Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

2

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

3

Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery  

Science Journals Connector (OSTI)

Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery ... An amylopectin wrapped graphene oxide-sulfur composite was prepared to construct a 3-dimensionally cross-linked structure through the interaction between amylopectin and graphene oxide, for stabilizing lithium sulfur batteries. ...

Weidong Zhou; Hao Chen; Yingchao Yu; Deli Wang; Zhiming Cui; Francis J. DiSalvo; Héctor D. Abruña

2013-09-05T23:59:59.000Z

4

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

5

Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes  

SciTech Connect

Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

2014-06-17T23:59:59.000Z

6

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

7

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

8

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

9

Revisit Carbon/Sulfur Composite for Li-S Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Revisit CarbonSulfur Composite for Li-S Batteries. Revisit CarbonSulfur Composite for Li-S Batteries. Abstract: To correlate the carbon properties e.g. surface area and porous...

10

Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Two kinds of graphene–sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ?5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene–sulfur composite (S–G mixture), sulfur shows larger and uneven size (50–200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S–G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium–sulfur (Li–S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g?1 with the sulfur utilization of 83.7% at a current density of 335 mA g?1. The capacity keeps above 720 mAh g?1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the “shuttle effect”, resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li–S batteries.

Jun Zhang; Zimin Dong; Xiuli Wang; Xuyang Zhao; Jiangping Tu; Qingmei Su; Gaohui Du

2014-01-01T23:59:59.000Z

11

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability  

Science Journals Connector (OSTI)

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability ... The resulting graphene–sulfur composite showed high and stable specific capacities up to ?600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density. ...

Hailiang Wang; Yuan Yang; Yongye Liang; Joshua Tucker Robinson; Yanguang Li; Ariel Jackson; Yi Cui; Hongjie Dai

2011-06-24T23:59:59.000Z

12

Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g?1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

Ya Liu; Jinxin Guo; Jun Zhang; Qingmei Su; Gaohui Du

2015-01-01T23:59:59.000Z

13

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network (OSTI)

HYDROGEN AND SULFUR PRODUCTION FROM HYDROGEN SULFIDE WASTES? John B.L. Harkness and Richard D. Doctor, Argonne National Laboratory, Argonne. IL ABSTRACT A new hydrogen sulfide waste-treatment process that uses microwave plasma... to be economically competitive. In addition, the experiments show-that. typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology. BACKGROUND In 1987, Argonne staff found the first...

Harkness, J.; Doctor, R. D.

14

Revisit Carbon/Sulfur Composite for Li-S Batteries  

SciTech Connect

To correlate the carbon properties e.g. surface area and porous structure, with the electrochemical behaviors of carbon/sulfur (C/S) composite cathodes for lithium-sulfur (Li-S) batteries, four different carbon frameworks including Ketjen Black (KB, high surface area and porous), Graphene (high surface area and nonporous), Acetylene Black (AB, low surface area and nonporous) and Hollow Carbon Nano Sphere (HCNS, low surface area and porous) are employed to immobilize sulfur (80 wt.%). It has been revealed that high surface area of carbon improves the utilization rate of active sulfur and decreases the real current density during the electrochemical reactions. Accordingly, increased reversible capacities and reduced polarization are observed for high surface area carbon hosts such as KB/S and graphene/S composites. The porous structure of KB or HCNS matrix promotes the long-term cycling stability of C/S composites but only at relatively low rate (0.2 C). Once the current density increases, the pore effect completely disappears and all Li-S batteries show similar trend of capacity degradation regardless of the different carbon hosts used in the cathodes. The reason has been assigned to the formation of reduced amount of irreversible Li2S on the cathode as well as shortened time for polysulfides to transport towards lithium anode at elevated current densities. This work provides valuable information for predictive selection on carbon materials to construct C/S composite for practical applications from the electrochemical point of view.

Zheng, Jianming; Gu, Meng; Wagner, Michael J.; Hays, Kevin; Li, Xiaohong S.; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-07-23T23:59:59.000Z

15

Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A sulfur/graphene composite is prepared by loading elemental sulfur into three-dimensional graphene (3D graphene), which is assembled using a metal ions assisted hydrothermal method. When used as cathode materials for lithium–sulfur (Li–S) batteries, the sulfur/graphene composite (S@3D-graphene) with 73 wt % sulfur shows a significantly enhanced cycling performance (>700 mAh g?1 after 100 cycles at 0.1C rate with a Coulombic efficiency > 96%) as well as high rate capability with a capacity up to 500 mAh g?1 at 2C rate (3.35 A g?1). The superior electrochemical performance could be attributed to the highly porous structure of three-dimensional graphene that not only enables stable and continue pathway for rapid electron and ion transportation, but also restrain soluble polysulfides and suppress the “shuttle effect”. Moreover, the robust structure of 3D graphene can keep cathode integrity and accommodate the volume change during high-rate charge/discharge processes, making it a promising candidate as cathode for high performance Li–S batteries.

Chunmei Xu; Yishan Wu; Xuyang Zhao; Xiuli Wang; Gaohui Du; Jun Zhang; Jiangping Tu

2015-01-01T23:59:59.000Z

16

Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries  

Science Journals Connector (OSTI)

Conductive polymer coatings can boost the power storage capacity of lithium-sulfur batteries. We report here on the design and ... polyaniline (PANI)-modified cetyltrimethylammonium bromide (CTAB)-graphene oxide ...

Yongcai Qiu; Wanfei Li; Guizhu Li; Yuan Hou; Lisha Zhou; Hongfei Li…

2014-09-01T23:59:59.000Z

17

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

18

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

19

Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance  

Science Journals Connector (OSTI)

Abstract In the past four years major improvement of the lithium sulfur battery technology has been reported. Novel carbon cathode materials offer high sulfur loading, sulfur utilization and cycle stability. An often neglected aspect is that sulfur loading and amount of electrolyte strongly impact the performance. In this paper, we demonstrate how the amount of electrolyte, sulfur loading, lithium excess and cycling rate influences the cycle stability and sulfur utilization. We chose vertically aligned carbon nanotubes (VA-CNT) as model system with a constant areal loading of carbon. For a high reproducibility, decreased weight of current collector and good mechanical adhesion of the VA-CNTs we present a layer transfer technique that enables a light-weight sulfur cathode. The sulfur loading of the cathode was adjusted from 20 to 80 wt.-%. Keeping the total amount of electrolyte constant and varying the C-rate, we are able to demonstrate that the capacity degradation is reduced for high rates, high amount of electrolyte and low sulfur loading. In addition idle periods in the cycling regiment and lower rates result in an increased degradation. We attribute this to the redox-reaction between reactive lithium and polysulfides that correlates with the cycling time, rather than cycle number.

Jan Brückner; Sören Thieme; Hannah Tamara Grossmann; Susanne Dörfler; Holger Althues; Stefan Kaskel

2014-01-01T23:59:59.000Z

20

Method of making a current collector for a sodium/sulfur battery  

DOE Patents (OSTI)

This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

1987-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract A novel graphene-wrapped carbon nanotube/sulfur structure was designed to improve the electrochemical performance of the lithium–sulfur (Li–S) batteries. Owing to the introduction of the reduced graphene oxide (rGO) with the aim to restrain the polysulfide anions diffusion phenomenon, increase the overall electronic conductivity of the electrode and accommodate volume expansion between the delithiated S and lithiated Li2S phases, the resulted graphene-wrapped carbon nanotube/sulfur (S/CNT@rGO) composite makes the cycling performance of the Li–S batteries better than that without rGO. The S/CNT@rGO composite showed an initial discharge capacity of ~1299 mA h g?1 at 0.2 C rate. After 100 cycles of charge/discharge, the S/CNT@rGO composite retained a high specific capacity of ~670 mA h g?1, much higher than that without rGO (graphene-wrapped carbon nanotube/sulfur composite could be a promising cathode material for high-rate performance Li–S batteries.

Yishan Wu; Chunmei Xu; Jinxin Guo; Qingmei Su; Gaohui Du; Jun Zhang

2014-01-01T23:59:59.000Z

22

Development of sulfur cathode material for Li-S batteries.  

E-Print Network (OSTI)

??M.S. Efforts were taken to fabricate a cathode material having Sulfur as the active material. First step is composed of identifying potential ways of fabricating… (more)

Dharmasena, Ruchira Ravinath, 1984-

2014-01-01T23:59:59.000Z

23

Chapter 3 - Potential of Sodium-Sulfur Battery Energy Storage to Enable Further Integration of Wind  

Science Journals Connector (OSTI)

Abstract Wind generation is the leading alternative for environmentally responsible power generation and for energy independence in the future. However, wind power output cannot be controlled same as conventional generation, and wind is not necessarily available to serve peak load. In this chapter, the use of a Sodium Sulfur battery directly coupled with a wind farm to provide generation shifting for serving peak demand and for limiting the wind farm power output ramp-rate is discussed. Results from field operation of a 1 MW, 7.2 \\{MWh\\} Sodium Sulfur battery coupled with an 11.55 MW wind farm were provided to validate the battery’s ability to successfully carry out both the tasks. It is shown that the two tasks could be combined to achieve maximum benefit. Value addition from shifting wind generation to on-peak is calculated and the optimal ratio storage to wind ratio is discussed.

Saurabh Tewari

2015-01-01T23:59:59.000Z

24

Phosphazene groups modified sulfur composites as active cathode materials for rechargeable lithium/sulfur batteries  

Science Journals Connector (OSTI)

A novel phosphazene groups modified sulfur composites cathode [triphosphazene sulfide composite (PS) or nitroaniline–triphosphazene disulfide composite (NPS)] which can give good affinity with electrolytes was...

J. D. Liu; S. Q. Zhang; S. B. Yang; Z. F. Shi; S. T. Zhang; L. K. Wu

2013-11-01T23:59:59.000Z

25

Membrane-less hydrogen bromine flow battery  

E-Print Network (OSTI)

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

26

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

27

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

28

Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge  

SciTech Connect

Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

Wang, Bin [Vanderbilt University, Nashville; Alhassan, Saeed M. [The Petroleum Institute; Pantelides, Sokrates T [ORNL

2014-01-01T23:59:59.000Z

29

RELY: A reliability modeling system for analysis of sodium-sulfur battery configurations  

SciTech Connect

In support of the Office of Energy Storage and Distribution of the US Department of Energy (DOE), Pacific Northwest Laboratory has produced a microcomputer-based software package, called RELY, to assess the impact of sodium-sulfur cell reliability on constant current discharge battery performance. The Fortran-based software operates on IBM microcomputers and IBM-compatibles that have a minimum of 512K of internal memory. The software package has three models that provide the following: (1) a description of the failure distribution parameters used to model cell failure, (2) a Monte Carlo simulation of battery life, and (3) a detailed discharge model for a user-specified battery discharge cycle. 6 refs., 31 figs., 4 tabs.

Hostick, C.J.; Huber, H.D.; Doggett, W.H.; Dirks, J.A.; Dovey, J.F.; Grinde, R.B.; Littlefield, J.S.; Cuta, F.M.

1987-06-01T23:59:59.000Z

30

The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen .  

E-Print Network (OSTI)

??The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming -… (more)

Miu, Kevin (Kevin K.)

