Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2015 Hydrogen Student Design Contest Challenges Students to Develop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for university students worldwide until January 16, 2015. The Hydrogen Education Foundation announced the 11th annual Hydrogen Student Design Contest, which will challenge...

2

2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 -...

3

Webinar: 2014 Hydrogen Student Design Contest | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2014 Hydrogen Student Design Contest Webinar: 2014 Hydrogen Student Design Contest January 14, 2014 5:00PM to 6:00PM EST http:www1.eere.energy.govhydrogenandfuelcells...

4

Webinar: 2014 and 2015 Hydrogen Student Design Contests  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar "2014 and 2015 Hydrogen Student Design Contests," presented November 6, 2014.

5

Webinar November 6: 2014 and 2015 Hydrogen Student Design Contest...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scoring Tool, a Student Design Contest for Hydrogen Infrastructure, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells...

6

Webinar: 2013 and 2014 Hydrogen Student Design Contests  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled 2013 and 2014 Hydrogen Student Design Contests, originally presented on January 14, 2014.

7

Webinar: 2014 and 2015 Hydrogen Student Design Contest  

Broader source: Energy.gov [DOE]

This live webinar will cover the results of the 2014 Hydrogen Student Design Contest and introduce the theme for the 2015 Contest. The teams from Washington State University and Humboldt University...

8

Make Your Mark in the 2011 Hydrogen Student Design Contest  

Broader source: Energy.gov [DOE]

The contest is challenges undergraduate and graduate students worldwide to plan and design a residential hydrogen fueling system for a home, apartment complex, dorm or other single residential building.

9

U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest...  

Broader source: Energy.gov (indexed) [DOE]

U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest Presentation slides from the U.S. Department...

10

Hydrogen fuel-cell cars designed and built in student competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Students build hydrogen fuel-cell cars Hydrogen fuel-cell cars designed and built in student competition Middle and elementary school teams from around New Mexico participated in...

11

Washington State University Wins 2014 Hydrogen Student Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low demand. Contest participants included 14 teams of students from the United States, Egypt, India, Japan, Taiwan, South Africa, and China. Representatives from the National...

12

Hydrogen Student Design Contest - Now accepting applications! | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction TechnicalSensorof Energy Hydrogen

13

2013 and 2014 Hydrogen Student Design Contests | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year10Department ofEnergy3and 2014 Hydrogen

14

Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

15

U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hydrogen fueling station at Humboldt State University 8 2011-2012 Contest Supporters Media Partners 2011-2012 Theme: Design a Combined Hydrogen, Heat and Power System for your...

16

Hydrogen fuel-cell cars designed and built in student competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteranstoHuubHydrogenStudents build

17

Designing Microporus Carbons for Hydrogen Storage Systems  

SciTech Connect (OSTI)

An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

Alan C. Cooper

2012-05-02T23:59:59.000Z

18

NAAP Hydrogen Atom 1/9 The Hydrogen Atom Student Guide  

E-Print Network [OSTI]

Name: NAAP ­ Hydrogen Atom 1/9 The Hydrogen Atom ­ Student Guide Background Material Carefully read and the Quantum model represent the Hydrogen atom. In some cases they both describe things in the same way frequency, smaller energy, and the same velocity through space as a blue photon". #12;NAAP ­Hydrogen Atom 2

Farritor, Shane

19

Standard-C hydrogen monitoring system, system design description  

SciTech Connect (OSTI)

Standard-C cabinet arrangement system design description for the Standard Hydrogen Monitoring System.

