method. The membranes will be used as the substrate for coating thin strontium cerate films. A magnetron sputter deposition unit was set up and good quality thin metal alloy films were formed on the mesoporous substrates by an alternative deposition method with the sputter deposition unit. A theoretical model has been developed for hydrogen permeation through proton conducting ceramic membranes. This model can be used to quantitatively describe the hydrogen permeation data.

Jerry Y.S. Lin

2001-11-30T23:59:59.000Z

93

Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations  

SciTech Connect (OSTI)

Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using dusty gas theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

Way, J.; Wolden, Colin

2013-09-30T23:59:59.000Z

94

Oxygen transport membrane system and method for transferring heat to catalytic/process reactors  

DOE Patents [OSTI]

A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

2014-01-07T23:59:59.000Z

95

Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1  

E-Print Network [OSTI]

1 Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1 , Jacek Mikisz2 , and Stanislaw various models of ion transport through cell membrane channels. Recent experimental data shows that sizes for the life of a cell. In particular, a fundamental phenomenon is a transport of ions through cell membranes

Miekisz, Jacek

96

Hydrogen Production via a Commerically Ready Inorganic membrane Reactor  

SciTech Connect (OSTI)

It has been known that use of the hydrogen selective membrane as a reactor (MR) could potentially improve the efficiency of the water shift reaction (WGS), one of the least efficient unit operations for production of high purity hydrogen from syngas. However, no membrane reactor technology has been reduced to industrial practice thus far, in particular for a large-scale operation. This implementation and commercialization barrier is attributed to the lack of a commercially viable hydrogen selective membrane with (1) material stability under the application environment and (2) suitability for large-scale operation. Thus, in this project, we have focused on (1) the deposition of the hydrogen selective carbon molecular sieve (CMS) membrane we have developed on commercially available membranes as substrate, and (2) the demonstration of the economic viability of the proposed WGS-MR for hydrogen production from coal-based syngas. The commercial stainless steel (SS) porous substrate (i.e., ZrO{sub 2}/SS from Pall Corp.) was evaluated comprehensively as the 1st choice for the deposition of the CMS membrane for hydrogen separation. The CMS membrane synthesis protocol we developed previously for the ceramic substrate was adapted here for the stainless steel substrate. Unfortunately no successful hydrogen selective membranes had been prepared during Yr I of this project. The characterization results indicated two major sources of defect present in the SS substrate, which may have contributed to the poor CMS membrane quality. Near the end of the project period, an improved batch of the SS substrate (as the 2nd generation product) was received from the supplier. Our characterization results confirm that leaking of the crimp boundary no longer exists. However, the thermal stability of the ZrO{sub 2}/SS substrate through the CMS membrane preparation condition must be re-evaluated in the future. In parallel with the SS membrane activity, the preparation of the CMS membranes supported on our commercial ceramic membrane for large-scale applications, such as coal-based power generation/hydrogen production, was also continued. A significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during the first production trial. In addition, we have verified the functional performance and material stability of this hydrogen selective CMS membrane with a hydrocracker purge gas stream at a refinery pilot testing facility. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The excellent stability of our hydrogen selective CMS membrane opens the door for its use in WGS-MR with a significantly reduced requirement of the feedstock pretreatment.

Paul Liu

2007-06-30T23:59:59.000Z

97

NREL: Transportation Research - Transportation and Hydrogen Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportation

98

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

99

A NOVEL MEMBRANE REACTOR FOR DIRECT HYDROGEN PRODUCTION FROM COAL  

SciTech Connect (OSTI)

Gas Technology Institute is developing a novel concept of membrane reactor coupled with a gasifier for high efficiency, clean and low cost production of hydrogen from coal. The concept incorporates a hydrogen-selective membrane within a gasification reactor for direct extraction of hydrogen from coal-derived synthesis gases. The objective of this project is to determine the technical and economic feasibility of this concept by screening, testing and identifying potential candidate membranes under high temperature, high pressure, and harsh environments of the coal gasification conditions. The best performing membranes will be selected for preliminary reactor design and cost estimates. Hydrogen permeation data for several perovskite membranes BCN (BaCe{sub 0.9}Nd{sub 0.1}O{sub 3-x}), SCE (SrCe{sub 0.9}Eu{sub 0.1}O{sub 3}) and SCTm (SrCe{sub 0.95}Tm{sub 0.05}O{sub 3}) have been successfully obtained for temperatures between 800 and 950 C and pressures from 1 to 12 bar in this project. However, it is known that the cerate-based perovskite materials can react with CO{sub 2}. Therefore, the stability issue of the proton conducting perovskite materials under CO{sub 2} or H{sub 2}S environments was examined. Tests were conducted in the Thermo Gravimetric Analyzer (TGA) unit for powder and disk forms of BCN and SCE. Perovskite materials doped with zirconium (Zr) are known to be resistant to CO{sub 2}. The results from the evaluation of the chemical stability for the Zr doped perovskite membranes are presented. During this reporting period, flowsheet simulation was also performed to calculate material and energy balance based on several hydrogen production processes from coal using high temperature membrane reactor (1000 C), low temperature membrane reactor (250 C), or conventional technologies. The results show that the coal to hydrogen process employing both the high temperature and the low temperature membrane reactors can increase the hydrogen production efficiency (cold gas efficiency) by more than 50% compared to the conventional process. Using either high temperature or low temperature membrane reactor process also results in an increase of the cold gas efficiencies as well as the thermal efficiencies of the overall process.

Shain Doong; Estela Ong; Mike Atroshenko; Francis Lau; Mike Roberts

2005-07-29T23:59:59.000Z

100

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry...

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling the Prospects for Hydrogen Powered Transportation Through 2100  

E-Print Network [OSTI]

Hydrogen fueled transportation has been proposed as a low carbon alternative to the current gasoline-powered

Sandoval, Reynaldo.

102

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

SciTech Connect (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

103

Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports  

SciTech Connect (OSTI)

Thin and defect-free PdCu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a PdCu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the PdCu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the PdCu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense PdCu composite layer with no visible defects. Cross-sectional views of the membrane showed that the PdCu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

Lim, Hankwon; Oyama, S. Ted

2011-08-15T23:59:59.000Z

104

Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer  

E-Print Network [OSTI]

not consume fossil fuels or pro- duce CO2 while producing highly pure hydrogen.1-10 Gaseous SO2 fedTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and Biological Systems Department, Albuquerque, New Mexico 87123, USA c Department of Materials Science

Weidner, John W.

105

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-10-01T23:59:59.000Z

106

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2003-07-01T23:59:59.000Z

107

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

ITN Energy Systems, along with its team members, the Idaho National Engineering and Environmental Laboratory, Nexant Consulting, Argonne National Laboratory and Praxair, propose to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is taking a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into fabrication designs; combining functionally graded materials, monolithic module concept and plasma spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing with low costs. This program will develop and evaluate composite membranes and catalysts for hydrogen separation. Components of the monolithic modules will be fabricated by plasma spray processing. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, will also be assessed. This will result in a complete evaluation of the technical and economic feasibility of ICCM hydrogen separation for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Michael Schwartz

2004-01-01T23:59:59.000Z

108

Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a,  

E-Print Network [OSTI]

Review Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a, , Stephen H 30 November 2011 Available online 8 December 2011 Keywords: Membrane protein structure Hydrogen bond Membrane protein dynamics Lipid­protein interactions Changes in inter-helical hydrogen bonding

White, Stephen

109

Structures for Three Membrane Transport Proteins Yield Functional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate...

110

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

111

Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide  

SciTech Connect (OSTI)

The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

2007-09-30T23:59:59.000Z

112

Hydrogen separation by ceramic membranes in coal gasification. Final report  

SciTech Connect (OSTI)

The general objective of this project was to develop hydrogen permselective membranes for hydrogen production from coal gas. The project consisted of the following tasks: (i) membrane preparation and characterization, (ii) membrane stability testing, and (iii) analysis and economic evaluation of a membrane-assisted ammonia from coal process. Several oxides (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) in dense (or nonporous) form were identified to be permselective to hydrogen at elevated temperatures. To obtain reasonable permeance it is necessary that the membrane consists of a thin selective layer of the dense oxide supported on or within the pores of a porous support tube (or plate). Early in the project we chose porous Vycor tubes (5mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter) supplied by Corning Inc. as the membrane support. To form the permselective layer (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) we employed chemical vapor deposition using the reaction of the chloride (SiCl{sub 4}, etc.) vapor and water vapor at high temperatures. Deposition of the selective layer was carried out in a simple concentric tube reactor comprising the porous support tube surrounded by a wider concentric quartz tube and placed in an electrically heated split tube furnace. In one deposition geometry (the opposing reactants or two-sided geometry) the chloride vapor in nitrogen carrier was passed through the inner tube while the water vapor also in nitrogen carrier was passed in the same direction through the annulus between the two tubes. In the other (two-sided) geometry the chloride-containing stream and the water-containing stream were both passed through the inner tube or both through the annulus.

Gavalas, G.R.

1993-08-01T23:59:59.000Z

113

The Transport of Neutral Hydrogen Atoms in a Hydrogen Plasma R. D. M. Garcia  

E-Print Network [OSTI]

-state Boltzmann equation that describes the transport of low-energy ~,5-keV! neutral hydrogen at- omsThe Transport of Neutral Hydrogen Atoms in a Hydrogen Plasma R. D. M. Garcia HSH Scientific, 1999 Accepted March 20, 2000 Abstract ­ An analytical version of the discrete ordinates method is used

Siewert, Charles E.

114

Fabrication of catalyzed ion transport membrane systems  

DOE Patents [OSTI]

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

115

Measurement of Water Transport Properties Through Membrane-Electrode Assemblies  

E-Print Network [OSTI]

a similar apparatus with Pd/H electrodes and obtained EOD equal to 2.5 and 0.9 at 30C for a fully hydratedMeasurement of Water Transport Properties Through Membrane-Electrode Assemblies I. Membranes of Ag/AgCl electrodes to derive a constant current across a membrane in contact on both sides with a 0

116

Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants  

SciTech Connect (OSTI)

ITN Energy Systems, Inc. (ITN) and its partners, the Idaho National Engineering and Environmental Laboratory, Argonne National Laboratory, Nexant Consulting, LLC and Praxair, Inc. are developing composite membranes for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is pursuing a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into module fabrication designs; combining functionally-graded materials, monolithic module concept and thermal spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows for the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing techniques with low costs. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, are being assessed. This will result in an evaluation of the technical and economic feasibility of the proposed ICCM hydrogen separation approach for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of such plants. Of particular importance is that the proposed technology also results in a stream of pure carbon dioxide. This allows for the facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Schwartz, Michael

2001-11-06T23:59:59.000Z

117

Membranes for nanometer-scale mass fast transport  

DOE Patents [OSTI]

Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

2011-10-18T23:59:59.000Z

118

Membrane porters of ATP-binding cassette transport systems are polyphyletic  

E-Print Network [OSTI]

in Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transport

Wang, Bin

2010-01-01T23:59:59.000Z

119

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

120

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized  

E-Print Network [OSTI]

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane

Nerenberg, Robert

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network [OSTI]

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

122

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect (OSTI)

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

123

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

SciTech Connect (OSTI)

It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

2009-11-19T23:59:59.000Z

124

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton, originally presented on May 23, 2011.