2006-01-01T23:59:59.000Z

31

Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production  

SciTech Connect

The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

2010-05-01T23:59:59.000Z

32

Sandwich-Type Functionalized Graphene Sheet-Sulfur Nanocomposite for Rechargeable Lithium Batteries  

SciTech Connect

A sandwich structured graphene sheet-sulfur (GSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of graphene stacks and a layer of sulfur nanoparticles integrated into a three-dimensional architecture. This GSS nanoscale layered composite, making use of the efficient physical and electrical contact between sulfur and the large surface area, highly conductive graphene, provides a high loading of active materials of ~70 wt%, a high tape density of ~0.92 g?cm-3, and a high power with a reversible capacity of ~505 mAh?g-1 (~464 mAh?cm-3) at a current density of 1,680 mA?g-1 (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the GSS nanocomposite was effectively alleviated, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.

Cao, Yuliang; Li, Xiaolin; Aksay, Ilhan A.; Lemmon, John P.; Nie, Zimin; Yang, Zhenguo; Liu, Jun

2011-03-30T23:59:59.000Z

33

Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985  

SciTech Connect

This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

NONE

1985-04-01T23:59:59.000Z

34

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

35

Effective hydrogen generation and resource circulation based on sulfur cycle system  

SciTech Connect

For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

2013-12-10T23:59:59.000Z

36

RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

Hobbs, D.

2010-07-22T23:59:59.000Z

37

Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor  

E-Print Network (OSTI)

monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures thanSulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20­600 times greater

Tobin, Roger G.

38

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

39

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries  

Science Journals Connector (OSTI)

Abstract Lithium-sulfur (Li-S) batteries have attracted great attention as next-generation high specific energy density storage devices. However, the low sulfur loading in the cathode for Li-S battery greatly offsets its advantage in high energy density and limits the practical applications of such battery concepts. Flexible energy storage devices are also becoming increasingly important for future applications but are limited by the lack of suitable lightweight electrode materials with robust electrochemical performance under cyclic mechanical strain. Here, we proposed an effective strategy to obtain flexible Li-S battery electrodes with high energy density, high power density, and long cyclic life by adopting graphene foam-based electrodes. Graphene foam can provide a highly electrically conductive network, robust mechanical support and sufficient space for a high sulfur loading. The sulfur loading in graphene foam-based electrodes can be tuned from 3.3 to 10.1 mg cm?2. The electrode with 10.1 mg cm?2 sulfur loading could deliver an extremely high areal capacity of 13.4 mAh cm?2, much higher than the commonly reported Li-S electrodes and commercially used lithium cobalt oxide cathode with a value of ~3–4 mAh cm?2. Meanwhile, the high sulfur-loaded electrodes retain a high rate performance with reversible capacities higher than 450 mAh g?1 under a large current density of 6 A g?1 and preserve stable cycling performance with ~0.07% capacity decay per cycle over 1000 cycles. These impressive results indicate that such electrodes could enable high performance, fast-charging, and flexible Li-S batteries that show stable performance over extended charge/discharge cycling.

Guangmin Zhou; Lu Li; Chaoqun Ma; Shaogang Wang; Ying Shi; Nikhil Koratkar; Wencai Ren; Feng Li; Hui-Ming Cheng

2015-01-01T23:59:59.000Z

40

A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte  

Science Journals Connector (OSTI)

A novel sulfur/graphene nanosheet (S/GNS) composite was prepared ... ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. ... of irregularly interlaced nanosheet-li...

Yongguang Zhang; Yan Zhao; Zhumabay Bakenov

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries  

Science Journals Connector (OSTI)

We report on a simple and facile synthesis route for the sulfur/graphene oxide composite via ultrasonic mixing of the nano-sulfur and graphene oxide aqueous suspensions followed by a low-temperature heat treat...

Yongguang Zhang; Yan Zhao; Zhumabay Bakenov

2014-07-01T23:59:59.000Z

42

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures  

SciTech Connect

Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

2014-01-09T23:59:59.000Z

43

SAFT 4{1/2} inch nickel hydrogen battery cells  

SciTech Connect

SAFT Advanced Batteries has now produced over 400 high capacity 4{1/2} inch Nickel Hydrogen Battery Cells for flight programs. The 4.5 inch diameter, rabbit-ear cell design is designed to provide the anticipated energy required at the lowest practical weight. SAFT has incorporated into the design of the dry-powder nickel electrode, truly hermetic ceramic to metal seals, qualified terminal feedthroughs, high reliability mechanical design, composite pure platinum negative electrode, and zircar separator, plus more than 25 years experience in aerospace nickel cell technology, resulting in a 4{1/2} inch configuration with the 3{1/2} inch cell design carryover heritage. General performance requirements for GEO missions that SAFT cells meet are 15 years in orbit lifetime, 80% DOD, low mass to energy ratios, and flexible capacity by modifying number of electrodes in the stack. This design is qualified for geostationary orbits based on SAFT`s 3{1/2} inch qualification heritage, design verification, and cycling performed by customer Space Systems/LORAL in support of the INTELSAT VIIA and N-STAR flight programs.

Duquesne, D.; Lacout, B.; Sennet, A. [SAFT Advanced Batteries, Poitiers (France)

1995-12-31T23:59:59.000Z

44

ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION  

SciTech Connect

A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

Gorensek, M.; Edwards, T.

2009-06-11T23:59:59.000Z

45

Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package  

SciTech Connect

This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

Benjamin Russ

2009-06-01T23:59:59.000Z

46

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries 2011 DOE...

47

Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997  

SciTech Connect

The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

Ruckman, M.W.; Strongin, M.; Weismann, H. [and others

1997-04-01T23:59:59.000Z

48

Heat Transfer Characteristics of Sulfur and Sulfur Diluted with Hydrogen Sulfide Flowing Through Circular Tubes  

E-Print Network (OSTI)

is called the pumping-power advantage factor, and has the value 2. 5 x 10 for sodium. The only metals having a higher value of H are 13 lithium 7 and bismuth. Lithium 7 comprises 92. 5% of natural lithium, but the cost of separating it from lithium 6...-section for thermal neutrons being 0. 130 barns. For comparison, water has an absorption cross-section of 0. 58 barns for thermal neutrons (2) . Sulfur is not activated by exposure to neutron flux in such a way as to produce a radioactive isotope which...

Stone, Porter Walwyn

1960-01-01T23:59:59.000Z

49

An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

50

Three-Dimensional Flower-Shaped Activated Porous Carbon/Sulfur Composites as Cathode Materials for Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

After the active sulfur impregnation, both the FESEM images (Figure 1e,f) and TEM images (Figure 2c) of the FA-PC/S composite demonstrate a flower-shaped 3D superstructure similar to the original FA-PC material. ... Early on, carbonaceous materials dominated the anode and hence most of the possible improvements in the cell were anticipated at the cathode terminal; on the other hand, major developments in anode materials made in the last portion of the decade with the introduction of nanocomposite Sn/C/Co alloys and Si-C composites have demanded higher capacity cathodes to be developed. ... The photodecompn. of methyl orange indicates that such ZnO superstructures possess excellent photocatalytic activity. ...

Lan Zhou; Tao Huang; Aishui Yu

2014-09-19T23:59:59.000Z

51

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

52

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

53

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

54

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries...

55

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

56

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

57

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

58

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

59

Molecular Structures of Polymer/Sulfur Composites for Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

60

High Energy Density Cathode for Lithium Batteries: From LiCoO_(2) to Sulfur  

E-Print Network (OSTI)

addressed, i.e. the safety hazard resulted from the Li dendrite formation on the Li metal anode and the poor cyclability arising from the polysulfides shuttle. Firstly, to overcome the safety issue, this dissertation reported a lithiated Si-S (LSS) battery...

Pu, Xiong

2014-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Techno-economic and behavioural analysis of battery electric, hydrogen  

E-Print Network (OSTI)

(BEV) and hydrogen fuel cell plug-in hybrid electric vehicles (FCHEV) in the UK using cost predictions comparing fuel cell and combustion engine range extenders for electric vehicles (Burke 2007), BEVs and FCVs vehicles in a future sustainable road transport system in the UK ICEPT Working Paper January 2011 Ref

62

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

63

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26-28 2013 ABSTRACT QUESTIONNAIRE  

E-Print Network (OSTI)

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26 Other Marketing analysis Standards and regulations #12;IV Iberian Symposium on Hydrogen, Fuel Cells PEM fuel cells X Numerical simulation SO fuel cells New materials Other fuel cells New processes

Batlle, Carles

64

Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting  

E-Print Network (OSTI)

in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

KuÂ?el, Petr

65

Strong Sulfur Binding with Conducting Magneli-Phase TinO2n-1 Nanomaterials for Improving Lithium-Sulfur Batteries  

E-Print Network (OSTI)

will go through a series of soluble intermediate higher-order polysulfides (Li2S8, Li2S6, and Li2S4 of Li2S2, Li2S, and sulfur.6-8 In order to solve these challenges, there have been recent developmentsStrong Sulfur Binding with Conducting Magneli-Phase TinO2n-1 Nanomaterials for Improving Lithium-Sulfur

Cui, Yi

66

Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)  

SciTech Connect

Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

2012-04-01T23:59:59.000Z

67

Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems  

Science Journals Connector (OSTI)

Abstract Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E0 = ?3.045 V), provides very high energy and power densities in batteries. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) have conquered the markets for portable consumer electronics and, recently, for electric vehicles. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. As lithium metal reacts violently with water and can thus cause ignition, modern lithium-ion batteries use carbon negative electrodes and lithium metal oxide positive electrodes. Rechargeable lithium-ion batteries should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This chapter covers all aspects of lithium battery chemistry that are pertinent to electrochemical energy storage for renewable sources and grid balancing.

Peter Kurzweil

2015-01-01T23:59:59.000Z

68

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network (OSTI)

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

69

Nickel hydrogen battery cell testing data base: an industry and government survey  

SciTech Connect

Both government and industry were surveyed to determine the level of testing of nickel hydrogen (NiH/sub 2/) battery cells and to evaluate the demonstrable capabilities of the couple. Only flight-type cells undergoing ground test were incorporated in the data base; no boilerplate cells or flight batteries were included. Both USAF-design and COMSAT-design cells, as well as a few cells produced by SAFT, were listed. The USAF design is in test in both high and low-earth-orbit simulations, whereas the COMSAT design, intended specifically for high-orbit applications, is being tested predominantly in high orbits. The data from over 400 cells show that the reliability and capability of both designs for high-orbit applications are reasonably established out to ten years in geosynchronous orbit, and to approximately 3000 cycles in other high-orbit applications. However, the data base is weak and incomplete for applications of the USAF cell in low earth orbit. This results from the harsh testing environment to which these cells have been subjected, as well as from various minor design questions that were not resolved when these cells began testing. It must also be pointed out that most of the testing data base is constructed from cells that were developmental in design or manufacture (all cells purchased for a test are used, even if their performance is questionable), as contrasted to a flight program where it can be assumed that many of the failures listed would have been rejected prior either to life test or their use in a flight battery.

Badcock, C.C.; Milden, M.J.