Schneider, T.C., Westinghouse Hanford

1996-08-29T23:59:59.000Z

20

Digital Media Design Students Constitution  

E-Print Network [OSTI]

Digital Media Design Students Constitution ARTICLE I: ORGANIZATION'S NAME AND PURPOSE Section 1. Name The name of this organization is Digital Media Design Students (DMDS). Section 2: Purpose A. To promote, enhance and further develop educational and social achievements and interests in digital media. B

Jones, Michelle

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Trends in hydrogen plant design  

SciTech Connect (OSTI)

Understanding important design considerations for H{sub 2} production via steam reforming require detailed attention to the many elements that make up the process. This paper discusses design trends focus on improvements to the plant's three principal unit operations: Generation of H{sub 2}/CO syngas, Conversion of CO in the syngas and Separation/purification of H{sub 2} from syngas. Natural gas, LPG, oil, coal and coke are all potential raw materials for H{sub 2} production. For the first step in the process, generation of H{sub 2} syngas, the processes available are: Reforming the steam; Autothermal reforming with oxygen and steam; and Partial oxidation with oxygen (POX). Most syngas is presently produced by steam reforming of natural gas or light hydrocarbons up to naphtha.

Johansen, T.; Raghuraman, K.S.; Hackett, L.A. (KTI, Zoetermeer (NL))

1992-08-01T23:59:59.000Z

22

Premixer Design for High Hydrogen Fuels  

SciTech Connect (OSTI)

This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were analyzed to evaluate the performance of the different concepts. Detailed 1-D analysis was performed to provide 1-step NOx and 1-step combustion models that could be utilized in CFD to provide more accurate estimates of NOx for more complicated combustion designs. The swozzle results identified potential problems with flame holding, flashback and with adequate mixing. Flame holding issues were further evaluated with laboratory testing to determine under what conditions a jet in cross flow would flame hold. Additional CFD analysis was also performed on fuel injection from a peg to simulate fuel injection off a vane's trailing edge. This task was concluded with a Conceptual Design Review of the two selected design concepts. (3) Optimize design and re-evaluate operability risks. This task extended the analysis of LDI concepts and increased understanding of the optimal design configuration. Designs were selected for subscale combustion laboratory testing and then modeled using CFD to validate CFD methodology. CFD provided a good qualitative match and reasonable quantitative match with the test results. Tests and CFD modeling indicated a path to low NOx combustion with no diluent addition. Different swirler designs were also evaluated and the most promising, a counter rotating swirler, was selected for further evaluation. CFD modeling was performed and the design was optimized to improve mixing. CFD modeling indicated the potential for low NOx combustion without diluent addition. CFD was validated against cold flow testing on a swirler using helium injection in place of hydrogen. Further validation work is still needed to ensure the ability to accurately model the mixing of swirling flows. Entitlement testing was performed on a perfectly premixed H2/N2/air mixture. Results showed that low NOx could be obtained at the temperatures of interest (7FB conditions) with no diluent addition. Results also showed that further NOx reductions might be possible by taking advantage of the very rapid H2 reaction to reduce combustor length and hence residence time. These results also in

Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

2005-12-16T23:59:59.000Z

23

2014 Race to Zero Student Design Competition: Grand Winner Teams...  

Office of Environmental Management (EM)

2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition:...

24

Student Health Insurance Designed Specifically for the Students of  

E-Print Network [OSTI]

, may not meet the minimum standards required by the health care reform law for the restrictions on anStudent Health Insurance Designed Specifically for the Students of The University of Rhode Island to August 31, 2014 ``Your student health insurance coverage, offered by Monumental Life Insurance Company

Rhode Island, University of

25

2013 and 2014 Hydrogen Student Design Contests  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyofDepartment ofLabor2013Department17/2014

26

2014 and 2015 Hydrogen Student Design Contest  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issueTest Facilities March 24-27,11/2014

27

STATISTICS 590 STUDENT EXPERIMENTAL DESIGN PROJECT  

E-Print Network [OSTI]

STATISTICS 590 STUDENT EXPERIMENTAL DESIGN PROJECT SPRING 2010 1. Project You are to design with me as needed. 2. Procedures and Dates A one-page sketch, containing the essential elements

Buyske, Steve

28

College of Engineering 20052006 Student Design Showcase  

E-Print Network [OSTI]

Engineering · Marine and Environmental Systems Ocean Engineering · Mechanical and Aerospace Engineering ...................................................................................... 41 Ocean EngineeringCollege of Engineering 2005­2006 Student Design Showcase Featuring projects from: · Chemical

Wood, Stephen L.