125

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: Energy.gov [DOE]

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

126

Engineering Development of Ceramic Membrane Reactor  

E-Print Network [OSTI]

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

127

Hydrogen from Biomass for Urban Transportation  

SciTech Connect (OSTI)

The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

Boone, William

2008-02-18T23:59:59.000Z

128

High-Performance Palladium Based Membrane for Hydrogen Separation and Purification  

SciTech Connect (OSTI)

The mission of the DOE's Fuel Cell Technologies'?Hydrogen Fuels R&D effort is to research, develop, and validate technologies for producing, storing, and delivering hydrogen in an efficient, clean, safe, reliable, and affordable manner. A key program technical milestone for hydrogen technology readiness is to produce hydrogen from diverse, domestic resources at $2.00-$3.00 per gallon of gasoline equivalent (gge) delivered, untaxed. Low-cost, high-temperature hydrogen separation membranes represent a key enabling technology for small-scale distributed hydrogen production units. Availability of such membranes with high selectivity and high permeability for hydrogen will allow their integration with hydrocarbon reforming and water gas shift reactions, potentially reducing the cost of hydrogen produced. Pd-metal-based dense membranes are known for their excellent hydrogen selectivity and permeability characteristics, however, utilization of these membranes has so far been limited to small scale niche markets for hydrogen purification primarily due to the relatively high cost of Pd-alloy tubes compared to pressure swing adsorption (PSA) units. This project was aimed at development of thin-film Pd-alloy membranes deposited on Pall Corporation's DOE-based AccuSep® porous metal tube substrates to form a composite hydrogen separation membrane for these applications. Pall's composite membrane development addressed the typical limitations of composite structures by developing robust membranes capable of withstanding thermal and mechanical stresses resulting from high temperature (400C), high pressure (400 psi steam methane reformer and 1000 psi coal) operations and thermal cycling involved in conventional hydrogen production. In addition, the Pd-alloy membrane composition was optimized to be able to offer the most stability in the typical synthesis gas environments produced by reforming of natural gas and bio-derived liquid fuels (BILI) validating the technical effectiveness and economic feasibility of the technology demonstrated. Results from this research added technology and product design information that offers the potential to significantly advance the commercial viability of hydrogen production.

Scott Hopkins

2012-01-31T23:59:59.000Z

129

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

130

Membrane-based systems for carbon capture and hydrogen purification  

SciTech Connect (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

131

Development of active-transport membrane devices  

SciTech Connect (OSTI)

This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

Laciak, D.V.

1994-07-01T23:59:59.000Z

132

Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents [OSTI]

An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

133

EVermont Renewable Hydrogen Production and Transportation Fueling System  

SciTech Connect (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

134

Nanostructured Silicon Membranes for Control of Molecular Transport  

SciTech Connect (OSTI)

A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure of the pores. Here, a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore-sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating.

Srijanto, Bernadeta R [ORNL] [ORNL; Retterer, Scott T [ORNL] [ORNL; Fowlkes, Jason Davidson [ORNL] [ORNL; Doktycz, Mitchel John [ORNL] [ORNL

2010-01-01T23:59:59.000Z

135

Hydrogen Energy Storage: Grid and Transportation Services Workshop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop Structure 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and...

136

Durable pd-based alloy and hydrogen generation membrane thereof  

DOE Patents [OSTI]

A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

Benn, Raymond C. (Madison, CT); Opalka, Susanne M. (Glastonbury, CT); Vanderspurt, Thomas Henry (Glastonbury, CT)

2010-02-02T23:59:59.000Z

137

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

138

Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network  

E-Print Network [OSTI]

emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anodeWater Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes

Fayer, Michael D.

139

Electrochemical control of ion transport through a mesoporous carbon membrane  

SciTech Connect (OSTI)

The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

Surwade, Sumedh P [ORNL] [ORNL; Chai, Songhai [ORNL] [ORNL; Choi, Jai-Pil [ORNL] [ORNL; Wang, Xiqing [ORNL] [ORNL; Lee, Jeseung [ORNL] [ORNL; Vlassiouk, Ivan V [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

140

Feed gas contaminant control in ion transport membrane systems  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect (OSTI)

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

142

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

of hydrogen, methanol and gasoline as fuels for fuel cellon Environmental Quality (TCEQ). Gasoline Vapor Recovery (Quality Impacts of Hydrogen and Gasoline Transportation Fuel

Wang, Guihua

2008-01-01T23:59:59.000Z

143

A smooth transition to hydrogen transportation fuel  

SciTech Connect (OSTI)

The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

Berry, G.D.; Smith, J.R.; Schock, R.N.

1995-04-14T23:59:59.000Z

144

Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, Robert Nerenberg  

E-Print Network [OSTI]

1 Hydrogen-Based Membrane Biofilm Reactor for Wastewater Treatment Bruce E. Rittmann, RobertCarty 2001). If soluble organic nitrogen can be held to a few tenths of a mg/L, the total N can

Nerenberg, Robert

145

Hydrogen and oxygen permeation through Nafion 117 and XUS 13204.10 fuel cell membranes  

E-Print Network [OSTI]

HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Submitted to the Office of Graduate Studies of Texas AdrM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1992 Major Subject Chemical Engineering HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Approved as to style and content by: Ralph E. White (Chair...

Lee, Steven Ray

1992-01-01T23:59:59.000Z

146

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

SciTech Connect (OSTI)

The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at ?95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE??s goals prior to down-selection for larger-scale (??100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (??1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex situ (laboratory) air regeneration at 450 °C could restore separator performance by burning out such deposits. Gasifier testing revealed that high molecular weight hydrocarbons have the potential to retard H2 separation. Unconverted coal tars with carbon numbers greater than 14 have a boiling point such that they can act as a reversible poison to the Pd-Cu membranes even at temperatures above 500 °C. The use of real-time, physics-based, performance models revealed the effect of these coal tars. It is believed that this project provided the first evidence for the impact of coal tars on H{sub 2} separator performance. Final down-selection of candidate alloys for non-membrane materials of construction proceeded by evaluating the alloys in both UTRC laboratory tests and testing downstream of an actual gasifier at the National Carbon Capture Center (NCCC). The overall alloy ratings were calculated by multiplying the projected cost of a 100 lb day{sup -1} H{sub 2} separator outer shell by the projected oxide scale thickness for 5 years of operation. The alloy with the lowest resulting rating parameter was stainless steel 309 (SS-309) followed by stainless steel 310 (SS-310). However, it was noted that approximately half of the alloys showed susceptibility to pitting and localized corrosion. SS-309 was one of the alloys that exhibited heavy localized attack after 2000 hours of laboratory testing. As this localized corrosion can potentially lead to accelerated end of life, it was determined that SS-310 would be the best alloy selection for this application as it does not show signs of localized pitting corrosion.

Sean Emerson; Neal Magdefrau; Ying She; Catherine Thibaud-Erkey

2012-10-31T23:59:59.000Z

147

The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications  

SciTech Connect (OSTI)

Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

Dams, R.A.J.; Hayter, P.R.; Moore, S.C. [Wellman CJB Limited, Portsmouth (United Kingdom)

1997-12-31T23:59:59.000Z

148

Methanol and hydrogen from biomass for transportation  

E-Print Network [OSTI]

. In the light of increasing air pollution in megacitites like Mexico City and São Paulo [UNEP/WHO, 1992 for biomass to be used for road transportation, with zero or near-zero local air pollution and very low levels

149

HYDROGEN-BASED, HOLLOW-FIBER MEMBRANE BIOFILM REACTOR FOR REDUCTION OF PERCHLORATE AND OTHER OXIDIZED CONTAMINANTS  

E-Print Network [OSTI]

HYDROGEN-BASED, HOLLOW-FIBER MEMBRANE BIOFILM REACTOR FOR REDUCTION OF PERCHLORATE AND OTHER be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane biofilm reactor (MBfR) for reduction of perchlorate

Nerenberg, Robert

150

Ballistic electron transport in structured suspended semiconductor membranes  

SciTech Connect (OSTI)

We study ballistic electron transport in freely suspended AlAs/GaAs microstructures containing a high mobility two-dimensional electron gas with square lattice of antidots. We found that the magnetoresistance of the samples demonstrates commensurability oscillations both for the case of non-suspended and suspended devices. The temperature dependence of the commensurability oscillations is similar for both cases. However, the critical dc current, that suppresses these oscillations, in suspended samples is three times lower than in non-suspended ones. The observed phenomenon can be explained by peculiarities of the heat transport in membranes.

Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Pokhabov, D. A. [Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia and Novosibirsk State University, Novosibirsk (Russian Federation)

2013-12-04T23:59:59.000Z

151

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

Policy process; Hydrogen; Transportation energy policy 1.Prospects for hydrogen in the German energy system. Energytransportation energy: The case of hydrogen in the United

Collantes, Gustavo Oscar

2008-01-01T23:59:59.000Z

152

CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA  

SciTech Connect (OSTI)

Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

Krishna Sapru

2005-11-15T23:59:59.000Z

153

Research and development of hydrogen separation technology with inorganic membranes  

SciTech Connect (OSTI)

Inorganic membrane technology has long been expected to provide new economical methods for industrial and waste management processes. At this time, the only commercially valuable inorganic membranes are the ultra filters derived from the French process that was used to produce the barrier for the French Gaseous Diffusion Plants. But these membranes are very expensive and have limited areas of application. Over the past fifteen years, scientists now in the Inorganic Membrane Technology Laboratory (IMTL) in Oak Ridge, Tennessee have developed theories and processes for inorganic membranes that can be used to design and produce inorganic membranes for a very broad range of applications. A part of the fabrication process is an adaptive spinoff from the still classified process used to manufacture barriers for the U.S. Gaseous Diffusion Process. Although that part of the process is classified, it is a very flexible and adaptable process and it can be used with a broad range of materials. With the theories and design capabilities developed in the last fifteen years, this new adaptive manufacturing technology can be used to manufacture commercial inorganic membranes that are not useful for the separation of uranium isotopes and they have little or no relation to the barriers that were used to separate uranium isotopes. The development and deployment of such inorganic membranes can be very beneficial to U.S. industry. Inorganic membranes can be specifically designed and manufactured for a large number of different applications. Such membranes can greatly improve the efficiency of a broad range of industrial processes and provide new technology for waste management. These inorganic membranes have the potential for major energy savings and conservation of energy. They can provide the means for significant improvements in the competitiveness of US Industry and improve the economy and health and welfare of the nation.

Fain, D.E.

1999-07-01T23:59:59.000Z

154

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

155

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled  

E-Print Network [OSTI]

Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis 2013 Keywords: Microbial reverse-electrodialysis electrolysis cell Ammonium bicarbonate Hydrogen reverse electrodialysis (RED) stack into the MEC, which was called a microbial reverse-electrodialysis

156

Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming  

E-Print Network [OSTI]

-gas-shift catalytic membrane reactor, and (2) a multi-layer design for bioethanol reforming. A two-dimensional model is developed to describe reaction and diffusion in the catalytic membrane coupled with plug-flow equations in the retentate and permeate volumes using...

Kuncharam, Bhanu Vardhan

2013-11-26T23:59:59.000Z

157

Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes  

SciTech Connect (OSTI)

CuPd alloys are among the most promising candidate materials for hydrogen separation membranes and membrane reactor applications due to their high hydrogen permeability and better sulfur resistance. In order to reduce the Pd content and, therefore, the cost of the membrane materials, efforts have been initiated to develop CuPdM ternary alloys having a bcc structure. The advantages of having Pd as a hydrogen separation membrane are: (1) high hydrogen selectivity; and (2) high hydrogen permeability. The disadvantages are: (1) high cost; (2) hydrogen embrittlement ({alpha} {yields} {beta} Pd hydride); and (3) sulfur poisoning. Experiments (XRD, SEM/EDS) verified that Mg, Al, La, Y and Ti are promising alloying elements to expand the B2 phase region in Cu-Pd binary system. HT-XRD showed that the B2 to FCC transition temperatures for Cu-Pd-X (X = Mg, Al, La, Y and Ti) are higher than that of Cu-Pd binary alloys. While the Cu-50Pd alloy had the highest corrosion resistance to the H2S containing syngas, the Cu-Pd-Mg alloy had a comparable resistance.