1985-12-31T23:59:59.000Z

70

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

71

Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides  

DOE Patents (OSTI)

A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

Ramkumar, Shwetha; Fan, Liang-Shih

2013-07-30T23:59:59.000Z

72

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

73

Identification of a new pseudo-binary hydroxide during calendar corrosion of (La, Mg)2Ni7-type hydrogen storage alloys for Nickel-Metal Hydride batteries  

E-Print Network (OSTI)

hydrogen storage alloys for Nickel-Metal Hydride batteries J. Monnier 1 , H. Chen 1 , S. Joiret2,3 , J present higher hydrogen storage capacity and higher discharge capacity, eg. 356mAh/g for LaCaMgNi9 [4 in the huge market of hybrid electric vehicles (HEV) and Emergency Light Units (ELU). Hydrogen

Boyer, Edmond

74

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network (OSTI)

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

75

Sulfur incorporation into copper indium diselenide single crystals through annealing in hydrogen sulfide  

SciTech Connect

CuInSe{sub 2} crystals were sulfurized in a H{sub 2}S-Ar gas mixture at 575 deg. C. The focus was on the resulting mass transport, in particular, on the interdiffusion of Se and S. Experiments were done for various sulfurization times, and the resulting S distribution was measured by Auger electron spectroscopy sputter depth profiling and analyzed with the Boltzmann-Matano method. A one-dimensional diffusion process had shaped the S distribution in these crystals. The respective diffusion coefficient was on the order of 10{sup -16} cm{sup 2}/s, and it varied only slightly with the S content in CuIn(Se,S){sub 2}.

Titus, Jochen; Birkmire, Robert W.; Hack, Christina; Mueller, Georg; McKeown, Patrick [Institute of Energy Conversion, University of Delaware, Newark, Delaware 19716 (United States); Crystal Growth Laboratory, Department of Materials Science, University of Erlangen-Nuernberg (Germany); Evans East, Princeton, New Jersey 08520 (United States)

2006-02-15T23:59:59.000Z

76

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

77

Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii  

Science Journals Connector (OSTI)

...storage in the monocellular alga Chlamydomonas reinhardtii...202-204. 6 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol...hydrogenase from the green-alga Chlamydomonas reinhardtii...hydrogen metabolism of the green alga Chlamydomonas reinhardtii...

Anh Vu Nguyen; Skye R. Thomas-Hall; Alizée Malnoë; Matthew Timmins; Jan H. Mussgnug; Jens Rupprecht; Olaf Kruse; Ben Hankamer; Peer M. Schenk

2008-08-15T23:59:59.000Z

78

Effect of Sulfur Compounds and Higher Homologues of Methane on Hydrogen Cyanide Production by the Andrussow Method  

Science Journals Connector (OSTI)

The influence of sulfur compounds, higher homologues of methane on the parameters ofoxidative ammonolysis of methane was studied.

N. V. Trusov

2001-10-01T23:59:59.000Z

79

A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries  

Science Journals Connector (OSTI)

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a ... the simultaneous oxidation of sulfide and reduction of graphene

Hui Sun; Gui-Liang Xu; Yue-Feng Xu; Shi-Gang Sun; Xinfeng Zhang…

2012-10-01T23:59:59.000Z

80

HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

Gorensek, M.

2011-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

82

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

SciTech Connect

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

83

Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries "This presentation does not contain any proprietary, confidential, or otherwise...

84

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

85

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

86

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

87

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

88

Saft America lithium sulfur dioxide battery (p/n 38303301) for flyrt application: Performance discharge test report. Report for August 1991-March 1992  

SciTech Connect

The Battery Technology Group of the Electrochemistry Branch (Code R33) of the Naval Surface Warfare Center, White Oak Detachment, was tasked by the Countermeasures Group of the Naval Research Laboratory to execute a series of performance discharge tests on a Li/SO[sub 2] battery. The battery was designed and assembled by SAFT America (P/N 38303301) to be used for the Flying Radar Target (FLYRT) Demonstration Program. The preliminary battery tests included discharge tests designed to determine the ability of the SAFT America battery to deliver a nominal 600 watts for 10 to 12 minutes within the voltage range of 66 to 100 volts. The battery was tested insulated in some cases to determine the effects of an adiabatic environment on its performance. The battery exceeded the goals set for power and lifetime in all tests. However, events consistently occurred at the end of battery life that raised safety concerns with the present battery design. Data were also analyzed for voltage delay characterization; no serious voltage delay problems were evident.

Banner, J.A.; Davis, P.B.; Peed, E.R.; Winchester, C.S.

1991-08-01T23:59:59.000Z

89

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

90

Chapter 11 - Sulfur Recovery  

Science Journals Connector (OSTI)

Abstract Sulfur is present in many raw industrial gases and in natural gas in the form of hydrogen sulfide. Sulfur removal facilities are located at the majority of oil and gas processing facilities throughout the world. The sulfur recovery unit does not make a profit for the operator but it is an essential processing step to allow the overall facility to operate, as the discharge of sulfur compounds to the atmosphere is severely restricted by environmental regulations. Concentration levels of H2S vary significantly depending upon their source. H2S produced from absorption processes, such as amine treating of natural gas or refinery gas, can contain 50–75% H2S by volume or higher. This chapter provides information about fundamentals of sulfur removal facilities in the natural gas industry.

Alireza Bahadori

2014-01-01T23:59:59.000Z

91

Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys  

DOE Patents (OSTI)

An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

Ovshinsky, Stanford R. (Bloomfield Hills, MI); Fetcenko, Michael A. (Rochester Hills, MI)

1996-01-01T23:59:59.000Z

92

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

93

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

94

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

95

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

96

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

97

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

98

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

99

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

100

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

102

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

103

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

104

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

105

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

106

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

107

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

108

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

109

CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production  

SciTech Connect

Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm{sup 2} active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

2014-02-24T23:59:59.000Z

110

Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States  

Science Journals Connector (OSTI)

Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis.

Paul Kruger; Jonathan D. Leaver

2010-01-01T23:59:59.000Z

111

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

112

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

113

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

114

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

115

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

116

SULFUR-TOLERANT CATALYST FOR THE SOLID OXIDE FUEL CELL.  

E-Print Network (OSTI)

??JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which… (more)

Bozeman, Joe Frank, III

2010-01-01T23:59:59.000Z

117

Why Sequence Sulfur-Oxidizing Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-Oxidizing Bacteria? Sulfur-Oxidizing Bacteria? Several environmental problems, such as acid rain, biocorrosion, etc., are caused by sulfur compounds, such as sulfur dioxide (SO2) and hydrogen sulfide (H2S). A sustainable process to remove these sulfur compounds is the production of elemental sulfur from H2S-containing gas streams by the use of sulfide-oxidizing bacteria. In this process, H2S is absorbed into the alkaline solution in the scrubber unit, followed by the biological oxidation of H2S to elemental sulfur and the recycling of water. With this two-step process, a variety of gas streams (i.e., natural gas, synthesis gas, biogas, and refinery gas) can be treated. For the treatment of sulfate-containing waste streams, an extra step has to be introduced: the transformation of sulfate into H2S by sulfate-reducing bacteria. In

118

Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production  

Science Journals Connector (OSTI)

Abstract Titania nanotube-Cd0.65Zn0.35S nanocomposite (Cd0.65Zn0.35S-TiO2) was synthesized from titanate nanotubes for ion change of Cd2+ and Zn2+ followed by hydrothermal sulfuration treatment using thiourea as sulfur source. The Cd0.65Zn0.35S-TiO2 with enhanced crystallinity of TiO2 nanotube can be obtained by increasing hydrothermal temperature from 90 °C to 120 °C. And further increasing hydrothermal temperature to 150 °C, TiO2 nanotubes collapse and transform into irregular shaped particles. The photocatalytic activity for hydrogen production of the prepared Cd0.65Zn0.35S-TiO2 with different hydrothermal temperature was investigated under visible-light irradiation. The result shows that the Cd0.65Zn0.35S-TiO2 with hydrothermal temperature of 120 °C presents the highest hydrogen evolution rate and photostability, which can be attributed to a rapid charge transfer at the interface between Cd0.65Zn0.35S and TiO2 nanotube due to the increased crystallinity and unique 1-D nanotubular structure of TiO2.

Juan Li; Liangpeng Wu; Lizhen Long; Min Xi; Xinjun Li

2014-01-01T23:59:59.000Z

119

CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

Hobbs, D; Hector Colon-Mercado, H

2007-01-31T23:59:59.000Z

120

Method to prevent sulfur accumulation in membrane electrode assembly  

DOE Patents (OSTI)

A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

Steimke, John L; Steeper, Timothy J; Herman, David T

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

122

Overview of Battery R&D Activities | Department of Energy  

Energy Savers (EERE)

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

123

Overview of Battery R&D Activities | Department of Energy  

Energy Savers (EERE)

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

124

Sulfide catalysts for reducing SO2 to elemental sulfur  

DOE Patents (OSTI)

A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

2001-01-01T23:59:59.000Z

125

Boosting batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

126

Overview and Progress of the Batteries for Advanced Transportation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

127

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

128

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

129

Impact of Battery Management on Fuel Efficiency Validity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

130

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

131

The reaction kinetics of gasoline sulfur compounds: Catalytic mechanisms for sulfur reduction  

SciTech Connect

One of the key elements of reformulated gasoline is the reduction of the sulfur compounds produced by fluid catalytic cracking. This paper probes the reaction kinetics of refractory gasoline-range thiophene derivatives (thiophene, tetrahydrothiophene, and alkylthiophenes) in an effort to determine the mechanisms of sulfur compound cracking in the FCC unit. The gasoline-range sulfur compounds were analyzed using gas chromatography with an atomic emission detector. The authors` results show that the FCC catalysts affects the cracking of sulfur compounds through both hydrogen transfer and zeolite pore restriction mechanisms. An experimental FCC catalyst is shown to reduce gasoline sulfur content in the Davidson Circulating Riser (DCR{sup TM}) pilot unit. Model compound tests show that the activity of the catalyst is due to both its catalytic and adsorptive properties. Tetrahydrothiophene, which is produced from thiophenes by hydrogen transfer, is completely removed by the experimental catalyst.

Harding, R.H.; Gatte, R.R.; Albro, T.G.; Wormsbecher, R.F. [W.R. Grace & Co. Conn, Columbia, MD (United States)

1993-12-31T23:59:59.000Z

132

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

133

Ion implantation of highly corrosive electrolyte battery components  

DOE Patents (OSTI)

A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.

Muller, R.H.; Zhang, S.

1997-01-14T23:59:59.000Z

134

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

135

EMSL - batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

136

Applications of porous electrodes to metal-ion removal and the design of battery systems  

SciTech Connect

This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

Trost, G.G.

1983-09-01T23:59:59.000Z

137

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodium–sulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

138

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

139

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

140

KAir Battery  

Energy.gov (U.S. Department of Energy (DOE))

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrochemical properties of all solid state Li/S battery  

SciTech Connect

All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup ?1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup ?1}-sulfur after 10 cycles.

Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing; Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kang, Yongku [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Wang, Guoxiu [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of) [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

2012-10-15T23:59:59.000Z

142

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents (OSTI)

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

143

RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival  

Science Journals Connector (OSTI)

...Z. (2007). The role of hydrogen peroxide in regulation of plant...A.R. (2001). Sulfur economy and cell wall biosynthesis...hypersensitive cell death by hydrogen peroxide produced through polyamine...2002). Probing green algal hydrogen production. Philos. Trans...