29

Designer proton-channel transgenic algae for photobiological hydrogen production  

DOE Patents [OSTI]

A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

Lee, James Weifu (Knoxville, TN)

2011-04-26T23:59:59.000Z

30

2014 Race to Zero Student Design Competition: Penn State University...  

Broader source: Energy.gov (indexed) [DOE]

Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University...

31

2014 Race to Zero Student Design Competition: Georgia Institute...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia...

32

2014 Race to Zero Student Design Competition: Auburn University...  

Broader source: Energy.gov (indexed) [DOE]

Auburn University Profile 2014 Race to Zero Student Design Competition: Auburn University Profile 2014 Race to Zero Student Design Competition: Auburn University Profile, as posted...

33

2014 Race to Zero Student Design Competition: University of Minnesota...  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota Profile, as...

34

2014 Race to Zero Student Design Competition: Ryerson University...  

Broader source: Energy.gov (indexed) [DOE]

University Profile (Threshold House) 2014 Race to Zero Student Design Competition: Ryerson University Profile (Threshold House) 2014 Race to Zero Student Design Competition:...

35

2014 Race to Zero Student Design Competition: Montage Builders...  

Broader source: Energy.gov (indexed) [DOE]

Presentation 2014 Race to Zero Student Design Competition: Montage Builders Presentation 2014 Race to Zero Student Design Competition: Montage Builders Presentation, as posted on...

36

2014 Race to Zero Student Design Competition: University of Pittsburgh...  

Broader source: Energy.gov (indexed) [DOE]

Profile 2014 Race to Zero Student Design Competition: Ryerson University - Harvest Home Profile 2014 Race to Zero Student Design Competition: Auburn University Profile (Blue)...

37

2014 Race to Zero Student Design Competition: Illinois State...  

Broader source: Energy.gov (indexed) [DOE]

Profile 2014 Race to Zero Student Design Competition: Ryerson University - Harvest Home Profile 2014 Race to Zero Student Design Competition: Auburn University Profile (Blue)...

38

Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report  

SciTech Connect (OSTI)

Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling stationthe APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energys Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

James E. Francfort

2003-12-01T23:59:59.000Z

39

2015 Hydrogen Student Design Contest Challenges Students to Develop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5 Federal Energy and Water

40

A new hydrogen-bonding potential for the design of proteinRNA interactions predicts specific  

E-Print Network [OSTI]

A new hydrogen-bonding potential for the design of protein­RNA interactions predicts specific-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries of hydrogen-bonding atom pairs at protein­ nucleic acid interfaces. A scoring function based on the hydrogen

Baker, David

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Standard-D hydrogen monitoring system, system design description  

SciTech Connect (OSTI)

During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

Schneider, T.C.

1996-09-26T23:59:59.000Z

42

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

impact of improved hydrogen storage may be through makingand M. Gardiner, Hydrogen Storage Options: Technologies andscience related to hydrogen storage could change how a

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

43

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

of the Hydrogen Compressor .. 85results of the hydrogen compressor. The net work required toBalances of the Hydrogen Compressor Total In Out Relative

Luc, Wesley Wai

44

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

to International Journal of Hydrogen Energy (November 2005).0528 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

45

2015 Race to Zero Student Design Competition Team Template  

Broader source: Energy.gov [DOE]

Template for student teams to provide a project summary, strategy, data, and technical specifications for the 2015 Race to Zero Student Design Competition.

46

2014 Race to Zero Student Design Competition: Montage Builders...  

Broader source: Energy.gov (indexed) [DOE]

Student Design Competition: Montage Builders Team Submission Montage Builders Northern Forest: State University of New York's team submission for the 2014 Race to Zero Student...

47

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

SciTech Connect (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or fencepost) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

48

2014 Race to Zero Student Design Competition: Ryerson University...  

Broader source: Energy.gov (indexed) [DOE]

University -- Harvest Home Presentation 2014 Race to Zero Student Design Competition: Ryerson University -- Harvest Home Presentation Ryerson University -- Harvest Home...