O.N. Dogan; M.C. Gao; B.H. Howard

2012-02-26T23:59:59.000Z

158

Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

J. Douglas Way; Paul M. Thoen

2006-08-31T23:59:59.000Z

159

Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles  

E-Print Network [OSTI]

Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles D channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series by its use as a proton conducting membrane in fuel cells. Nafion membranes in fuel cells allow protons

Fayer, Michael D.

160

Transport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt-Binding Receptor  

E-Print Network [OSTI]

in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high saltTransport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is

Smith, Bradley D.

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons  

E-Print Network [OSTI]

pH dependence and compartmentalization of zinc transported across plasma membrane of rat corticalH dependence and compartmental- ization of zinc transported across plasma membrane of rat cortical neurons. Am; ion transport; transition elements; primary culture IT IS KNOWN THAT Zn2 can enter neurons by two

162

Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan Larry R. Gibson II  

E-Print Network [OSTI]

. Keywords Membranes Á Nanostructures Á Nanofluidics Á Microfluidics Á Ion transport Á Electrokinetics Á lREVIEW Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan · Larry R. Gibson / Accepted: 23 May 2012 ? Springer Science+Business Media B.V. 2012 Abstract Species transport

163

Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties  

SciTech Connect (OSTI)

With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

164

Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles  

SciTech Connect (OSTI)

Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

2008-10-22T23:59:59.000Z

165

E-Print Network 3.0 - aeruginosa membrane transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr... of methanophenazine and function of phenazines in ... Source: Dietrich,...

166

E-Print Network 3.0 - active transport membrane Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

84 CURRICULUM VITAE JOHN PETER PALMERI Summary: Membrane Transport Theory Dual American-French Nationality PROFESSIONAL ADDRESS Laboratoire de Physique... of Montpellier II,...

167

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee and Prabir K. Dutta*  

E-Print Network [OSTI]

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee-photoresist-coated membranes were found. Accessibility of the intrazeolitic volume was examined by ion exchange and for optimally illuminated membranes was comparable to uncoated membranes. Charge transport through the membrane

Dutta, Prabir K.

168

HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY  

SciTech Connect (OSTI)

Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

APOLONIO DEL TORO

2008-05-27T23:59:59.000Z

169

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network [OSTI]

is the existence of hot spots in the catalyst bed due to the reaction exothermicity [1]. This hydrogen production process could be cost-effective if oxygen is provided by sources other than air separation plant. CO2 reforming (or dry reforming) of methane... information about equilibrium product compositions and equilibrium constants at different temperatures were provided by one of the former students in Dr Susan Williams research group [8]. Syngas can also be produced by coal gasification. The syngas...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

170

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z

171

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

membranes are in hydrogen fuel- cells and electrolyzers. Thefuel cells and electrolyzers used both for hydrogenhydrogen production and device geometry requirements dictated by the light absorption. In fuel cells,

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

172

ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes  

SciTech Connect (OSTI)

Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

Miao, Y.C.; Liu, C.

2010-12-28T23:59:59.000Z

173

Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications  

SciTech Connect (OSTI)

Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

2013-02-28T23:59:59.000Z

174

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

SciTech Connect (OSTI)

It is attempted to synthesize hydrogen selective silica-based membranes through a novel thin film deposition concept. This report describes the progress made during the 1st Year of this award. All project Tasks, for Year 1, were completed and the first thin films were prepared and characterized. The goal of this work is to use crystalline layered silicates to form hydrogen selective membranes for use in high temperature hydrogen/carbon dioxide separations. It was proposed to: (A) Synthesize layered silicate materials; (B) Prepare dispersions of as synthesized or delaminated layered silicates; (C) Prepare membranes by coating the layered silicates on macro-mesoporous supports; and (D) Test the membranes for H{sub 2}/CO{sub 2} selectivity at high temperature and pressures and for structural and functional stability at high temperature in the presence of water vapor. All Year 1 project Tasks are completed. Layered silicate particles were synthesized hydrothermally. Crystal shape and size was optimized for the formation of thin films. Calcination procedures that avoid particle agglomeration were developed and suspensions of the calcined silicate particles were prepared. The silicate particles and suspensions were characterized by X-Ray Diffraction, Electron Microscopy and Dynamic Light Scattering. The characterization data indicate that plate like morphology, large aspect ratio and good dispersion have been achieved. A deposition process that leads to uniform, high-coverage ({approx}100%) coating of the layered silicate particles on porous alpha-alumina supports was developed.

Michael Tsapatsis

2005-10-01T23:59:59.000Z

175

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

SciTech Connect (OSTI)

It was proposed to investigate a new concept for the synthesis of molecular sieve hydrogen selective membranes. This concept is based on the use of exfoliated layered zeolite precursors in coating processes to make nanocomposite films with inorganic or polymeric matrices. We discovered that creating exfoliated zeolite layers was much more difficult than anticipated because the methods originally proposed (based on existing literature reports) were not successful in providing exfoliated layers while preserving their porous structure. Although the original goals of fabricating high-selectivity-high-flux membranes that are stable under conditions present in a water-gas-shift reactor and that are able to selectively permeate hydrogen over all other components of the mixtures present in these reactors were not accomplished fully, significant progress has been made as follows: (1) Proof-of-concept hydrogen-selective nanocomposite membranes have been fabricated; (2) Methods to exfoliate layered zeolite precursors preserving the layer structure were identified; and (3) Unexpectedly, membranes exhibiting high ideal selectivity for carbon dioxide over nitrogen at room temperature were produced. The findings listed above provide confidence that the proposed novel concept can eventually be realized.

Michael Tsapatsis

2009-01-07T23:59:59.000Z

176

Photoproduction of hydrogen by membranes of green photosynthetic bacteria  

SciTech Connect (OSTI)

Photoproduction of H/sub 2/ from ascorbate by unit-membrane vesicles from Chlorobium limicola f. thiosulfatophilum was achieved with a system containing gramicidin D, tetramethyl-p-phenylenediamine, methyl viologen, dithioerythritol, Clostridium hydrogenase, and an oxygen-scavenging mixture of glucose, glucose oxidase, ethanol, and catalase. Maximum quantum yield was less than one percent. Half maximum rate of H/sub 2/ production occurred at a white-light intensity of approximately 0.15 cm/sup -2/. The reaction was inhibited completely by 0.3% sodium dodecylbenzene sulfonate, 1% Triton X-100, or preheating the vesicles at 100/sup 0/C for 5 minutes. Low concentrations (0.01 and 0.05%) of Triton X-100 about doubled the reaction rate.

Bernstein, J D; Olson, J M

1980-01-01T23:59:59.000Z

177

Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production  

SciTech Connect (OSTI)

IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a ??one-box? process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered ?90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

Paul Liu

2012-05-01T23:59:59.000Z

178

Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems  

SciTech Connect (OSTI)

Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

Mahadevan, Kathyayani

2011-10-04T23:59:59.000Z

179

Composite Pd and Pd Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification  

SciTech Connect (OSTI)

The synthesis of composite Pd membranes has been modified by the addition of a Al(OH){sub 3} graded layer and sequential annealing at high temperatures to obtain membranes with high permeance and outstanding selectivity stability for over 4000 hours at 450°C. Most of the membranes achieved in this work showed H{sub 2} flux well above 2010 DOE targets and in some case, also above 2015 DOE targets. Similar composite membranes were tested in water gas shift reaction atmospheres and showed to be stable with high CO conversion and high hydrogen recovery for over 1000 hours. The H{sub 2} permeance of composite Pd-Au membranes was studied as well as its resistance in H{sub 2}S containing atmospheres. H{sub 2}S poisoning of Pd-based membranes was reduced by the addition of Au and the loss undergone by membranes was found to be almost totally recoverable with 10-30 wt%Au. PSA technique was studied to test the possibility of H{sub 2}S and COS removal from feed stream with limited success since the removal of H{sub 2}S also led to the removal of a large fraction of the CO{sub 2}. The economics of a WGS bundle reactor, using the information of the membranes fabricated under this project and integrated into an IGCC plant were studied based on a 2D reactor modeling. The calculations showed that without a government incentive to impose a CO{sub 2} tax, application of WGS membrane reactors in IGCC would be not as economically attractive as regular pulverized coal plants.

Yi Hua Ma; Nikolaos Kazantzis; Ivan Mardilovich; Federico Guazzone; Alexander Augustine; Reyyan Koc

2011-11-06T23:59:59.000Z

180

The role of hydrogen in powering road transport Alison Pridmore and Abigail Bristow  

E-Print Network [OSTI]

3.1 Greenhouse Gas Emissions From Hydrogen Powered Fuel Cell Vehicles ...9 3.2 Greenhouse GasThe role of hydrogen in powering road transport Alison Pridmore and Abigail Bristow April 2002 Tyndall Centre for Climate Change Research Working Paper 19 #12;The Role of Hydrogen in Powering Road

Watson, Andrew

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS  

SciTech Connect (OSTI)

This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion were obtained during this program. In the area of materials synthesis, novel pyrochlore-based proton conductors were identified, synthesized and characterized. They exhibited conductivity as high as 0.03 S/cm at 900 C. Long-term stability under CO{sub 2} and H{sub 2} atmospheres was also demonstrated. In the area of membrane fabrication by plasma spray processing, the initial results showed that the pyrochlore materials could be processed in a spray torch. Although leak-tight membranes were obtained, cracking, most likely due to differences in thermal expansion, remained a problem. More modeling and experimental work can be used to solve this problem. Finally the techno-economic analyses showed that the ITN ICCM approach for separating H{sub 2} is comparable to conventional pressure swing adsorption (PSA) technology in efficiency and economics. Enhanced membrane flux and lower operating temperatures may make the ICCM approach superior to PSA.

Michael Schwartz

2004-12-01T23:59:59.000Z

182

Transport of hydrogen in metals with occupancy dependent trap energies  

SciTech Connect (OSTI)

Common diffusion trapping models for modeling hydrogen transport in metals are limited to traps with single de-trapping energies and a saturation occupancy of one. While they are successful in predicting typical mono isotopic ion implantation and thermal degassing experiments, they fail at describing recent experiments on isotope exchange at low temperatures. This paper presents a new modified diffusion trapping model with fill level dependent de-trapping energies that can also explain these new isotope exchange experiments. Density function theory (DFT) calculations predict that even mono vacancies can store between 6 and 12?H atoms with de-trapping energies that depend on the fill level of the mono vacancy. The new fill level dependent diffusion trapping model allows to test these DFT results by bridging the gap in length and time scale between DFT calculations and experiment.

Schmid, K., E-mail: klaus.schmid@ipp.mpg.de; Toussaint, U. von; Schwarz-Selinger, T. [Max-Planck-Institut fr Plasmaphysik, Boltzmannstrae 2, D-85748 Garching b. Mnchen (Germany)

2014-10-07T23:59:59.000Z

183

Who farted? Hydrogen sulphide transport from Bardarbunga to Scandinavia  

E-Print Network [OSTI]

On September 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on September 10 in the interior parts of county V\\"asterbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO_2, contents in the atmosphere surrounding Iceland to estimate flux of SO_2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO_2 concentration measurements from Muonio, Finland.