David González-Ballester; David Casero; Shawn Cokus; Matteo Pellegrini; Sabeeha S. Merchant; Arthur R. Grossman

2010-06-29T23:59:59.000Z

144

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

145

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

146

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

147

Safety considerations for the use of sulfur in sulfur-modified pavement materials  

E-Print Network (OSTI)

on the surround1ng environment. As sulfur-modified paving materials were being developed, there was a corresponding concern for studying the amounts of gaseous emiss1ons that were generated. The Texas Trans- portat1on Inst1tute (TTI) was one of the first... organizations in the United States to become 1nvolved in the research and development of sulfur-modified pavements, Throughout 1ts laboratory stud1es TTI cont1nually mon1tored hydrogen sulf1de (H25) and sulfur d1oxide (502) em1ssions produced during mix...

Jacobs, Carolyn Yuriko

2012-06-07T23:59:59.000Z

148

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network (OSTI)

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

149

Development of the Hybrid Sulfur Thermochemical Cycle  

SciTech Connect

The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

Summers, William A.; Steimke, John L

2005-09-23T23:59:59.000Z

150

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

151

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

152

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase  

E-Print Network (OSTI)

Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury: Sulfur was impregnated onto activated carbon fibers ACFs through H2S oxidation catalyzed by the sorbent CE Database subject headings: Activated carbon; Sulfur; Mercury; Hydrogen sulfides; Oxidation

Borguet, Eric

153

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

154

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network (OSTI)

and diesel. Hydrogen and fuel cells are widely touted as anapplication for hydrogen and fuel cells is to power LDVs,system (batteries or hydrogen and fuel cells) will achieve

Yang, Christopher

2008-01-01T23:59:59.000Z

155

Offshore Sulfur Comes In  

Science Journals Connector (OSTI)

Offshore Sulfur Comes In ... "The deposit is a major new source of sulfur," say Hines H. Baker, president of Humble Oil, and Langbourne M. Williams, president of Freeport Sulphur. ... Humble's deposit, known as Grand Isle (Block 18), was discovered in the course of offshore oil exploration and it ranks among the most important sulfur discoveries of recent years. ...

1956-10-01T23:59:59.000Z

156

Sulfur-Free Selective Pulping  

E-Print Network (OSTI)

Technoeconomic Appraisal," December 1991. 5. DOE Annual Report on Contract No. AC02-83CH10093, Bozell, J. J., Hames, B., Chum, H. L., Dimmel, D. R, Althen, E., Caldwell, P. L., Daube, Oxidation ;; Diels-Alder .. I I -Methanol .. ~ 5 I 3 (C~O) OCH... - Hydrogen 3 (Q-IP) # Q-I 3 o o ~ o 1 2 ~ (H) Lignin DMBQ =two OCH3 groups Anthraquinone MMBQ =one OCH3 group A. K, and Kuroda, K-I.,"Sulfur-free Selective Pulping," March 1992. 6. DOE Annual Report on Contrac No. DE-AC02-83CH10093, Bozell, J. J...

Dimmel, D. R.; Bozell, J. J.

157

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

158

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network (OSTI)

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

159

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

160

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY  

SciTech Connect

HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

2009-06-22T23:59:59.000Z

162

Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

163

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

164

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

165

Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Sulfur-Graphene Oxide Nanocomposite Cathodes for LithiumSulfur Cells Lawrence Berkeley National...

166

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

167

Definition: Lead-acid battery | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lead-acid battery Jump to: navigation, search Dictionary.png Lead-acid battery A type of battery that uses plates made of pure lead or lead oxide for the electrodes and sulfuric acid for the electrolyte.[1] View on Wikipedia Wikipedia Definition Related Terms Battery, electrolyte References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Lead-acid_battery&oldid=487934" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

168

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

169

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network (OSTI)

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to… (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

170

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES). Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

171

Sulfur-isotope separation by distillation  

SciTech Connect

Sulfur-isotope separation by low-temperature distillation of hydrogen sulfide was studied in an 8-m, 25-mm diameter distillation column. Column temperature was controlled by a propane-propylene heat pipe. Column packing HETP was measured using nitric oxide in the column. The column was operated at pressures from 45 to 125 kPa. The relative volatility of S-32 vs. S-34 varied from 1.0008 to 1.0014.

Mills, T.R.

1982-01-01T23:59:59.000Z

172

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

173

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.  

SciTech Connect

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

2006-03-01T23:59:59.000Z

174

Production of battery grade materials via an oxalate method  

DOE Patents (OSTI)

An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.

Belharouak, Ilias; Amine, Khalil

2014-04-29T23:59:59.000Z

175

Sulfur-tolerant anode materials for solid oxide fuel cell application  

SciTech Connect

This paper summarizes the degradation mechanisms for SOFC anodes in the presence of sulfur and recent developments in sulfur-tolerant anodes. There are two primary sulfur-degradation mechanisms for the anode materials: physical absorption of sulfur that blocks the hydrogen reaction sites, and chemical reaction that forms nickel sulfide. The sulfur-tolerant anodes are categorized into three kinds of materials: thiospinels and metal sulfides, metal cermets, and mixed ionic and electronic conductors. Each material has its own advantages and disadvantages, and the combined application of available materials to serve as different functional components in anodes through proper design may be effective to achieve a balance between stability and performance.

Gong, M. (West Virginia University, Morgantown, WV); Liu, X. (West Virginia University, Morgantown, WV); Trembly, J.; Johnson, C.

2007-06-01T23:59:59.000Z

176

Hydrogen fuel closer to reality because of storage advances  

E-Print Network (OSTI)

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

177

Bacterial Sulfur Storage Globules  

NLE Websites -- All DOE Office Websites (Extended Search)

by I. J. Pickering and G. N. George by I. J. Pickering and G. N. George Sulfur is essential for all life, but it plays a particularly central role in the metabolism of many anaerobic microorganisms. Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for use when food is in short supply (Fig. 1). The chemical nature of the sulfur in these globules has been an enigma since they were first described as far back as 1887 (1); all known forms (or allotropes) of elemental sulfur are solid at room temperature, but globule sulfur has been described as "liquid", and it apparently has a low density – 1.3 compared to 2.1 for the common yellow allotrope a-sulfur. Various exotic forms of sulfur have been proposed to explain these properties, including micelles (small bubble-like structures) formed from long-chain polythionates, but all of these deductions have been based upon indirect evidence (for example the density was estimated by flotation of intact cells), and many questions remained.

178

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

179

No Moore’s Law for batteries  

Science Journals Connector (OSTI)

...nature’s ideal fuel. A full tank of gasoline...ourselves from powering cars with gasoline. There...is still a fossil fuel, and hydrogen can presently be produced...why not power our cars this way? We already...electrolytes. A D-cell battery stores more...

Fred Schlachter

2013-01-01T23:59:59.000Z

180

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte  

Science Journals Connector (OSTI)

We report the design and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates, and electrolyte ...

Ranga S. Jayashree; Michael Mitchell; Dilip Natarajan; Larry J. Markoski; Paul J. A. Kenis

2007-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

182

Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode  

Science Journals Connector (OSTI)

Conversion of Hydroperoxoantimonate Coated Graphenes to Sb2S3@Graphene for a Superior Lithium Battery Anode ... We describe a method for conformal coating of reduced graphene oxide (rGO) by stibnite nanocrystallites. ... antimony sulfide; stibnite; reduced graphene oxide; lithium battery; sulfurization ...

Petr V. Prikhodchenko; Jenny Gun; Sergey Sladkevich; Alexey A. Mikhaylov; Ovadia Lev; Yee Yan Tay; Sudip K. Batabyal; Denis Y. W. Yu

2012-11-22T23:59:59.000Z

183

Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Phase Equilibria II. Phase Equilibria Title Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria Publication Type Journal Article Year of Publication 1996 Authors Ridgway, Paul L., Frank R. McLarnon, and John S. Newman Journal Journal of the Electrochemistry Society Volume 143 Issue 2 Pagination 412-417 Keywords 25 ENERGY STORAGE, 36 MATERIALS SCIENCE, ALUMINIUM OXIDES, equilibrium, performance, PHASE DIAGRAMS, PHOSPHIDES, PHOSPHORUS ADDITIONS, SODIUM COMPOUNDS, SODIUM SULFIDES, SODIUM-SULFUR BATTERIES Abstract Equilibrium open-circuit cell voltage data from a sodium/{beta}{double_prime}-alumina/phosphorus-sulfur cell utilizing P/S ratios of 0, 0.143, and 0.332 and a sodium atom fraction ranging from 0 to 0.4 were interpreted to construct ternary phase diagrams of the Na-P-S ternary system at 350 and 400 C.

184

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

185

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

186

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

187

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

188

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

189

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

190

The Role of FeS in Initial Activation and Performance Degradation of Na-NiCl2 Batteries  

SciTech Connect

The role of iron sulfide (FeS) in initial cell activation and degradation in the Na-NiCl2 battery was investigated in this work. The research focused on identifying the effects of the FeS level on the electrochemical performance and morphological changes in the cathode. The x-ray photoelectron spectroscopy study along with battery tests revealed that FeS plays a critical role in initial battery activation by removing passivation layers on Ni particles. It was also found that the optimum level of FeS in the cathode resulted in minimum Ni particle growth and improved battery cycling performance. The results of electrochemical characterization indicated that sulfur species generated in situ during initial charging, such as polysulfide and sulfur, are responsible for removing the passivation layer. Consequently, the cells containing elemental sulfur in the cathode exhibited similar electrochemical behavior during initial charging compared to that of the cells containing FeS.

Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Engelhard, Mark H.; Lemmon, John P.; Sprenkle, Vincent L.

2014-12-25T23:59:59.000Z

191

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

192

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

193

High Performance Cathodes for Li-Air Batteries  

SciTech Connect

The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

Xing, Yangchuan

2013-08-22T23:59:59.000Z

194

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

195

High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1982-07-07T23:59:59.000Z

196

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

197

SULFUR POLYMER ENCAPSULATION.  

SciTech Connect

Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris.

KALB, P.

2001-08-22T23:59:59.000Z

198

Process for recovery of hydrogen and  

DOE Patents (OSTI)

on of sulfur Abstract A process of abstracting sulfur from H.sub.2 S and generating hydrogen is disclosed comprising dissolving Pd.sub.2 X.sub.2 (.mu.-dppm).sub.2 in a solvent and then introducing H.sub.2 S. The palladium complex abstracts sulfur, forming hydrogen and a (.mu.-S) complex. The (.mu.-S) complex is readily oxidizable to a (.mu.-SO.sub.2) adduct which spontaneously loses SO.sub.2 and regenerates the palladium complex.