49

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost, DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. DOE Hydrogen and Fuel Cells Program, Web. 22

Luc, Wesley Wai

50

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

SciTech Connect (OSTI)

Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

2014-01-29T23:59:59.000Z

51

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

Kjelstrup, Signe

52

Standard-B Hydrogen Monitoring System, system design description  

SciTech Connect (OSTI)

During most of the year, it is assumed that the vapor in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gases to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gases from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. This document describes the design of the Standard-B Hydrogen Monitoring System, (SHMS) and its components as it differs from the original SHMS. The differences are derived from changes made to improve the system performance but not implemented in all the installed enclosures.

Schneider, T.C.

1995-01-16T23:59:59.000Z

53

Switchable photosystem-II designer algae for photobiological hydrogen production  

DOE Patents [OSTI]

A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

Lee, James Weifu (Knoxville, TN)

2010-01-05T23:59:59.000Z

54

Hydrogen trapping in bearing steels: mechanisms and alloy design  

E-Print Network [OSTI]

Hydrogen embrittlement is a problem that offers challenges both to technology and to the theory of metallurgy. In the presence of a hydrogen rich environment, applications such as rolling bearings display a significant decrease in alloy strength...

Szost, Blanka Angelika

2013-02-05T23:59:59.000Z

55

Conceptual design of nuclear systems for hydrogen production  

E-Print Network [OSTI]

Demand for hydrogen in the transportation energy sector is expected to keep growing in the coming decades; in the short term for refining heavy oils and in the long term for powering fuel cells. However, hydrogen cannot ...

Hohnholt, Katherine J

2006-01-01T23:59:59.000Z

56

Design progress of cryogenic hydrogen system for China Spallation Neutron Source  

SciTech Connect (OSTI)

China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

2014-01-29T23:59:59.000Z

57

2014 Race to Zero Student Design Competition: Ryerson University...  

Broader source: Energy.gov (indexed) [DOE]

Ryerson University's Urban Harvest Team Submission 2014 Race to Zero Student Design Competition: Ryerson University's Urban Harvest Team Submission Ryerson University's Urban...

58

2014 Race to Zero Student Design Competition: Ryerson University...  

Broader source: Energy.gov (indexed) [DOE]

University - Harvest Home Profile 2014 Race to Zero Student Design Competition: Ryerson University - Harvest Home Profile Ryerson University - Harvest Home, project profile for the...

59

2014 Race to Zero Student Design Competition: Montage Builders...  

Broader source: Energy.gov (indexed) [DOE]

Zero Student Design Competition: Montage Builders Profile Montage Builders - Northern Forest, SUNY College of Environmental Science and Forestry, Syracuse University, Onondaga...

60

2014 Race to Zero Student Design Competition: Auburn University...  

Broader source: Energy.gov (indexed) [DOE]

Profile (Blue), as posted on the U.S. Department of Energy website. rtzauburnprofileblue.pdf More Documents & Publications 2014 Race to Zero Student Design Competition: Illinois...

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Economic Analyis of Hydrogen Production by Gasification ofOptimal Design of Hydrogen Production from AgricuturalJ. D. (1998). "Hydrogen Production from Wastes." Energy, 23(

Parker, Nathan C

2007-01-01T23:59:59.000Z

62

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Economic Analyis of Hydrogen Production by Gasification ofOptimal Design of Hydrogen Production from AgricuturalJ. D. (1998). "Hydrogen Production from Wastes." Energy, 23(

Parker, Nathan

2007-01-01T23:59:59.000Z

63

Design of an underground compressed hydrogen gas storage.  

E-Print Network [OSTI]

??Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond (more)

Powell, Tobin Micah

2011-01-01T23:59:59.000Z

64

A nanostructured composite material for hydrogen storage: design & analysis.  

E-Print Network [OSTI]

??Hydrogen has long been considered an ideal energy carrier for a sustainable energy economy, for both direct combustion and as a fuel for polymer-electrolyte fuel (more)

Al-Hajjaj, A.A.