Grahn, Hkan; Brnnstrm, Niklas

2015-01-01T23:59:59.000Z

184

HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers  

SciTech Connect (OSTI)

PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

1997-12-31T23:59:59.000Z

185

NOVEL DENSE MEMBRANE FOR HYDROGEN SEPARATION FOR ENERGY APPLICATIONS  

SciTech Connect (OSTI)

The main objectives of this project are: (1) Characterization of the thermo mechanical properties of the novel dense HTM bulk sample; (2) Development of a correlation among the intrinsic factors (such as grain size and phase distribution), and the extrinsic factors (such as temperature and atmosphere) and the thermo-mechanical properties (such as strengths and stress) to predict the performance of a HTM system (HTM membrane and porous substrate) ; and (3) Evaluation of the stability of the novel HTM membrane and its property correlations after thermal cycling. Based on all results and analysis of the thermo mechanical properties for the HTM cermet bulk samples, several important conclusions were made. The mean ?fs at room temperature is approximately 356 MPa for the HTM cermet. The mean ?fs value decreases to 284 MPa as the temperature increases to 850?C. The Difference difference in atmosphere, such as air or N2, had an insignificant effect on the flexural strength values at 850?C for the HTM cermet. The HTM cermet samples at room temperature and at 500?C fractured without any significant plastic deformation. Whereas, at 850?C, the HTM cermet samples fractured, preceded by an extensive plastic deformation. It seems that the HTM cermet behaves more like an elastic material such as a nonmetal ceramic at the room temperature, and more like a ductile material at increased temperature (850?C). The exothermic peak during the TG/DTA tests centered at 600?C is most likely associated with both the enthalpy change of transformation from the amorphous phase into crystalline zirconia and the oxidation of Pd phase in HTM cermet in air. The endothermic peak centered at 800?C is associated with the dissociation of PdO to Pd for the HTM cermet sample in both inert N2 environment and air. There is a corresponding weight gain as oxidation occurs for palladium (Pd) phase to form palladium oxide (PdO) and there is a weight loss as the unstable PdO is dissociated back to Pd and oxygen. The normal stress and shear stresses from the Mohr?s circle indicate that the residual stress in the HTM cermet sample is mainly as compressive residual stress in the magnitude of -135 to -155 MP, and with very little shear stress (in the magnitude of 10 MPa). The magnitude of change in the normal stress and the shear stress is insignificant in the HTM after 120 thermal cycles. However, the principle normal stress changes from compressive to tensile residual stress and there is a significant increase in the shear stress after 500 thermal cycles. The calculated value based on the equation and the Mohr?s circle is found to be consistent with the experimental value for the as-received HTM cermet samples. At some rotation (?) angle, the residual stress was found to be as tensile stress. Most ceramic material is weak in tension, and develops microscopic cracks. With treatment of 120 thermal cycles between 50?850?C, the HTM- sample exhibited thermally-induced cracks on the surface. Visually observable cracks appeared on the surface of HTM cermet with continuous thermal cycling, after 500 thermal cycles. The XRD powder diffraction analysis indicated an increased amount of crystalline PdO crystalline in HTM cermet after 120 and 500 thermal cycles as compare to the as-received samples. The Pd crystalline peaks were found to significantly decrease in peak intensity with thermal cycling. Higher peak intensity for PdO phase was observed with increased number of thermal cycles. A Monoclinic monoclinic zirconia phase was first identified in the as-received HTM as-received sample. However, with thermal cycling treatment of both 120 and 500 thermal cycles, the M-ZrO2 phase is transformed to the tetragonal YSZ, which is consistent with the thermal analysis results by TG/DTA. Correlations of the microstructural and thermo-mechanical properties of both selected reference material and ANL-3e HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size/distribution. The Young?s Modulus (E-value), especially, is positivel

Bandopadhyay, Sukumar [University of Alaska Fairbanks; Balachandran, Uthamalingam (Balu) [ANL; Nag, Nagendra [SURMET CORP.

2013-10-24T23:59:59.000Z

186

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

E-Print Network [OSTI]

MaterialsModelinginPemFuelCells,A CombinationModelIonomerMembranesforPem?FuelCells,"ElectrochimicaActa,

Kienitz, Brian

2010-01-01T23:59:59.000Z

187

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

SciTech Connect (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

188

Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof  

DOE Patents [OSTI]

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

2010-09-21T23:59:59.000Z

189

Diffusion and selective transport of alkali cations on cation-exchange membrane  

SciTech Connect (OSTI)

The diffusion coefficients and selective transport for alkali metal cations through a charged polysulfonated ICE-450 ion-exchange membrane were measured as a function of pH at 25{degrees}C. The permeability and diffusion coefficients were found to increase in the sequence Cs{sup +} {ge} K{sup +} {ge} Na{sup +} {ge} Li{sup +}. The relationship between the permeability and the diffusion coefficients, and the hydrated radii of cations in the membrane were shown. This sequence was also explained by considering the hydration of ions in the membrane. The selectivity transport of K-Na and K-Li binary systems at various pH gradients through the membrane were also investigated under various conditions. In the selective transport of metal ions, the selectivity depended on both the hydrated ionic size and the interaction between the fixed groups in the membrane and the metal ions.

Ersoez, M. [Selcuk Univ., Konya (Turkey)

1995-11-01T23:59:59.000Z

190

Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle  

E-Print Network [OSTI]

Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt or potassium chloride as a contact ion-pair, is shown to effect- ively transport either salt across vesicle membranes. Sig- nificant transport is observed even when the transporter : phospholipid ratio is as low as 1

Smith, Bradley D.

191

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network [OSTI]

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

192

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network [OSTI]

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

193

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network [OSTI]

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

194

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

195

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect (OSTI)

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

196

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

197

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

Economy on Transportation, Energy Use, and Air Emissions fossil fuel imports such as natural gas.Economy on Transportation, Energy Use, and Air Emissions penetration of H 2 -FCVs could increase the use of natural gasEconomy on Transportation, Energy Use, and Air Emissions With the most cost-effective sources of hydrogen likely to be natural gas

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

198

Supply chain network for hydrogen transportation in Spain  

E-Print Network [OSTI]

Hydrogen fuel is considered one of the major emerging renewable substitutes for fossil fuel. A crucial factor as to whether hydrogen will be successful depends on its cost as a substitute. Recently, there has been a growing ...

Liang, Li

2010-01-01T23:59:59.000Z

199

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

SciTech Connect (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

200

Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.  

SciTech Connect (OSTI)

The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

Ahluwalia, R.; Doss, E.D.; Kumar, R.

1998-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

202

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

SciTech Connect (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

203

Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production  

SciTech Connect (OSTI)

The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of the separators. The project identified an experimental methodology for quantifying the impact of gas contaminants on PdCu alloy membrane performance as well as an atomistic modeling approach to screen metal alloys for their resistance to irreversible sulfur corrosion. Initial mathematical descriptions of the effect of species such as CO and H{sub 2}S were developed, but require further experimental work to refine. At the end of the project, an improvement to the experimental approach for acquiring the necessary data for the permeability model was demonstrated in preliminary tests on an enhanced PdCu separator. All of the key DOE 2010 technical targets were met or exceeded except for the hydrogen flux. The highest flux observed for the project, 125 ft{sup 3}ft{sup -2}h{sup -1}, was obtained on a single tube separator with the aforementioned enhanced PdCu separator with a hydrogen feed pressure of 185 psig at 500 C.

Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

2010-06-30T23:59:59.000Z

204

Water transport in fuel cell membranes measured by laser interferometry  

E-Print Network [OSTI]

(cont.) The coefficients of electro-osmotic drag were found to increase with the increasing water content, which indicates that the Grotthuss mechanism of proton transfer is not active in the membranes with low water ...

Kim, Jungik, 1973-

2009-01-01T23:59:59.000Z

205

Hydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang  

E-Print Network [OSTI]

conversion and 2) pyrolysis of biomass to form a bio-oil that can be subsequently converted to hydrogen viaHydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang Clark amounts of fossil-derived CO2 are released to the atmosphere. Renewable biomass is an attractive

206

Integrated technical and economic assessments of transport and storage of hydrogen  

SciTech Connect (OSTI)

Transportation will be a major market for hydrogen because of its great size and the value of energy at the wheels of a vehicle in comparison to its heating value. Hydrogen also offers important potential efficiency gains over hydrocarbon fuels. However, hydrogen end-use technologies will not develop without a reliable hydrogen supply infrastructure. By the same token, reliable infrastructures will not develop without end-use demand. Our task is to analyze the costs of various infrastructure options for providing hydrogen, as the number of vehicles serviced increased from very small numbers initially, to moderate numbers in the mid-term and to determine if a smooth transition may be possible. We will determine viable market sizes for transport and storage options by examining the technologies and the capital and operating costs of these systems, as well as related issues such as safety, construction time, etc. The product of our work will be data based scenarios of the likely transitions to hydrogen fuel, beginning with small and progressing to larger numbers of vehicles. We are working closely with the suppliers of relevant technologies to (1) determine realistic component costs, and (2) to assure availability of our analyses to business. Preliminary analyses indicate that the cost of transport and storage is as important as production cost in determining the cost of hydrogen fuel to the consumer, and that home electrolysis and centrally processed liquid hydrogen may provide hydrogen in the initial stages.

Berry, G.D. [Lawrence Livermore National Lab., CA (United States)]|[Illinois Univ., Urbana, IL (United States); Smith, J.R. [Lawrence Livermore National Lab., CA (United States)

1994-04-01T23:59:59.000Z

207

Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

J. Douglas Way; Paul M. Thoen

2005-08-31T23:59:59.000Z

208

Hydrogen Energy Storage for Grid and Transportation Services...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and...

209

Transport Modeling of Membrane Extraction of Chlorinated Hydrocarbon from Water for Ion Mobility Spectrometry  

SciTech Connect (OSTI)

Membrane-extraction Ion Mobility Spectrometry (ME-IMS) is a feasible technique for the continuous monitoring of chlorinated hydrocarbons in water. This work studies theoretically the time-dependent characteristics of sampling and detection of trichloroethylene (TCE). The sampling is configured so that aqueous contaminants permeate through a hollow polydimethylsiloxane (PDMS) membrane and are carried away by a transport gas flowing through the membrane tube into IMS analyzer. The theoretical study is based on a two-dimensional transient fluid flow and mass transport model. The model describes the TCE mixing in the water, permeation through the membrane layer, and convective diffusion in the air flow inside membrane tube. The effect of various transport gas flow rates on temporal profiles of IMS signal intensity is investigated. The results show that fast time response and high transport yield can be achieved for ME-IMS by controlling the flow rate in the extraction membrane tube. These modeled time-response profiles are important for determining duty cycles of field-deployable sensors for monitoring chlorinated hydrocarbons in water.

Zhang, Wei [ORNL; Du, Yongzhai [ORNL; Feng, Zhili [ORNL; Xu, Jun [ORNL

2010-01-01T23:59:59.000Z

210

A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture  

E-Print Network [OSTI]

The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

2013-01-01T23:59:59.000Z

211

Modelling Prospects for Hydrogen-powered Transportation Until 2100  

E-Print Network [OSTI]

explored. Hydrogen-powered fuel cell vehicles could make a significant contribution to de- carbonisation improvements, such as those promised by further penetration of electric­gasoline hybrid vehicles, are probably all-electric plug-in hybrids, and hydrogen fuel cell vehicles. Although large-scale

212

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

SciTech Connect (OSTI)

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

213

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. The membranes showed excellent perm-selectivity for hydrogen. This makes the Pd-composite membrane attractive for selective separation and recovery of H{sub 2} from mixed gases at elevated temperature.