James, Brian R. (Vancouver, CA); Li-Lee, Chung (Vancouver, CA); Lilga, Michael A. (Richland, WA); Nelson, David A. (Richland, WA)

1987-01-01T23:59:59.000Z

199

The HYSULF{sup SM} process: A valuable hydrogen resource from hydrogen sulfide  

SciTech Connect

The increasing demand for hydrogen to reduce the sulfur content in standard refinery fuels is a very familiar problem to everyone in the industry. This problem could be partially offset by the continuous recycling of the hydrogen portion of hydrogen sulfide. In this regard, Marathon has been developing the HYSULF process. This process uses Redox chemistry under mild operating conditions to convert hydrogen sulfide into hydrogen and sulfur. The process employs two basic steps, i.e., a sulfur production and recovery step and a hydrogen production step. All chemicals and the catalyst used in the HYSULF process are either commercially available or are slight modifications of available materials. Also, the chemistry used in the HYSULF process is similar to that used in commercial desulfurization and gas sweetening processes.

Plummer, M.A. [Marathon Oil Co., Littleton, CO (United States)

1995-09-01T23:59:59.000Z

200

Why sequence Alkaliphilic sulfur oxidizing bacteria for sulfur pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

Alkaliphilic sulfur oxidizing Alkaliphilic sulfur oxidizing bacteria for sulfur pollution remediation? Burning sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such as air pollution and acid rain, besides contributing to the loss of the ozone layer. One method of managing sulfur compounds released as byproducts from industrial processes is to scrub them out using chemical treatments and activated charcoal beds. A lower-cost solution relies on incorporating alkaliphic sulfur-oxidizing bacteria into biofilters to convert the volatile and toxic compounds into insoluble sulfur for easier removal. Discovered in the last decade, these bacteria have been found to thrive in habitats that span the full pH range. The bacteria could have applications

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

202

Sulfur-deactivated steam reforming of gasified biomass  

SciTech Connect

The effect of hydrogen sulfide on the stream reforming of methane has been studied. Methane is the most difficult component to convert by steam reforming in the mixture of hydrocarbons, which is produced in biomass gasification. Two catalysts were subjected to hydrogen sulfide levels up to 300 ppm so as to study the effect of sulfur on their deactivation. These catalysts were the C11-9-061, from United Catalyst Inc., and the HTSR1, from Haldor Topsoee. The activation energy of the sulfur-deactivated steam-reforming reaction was calculated to be 280 and 260 kJ/mol, for each catalyst, respectively. The high values most probably originate from the fact that the degree of sulfur coverage of the nickel surface is close to 1 for these experiments. Even under these severe conditions, steam reforming of methane is possible without any carbon formation. The HTSR1 catalyst exhibits a very high sulfur-free activity, resulting in a performance in the presence of hydrogen sulfide higher than that for the C11-9-061 catalyst. By using the HTSR1 catalyst, the reactor temperature can be lowered by 60 C in order to reach comparable levels of conversion.

Koningen, J.; Sjoestroem, K. [Kungl Tekniska Hoegskolan, Stockholm (Sweden)] [Kungl Tekniska Hoegskolan, Stockholm (Sweden)

1998-02-01T23:59:59.000Z

203

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

204

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

205

Fact Sheet: Vanadium Redox Flow Batteries (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Breakthrough Researchers at Pacific Northwest National Laboratory have developed a new sulfate (SO 4 2- ) and chloride (Cl - ) mixed solution that is used as the electrolyte. Compared to pure sulfuric acid, the new solution can hold more than 70% more vanadium ions, increasing energy storage capacity by more than 70%. The use of Cl - in the new solution also increases the operating temperature window by 83%, so the battery

206

Batteries Breakout Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

207

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

208

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

209

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

210

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

211

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

212

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

213

subm. to Surf. Sci. Ab initio molecular dynamics study of H2 adsorption on sulfur-and chlorine-covered  

E-Print Network (OSTI)

subm. to Surf. Sci. Ab initio molecular dynamics study of H2 adsorption on sulfur- and chlorine/Germany The adsorption of molecular hydrogen on sulfur- and chlorine-covered Pd(100) in a (2Ã?2) geometry is studied by ab initio molecular dynamics simulations. The potential energy surfaces of H2/S(2 Ã? 2)/Pd(100) and H2/Cl(2

Ulm, Universität

214

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

215

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

216

NREL Uses Fuel Cells to Increase the Range of Battery Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Range Limitation of Medium-Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells." SAE Int.; DOI: 10.42712013-01-2471. Extrapolation from parcel delivery vehicle...

217

It's Elemental - The Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

218

Why sequence purple sulfur bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

purple sulfur bacteria? purple sulfur bacteria? The process by which plants and some bacteria can convert light energy to sugar, or photosynthesis, is crucial to global food webs, and complicated. Very little is known about the photosynthetic bacteria in the purple sulfur bacteria group, which may represent one of the most primitive photosynthetic organisms and are capable of carbon fixation and sequestration in both light and dark conditions with the help of sulfur compounds. Purple sulfur bacteria are autotrophic and can synthesize organic compounds from inorganic sources. Researchers hope to learn more by sequencing nine type strains of purple sulfur bacteria that are found in freshwater, brackish and marine systems. The information would lead to a better understanding of the process of photosynthesis as well as the global

219

Continuous sulfur removal process  

DOE Patents (OSTI)

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

220

COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER  

SciTech Connect

Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium, the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

222

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

223

Microbial transformations of sulfur compounds  

Science Journals Connector (OSTI)

Oct 13, 1978 ... tains a large part of the chemical energy transferred ... ical energy is partly preserved in the bio- mass of .... ethanol to remove elemental sulfur.

2000-01-10T23:59:59.000Z

224

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

SciTech Connect

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

225

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT  

SciTech Connect

The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and designed and built a larger, multi-cell stack electrolyzer. During FY08, SRNL continued SDE development, including development and successful testing of a three-cell electrolyzer stack with a rated capacity of 100 liters per hour. The HyS program for FY09 program will address improving SDE performance by focusing on preventing or minimizing sulfur deposition inside the cell caused by SO{sub 2} crossover, reduction of cell voltage for improved efficiency, an extension of cell operating lifetime. During FY09 a baseline technology development program is being conducted to address each of these issues. Button-cell (2-cm{sup 2}) and single cell (60-cm{sup 2}) SDEs will be fabricated and tested. A pressurized button-cell test facility will be designed and constructed to facilitate addition testing. The single cell test facility will be upgraded for unattended operation, and later for operation at higher temperature and pressure. Work will continue on development of the Gas Diffusion Electrode (GDE), or Gap Cell, as an alternative electrolyzer design approach that is being developed under subcontract with industry partner Giner Electrochemical Systems. If successful, it could provide an alternative means of preventing sulfur crossover through the proton exchange membrane, as well as the possibility for higher current density operation based on more rapid mass transfer in a gas-phase anode. Promising cell components will be assembled into membrane electrode assemblies (MEAs) and tested in the single cell test facility. Upon modification for unattended operation, test will be conducted for 200 hours or more. Both the button-cell and modified single cell facility will be utilized to demonstrate electrolyzer operation without sulfur build-up limitations, which is a Level 1 Milestone.

Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

2009-04-15T23:59:59.000Z

226

An Evaluation of the NaS Battery Storage Potential for Providing Regulation Service in California  

SciTech Connect

Sodium sulfur (NaS) batteries can provide energy storage, real-time dispatch, regulation, frequency response, and other essential services to the power grids. This study presents the technical characteristics, modeling approach, methodologies, and results for providing regulation services in the California Independent System Operator (CAISO) market. Two different scenarios were studied and compared: a scenario without intermittent renewable-energy resource penetration (base case) and a scenario with significant renewable-energy resource penetration (including wind) reaching 20% of CAISO’s energy supply. In addition, breakeven cost analyses were developed for four cases. Based on the results of the technical and cost analyses, the opportunities for the NaS battery providing the regulation services are discussed, design improvements for the battery’s physical characteristics are recommended, and modifications of the regulation signals sent to NaS batteries are proposed.

Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Loutan, Clyde

2011-03-23T23:59:59.000Z

227

Improved lithiumsulfur batteries with a conductive coating on the separator to prevent the  

E-Print Network (OSTI)

diffuse throughout the whole cell, leading to the shuttle effect and capacity loss of active materials the accumulation of inactive S-related species at the cathode�separator interface Hongbin Yao,a Kai Yan,a Weiyang this separator design with a monodisperse sulfur nanoparticle cathode, we show Li�S batteries with a life of over

Cui, Yi

228

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy  

E-Print Network (OSTI)

of the active electrode materials. KEYWORDS Energy storage, lithium-sulfur battery, mesoporous carbon, silicon. Current cathode materials, such as those based on transition metal oxides and phosphates, have an inherent T. McDowell,,§ Ariel Jackson,,§ Judy J. Cha, Seung Sae Hong, and Yi Cui*, Department of Materials

Cui, Yi

229

Hybrid Sulfur Thermochemical Process Development Annual Report  

SciTech Connect

The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

Summers, William A.; Buckner, Melvin R.

2005-07-21T23:59:59.000Z

230

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

231

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

232

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

233

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

234

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

235

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

236

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

237

Hydrogen Highways  

E-Print Network (OSTI)

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

238

Temperature maintained battery system  

SciTech Connect

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

239

Nickel coated aluminum battery cell tabs  

DOE Patents (OSTI)

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

240

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

242

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

243

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

244

Sulfur minimization in bacterial leaching  

SciTech Connect

The production of sewage biosolids in Ontario in 1989 was estimated to be 7 million m{sup 3} of wet sludge per year. Of this amount, land application accounts for between 20 and 30% of the total. Unfortunately, the use of sewage biosolids on agricultural land is often prohibited because of heavy metal contamination of the biosolids. High cost and operational problems have made chemical methods of metal extraction unattractive. Consequently, microbiological methods of leaching of heavy metals have been studied for over a decade. A relatively simple microbiological process has been investigated in recent years in flask level experiments and recently in a semicontinuous system. The process exploits nonacidophilic and acidophilic indigenous thiobacilli to extract heavy metals from sewage biosolids. These thiobacilli use elemental sulfur as the energy source, producing sulfuric acid. However, the resulting decontaminated biosolids can cause environmental problems like acidification of the soil, when acid is generated from the residual sulfur in the biosolids. The present study examines the possibility of reducing the amount of sulfur added in batch and semicontinuous bacterial leaching systems, and maximizing sulfur oxidation efficiency, thereby reducing the residual sulfur in leached biosolids.

Seth, R.; Prasad, D.; Henry, J.G. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

1996-11-01T23:59:59.000Z

245

PHEV Battery Cost Assessment  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

246

SOLID ELECTROLYTE BATTERIES  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

247

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

248

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

249

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

250

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

251

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

252

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

253

Effect of some isothiocyanates on the hydrogenation of canola oil  

SciTech Connect

Sulfur compounds were added to refined and bleached canola oil before hydrogenation in the form of allyl, heptyl and 2-phenethyl isothiocyanates, and the effects on hydrogenation rate, solid fat content and percentage trans fatty acids were determined. The poisoning effect was most pronounced with allyl isothiocyanate and least phenethyl isothiocyanate. As the amount of added sulfur increased, the hydrogenation rate decreased. Of the three isothiocyanates used, allyl isothiocyanate caused formation of larger amounts of trans isomers. An increased sulfur level in the oil resulted in increased solid fat content and trans isomer level. Allyl isothiocyanate also caused formation of larger amounts of solid fat than other isothiocyanates at all levels of sulfur addition. (Refs. 24).

Abraham, V.; de Man, J.M.