2012-01-01T23:59:59.000Z

65

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

Hydrogen Production Plant Heat Exchangers Turbines Electrolyzer Pumps and Compressors NaCl Storage Separators Thermochemical Reactors + Chemical Absorber Figure 6.2: Equipment Cost

Luc, Wesley Wai

66

2014 Hydrogen Student Design Contest (Text Version) | Department...  

Broader source: Energy.gov (indexed) [DOE]

2011 and Emanuel holds a bachelor's degree from the University of Erlangen-Nuremberg, Germany in Political Sciences and with Economic and a master's from the University of...

67

Hydrogen Student Design Contest Inspires and Opens Doors | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducation »

68

Washington State University Wins 2014 Hydrogen Student Design Contest |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartmentDepartment of

69

Webinar November 6: 2014 and 2015 Hydrogen Student Design Contest |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of EnergyEnergy FebruaryDepartment of

70

2014 and 2015 Hydrogen Student Design Contests | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014Reviews | DepartmentWashingtonReport Cover4 and

71

Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen  

SciTech Connect (OSTI)

This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

Alan C. Cooper

2012-05-03T23:59:59.000Z

72

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

73

Supporting Creative Concept Generation by Engineering Students with Biomimetic Design  

E-Print Network [OSTI]

Supporting Creative Concept Generation by Engineering Students with Biomimetic Design Hyunmin the analogical transfer tools we developed affected engineering students in generating creative concepts. We of Mechanical and Industrial Engineering, University of Toronto 5 King's College Road, Toronto, ON, M5S 3G8

Shu, Lily H.

74

Industry-Sponsored Design Projects for Freshmen Engineering Graphics Students  

E-Print Network [OSTI]

Industry-Sponsored Design Projects for Freshmen Engineering Graphics Students Ronald E. Barr "Engineering Design and Graphics" course is an integral part of curriculum reform efforts throughout in implementing these PROCEED objectives in the freshman graphics course using a Robotic Blade Assembly supplied

Ben-Yakar, Adela

75

The Innovation Shop Where students conceive, design,  

E-Print Network [OSTI]

, forces, energy and people the world of mechanical and industrial engineers. Today's engineering generation of engineers College of Engineering Mechanical and Industrial Engineering Department "Engineers mechanical and industrial engineering projects including all their design, modeling, manufacturing

Mountziaris, T. J.

76

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect (OSTI)

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

77

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

generated internally from waste heat. The only xv input intogenerated internally from waste heat. The SA process will bewas designed to utilize waste heat from a nuclear power

Luc, Wesley Wai

78

New insights into designing metallacarborane based room temperature hydrogen storage media  

SciTech Connect (OSTI)

Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H{sub 2} sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature.

Bora, Pankaj Lochan; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)] [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2013-10-28T23:59:59.000Z

79

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

80

Computational Design of a New Hydrogen Bond Network and at Least a 300-fold Specificity  

E-Print Network [OSTI]

Computational Design of a New Hydrogen Bond Network and at Least a 300-fold Specificity Switch, conformational strain, and packing defects yielded new binding partners that exhibited specificities of at least of similar structure and sequence. Simple rules to identify protein recognition sites and predict energetic

Baker, David

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

SciTech Connect (OSTI)

This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

Krikorian, O.H. (ed.)

1982-02-09T23:59:59.000Z

82

HYDROGEN INITIATIVE: AN INTEGRATED APPROACH TOWARD RATIONAL NANOCATALYST DESIGN FOR HYDROGEN PRODUCTION. Technical Report-Year 1  

SciTech Connect (OSTI)