Shamsuddin Ilias

2005-02-03T23:59:59.000Z

214

Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods  

SciTech Connect (OSTI)

Dense perovskite-structured membranes with desired composition of La{sub 0.8}Sr{sub 0.2}Co{sub 0.6}Fe{sub 0.4}O{sub 3{minus}{delta}} (LSCF) were prepared from powders produced by four different methods. LSCF powders prepared by citrate, solid-state, and spray-pyrolysis methods had compositions close to the desired stoichiometry with a slight difference in cobalt concentration, whereas coprecipitated powders had a large strontium deficiency. The membrane composition was a determining factor that affected the electronic conductivity and therefore oxygen permeability. The membrane with a large strontium deficiency had much lower electronic conductivity and oxygen permeability (ionic conductivity) than the other three membranes with compositions close to the desired stoichiometry. The electronic conductivity of membranes prepared from citrate, solid-state, and spray-pyrolysis methods increases with the cobalt concentration of the membrane. For the three membranes with similar composition, the activation energy of oxygen flux decreases with increasing grain size. Oxygen pressure dependency of oxygen vacancy concentration is also influenced by the membrane microstructure and composition. LSCF membranes with same composition and similar microstructure should have similar electric and oxygen transport properties.

Qi, X.; Lin, Y.S.; Swartz, S.L.

2000-03-01T23:59:59.000Z

215

ECONOMIC FEASIBILITY ANALYSIS OF HYDROGEN PRODUCTION BY  

E-Print Network [OSTI]

. Shah and Raymond F. Drnevich Praxair, Inc. P.O. Box 44 Tonawanda, NY 14151 Abstract Praxair has on oxygen transport membrane (OTM) and hydrogen transport membrane (HTM). This system has a potential process option, both the OTM and the HTM were integrated into a single unit such that various processing

216

Understanding and improving hole transport in hydrogenated amorphous silicon photovoltaics  

E-Print Network [OSTI]

While hydrogenated amorphous silicon (a-Si:H) solar cells have been studied extensively for the previous four decades, the low performance of the devices is still not well understood. The poor efficiency (below 10%, even ...

Johlin, Eric (Eric Carl)

2014-01-01T23:59:59.000Z

217

Hydrogen as a near-term transportation fuel  

SciTech Connect (OSTI)

The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

1995-06-29T23:59:59.000Z

218

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

219

Structures for Three Membrane Transport Proteins Yield Functional Insights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849|Structures for Three Membrane

220

Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework  

E-Print Network [OSTI]

and optimization of fuel cells in a design and development environment. Kreuer et al.19 recently presented of ongoing efforts to develop more comprehensive compu- tational fuel cell model14-18 that allow analysis of the fundamental transport mechanisms. In the context of multidimensional fuel cell modeling, practical

Struchtrup, Henning

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS  

SciTech Connect (OSTI)

Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were solved by finite difference method. The solution of the model equations is complicated by the coupled reactions. At the inlet, if there is no hydrogen, rate expressions become singular. To overcome this problem, the first element of the reactor was treated as a continuous stirred tank reactor (CSTR). Several alternative numerical schemes were implemented in the solution algorithm to get a converged, stable solution. The model was also capable of handling steam-methane reforming reactions under non-membrane condition and equilibrium reaction conversions. Some of the numerical results were presented in the previous report. To test the membrane reactor model, we fabricated Pd-stainless steel membranes in tubular configuration using electroless plating method coupled with osmotic pressure. Scanning Electron Microscopy (SEM) and Energy Dispersive Xray (EDX) were used to characterize the fabricated Pd-film composite membranes. Gas-permeation tests were performed to measure the permeability of hydrogen, nitrogen and helium using pure gas. Some of these results are discussed in this progress report.

Shamsuddin Ilias

2004-02-17T23:59:59.000Z

222

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect (OSTI)

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

223

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic  

E-Print Network [OSTI]

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active

Giurgiutiu, Victor

224

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents [OSTI]

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

225

Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes  

SciTech Connect (OSTI)

The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

2011-08-01T23:59:59.000Z

226

Transportation and Stationary Power Integration with Hydrogen and  

E-Print Network [OSTI]

for D.G. High Cost Due to Low Production Predictable Investment #12;3 Hydrogen Roadmap efficiency required (oil cost/bbl). Reduced emissions of greenhouse gases and primary air pollutants and an Investment Plan Routes Identified by Fleet and Transit Locations Siting Determined by Maximum

227

Simulation of Membrane and Cell Culture Permeability and Transport  

E-Print Network [OSTI]

for neutral and ionized species partitioning into the membrane - only non-ionized species. Donor bulk (D) Acceptor bulk (A) D w h w D w h w k i c N k o c N ?? = ? = ?+?? ? + ? + = == i 1p pKa-pHpj 1r pH1)r(jpKa Ux N x p 1s a s j rs b s 10101 1 cc c..., Kansas, 2006 Pgp expression in human SI Mouly, S., Paine, M.F. PharmRes-20(10):1595-1598 (2003) GPEN, Kansas, 2006 Talinolol Non-linear Dose Dependence Talinolol Dose Dependence de Mey et al. J. Cardio. Pharmacol. 26(6):879 (1995) 0 200 400 600 800 1000...

Bolger, Michael

2006-10-26T23:59:59.000Z

228

Hydrogen Energy Storage: Grid and Transportation Services Workshop Proceedings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap Hydrogen DeliveryforDepartment

229

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network [OSTI]

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Volkov, Vadim

2012-01-01T23:59:59.000Z

230

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network [OSTI]

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Vadim Volkov

2012-12-18T23:59:59.000Z

231

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

SciTech Connect (OSTI)

Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({approx}10 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd{sub 60}Cu{sub 40} films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H{sub 2} separation, and resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd{sub 60}Cu{sub 40} alloy membranes on porous supports for H{sub 2} separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H{sub 2} flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H{sub 2} flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems.

J. Douglas Way; Robert L. McCormick

2001-06-01T23:59:59.000Z

232

Hydrogen Energy Storage for Grid and Transportation Services Workshop Agenda  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap Hydrogen DeliveryforDepartment ofA

233

Catalyzed CO.sub.2-transport membrane on high surface area inorganic support  

DOE Patents [OSTI]

Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

Liu, Wei

2014-05-06T23:59:59.000Z

234

An issue paper on the use of hydrogen getters in transportation packaging  

SciTech Connect (OSTI)

The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning, the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.

NIGREY,PAUL J.

2000-02-01T23:59:59.000Z

235

Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allow reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.

Lewis, Nathan S. [California Institute of Technology] [California Institute of Technology

2014-03-26T23:59:59.000Z

236

The effect of electron induced hydrogenation of graphene on its electrical transport properties  

SciTech Connect (OSTI)

We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman D band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)] [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States) [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)

2013-07-22T23:59:59.000Z

237

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect (OSTI)

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

238

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

239

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

240

COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN  

SciTech Connect (OSTI)

To overcome the issue of pinhole (defect) formation in membrane films over large areas, a process was developed and implemented for producing 6-12 {micro}m-thick, Pd-Cu alloy films on thermally oxidized silicon wafer substrates. The processing parameters on silicon are such that adhesion is poor and as-deposited Pd-Cu alloy films easily release from the oxidized silicon surface. Hydrogen permeation tests were conducted on 9 and 12 {micro}m-thick Pd-Cu alloy films and the hydrogen flux for 9 and 12 {micro}m-thick films were 16.8 and 8 cm{sup 3}(STP)/cm{sup 2} {center_dot} min respectively. The hydrogen permeability (corrected using data in McKinnley patent) of the 9 {micro}m-thick membrane is 7.4 {center_dot} 10{sup -5} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cm Hg{sup 0.5} at 350 C and compares very well to permeability reported by McKinnley for a 62.5% Pd membrane; this permeability is {approx}56% of the value reported for a Pd-Cu alloy membrane with optimum 60% Pd composition. Using XRD, we confirmed the presence of a two-phase, {alpha}/{beta}, structure and that the composition of our membrane was slightly higher than the optimum composition. We are making adjustments to the compositions of the Pd-Cu alloy target in order to produce films next quarter that match the ideal Pd{sub 60}Cu{sub 40} composition.

B. Lanning; J. Arps

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems  

E-Print Network [OSTI]

to hydrogen pathways: (1) on-site hydrogen production; (2)central hydrogen production with pipeline delivery;and (3) central hydrogen production with liquid hydrogen

Wang, Guihua; Ogden, Joan M; Chang, Daniel P.Y.

2007-01-01T23:59:59.000Z

242

FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes  

SciTech Connect (OSTI)

During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

MURAD, SOHAIL [University of Illinois at Chicago] [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago] [University of Illinois at Chicago

2013-10-22T23:59:59.000Z

243

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

244

The Role of Partial Crystallinity on Hydrogen Permeation in FeNiBMo Based Metallic Glass Membranes  

SciTech Connect (OSTI)

A potentially exciting material for membrane separations are metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen embrittlement as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. This study reports on the investigation of time and temperature dependent crystalline phase formation in conjunction with in situ crystallization/hydrogen permeation experiments at elevated temperatures. At temperatures near 400 C a FeNi crystalline phase appears as 22 vol.% inside the host amorphous matrix and the resulting composite structure remains stable over 3 h at temperature. The hydrogen permeation at 400 C of the partially crystalline material is similar to the fully amorphous material near 5 x 10{sup -9} mol H{sub 2}/m s Pa{sup 1/2}, while ambient temperature electrochemical permeation at 25 C revealed an order of magnitude decrease in the permeation of partially crystalline materials due to differences in the amorphous versus crystalline phase activation energy for hydrogen permeation.

Brinkman, K.; Su, D.; Fox, E.; Korinko, P.; Missimer, D.; Adams, T.

2011-08-15T23:59:59.000Z

245

Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties  

SciTech Connect (OSTI)

Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

2011-04-15T23:59:59.000Z

246

Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions  

E-Print Network [OSTI]

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

2013-01-01T23:59:59.000Z

247

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments  

E-Print Network [OSTI]

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments The biological membrane is, in essence, a thermodynamically-nonequilibrium lipid bilayer [6, 30, 34, 43, 47] with a variety of molecular motors, ion pumps, or channels residing within [19

Young, Yuan N.

248

Membranes for corrosive oxidations. Final CRADA report.  

SciTech Connect (OSTI)

The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

Snyder, S. W.; Energy Systems

2010-02-01T23:59:59.000Z

249

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect (OSTI)

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

250

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

Gerald P. Huffman

2006-03-30T23:59:59.000Z

251

Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions  

SciTech Connect (OSTI)

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigacin en Fsica, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland)] [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autnoma de Sinaloa, Culiacan (Mexico)] [Facultad de Ciencias Fisico-Matematicas, Universidad Autnoma de Sinaloa, Culiacan (Mexico); Midttun, ystein [CERN, Geneva (Switzerland) [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

2014-02-15T23:59:59.000Z

252

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip-growing cells  

E-Print Network [OSTI]

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip at the same time. It is shown that these co-transporters destabilize generically the membrane voltage- tive dynamics and activity of membrane ion channels. Action potential and cardiac excitation spiral

Paris-Sud XI, Université de

253

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

SMR production with gaseous hydrogen pipeline delivery, andhydrogen: gaseous hydrogen pipeline vs. liquid hydrogenproduction with gaseous hydrogen pipeline delivery systems;

Wang, Guihua

2008-01-01T23:59:59.000Z

254

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

255

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

256

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

257

Molecular Mechanism of Biological Proton Transport  

SciTech Connect (OSTI)

Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

Pomes, R.