1987-06-01T23:59:59.000Z

254

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

255

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

256

HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING  

SciTech Connect

This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot plant gas, which contains far more contaminants than can be simulated in the laboratory. The results are very encouraging, with stable and efficient operation being obtained for a prolonged period of time.

Girish Srinivas; Steven C. Gebhard; David W. DeBerry

2002-07-01T23:59:59.000Z

257

Hydrogen’s Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

258

Current balancing for battery strings  

DOE Patents (OSTI)

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

259

Sulfur capture in combination bark boilers  

SciTech Connect

A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

Someshwar, A.V.; Jain, A.K. (National Council of the Paper Industry for Air and Stream Improvement, Gainesville, FL (United States))

1993-07-01T23:59:59.000Z

260

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method of making sulfur-resistant composite metal membranes  

DOE Patents (OSTI)

The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

2012-01-24T23:59:59.000Z

262

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

263

Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives  

SciTech Connect

The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a ?"-Al2O3 solid electrolyte at elevated temperatures (typically 300~350°C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

2010-05-01T23:59:59.000Z

264

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

265

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

266

The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision  

SciTech Connect

The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

1994-03-10T23:59:59.000Z

267

Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same  

DOE Patents (OSTI)

The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

Way, J. Douglas; Hatlevik, Oyvind

2014-07-15T23:59:59.000Z

268

Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer  

E-Print Network (OSTI)

not consume fossil fuels or pro- duce CO2 while producing highly pure hydrogen.1-10 Gaseous SO2 fedTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and Biological Systems Department, Albuquerque, New Mexico 87123, USA c Department of Materials Science

Weidner, John W.

269

PHEV Battery Cost Assessment  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

270

Solid Electrolyte Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

271

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

272

Nuclear Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

273

Hydrogen storage on activated carbon. Final report  

SciTech Connect

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

274

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

275

Sulfur: its clinical and toxicologic aspects  

Science Journals Connector (OSTI)

Although there is no known dietary requirement for inorganic sulfur, it is an essential element for all animal species in as much as they all require the sulfur-containing amino acid methionine. There are three predominate forms of organic sulfur in animals and humans: 1) the thiomethyl of methionine residues in protein; 2) the sulfhydryl disulfides of protein; and 3) the compounds containing ester or amide bound sulfates of glycosaminoglycans, steroids, and many xenobiotic metabolites. Thus, sulfur becomes an important constituent of amino acids, proteins, enzymes, vitamins and other biomolecules. Unlike mammalian species, plants can use inorganic sulfur and synthesize methionine from which are synthesized all the other important sulfur compounds. Hence, sulfur deficiency occurs mainly when plants are grown in sulfur-depleted soils and when humans and animals consume low-protein diets. In recent times, however, the increasing prevalence of refining petroleum and smelting sulfur compounds of metallic minerals into free metals are having a large impact on the balance of sulfur in the environment. Sulfur toxicity is associated mainly with high levels of the element and its toxic volatile substances in the environment. Sulfur dioxide (SO2), a major air pollutant, may adversely affect animal and human health by causing bronchitis, bronchoconstriction, and increased pulmonary resistance.

Lioudmila A Komarnisky; Robert J Christopherson; Tapan K Basu

2003-01-01T23:59:59.000Z

276

Two stage sorption of sulfur compounds  

DOE Patents (OSTI)

A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

Moore, William E. (Manassas, VA)

1992-01-01T23:59:59.000Z

277

Batteries, mobile phones & small electrical devices  

E-Print Network (OSTI)

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

278

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

279

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

280

Vent construction for batteries  

SciTech Connect

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sulfur Dioxide Crossover during the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network (OSTI)

and must be resup- plied. For example, researchers at the Savannah River National Laboratory SRNL have

Weidner, John W.

282

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

283

United States Advanced Battery Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

284

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

285

Advanced battery modeling using neural networks  

E-Print Network (OSTI)

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

286

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

287

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

288

The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992  

SciTech Connect

In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

Not Available

1993-04-15T23:59:59.000Z

289

Sandia National Laboratories: Evaluating Powerful Batteries for...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

290

Batteries lose in game of thorns | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

291

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

292

Hierarchically Structured Materials for Lithium Batteries. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

293

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

294

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

295

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

296

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

297

Coordination Chemistry in magnesium battery electrolytes: how...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

298

Upgrading the Vanadium Redox Battery | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

299

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

300

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE  

SciTech Connect

The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis). The effect of operation at higher anolyte concentrations on the flowsheet, and on the net thermal efficiency for a nuclear-heated HyS process, is examined and quantified.

Gorensek, M.; Summers, W.

2010-03-24T23:59:59.000Z

302

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

303

Hydrogen production by the decomposition of water  

DOE Patents (OSTI)

How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

304

Redox Flow Batteries, a Review  

SciTech Connect

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

305

Lithium batteries for pulse power  

SciTech Connect

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

306

Battery system with temperature sensors  

DOE Patents (OSTI)

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

307

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

308

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

system with a UTC Power PureMotion 1 120 Fuel Cell Power System and ZEBRA batteries for energy storage. SunLine has also been operating a prototype hydrogen hybrid internal...

309

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

SciTech Connect

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

310

The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota  

SciTech Connect

Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced - Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

Anderson, iain J.; Dharmarajan, Lakshmi; Rodriguez, Jason; Hooper, Sean; Porat, Iris; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Sun, Hui; Land, Miriam; Lapidus, Alla; Lucas, Susan; Barry, Kerrie; Huber, Harald; Zhulin, Igor B.; Whitman, William B.; Mukhopadhyay, Biswarup; Woese, Carl; Bristow, James; Kyrpides, Nikos

2008-09-05T23:59:59.000Z

311

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

312

PHYSICAL REVIEW B 84, 064303 (2011) Hydrogen transport in superionic system Rb3H(SeO4)2: A revised cooperative migration mechanism  

E-Print Network (OSTI)

conductors. This can be explained by great technological advances in the use of hydrogen conducting materials for applications in solid-state hydrogen fuel cells, hydrogen storage, and electrochemical devices.1­4 A central problem in fuel-cell and hydrogen batteries technology is the development of cheap and efficient materials

313

Hydrogen Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

314

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

315

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

316

Redox Flow Batteries, a Review  

E-Print Network (OSTI)

and water. For a fuel cell, hydrogen oxidizes at the anode5. 2.1.5 Hydrogen-based systems A fuel cell takes a fuel (

Weber, Adam Z.

2013-01-01T23:59:59.000Z

317

Hydrogen Cryomagnetics  

E-Print Network (OSTI)

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4     Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

318

Improve reformer operation with trace sulfur removal  

SciTech Connect

Modern bimetallic reforming catalysts typically have feed specifications for sulfur of 0.5 to 1 wppm in the reformer naphtha carge. Sulfur in the raw naphtha is reduced to this level by naphtha hydrotreating. While most naphtha hydrotreating operations can usually obtain these levels without substantial problems. It is difficult to obtain levels much below 0.5 to 1 wppm with this process. Revamp of a constrained existing hydrotreater to reduce product sulfur slightly can be extremely costly typically entailing replacement or addition of a new reactor. At Engelhard the authors demonstrated that if the last traces of sulfur remaining from hydrotreating can be removed, the resulting ultra-low sulfur feed greatly improves the reformer operation and provides substantial economic benefit to the refiner. Removal of the remaining trace sulfur is accomplished in a simple manner with a special adsorbent bed, without adding complexity to the reforming operation.

McClung, R.G.; Novak, W.J.

1987-01-01T23:59:59.000Z

319

Ris Energy Report 3 Hydrogen is a gas at ambient temperatures and pressures,  

E-Print Network (OSTI)

, hydrogen in the gaseous state has an extremely high ability to diffuse through solid materials be stored as a gas, a liquid or a solid. In the case of solid storage, the hydrogen exists as a chemical.0 70 10.0 141.0 Methanol 12.5 99 19.0 22.7 Gasoline 33.4 47.6 Lead/Acid Battery 0.2 Advanced battery 0

320

Sulfur/mesoporous carbon composites combined with ?-MnS as cathode materials for lithium/sulfur batteries  

Science Journals Connector (OSTI)

The working cathode was composed of active materials (S/MnS/MC) (80 wt.%...6, 10 wt.%). N-methyl pyrrolidone (80 wt.%) was added and grounded for 4 h. The resultant slurry was coated onto an aluminum foil with th...

J. D. Liu; X. S. Zheng; Z. F. Shi; S. Q. Zhang

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis  

E-Print Network (OSTI)

Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

Lyons, J. R.

322

HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS  

SciTech Connect

The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

2003-11-01T23:59:59.000Z

323

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

324

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

325

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents (OSTI)

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

326

Computational Study of Sulfur–nickel Interactions: A New S–Ni Phase Diagram  

SciTech Connect

Prediction of the interactions between H2S-contaminated hydrogen fuel and Ni surfaces under conditions similar to those for solid oxide fuel cell (SOFC) operation using DFT (density function theory) calculations (with thermodynamic corrections) has resulted in a new S–Ni phase diagram, which suggests the existence of an intermediate state between clean Ni surfaces and nickel sulfides – sulfur atoms adsorbed on Ni surfaces. This prediction is consistent with many experimental observations relevant to sulfur poisoning of Nibased anodes in SOFCs, which cannot be explained using the existing S–Ni bulk phase diagram from classical thermodynamics. The accurate prediction of the adsorption phase is vital to a fundamental understanding of the sulfur poisoning mechanism of Ni-based anodes under SOFC operating conditions.

Wang, Jeng-Han; Liu, Meilin

2007-06-22T23:59:59.000Z

327

Annual Energy Review 2002  

Gasoline and Diesel Fuel Update (EIA)

and other manufactured waste gases derived from fossil fuels. b Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, and miscellaneous technologies. c Pumped storage...

328

Annual Energy Review 2011 - Released September 2012  

Annual Energy Outlook 2012 (EIA)

and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable...

329

Annual Energy Review 2008 - Released June 2009  

Gasoline and Diesel Fuel Update (EIA)

other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste...

330

Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Alexei Khalizov, and Renyi Zhang*  

E-Print Network (OSTI)

Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors, water, and ammonia. A central feature of the complexes is the presence of two hydrogen bonds. Organic acid-sulfuric acid complexes show one strong and one medium-strength hydrogen bond whereas

331

Engineering for Sustainability http://engineering.tufts.edu/ Nanoscale Gold Catalysts for the Upgrade of Hydrogen used in Fuel Cells  

E-Print Network (OSTI)

for the Upgrade of Hydrogen used in Fuel Cells What is the problem? Fuel processing by steam reforming or partial oxidation is presently used to produce a hydrogen-rich gas stream to feed the low- temperature PEM fuel cells. Impurities, such as carbon monoxide and sulfur, must be removed from the hydrogen stream

Tufts University

332

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and  

E-Print Network (OSTI)

Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates

Kenis, Paul J. A.

333

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network (OSTI)

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

334

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

335

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

336

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

337

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

338

Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

339

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

340

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Influence of additives on the thermal behavior of nickel/metal hydride battery  

Science Journals Connector (OSTI)

This study discusses the thermal behavior of the 6.5 Ah cylinder Ni/MH hydride battery with 0.5 wt% ytterbium oxide (...2O3...) in nickel electrode and 1.0 wt% super absorbent polymer (SAP) in hydrogen-storage al...