The overall objective of this grant is to develop a rational framework for the discovery of low cost, robust, and active nano-catalysts that will enable efficient hydrogen production. Our approach will be the first demonstration of integrated multiscale model, nano-catalyst synthesis, and nanoscale characterization assisted high throughput experimentation (HTE). We will initially demonstrate our approach with ammonia decomposition on noble metal catalysts. Our research focuses on many elements of the Hydrogen Initiative in the Focus Area of Design of Catalysts at the Nanoscale. It combines high-throughput screening methods with various nanostructure synthesis protocols, advanced measurements, novel in situ and ex situ characterization techniques, and multiscale theory, modeling and simulation. This project directly addresses several of the long-term goals of the DOE/BES program. In particular, new nanoscale catalytic materials will be synthesized, characterized and modeled for the production of hydrogen from ammonia and a computational framework will be developed for efficient extraction of information from experimental data and for rational design of catalysts whose impact goes well beyond the proposed hydrogen production project. In the first year of the grant, we have carried out HTE screening using a 16 parallel microreactor coupled with an FTIR analysis system. We screened nearly twenty single metals and several bimetallic catalysts as a function of temperature, catalyst loading, inlet composition, and temperature (order of 400 experiments). We have found that Ru is the best single metal catalyst and no better catalysts were found among the library of bimetallics we have created so far. Furthermore, we have investigated promoting effects (i.e., K, Cs, and Ba) of the Ru catalyst. We have found that K is the dominant promoter of increased Ru activity. Response surface experimental design has led to substantial improvements of the Ru catalyst with promotion, especially at lower temperatures. It has been found that the promoting effect is not limited to K but extendible to some other alkaline metals. In addition, we have studied a number of synthesis variables, including the effects of support, solvent used, calcination temperature and time. It has been found that solvent and support could have an important effect on activity. Advanced characterization of the Ru/K promoted catalyst has been carried via SEM, TEM, selected-area electron diffraction, and energy dispersive x-ray spectroscopy. It has been found that the Ru catalyst is composed of agglomerates, whereas the K-promoted catalyst of nanowhiskers with a KRu4O8 hollandite structure. Our detailed characterization studies strongly suggest for the first time a strong correlation between hollandite formation and the high activity of Ru catalyst. Future work should provide stronger evidence of this correlation and may enable us to further improve the catalyst. A number of microkinetic models for single metals have been developed and a methodology for linking models for bimetallic catalysts in a thermodynamically consistent manner has been implemented. This enables us for the first time to start exploring multi-site catalysts, using either mean-field or Monte Carlo approaches, and filling the materials gap from single crystals to supported catalysts. In addition, we are developing a multiscale model-based design of experiments methodology. This framework employs multiscale-based models combined with global search in experimental parameter space, identification of novel experimental conditions that maximize the kinetic information content, followed by statistical analysis that can guide the next iteration of experiments.

Vlachos, Dionisios G; Buttrey, Douglas J; Lauterbach, Jochen

2007-03-29T23:59:59.000Z

83

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

84

Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800-900C, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830C before entering the hot zone. The ILS system is assembled on a 10 x 16 skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

2007-06-01T23:59:59.000Z

85

A compact design for a magnetic synchrotron to store beams of hydrogen atoms  

E-Print Network [OSTI]

We present a design for an atomic synchrotron consisting of 40 hybrid magnetic hexapole lenses arranged in a circle. We show that for realistic parameters, hydrogen atoms with a velocity up to 600 m/s can be stored in a 1-meter diameter ring, which implies that the atoms can be injected in the ring directly from a pulsed supersonic beam source. This ring can be used to study collisions between stored hydrogen atoms and molecular beams of many different atoms and molecules. The advantage of using a synchrotron is two-fold: (i) the collision partners move in the same direction as the stored atoms, resulting in a small relative velocity and thus a low collision energy, and (ii) by storing atoms for many round-trips, the sensitivity to collisions is enhanced by a factor of 100-1000. In the proposed ring, the cross-sections for collisions between hydrogen, the most abundant atom in the universe, with any atom or molecule that can be put in a beam, including He, H$_2$, CO, ammonia and OH can be measured at energies...

van der Poel, Aernout P P; Softley, Timothy P; Bethlem, Hendrick L

2015-01-01T23:59:59.000Z

86

Nationwide: Max Tech and Beyond Design Competition Gives Students the Opportunity to Solve Energy Challenges  

Office of Energy Efficiency and Renewable Energy (EERE)

By encouraging students to design and develop appliances that are more efficient than any other technology on the market, the competition gives students a hands-on experience not replicable in the classroom.