1998-09-01T23:59:59.000Z

258

Thermal method for fabricating a hydrogen separation membrane on a porous substrate  

DOE Patents [OSTI]

A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

2009-10-20T23:59:59.000Z

259

Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen Biomass System  

SciTech Connect (OSTI)

The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

260

Transport-theoretic model for the electron-proton-hydrogen atom auroa. II. Model results  

SciTech Connect (OSTI)

In a companion paper, a self-consistent transport-theoretic model for the combined electron-proton-hydrogen atom aurora was described. In this paper, numberical results based on the model are presented. This is done for the pure electron aurora, the pure proton-hydrogen atom aurora, and finally for the combined aurora. Adopting commonly used types of energy distributions for the incident particle (electron and proton) fluxes, the authors give numerical solutions for the precipitating electron, proton, and hydrogen atom differential number fluxes. Results are also given for ionization yields and emission yields of the following features: N{sub 2}{sup +} first negative group (3914 {Angstrom}), N{sub 2} second positive group (3371 {Angstrom}), selected N{sub 2} Lyman-Birge-Hopfields bands (1325, 1354, 1383, 1493, and all bands between 1700 and 1800 {Angstrom}), O I (1356 {Angstrom}), L{sub {alpha}} (1216 {Angstrom}), H{sub {beta}} (4861 {Angstrom}), and H{sub {alpha}} (6563 {Angstrom}). The yield at 1493 {Angstrom} also contains a contribution from N I (1493 {Angstrom}), which in fact dominates LBH emission. A major new result of this study is that the secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of aurora interest) cross sections for secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of auroral interest) cross sections for secondary electron production by proton and hydrogen atom impact decrease exponentially with increasing secondary electron energy, whereas the cross sections for electron impact decrease as an inverse power law with increasing secondary energy.

Strickland, D.J. [Computational Physics, Inc., Fairfax, VA (United States); Daniell, R.E. Jr. [Computational Physics, Inc., Newton, MA (United States); Basu, B. [Hanscom Air Force Base, MA (United States)] [and others

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method and system for producing hydrogen using sodium ion separation membranes  

DOE Patents [OSTI]

A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

2013-05-21T23:59:59.000Z

262

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

263

Multidimensional Modeling of the Hydrogen-Based, Membrane Biofilm Reactor for Denitrification of Potable and Wastewater  

E-Print Network [OSTI]

of Potable and Wastewater Kelly Martin, Ph.D. Candidate, University of Notre Dame Monday, February 24, 2013 4 oxidized contaminants from drinking water and wastewater. A promising option, the membrane biofilm reactor

Kamat, Vineet R.

264

Affordable Hydrogen Fuel Cell Vehicles: Quaternary Phosphonium Based Hydroxide Exchange Membranes  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: The University of Delaware is developing a new fuel cell membrane for vehicles that relies on cheaper and more abundant materials than those used in current fuel cells. Conventional fuel cells are very acidic, so they require acid-resistant metals like platinum to generate electricity. The University of Delaware is developing an alkaline fuel cell membrane that can operate in a non-acidic environment where cheaper materials like nickel and silver, instead of platinum, can be used. In addition to enabling the use of cheaper metals, the University of Delawares membrane is 500 times less expensive than other polymer membranes used in conventional fuel cells.

None

2010-01-01T23:59:59.000Z

265

Membrane-less hydrogen bromine flow battery William A. Braff1  

E-Print Network [OSTI]

refined and optimized over several decades. More recently, a laminar flow fuel cell based on borohydride batteries [23, 27], as well as methanol [25], formic acid [24], and hydrogen fuel cells [29]. However, none

Bazant, Martin Z.

266

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

267

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

28 2.2.5.1. Hydrogen productionLifecycle Assessment of Hydrogen Production via Natural Gasconsidered: onsite hydrogen production via small-scale steam

Wang, Guihua

2008-01-01T23:59:59.000Z

268

Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems  

E-Print Network [OSTI]

production with gaseous hydrogen pipeline delivery, and2) central hydrogen production with pipeline delivery; and (Central hydrogen production with pipeline delivery systems

Wang, Guihua; Ogden, Joan M; Chang, Daniel P.Y.

2007-01-01T23:59:59.000Z

269

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

improving health with hydrogen fuel-cell vehicles,[ Science,of Energy, Hydrogen, fuel cells and infrastructurefocus on hybrid and hydrogen-fuel cell technologies for

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

270

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network [OSTI]

2. Define reliability in hydrogen energy systems 3.metrics to value reliability in hydrogen energy systems 4.Specify hydrogen energy systems to evaluate 5. Develop

McCarthy, Ryan

2004-01-01T23:59:59.000Z

271

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 709BProspects for building a hydrogen energy infrastructure,[1999. U.S. Department of Energy, Hydrogen, fuel cells and

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

272

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

of Energy, Hydrogen, fuel cells and infrastructureimproving health with hydrogen fuel-cell vehicles,[ Science,focus on hybrid and hydrogen-fuel cell technologies for

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

273

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

274

Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers  

SciTech Connect (OSTI)

There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

2011-07-01T23:59:59.000Z

275

Ogden, Williams and Larson, Toward a Hydrogen-Based Transportation System, final draft, 8 May 2001 Toward a Hydrogen-Based Transportation System  

E-Print Network [OSTI]

................................................................................................................11 A Strategy for Pursuing Hydrogen Fuel Cell Vehicles as a Long-Term Option ..............................................................12 Gasoline as an Initial Fuel for Fuel Cell Vehicles...............................................................................................................14 Hydrogen as an Initial Fuel for Fuel Cell Vehicles

276

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

SciTech Connect (OSTI)

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

277

Dr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport and equilibrium properties of a cation exchange membrane (1983)  

E-Print Network [OSTI]

, (1996) 6. Magnar Ottøy, Mass and heat transfer in ion-exchange membranes (1996) 7. Belinda Flem, Peltier in the Polymer Electrolyte Membrane Fuel Cell (2007) 17. Isabella Inzoli, Coupled transports of heat and massDr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport

Kjelstrup, Signe

278

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)  

Broader source: Energy.gov [DOE]

Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

279

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

280

Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications  

SciTech Connect (OSTI)

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel cell water transport  

DOE Patents [OSTI]

The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

282

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and  

E-Print Network [OSTI]

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation W M. Dudley Page, Janette Kropat, Patrice P. Hamel,1, California 90095-1569 Inducible high-affinity copper uptake is key to copper homeostasis in Chlamydomonas

Meier, Iris

283

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

for artificial photosynthesis systems ..6Photosynthesis 7up process of artificial photosynthesis membranes and open

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

284

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

285

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

Gerald P. Huffman

2003-09-30T23:59:59.000Z

286

Hydrogen transport in nickel ,,111... Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel  

E-Print Network [OSTI]

Hydrogen transport in nickel ,,111... Roi Baer Department of Physical Chemistry and the Fritz Haber Received 13 November 1996; revised manuscript received 21 January 1997 The intricate dynamics of hydrogen of subsurface with surface hydrogen on the nickel host. The analysis is based on the embedded diatomics

Zeiri, Yehuda

287

Development of novel active transport membrande devices  

SciTech Connect (OSTI)

Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

Laciak, D.V.

1994-11-01T23:59:59.000Z

288

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

289

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

BProspects for building a hydrogen energy infrastructure,[case study,[ Int. J. Hydrogen Energy, vol. 24, pp. 7091999. U.S. Department of Energy, Hydrogen, fuel cells and

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

290

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

2004. Fuel economy of hydrogen fuel cell vehicles. JournalSwitching to a U.S. hydrogen fuel cell vehicle fleet: TheImproving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

Wang, Guihua

2008-01-01T23:59:59.000Z

291

Smart membranes for nitrate removal, water purification, and selective ion transportation  

DOE Patents [OSTI]

A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

Wilson, William D. (Pleasanton, CA); Schaldach, Charlene M. (Pleasanton, CA); Bourcier, William L. (Livermore, CA); Paul, Phillip H. (Livermore, CA)

2009-12-15T23:59:59.000Z

292

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

293

Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems  

SciTech Connect (OSTI)

Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the worldâ??s FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting

Grieb, Thomas M.; Mills, W. B.; Jacobson, Mark Z.; Summers, Karen V.; Crossan, A. Brook

2010-12-31T23:59:59.000Z

294

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect (OSTI)

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

D Freed; P Horanyi; M Wiener; D Cafiso

2011-12-31T23:59:59.000Z

295

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect (OSTI)

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

Freed, Daniel M.; Horanyi, Peter S.; Wiener, Michael C.; Cafiso, David S. (UV)

2010-09-27T23:59:59.000Z

296

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

hydrogen generators have been realized, most of the proposed systems rely on the use of multi-junction photovoltaic (

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

297

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

298

Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic  

E-Print Network [OSTI]

REVIEW Membrane Porters of ATP-Binding Cassette Transportat Springerlink.com Abstract The ATP-binding cassette (ABC)classi?ed according to the ATP hydrolyzing constituents,

Wang, Bin; Dukarevich, Maxim; Sun, Eric I.; Yen, Ming Ren; Saier, Milton H.

2009-01-01T23:59:59.000Z

299

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation  

E-Print Network [OSTI]

and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

Goddard III, William A.

300

Towards a low carbon transport sector: electricity or hydrogen?y y g  

E-Print Network [OSTI]

i ti· Two possible innovations: - Electric vehicles H d f l ll hi l- Hydrogen fuel cell vehicles vehicle; PHEV: Hydrogen 6 ICE: internal combustion engine; FC: fuel cell; HEV: hybrid-electric vehicle; PHEV: plug-in hybrid-electric vehicle; EV: electric vehicle; HFCV: hydrogen fuel cell vehicle #12;The

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling Investment Strategies in the Transition to a Hydrogen Transportation Economy  

E-Print Network [OSTI]

economy" personal vehicles will be powered by either fuel cells or hydrogen fueled internal combustion in hydrogen fueling stations. An investigation focusing on the driver agents and how they drive the demand for hydrogen fuel was reported at the 2008 NHA Conference. In this report we shift the focus to the investor

Kemner, Ken

302

Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint  

SciTech Connect (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

2012-06-01T23:59:59.000Z

303

Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes  

DOE Patents [OSTI]

Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

Fujimoto, Cy H. (Albuquerque, NM); Hibbs, Michael (Albuquerque, NM); Ambrosini, Andrea (Albuquerque, NM)

2012-02-07T23:59:59.000Z

304

Effects of molecular transport on turbulence-chemistry interactions in a hydrogen-argon-air jet diffusion flame  

SciTech Connect (OSTI)

A numerical simulation of entrainment, turbulent advection, molecular import and chemical kinetics in a turbulent diffusion flame is used to investigate effects of molecular transport on turbulence-chemistry interactions. A fun finite-rate chemical mechanism is used to represent the combustion of a hydrogen-argon mixture issuing into air. Results based on incorporation of differential diffusion and variable Lewis number are compared to cases with the former effect, or both-effects, suppressed. Significant impact on radical species production and on NO emission index (based on a reduced mechanism for thermal NO) is found. A reduced mechanism for hydrogen-air combustion, omitting both effects and incorporating other simplifications, performs comparably except that its NO predictions agree well with the case of full chemistry and molecular transport, possibly due to cancellation of errors.