Kai Yang; Jin Jing An; Shi Chen

2010-12-01T23:59:59.000Z

342

HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING  

SciTech Connect

This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize a portion of the inlet H{sub 2}S. Oxidation catalysts may also produce some elemental sulfur under these conditions, which can be removed and recovered prior to the CrystaSulf absorber. The CrystaSulf-DO process can utilize direct oxidation catalyst from many sources. Numerous direct oxidation catalysts are available from many suppliers worldwide. They have been used for H{sub 2}S oxidation to sulfur and/or SO{sub 2} for decades. It was believed at the outset of the project that TDA Research, Inc., a subcontractor, could develop a direct oxidation catalyst that would offer advantages over other commercially available catalysts for this CrystaSulf-DO process application. This project involved the development of several of TDA's candidate proprietary direct oxidation catalysts through laboratory bench-scale testing. These catalysts were shown to be effective for conversion of H{sub 2}S to SO{sub 2} and to elemental sulfur under certain operating conditions. One of these catalysts was subsequently tested on a commercial gas stream in a bench-scale reactor at CrystaTech's pilot plant site in west Texas with good results. However, commercial developments have precluded the use of TDA catalysts in the CrystaSulf-DO process. Nonetheless, this project has advanced direct oxidation catalyst technology for H{sub 2}S control in energy industries and led to several viable paths to commercialization. TDA is commercializing the use of its direct oxidation catalyst technology in conjunction with the SulfaTreat{reg_sign} solid scavenger for natural gas applications and in conjunction with ConocoPhillips and DOE for gasification applications using ConocoPhillips gasification technology. CrystaTech is commercializing its CrystaSulf-DO process in conjunction with Gas Technology Institute for natural gas applications (using direct oxidation catalysts from other commercial sources) and in conjunction with ChevronTexaco and DOE for gasification applications using ChevronTexaco's gasification technology.

Dennis Dalrymple

2004-06-01T23:59:59.000Z

343

The effects of gas-to-oil rate in ultra low sulfur diesel hydrotreating  

Science Journals Connector (OSTI)

Hydrotreating has become a critical refining process as fuel sulfur specifications are tightened around the world. Recently, refiners in the United States have been learning how to optimize the performance of ultra low sulfur diesel (ulsd) hydrotreaters. The gas-to-oil feed rate ratio is known to be an important variable in this respect. It is well known that the gas-to-oil rate must be kept high enough to maintain the desired hydrogen partial pressure through the hydrotreating reactor, and to minimize the inhibiting effect of hydrogen sulfide. A lesser-known effect is the effect of gas-to-oil rate on the vapor–liquid equilibrium in the reactor. Changing the gas-to-oil rate alters the distribution of reactants between vapor and liquid in a way that changes the relative reaction rates of different sulfur compounds. This paper presents some pilot plant data and analysis showing this effect of phase equilibrium in deep diesel desulfurization. The effect can be modeled using the Frye–Mosby equation, which accounts for the effects of feed vaporization and phase equilibrium on the reaction rates of individual sulfur compounds in a trickle bed hydrotreater.

George Hoekstra

2007-01-01T23:59:59.000Z

344

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

345

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

346

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

347

Developing Next-Gen Batteries With Help From NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

348

Making Li-air batteries rechargeable: material challenges. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

349

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

350

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

NLE Websites -- All DOE Office Websites (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

351

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

352

EV Everywhere Battery Workshop Introduction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

353

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

354

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

355

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

356

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

High-Sulfur...FLUIDIZED-BED COMBUSTORS, COMBUSTION...MAY FLUE GAS DES S E...1971 ). High-sulfur...was brief. Natural gas became...overdependent on natural gas and oil to...elevated pressure with a downward...coals of high ash-fusion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

357

Hydrogen energy  

Science Journals Connector (OSTI)

...present-day petrol-driven car engines. When heat...combined heat and power (CHP) systems...most of their output power range. This scalability...decentralized stationary power generation. Fuel...fuel cells emit only water and have virtually...battery-driven electric cars, because the chemical...

2007-01-01T23:59:59.000Z

358

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

359

Batteries using molten salt electrolyte  

DOE Patents (OSTI)

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

360

Process for alternately steam reforming sulfur containing hydrocarbons that vary in oxygen content  

SciTech Connect

In the hydrotreating and steam reforming of an oxygen and sulfur bearing hydrocarbon fuel, the oxygen is first removed in an oxidizer containing a bed of platinum catalyst, the inlet temperature being well below 1000/sup 0/F and preferably on the order of 300/sup 0/F. The sulfur in the fuel does not harm the oxidizer catalyst and may be removed downstream by known hydrodesulfurization techniques prior to reforming. A process is described for removing oxygen from an oxygen and sulfur bearing hydrocarbon fuel, such as peak shared natural gas, upstream in the process so that sulfur can be removed later. The fuel and some hydrogen are introduced into an oxidizer at a temperature of 350/sup 0/F or less down to the minimum ignition temperature. The oxidizer consists of a platinum bed catalyst which catalyzes the oxidation of the oxygen to water with accompanying heat release to raise the exit gas temperature to less than 650/sup 0/F. The temperature desorbs the sulfur from the catalyst, and the exit gases are passed downstream to nickel subsulfide or molybdenum desfulfide catalysts where the hydrosulfurization process takes place. (BLM)

Lesieur, R.R.; Setzer, H.J.; Hawkins, J.R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal Batteries for Electric Vehicles  

SciTech Connect

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

362

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

363

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Energy.gov (U.S. Department of Energy (DOE))

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

364

Method of removal of sulfur from coal and petroleum products  

DOE Patents (OSTI)

A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

1995-01-01T23:59:59.000Z

365

Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of...

366

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

367

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

368

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

369

HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS  

SciTech Connect

This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

2009-05-12T23:59:59.000Z

370

Fuel Cells as Rechargeable Batteries  

Science Journals Connector (OSTI)

The combination of water electrolysis, storage of the produced hydrogen and oxygen and subsequent electrochemical recombination of the stored hydrogen and oxygen in a fuel cell provide the basis for a practical e...

J. Giner; A. Laconti

1996-01-01T23:59:59.000Z

371

Low-cost flexible packaging materials for batteries.  

SciTech Connect

Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

Jansen, A. N.; Amine, K.; Newman, A. E.; Vissers, D. R.; Henriksen, G. L.; Chemical Engineering

2002-03-01T23:59:59.000Z

372

Overcharge Protection for PHEV Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

373

Catalyst for elemental sulfur recovery process  

DOE Patents (OSTI)

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

374

Hydrogen storage in metalorganic frameworksw Leslie J. Murray, Mircea Dinca and Jeffrey R. Long*  

E-Print Network (OSTI)

are required if hydrogen is to be widely employed as a clean alternative to hydrocarbon fuels in cars and other Battery and fuel-cell technologies are strong candidates to replace gasoline and diesel enginesHydrogen storage in metal­organic frameworksw Leslie J. Murray, Mircea Dinca and Jeffrey R. Long

375

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

376

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

377

'Thirsty' Metals Key to Longer Battery Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

378

Vehicle Technologies Office: Exploratory Battery Materials Research  

Energy.gov (U.S. Department of Energy (DOE))

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

379

A User Programmable Battery Charging System  

E-Print Network (OSTI)

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

380

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

382

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

383

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

384

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

385

On the road performance simulation of hydrogen and hybrid cars  

Science Journals Connector (OSTI)

An assessment is made of on-the-road performance, for a pure hydrogen fuel cell car, a pure battery operated car, and a hydrogen fuel cell-battery hybrid car. The tool used for this study is the modular software-package ADVISOR [Markel T, et al. ADVISOR. J Power Sources 2002; 110:255–66], which is well tested and offers a range of simple, parametrized sub-models or more detailed physical models for the fuel cell stack, the batteries, the electric motor, the exhaust control, the transmission and entire power train including controls and control strategies. The basis configurations of the cars modelled is characterized by high energy efficiency, before adding a fuel cell and electric motor also of high conversion efficiencies. Preceding the presentation of results, the best way to characterize energy efficiency is discussed.

Bent Sørensen

2007-01-01T23:59:59.000Z

386

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

387

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

388

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

389

Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and  

E-Print Network (OSTI)

a precur- sor for graphene, GO itself can be useful in flexible electronics,7 in battery electrodes,8Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties Engineering, University of Texas, Austin, Texas 78712 I n recent years, grapheneOa single layer of carbon

390

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

391

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

392

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

393

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

394

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

395

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

396

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

397

Energy Levels in Sulfur Nuclei  

Science Journals Connector (OSTI)

A study has been made of the proton groups from the reaction of 3.22-Mev deuterons with sulfur in the form, primarily, of H2S gas. The following Q values have been assigned to the reaction S32(dp)S33:6.48, 5.69, 4.58, 4.31, 3.63, 3.33, 2.60, 2.33, 2.06, 1.78, 1.37, 0.85, and 0.18 Mev, corresponding to the ground state and twelve excited states of S33. Four of these groups have been investigated for proton gamma-ray coincidences to confirm this assignment. The yield as a function of deuteron energy has been observed for the six highest energy groups and indication of the presence of some broad resonances found. A qualitative measurement of the variation with angle of relative yields of the groups has indicated a proton intensity distribution that is symmetric for some groups and asymmetric for others. The cross section for the reaction for 90° observation has been found to be 1.2 barns. The mass difference S33-S32 has been calculated to be 0.99963 mass unit.Two low intensity, high energy groups have been assigned to the reaction S33(dp)S34 with Q values of 8.67 and 7.85 Mev. This, together with the above observation, leads to a value of 1.99691 for the mass difference S34-S32.

Perry W. Davison

1949-03-01T23:59:59.000Z

398

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

399

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

400

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

402

Models for Battery Reliability and Lifetime  

SciTech Connect

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

403

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

404

The Science of Battery Degradation.  

SciTech Connect

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

405

Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur  

SciTech Connect

Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

Ziomek-Moroz, M.; Hawk, Jeffrey A.

2005-01-01T23:59:59.000Z

406

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

2005-01-28T23:59:59.000Z

407

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

408

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

409

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

410

Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

and a conductive polymer, while the solid electrolyte - based on cross-linked polyethylene oxide - forms a stable but ion-conducting barrier separating the liquid sodium...