87

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohmcm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

88

Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source  

SciTech Connect (OSTI)

The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beler, Y. [Forschungzentrum Jlich, Jlich (Germany); Klaus, M. [Technische Universitt Dresden, Dresden (Germany)

2014-01-29T23:59:59.000Z

89

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

90

Student engineers design and race battery-powered cars in this...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competition with their entry, which they built to run on batteries. Click to enlarge. Student engineers design and race battery-powered cars in this year's Electric Car...

91

Zero Energy Ready Home Program: Race to Zero Student Design Competitio...  

Office of Environmental Management (EM)

Home Student Design Competition Inspiring and Building the Next Generation of Residential Energy Professionals Montage Builders Northern Forest, Ryerson University Selected as...

92

Friday, May 23, 2014 By Erica Blust Design Students Win National Awards  

E-Print Network [OSTI]

-US Leadership Award for Applied Industrial Design, the Techmer PM Award for Sustainable Design and the Techmer PM Award for Materials Science. The mat, which the students created in the fall 2013 semester

Mather, Patrick T.

93

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

94

WELCOME TO BRYANT UNIVERSITY! The Bryant University Student Handbook is designed to be a resource guide  

E-Print Network [OSTI]

#12;#12;WELCOME TO BRYANT UNIVERSITY! The Bryant University Student Handbook is designed also hope that your years at Bryant will be all you want them to be, and that you will take advantage of Student Affairs/ Dean of Students 1 #12;GUIDING PRINCIPLES IN OUR COMMUNITY The Bryant Pledge was modeled

Blais, Brian

95

PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design  

SciTech Connect (OSTI)

Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

1996-12-31T23:59:59.000Z

96

Multiphysics Thermal-Fluid Design Analysis of a Non-Nuclear Tester for Hot-Hydrogen Materials and Component Development  

SciTech Connect (OSTI)

The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

Wang, T.-S.; Foote, John; Litchford, Ron [NASA Marshall Space Flight Center, Huntsville, Alabama, 35812 (United States)

2006-01-20T23:59:59.000Z

97

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation  

E-Print Network [OSTI]

and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

Goddard III, William A.

98

Student Design Competition Guide to Project Preparation and Submittal...  

Broader source: Energy.gov (indexed) [DOE]

Guide to Project Preparation and Submittal DOE Challenge Home Student Competition Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability...

99

Students Compete to Design Energy-Efficient Appliances | Department...  

Broader source: Energy.gov (indexed) [DOE]

Engineering department testing the placement of their Hybrid Solar Photovoltaic Panel for Pool Heating. Image: Lawrence Berkeley National Laboratory 3 of 5 Students from...

100

Designed Especially for Students of INJURY AND SICKNESS  

E-Print Network [OSTI]

standards required by the health care reform law for restrictions on annual dollar limits. The annual dollar health insurance coverage. #12;Notice Regarding Your Student Health Insurance Coverage Your student health insurance coverage, offered by UnitedHealthcare Insurance Company, may not meet the minimum

Subramanian, Venkat

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

102

Important reminders about choosing Business Design and Innovation as second major (for non-FBE students)  

E-Print Network [OSTI]

Important reminders about choosing Business Design and Innovation as second major (for non-FBE selection period or add/drop period. For the successful candidates, FBE will notify students' home faculties

Leung, Ka-Cheong

103

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

SciTech Connect (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

104

School of Planning, Design and Construction Graduate Student Handbook  

E-Print Network [OSTI]

: · Construction Management · Interior Design · Landscape Architecture · Urban and Regional Planning Through in Environmental Design · Master of Arts in Interior Design and Facilities Management* Through the College architecture, and urban planning or degrees in related disciplines such as architecture, engineering, social

105

Students Compete to Design Energy-Efficient Appliances | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:Step by StepHigh-LevelStudent and

106

Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

Chang H. Oh; Eung Soo Kim; Steven Sherman

2008-04-01T23:59:59.000Z

107

Full design of a low-cost quadrotor UAV by student team  

E-Print Network [OSTI]