Menon, S.; Calhoon, W.H. Jr.; Goldin, G. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Aerospace Engineering; Kerstein, A.R. [Sandia National Labs., Livermore, CA (United States)

1994-01-01T23:59:59.000Z

305

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Coal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissions

Wang, Guihua

2008-01-01T23:59:59.000Z

306

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network [OSTI]

45 CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN7371. CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN2. CONTROLLING NANOROD SELF-ASSEMBLY IN POLYMER THIN-FILMS

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

307

Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell  

E-Print Network [OSTI]

Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

Park, Yong Hun

2009-05-15T23:59:59.000Z

308

Experimental characterization of water sorption and transport properties of polymer electrolyte membranes for fuel cells.  

E-Print Network [OSTI]

??L'objectif gnral de cette thse de doctorat est de caractriser les proprits de membranes PFSA de type Nafion N115 et Nafion NRE212 en termes de (more)

Maldonado Snchez, Libeth

2012-01-01T23:59:59.000Z

309

amide hydrogen exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

310

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network [OSTI]

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

311

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

312

Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

Liss, William E; Cygan, David F

2013-04-17T23:59:59.000Z

313

Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device  

SciTech Connect (OSTI)

We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

So, Hongyun; Pisano, Albert P. [Department of Mechanical Engineering, Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States)] [Department of Mechanical Engineering, Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Cheng, Jim C. [Department of Electrical Engineering, Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering, Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States)

2013-10-14T23:59:59.000Z

314

Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen  

SciTech Connect (OSTI)

Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

K. Coulter

2008-03-31T23:59:59.000Z

315

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

316

Measurements of water uptake and transport properties in anion-exchange membranes  

E-Print Network [OSTI]

the cost of the fuel cell systems. Although promising, conventional liquid electrolyte- based alkaline fuel Keywords: Direct ethanol fuel cells Anion-exchange membrane Water uptake Water diffusivity Mass. All rights reserved. 1. Introduction Alkaline fuel cells allow the use of non-platinum (Pt) catalysts

Zhao, Tianshou

317

The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements  

SciTech Connect (OSTI)

Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

1996-03-20T23:59:59.000Z

318

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

mental costs of hydrogen production from fossil fuels.supportive of hydrogen production from renewable sources areNatural gas provider Hydrogen production/supply Frequency

Collantes, Gustavo O

2008-01-01T23:59:59.000Z

319

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

Natural gas provider Hydrogen production/supply Frequencyan oil company Hydrogen production/ dispensing equipmentCO 2 emissions from hydrogen production The external costs

Collantes, Gustavo Oscar

2008-01-01T23:59:59.000Z

320

BASELINE MEMBRANE SELECTION AND CHARACTERIZATION FOR AN SDE  

SciTech Connect (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05 and FY06, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small footprint that are crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and have a low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate commercial and experimental membranes for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated poly-etherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity. The use of Nafion{reg_sign} with EW 1100 is recommended for the present SDE testing due to the limited data regarding chemical and mechanical stability of experimental membranes. Development of new composite membranes by incorporating metal particles or by forming multilayers between PFSA membranes and hydrocarbon membranes will provide methods that will meet the SDE targets (SO{sub 2} transport reduction by a factor of 100) while decreasing catalyst layer delamination and membrane resistivity.

Colon-Mercado, H; David Hobbs, D

2007-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE EFFECT OF CO ON HYDROGEN PERMEATION THROUGH PD AND INTERNALLY OXIDIZED AND UN-OXIDIZED PD ALLOY MEMBRANES  

SciTech Connect (OSTI)

The H permeation of internally oxidized Pd alloy membranes such as Pd-Al and Pd-Fe, but not Pd-Y alloys, is shown to be more resistant to inhibition by CO(g) as compared to Pd or un-oxidized Pd alloy membranes. The increased resistance to CO is found to be greater at 423 K than at 473 K or 523 K. In these experiments CO was pre-adsorbed onto the membranes and then CO-free H{sub 2} was introduced to initiate the H permeation.

Shanahan, K.; Flanagan, T.; Wang, D.

2010-10-20T23:59:59.000Z

322

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

323

The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States  

E-Print Network [OSTI]

FCVs and hydrogen internal combustion engine vehicles.hydrogen, plug-in drivetrains, and gasoline- fueled engine

Collantes, Gustavo O

2008-01-01T23:59:59.000Z

324

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

325

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network [OSTI]

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

326

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

E-Print Network [OSTI]

such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange to address global energy needs, such as reverse electro- dialysis1-4 (RED), capacitive energy extraction based on Donnan potential5 (CDP), and capacitive reverse electro- dialysis6 (CRED), has encouraged

327

Hydrogen and Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

328

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387, but shows strong  

E-Print Network [OSTI]

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387 in the maturation of FeS proteins. We found that under some conditions the Synechocystis NifU-like protein can oxidation of the cysteine side chains at NifU. The same reaction might have occurred in lysed chloroplasts

329

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

330

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

331

VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998 Spontaneous Onset of Coherence and Energy Storage by Membrane Transporters  

E-Print Network [OSTI]

of Coherence and Energy Storage by Membrane Transporters in an RLC Electric Circuit Imre Derényi and R. Dean that oscillating or fluctuating electric fields can drive thermodynami- cally uphill transport of ions catalyzed by a molecular ion pump, the Na,K-ATPase. Theory suggests that if the transport reaction is very far from

Derényi, Imre

332

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

333

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

334

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

335

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

336

EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER  

SciTech Connect (OSTI)

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

Hobbs, D.; Elvington, M.; Colon-Mercado, H.

2009-11-11T23:59:59.000Z

337

Perchlorate Degradation Using Partially Oxidized Titanium Ions and Ion Exchange Membrane Hybrid System  

E-Print Network [OSTI]

. To enhance the overall rate of reaction, high concentrations of acid and Ti(III) are needed, but transport of hydrogen ions through the anion permeable membrane was observed and would be greater at higher acid concentrations. The proposed mathematical model...

Park, Sung Hyuk

2011-08-08T23:59:59.000Z

338

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect (OSTI)

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. Task 4 Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. Task 5 Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. Task 6 Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

339

Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods  

SciTech Connect (OSTI)

This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods. The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

2014-09-30T23:59:59.000Z

340

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The effects of strain rate and curvature on surface density function transport in turbulent premixed methane-air and hydrogen-air flames: A comparative study  

SciTech Connect (OSTI)

The effects of tangential strain rate and curvature on the surface density function (SDF) and on source terms within the SDF transport equation are studied for lean methane-air and hydrogen-air flames using two-dimensional direct numerical simulations with detailed chemistry. A positive correlation is observed between the SDF and the tangential strain rate, and this is explained in terms of the interaction between the local tangential strain rate and the dilatation rate due to heat release. Curvature is also seen to affect the SDF through the curvature response of both tangential strain rate and dilatation rate on a given flame isosurface. Strain rate and curvature are found to have an appreciable effect on several terms of the SDF transport equation. The SDF straining term in both methane and hydrogen flames is correlated positively with tangential strain rate, as expected, and is also correlated negatively with curvature. For methane flames, the SDF propagation term is found to correlate negatively with flame curvature toward the reactant side of the flame and positively toward the product side. By contrast, for hydrogen flames the SDF propagation term is negatively correlated with curvature throughout the flame brush. The variation of the SDF curvature term with local flame curvature for both methane and hydrogen flames is found to be nonlinear due to the additional stretch induced by the tangential diffusion component of the displacement speed. Physical explanations are provided for all of these effects, and the modeling implications are considered in detail. (author)

Chakraborty, N. [Engineering Department, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Hawkes, E.R. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Chen, J.H. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cant, R.S. [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

2008-07-15T23:59:59.000Z

342

Temperature-Dependent Simulations of Dry Gas Transport in the Electrodes of Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Membrane Fuel Cells M. J. Kermani1 J. M. Stockie2 mkermani@unb.ca stockie@unb.ca 1 Post Doctoral Fellow the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically. The di usion to achieve this goal is via proton exchange mem- brane (PEM) fuel cells, which in principle combine oxygen

Stockie, John

343

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

344

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-05-01T23:59:59.000Z

345

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

2001-07-01T23:59:59.000Z

346

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion  

SciTech Connect (OSTI)

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

2012-08-14T23:59:59.000Z

347

Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report  

SciTech Connect (OSTI)

This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillationan extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.

Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M. (Lummus)

2007-03-12T23:59:59.000Z

348

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

349

Batch methods for enriching trace impurities in hydrogen gas for their further analysis  

DOE Patents [OSTI]

Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

2014-07-15T23:59:59.000Z

350

Mechanical and Transport Properties of Layer-by-Layer Electrospun Composite Proton Exchange Membranes for Fuel Cell Applications  

E-Print Network [OSTI]

Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL ...

Mannarino, Matthew M.

351

Identification and Characterization of Near-Term Direct Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange...

352

Quasi-elastic Neutron Scattering Investigation of the Hydrogen Surface Self-Diffusion on Polymer Electrolyte Membrane Fuel Cell Catalyst Support  

E-Print Network [OSTI]

Electrolyte Membrane Fuel Cell Catalyst Support Ole-Erich Haas* Department of Chemistry, Norwegian Uni in polymer electrolyte membrane fuel cells, called XC-72. QENS spectra were recorded at the time through the backing electrode and catalyst layer in the polymer electrolyte membrane fuel cell (PEMFC

Kjelstrup, Signe

353

Mathematical Modeling of Cation Contamination in a Proton-exchange Membrane  

SciTech Connect (OSTI)

Transport phenomena in an ion-exchange membrane containing both H+ and K+ are described using multicomponent diffusion equations (Stefan-Maxwell). A model is developed for transport through a Nafion 112 membrane in a hydrogen-pump setup. The model results are analyzed to quantify the impact of cation contamination on cell potential. It is shown that limiting current densities can result due to a decrease in proton concentration caused by the build-up of contaminant ions. An average cation concentration of 30 to 40 percent is required for appreciable effects to be noticed under typical steady-state operating conditions.

Weber, Adam; Delacourt, Charles

2008-09-11T23:59:59.000Z

354

Transport study of hafnium(IV) and zirconium(IV) ions mutual separation by using Tri-n-butyl phosphate-xylene-based supported liquid membranes  

SciTech Connect (OSTI)

A Hf transport study through supported liquid membranes has been carried out to determine flux and permeability data for this metal ion. Tri-n-butyl phosphate (TBP)-xylene-based liquid membranes supported in polypropylene hydrophobic microporous film have been used. These data for hafnium and the previous data for zirconium have furnished the Zr to Hf flux ratio (S) as a function of nitric acid and TBP concentrations of the order of 12 in a single stage at room temperature. Optimum conditions for the separation of these two metal ions appear to 5-6 TBP mol/dm{sup 3} HNO{sub 3}, concentrations {le} 2.93 mol/dm{sup 3}, and 10C. The value of S from an aqueous solution containing 2.4% Hf with respect to Zr has been found to be >125 at 10C and 1.78 mol/dm{sup 3} TBP concentration in the membrane. The technique appears to be feasible for purification of Zr respect to Hf or vice versa.

Chaudry, M.A.; Ahmed, B. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan))

1992-02-01T23:59:59.000Z

355

Process for the production of hydrogen peroxide  

DOE Patents [OSTI]

An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

Datta, Rathin (Chicago, IL); Randhava, Sarabjit S. (Evanston, IL); Tsai, Shih-Perng (Naperville, IL)

1997-01-01T23:59:59.000Z

356

Process for the production of hydrogen peroxide  

DOE Patents [OSTI]

An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

Datta, R.; Randhava, S.S.; Tsai, S.P.