411

Assessment of NGK's Sodium-Sulfur (NAS®) Batteries in the North American Electric Power Market  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TECHNOLOGY INSIGHTS 1 2008 Update to the 2008 Update to the EPRI EPRI - - DOE Handbook Supplement of DOE Handbook Supplement of Energy Storage for Grid Connected Energy Storage for Grid Connected Wind Generation Applications Wind Generation Applications Harold Gotschall, Technology Insights DOE Peer Review Meeting September 29, 2008 TECHNOLOGY INSIGHTS 2 Background/Terminology Background/Terminology * 2003 - EPRI-DOE Handbook of Energy Storage for Transmission & Distribution Applications, 1001834  "The Handbook" * 2004 - EPRI-DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation 1008703  "Wind Supplement 2004" * 2008 Update to the EPRI-DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation

412

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network (OSTI)

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

413

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

414

Overview of Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

415

Hydrogen program overview  

SciTech Connect

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

416

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

417

4.12 - Hydrogen and Fuel Cells in Transport  

Science Journals Connector (OSTI)

Abstract This chapter reviews the several applications of hydrogen and fuel cells in transport. Early fuel cell markets have tested hydrogen for auxiliary power applications, but other fuels such as methanol, natural gas, and propane have been preferred because they are more available. Until now, the best successes have been forklifts where battery propulsion can be inflexible and hydrogen competes economically. However, the mainstream medium-term market is in buses, taxis, and fleet vehicles with passenger cars following close behind as the infrastructure of hydrogen filling stations becomes more widespread. It is becoming clear that the hybrid fuel cell/battery combination works best in such fleets because there is a need for batteries or supercapacitors providing pulse power and also for regenerative braking. Boats and ships represent a possible application in later years if the leisure market can be tapped and extended. In ports, fuel cell auxiliary power has already proved attractive in terms of emission reductions, and the same is true for airports. Aircraft applications will take longer to develop fully but small lightweight planes are using hydrogen at the present time because it can be generated via solar cells on the wings. Unmanned air vehicles driven by fuel cells are more likely to use propane because such lightweight fuel is easily available

K. Kendall; B.G. Pollet

2012-01-01T23:59:59.000Z

418

Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling  

SciTech Connect

Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

Steward, D.; Zuboy, J.

2014-10-01T23:59:59.000Z

419

Vehicle Technologies Office Merit Review 2014: The Voltage Fade Project, A New Paradigm for Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new approach to the challenge of voltage fade in batteries for plug-in electric vehicles.

420

Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels  

Science Journals Connector (OSTI)

Fresh pinewood blocks were submerged in sulfate and iron(II) containing media, inoculated with bacterial consortia isolated from seawater, aiming to simulate the seabed conditions of the Vasa shipwreck (1628). The consortia contained erosion (EB) and sulfate-reducing bacteria (SRB). Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy and scanning X-ray spectromicroscopy images showed that organic sulfur, mainly thiols (R-SH), had accumulated in the lignin-rich middle lamella in EB-degraded parts of the wood. The sulfur content in the wood increased more than 10 times in 2 years. In another series with active inoculums from marine archaeological wood, the sulfur XANES spectra showed, after 4 years of anaerobic treatment, considerable amounts also of inorganic iron sulfides, Fe1?xS, which oxidized at atmospheric exposure. A sediment sample from the Vasa's seabed was also rich in iron sulfides, including pyrite, FeS2. X-ray fluorescence mappings of sulfur and phosphorous distributions indicate that scavenging SRB penetration, producing hydrogen sulfide in situ, is restricted to EB-degraded parts of the wood structure. The sulfur isotope depletion of 34S from ?34S = 21‰ in marine sulfate to ?34S = 6‰ and 1.8‰ for fractions of reduced sulfur and sulfate separated from a Vasa wood sample, respectively, suggests bacterial transformation. A fuller understanding of the routes of sulfur accumulation, as reactive iron sulfides and as organic sulfur, has important implications for improving conservation methods of marine archaeological wood. Moreover, the biogenic accumulation of organically bound sulfur, specifically in lignin-rich parts of waterlogged wood, has wider geochemical significance for fossil fuels of marine origin, as lignin-rich humic matter is important for the diagenetic formation of kerogens from anoxic marine sediments.

Yvonne Fors; Thomas Nilsson; Emiliana Damian Risberg; Magnus Sandström; Peter Torssander

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Biological Systems for Hydrogen Photoproduction (Presentation)  

SciTech Connect

This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

Ghirardi, M. L.

2012-05-01T23:59:59.000Z

422

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

423

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

424

Hydrogen Technologies Group  

SciTech Connect

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

425

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

426

The Hype About Hydrogen  

E-Print Network (OSTI)

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

427

Thermal management of batteries using a Variable-Conductance Insulation (VCI) enclosure  

SciTech Connect

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance. Two full-scale (0.8-m {times} 0.9-m {times} 0.3-m) prototypes were designed, built, and tested under high-temperature 200{degrees}-350{degrees}C battery conditions. With an internal temperature of 330{degrees}C (and 20{degrees}C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 {times} 10{sup -3} to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.

Burch, S.D.; Parish, R.C.; Keyser, M.A.

1995-05-01T23:59:59.000Z

428

On the comparison and the complementarity of batteries and fuel cells for electric driving  

Science Journals Connector (OSTI)

Abstract This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO-influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The \\{TCOs\\} of all the vehicles become similar in 2030, given a 200 km battery range for BEVs. \\{BEVs\\} are profitable for yearly mileages of 30,000 km and over, and for higher battery ranges. The competitiveness of \\{FCEVs\\} is examined through the H2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40 €/kW will be competitive with a similar ICE car for a 1.75 €/l fuel cost and ca. 7 €/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10 €/Kg). FC-RE cars \\{TCOs\\} are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60 km.

Alain Le Duigou; Aimen Smatti

2014-01-01T23:59:59.000Z

429

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

430

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

431

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Usage » Storage » Hydrogen & Fuel Cells Energy Usage » Storage » Hydrogen & Fuel Cells Hydrogen & Fuel Cells December 19, 2013 Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. This is helping them become more mainstream in the U.S., with more than 4,000 vehicles in operation in 2012, and this year, they might even be helping bring you holidays to you. | Photo courtesy of Plug Power, Inc. Your Holidays ... Brought to You by Fuel Cells Next time you're at the airport or at a shop picking up a last-minute gift, you might see speciality vehicles powered by fuel cells, a clean energy technology that is helping bring your holidays to you.

432

Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage  

SciTech Connect

Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

2014-08-01T23:59:59.000Z

433

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

434

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

436

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

437

Cascade redox flow battery systems  

DOE Patents (OSTI)

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

438

Electrolytes for lithium ion batteries  

SciTech Connect

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

439

Battery system with temperature sensors  

SciTech Connect

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

440

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Energy.gov (U.S. Department of Energy (DOE))

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

442

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

443

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Energy.gov (U.S. Department of Energy (DOE))

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

444

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

445

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

446

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

447

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

448

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Energy.gov (U.S. Department of Energy (DOE))

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

449

Hydrogen Analysis Group  

SciTech Connect

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

450

The Hype About Hydrogen  

E-Print Network (OSTI)

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

451

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

452

Primer on lead-acid storage batteries  

SciTech Connect

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

453

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network (OSTI)

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

454

Impact of DOE Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhenhong Lin (Primary Contact), David Greene, Jing Dong Oak Ridge National Laboratory (ORNL) National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1308 Email: linz@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 2011 Project End Date: September 2012 Fiscal Year (FY) 2012 Objectives Project market penetrations of hydrogen vehicles under * varied assumptions on processes of achieving the DOE program goals for fuel cells, hydrogen storage, batteries, motors, and hydrogen supply. Estimate social benefits and public costs under different *

455

First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries  

SciTech Connect

The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

2013-07-16T23:59:59.000Z

456

Graphene, Hydrogen and Next-Generation Electronics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics July 22, 2011 - 5:32pm Addthis Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory A team of Oak Ridge National Laboratory (ORNL) and New Mexico State University researchers have developed a new approach to growing graphene (one-atom thick carbon sheets) that can help advance next-generation electronics including batteries, transistors and computer chips. Growing graphene usually involves a process called chemical vapor deposition method that produces irregularly shaped grains. Little was known

457

Graphene, Hydrogen and Next-Generation Electronics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics Graphene, Hydrogen and Next-Generation Electronics July 22, 2011 - 5:32pm Addthis Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory Graphene grains in several different shapes, controlled by hydrogen. | Courtesy of Oak Ridge National Laboratory A team of Oak Ridge National Laboratory (ORNL) and New Mexico State University researchers have developed a new approach to growing graphene (one-atom thick carbon sheets) that can help advance next-generation electronics including batteries, transistors and computer chips. Growing graphene usually involves a process called chemical vapor deposition method that produces irregularly shaped grains. Little was known

458

Hydrogen Dissociation on Pd4S Surfaces  

SciTech Connect

Exposure of Pd-based hydrogen purification membranes to H,S. a common contaminant in coal gasification streams, can cause membrane performance to deteriorate, either by deactivating surface sites required for dissociative H, adsorption or by forming a low-permeability sulfide scale. In this work. the composition, structure, and catalytic activity of Pd4S, a surface scale commonly observed in Pd-membrane separation of hydrogen from sulfur-containing gas streams, were examined using a combination of experimental characterization and density functional theory (DFT) calculations. A Pd,S sample was prepared by exposing a 100 f1m Pd foil to H2S at 908 K. Both X-ray photoemission depth profiling and low energy ion scattering spectroscopic (LEISS) analysis reveal slight sulfur-enrichment of the top surface of the sample. This view is consistent with the predictions of DFT atomistic thermodynamic calculations. which identified S-terminated Pd,S surfaces as energetically favored over corresponding Pd-terminated surfaces. Activation barriers for H2 dissociation on the Pd,S surfaces were calculated. Although barriers are higher than on Pd(lll). transition state theory analysis identified reaction pathways on the S-terminated surfaces for which hydrogen dissociation rates are high enough to sustain the separation process at conditions relevant to gasification applications.

Miller, J.B.; Alfonso, D.R.; Howard, B.H.; O'Brien, C.P.; Morreale, B.D.

2009-01-01T23:59:59.000Z

459

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

460

NREL: Energy Storage - Battery Materials Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

462

Ambient Operation of Li/Air Batteries  

SciTech Connect

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

463

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

464

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

465

High Voltage Electrolyte for Lithium Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

466

Celgard and Entek - Battery Separator Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

467

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

468

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

469

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

470

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

471

Batteries as they are meant to be seen | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

472

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

473

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

474

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

475

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

476

ORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation  

E-Print Network (OSTI)

). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane by bacteria (especially, alpha-, gamma- and epsilon-proteobacteria) that likely participate in the oxidationORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark

Hansell, Dennis

477

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...amounts of coal, because...Director-Mineral Re-sources...of Gas from Coal through a...on coals of high ash-fusion temperature...per ton of high-sulfur coal burned. Absorp-tion...particulate matter as well as...capable of remov-ing up to...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

478

Short communication Influence of molybdenum and sulfur on copper  

E-Print Network (OSTI)

Short communication Influence of molybdenum and sulfur on copper metabolism in sheep: comparison of molybdenum able to trigger the copper sulfur molybdenum interference in sheep was measured with either only) and 4 increasing molybdenum doses. The sulfur-molybdenum-copper interference was quantified

Paris-Sud XI, Université de

479

Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

480

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

SciTech Connect

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen sulfur batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

2006-08-03T23:59:59.000Z

482

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

483

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

484

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

485

Building Technologies Office: Battery Chargers and External Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

486

Department of Energy Will Hold a Batteries and Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

487

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

488

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

489

NREL: Transportation Research - Innovative Way to Test Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

490

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

491

Overview of the Batteries for Advanced Transportation Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

492

Overview of the Batteries for Advanced Transportation Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

493

By losing their shape, material fails batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

494

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

495

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

496

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

497

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

498

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers (EERE)

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

499

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

500

Energy Management Strategies for Fast Battery Temperature Rise...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...