1997-09-02T23:59:59.000Z

357

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

358

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

storing and transporting hydrogen. Golden, CO: NREL; 1998. [V. Survey of the economics of hydrogen technologies. Golden,liquid or gaseous form. Hydrogen can be produced from a va-

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

359

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report  

SciTech Connect (OSTI)

During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

NONE

1995-05-01T23:59:59.000Z

360

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

362

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

363

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

364

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

analysis Costs of storing and transporting hydrogen A comprehensive comparison of fuel options for fuel cell vehicles

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

365

Preparation and characterization of composite membrane for high temperature gas separation  

SciTech Connect (OSTI)

A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

Ilias, S.; King, F.G.

1998-03-26T23:59:59.000Z

366

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network [OSTI]

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

367

Studies on the in situ electrooxidation and selective permeation of cerium(IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter  

SciTech Connect (OSTI)

The results of experiments carried out to develop a liquid membrane (LM) technique for the extractive permeation of cerium from nitric acid solutions are described. In-situ electrooxidation of Ce{sup 3+} to extractable Ce{sup 4+} and its transport across bulk LM (BLM) composed of tri-n-butyl phosphate (TBP)/dodecane mixtures was systematically studied under varied hydrodynamical and chemical conditions. The permeability of metal ions across the BLM was dependent on the efficiency of extraction, ionic activity of feed solutions, stirring rate, composition of the receiving phase, etc. The transport rates were found to vary linearly (a log-log correlation) with the cation concentration in feed solutions and concentration of TBP in BLM. A permeation velocity equation for cerium ion through the membrane has been proposed. More than 90% permeation of Ce with a maximum flux of 8.63 x 10{sup {minus}5} mol/m{sup 2}/s could be accomplished under the experimental conditions: stirring rates at feed and strip solutions were 380 and 300 rpm, respectively; feed was 1 mol/dm{sup 3} of HNO{sub 3} containing 0.005 mol/dm{sup 3} Ce(NO{sub 3}){sub 3}; LM contained 30% TBP/dodecane; and the receiving phase was distilled water. Radiochemically pure Ce-144 was partitioned from the Ce-Am mixture obtained by extraction chromatographic fractioning of high level radioactive waste. This also resulted in the purification of Am-241 in the feed solution with a decontamination factor of {approximately} 12 from Ce.

Kedari, C.S.; Pandit, S.S.; Ramanujam, A. [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.] [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.

1999-06-01T23:59:59.000Z

368

Encapsulated Metal Hydride for Hydrogen Separation  

E-Print Network [OSTI]

concentration feed stock, not for low concentration ­ Hydrogen economy will need hydrogen recovery from lowEncapsulated Metal Hydride for Hydrogen Separation (Formerly Separation Membrane Development) DOE Hydrogen Program 2003 Merit Review and Peer Evaluation L. Kit Heung, Jim Congdon Savannah River Technology

369

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect (OSTI)

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

370

Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks  

E-Print Network [OSTI]

,3,4 Selective transport of ions through the membranes creates an electric potential across pairs of AEMs by changing the membrane polymer chemistry and/or membrane form factor.9-13 The ion transport properties on either side of the membrane on ion transport properties must be studied to improve our under- standing

371

MEMBRANE FUNCTION, Part 2. Passive Movement: Diffusion, Osmosis, and Gibbs-Donnan Equilibrium 1  

E-Print Network [OSTI]

such as ion gradients or sunlight. I. Passive transport Passive transport is diffusion through a membrane of the membrane. This movement is entirely by the process of diffusion (to be covered below) · ions and polar. Mechanisms of Membrane Transport There are two general modes of transport across membranes: passive transport

Prestwich, Ken

372

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

373

Topical Review Fluctuations and Fractal Noise in Biological Membranes  

E-Print Network [OSTI]

and transport of ions and molecules across biological membranes. We know that ion transport through mem- branes in electrical properties associated with cell membrane ion transport. Key words: Brownian motion -- Cell membrane elec- trical properties -- Fractals -- Gaussian noise -- Ion transport -- Nonlinear dynamics

374

Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Onboard Hydrogen Storage Systems for Transportation Applications Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for...

375

Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane  

E-Print Network [OSTI]

et al., 2009; Presley et al., 1997; Roghi and Allan, 1999). To determine whether compromising dynein activity affects the ER-to-Golgi GFP-hGH transport assay, we performed siRNA knockdown of the dynein associated intermediate chain (DIC... cells. Nature. 389:81-85. Roghi, C., and V.J. Allan. 1999. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J Cell Sci. 112 ( Pt 24):4673-4685. Sahlender, D.A., R.C. Roberts, S.D. Arden...

Brandstaetter, Hemma; Kruppa, Antonina J.; Buss, Folma

2014-10-31T23:59:59.000Z

376

Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report  

SciTech Connect (OSTI)

This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

Not Available

1993-11-30T23:59:59.000Z

377

August 2006 Hydrogen Program  

E-Print Network [OSTI]

after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

378

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

379

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

380

Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report  

SciTech Connect (OSTI)

Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

Luczak, F.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hollow porous-wall glass microspheres for hydrogen storage  

DOE Patents [OSTI]

A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

2010-02-23T23:59:59.000Z

382

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-9 3. Integrated Ceramic Membrane System for Hydrogen Production, Praxair, Inc. . . . . . . . . . . . II-14 4. Low Cost Hydrogen Production Platform, Praxair Inc

383

Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes  

DOE Patents [OSTI]

An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

2012-09-18T23:59:59.000Z

384

Ninth International Workshop on Plant Membrane Biology  

SciTech Connect (OSTI)

This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

Not Available

1993-12-31T23:59:59.000Z

385

Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system  

SciTech Connect (OSTI)

In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

1991-05-01T23:59:59.000Z

386

Synthesis and Characterization of Fullerene-based Hydrogen Storage Materials.  

E-Print Network [OSTI]

??Storing hydrogen safely and efficiently is an area of great interest for the utilization of hydrogen as an energy carrier in transportation applications. The feasibility (more)

Ward, Patrick Alan

2013-01-01T23:59:59.000Z

387

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

388

Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation...

389

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

390

Hydrogen Delivery R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Activities Hydrogen Delivery R&D Activities Hydrogen delivery technology may encompass several options over the short and long terms. The transportation and distribution...

391

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1991-01-01T23:59:59.000Z

392

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

1990-01-01T23:59:59.000Z

393

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

Lilga, M.A.; Hallen, R.T.

1990-08-28T23:59:59.000Z

394

Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation  

DOE Patents [OSTI]

The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

Lilga, M.A.; Hallen, R.T.

1991-10-15T23:59:59.000Z

395

Transport behavior of water molecules through two-dimensional nanopores  

SciTech Connect (OSTI)

Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ?15 water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2014-11-14T23:59:59.000Z

396

Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities  

SciTech Connect (OSTI)

It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

Payne, Terry L [ORNL; Brown, Gilbert M [ORNL; Bogomolny, David [Sentech, Inc.

2010-01-01T23:59:59.000Z

397

STRUCTURAL REQUIREMENTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE MEDIATED TRANSPORT  

E-Print Network [OSTI]

The organic anion transporting polypeptides (human: OATP; other: Oatp) form a mammalian transporter superfamily that mediates the transport of structurally unrelated compounds across the cell membrane. Members in this ...

Weaver, Yi Miao

2010-04-12T23:59:59.000Z

398

Diffusion through Carbon Nanotube Semipermeable membranes  

SciTech Connect (OSTI)

The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization. Furthermore, advancement of many emerging nanotechnologies in chemistry and biology will undoubtedly be aided by an understanding confined water transport, particularly the details of hydrogen bonding and solvation that become crucial on this length scale. We can envision several practical applications for our devices, including desalination, gas separations, dialysis, and semipermeable fabrics for protection against CW agents etc. The single wall carbon nanotube membranes will be the key platform for applications because they will allow high transport rates of small molecules such as water and eliminate solvated ions or CW agents.

Bakajin, O

2006-02-13T23:59:59.000Z

399

Futile cycling at the plasma membrane: a hallmark of  

E-Print Network [OSTI]

. Transport systems catalyzing ion influx across the plasma membrane of root cells fall into two broadFutile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport Dev T. Britto-affinity transport systems in the plasma membranes of root cells. In this Opinion article, we illustrate that for six

Britto, Dev T.

400

Final Report - Membranes and MEA's for Dry, Hot Operating Conditions  

SciTech Connect (OSTI)

The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA?¢????s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20???ºC to 120???ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA?¢????s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

Hamrock, Steven J.

2011-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

402

Journal of Membrane Science 239 (2004) 1726 Highly conductive ordered heterogeneous ion-exchange membranes  

E-Print Network [OSTI]

in the matrix required for reasonable ion transport through the membrane is 50­70 wt.% [2Journal of Membrane Science 239 (2004) 17­26 Highly conductive ordered heterogeneous ion-exchange membranes are used in electrodialysis (ED) as ion-selective membranes and in power sources (such as fuel

Freger, Viatcheslav "Slava"

403

Renewable Hydrogen: Integration, Validation, and Demonstration  

SciTech Connect (OSTI)

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

404

Webinar: Hydrogen Production by PEM Electrolysis-Spotlight on...  

Broader source: Energy.gov (indexed) [DOE]

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

405

Electric Power Research Institute (EPRI) Hydrogen Briefing to...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage...

406

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

407

OXYGEN TRANSPORT MEMBRANE (OTM) AIDED  

E-Print Network [OSTI]

· Benefits to California · Overall Technology Assessment · Appendices o Appendix A: Final Report (under · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Environmentally

408

Solid-state membrane module  

DOE Patents [OSTI]

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

409

High permeance sulfur tolerant Pd/Cu alloy membranes  

DOE Patents [OSTI]

A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

Ma, Yi Hua; Pomerantz, Natalie

2014-02-18T23:59:59.000Z

410

Potential Carriers and Approaches for Hydrogen Delivery  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Carriers Calculation Tools Truck Transport Available H 2 Carrier Solution (Oil or water) Additional Reactant H 2 Carrier 16 Storage and forecourt tabs have been...

411

Membranes, methods of making membranes, and methods of separating gases using membranes  

DOE Patents [OSTI]

Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

Ho, W. S. Winston

2012-10-02T23:59:59.000Z

412

NREL: Transportation Research - Transportation and Hydrogen Newsletter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

illustration showing the outside of an electric vehicle with some portion of the drive train shown in a cutaway. DOE EV Everywhere goals for all-electric vehicles were set in...

413

The development of large technical systems: implications for hydrogen  

E-Print Network [OSTI]

to imagine a new hydrogen energy economy1 in which hydrogen is generated, transported, stored and made for hydrogen and its desirability2 , this hydrogen energy economy is not inevitable. The gap between where weThe development of large technical systems: implications for hydrogen Jim Watson March 2002 Tyndall

Watson, Andrew

414

Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures  

SciTech Connect (OSTI)

The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

Korzeniewski, Carol

2014-01-20T23:59:59.000Z

415

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

416

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

417

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

418

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

419

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

420

Thermally tolerant multilayer metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Neurotransmitter Transporters  

E-Print Network [OSTI]

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

422

A unified model of electroporation and molecular transport  

E-Print Network [OSTI]

Biological membranes form transient, conductive pores in response to elevated transmembrane voltage, a phenomenon termed electroporation. These pores facilitate electrical and molecular transport across cell membranes that ...

Smith, Kyle Christopher

2011-01-01T23:59:59.000Z

423

Production of permeable cellulose triacetate membranes  

DOE Patents [OSTI]

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, B.M.