Full design of a low-cost quadrotor UAV by student team Jean-Baptiste Devaud#1 , Stéphane Najko.marzat@onera.fr Abstract-- This paper presents the complete design of a quadrotor UAV, named VORTEX, comprising its architecture and control. The use of Unmanned Aerial Vehicles (UAV) for surveillance, observation and security

Paris-Sud XI, Université de

108

Nationwide: Max Tech and Beyond Design Competition Gives Students...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by hundreds of millions of dollars. The winning design for academic year 2012-2013-a heat pump clothes dryer-could save the same amount of energy used to power two million...

109

From Waste to Hydrogen: An Optimal Design of Energy Production and Distribution Network  

E-Print Network [OSTI]

at costs similar to producing hydrogen from natural gas, a non-renewable energy source. We also provide: (530)7546408 #12;2 1. Introduction Transportation and energy industries are closely dependent on each States. The number is still growing despite increases in energy efficiency. For example, over last twenty

Fan, Yueyue

110

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Costs to Estimate Hydrogen Pipeline Costs." Research ReportHydrogen Pipelines liquid hydrogen, and hydrogen pipelines. By limiting to a

Parker, Nathan C

2007-01-01T23:59:59.000Z

111

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Costs to Estimate Hydrogen Pipeline Costs." Research ReportHydrogen Pipelines liquid hydrogen, and hydrogen pipelines. By limiting to a

Parker, Nathan

2007-01-01T23:59:59.000Z

112

Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies  

SciTech Connect (OSTI)

Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n(e) >= 10(19)m(-3), T(e) = 4-10 eV, particle flux Gamma(p) > 10(23) m(-3) s(-1), and magnetic field strength |B| up to I T in the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10 - 26 MHz, and power levels up to similar to 100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.

Goulding, Richard Howell [ORNL; Chen, Guangye [ORNL; Meitner, Steven J [ORNL; Baity Jr, F Wallace [ORNL; Caughman, John B [ORNL; Owen, Larry W [ORNL

2009-01-01T23:59:59.000Z

113

Design of a high particle flux hydrogen helicon plasma source for used in plasma materials interaction studies  

SciTech Connect (OSTI)

Existing linear plasma materials interaction (PMI) facilities all use plasma sources with internal electrodes. An rf-based helicon source is of interest because high plasma densities can be generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. Work has begun at Oak Ridge National Laboratory (ORNL) to develop a large (15 cm) diameter helicon source producing hydrogen plasmas with parameters suitable for use in a linear PMI device: n{sub e}{>=}10{sup 19} m{sup -3}, T{sub e} = 4-10 eV, particle flux {gamma}{sub p}>10{sup 23}m{sup -3} s{sup -1}, and magnetic field strength |B| up to 1 T in the source region. The device, whose design is based on a previous hydrogen helicon source operated at ORNL[1], will operate at rf frequencies in the range 10-26 MHz, and power levels up to {approx}100 kW. Limitations in cooling will prevent operation for pulses longer than several seconds, but a major goal will be the measurement of power deposition on device structures so that a later steady state version can be designed. The device design, the diagnostics to be used, and results of rf modeling of the device will be discussed. These include calculations of plasma loading, resulting currents and voltages in antenna structures and the matching network, power deposition profiles, and the effect of high |B| operation on power absorption.

Goulding, R. H.; Chen, G.; Meitner, S.; Baity, F. W.; Caughman, J. B. O.; Owen, L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)

2009-11-26T23:59:59.000Z

114

A Study of Student Design Team Behaviors in Complex System Design  

E-Print Network [OSTI]

Large-scale engineering systems require design teams to balance complex sets of considerations using a wide range of design and decision-making skills. Formal, computational approaches for optimizing complex systems offer ...

Honda, Tomonori

115

System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

SciTech Connect (OSTI)

This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States); Pounds, T.S.; Smith, S.O. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

1994-08-24T23:59:59.000Z

116

Winners of Hydrogen Student Design Contest Turn Urban Waste into Energy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugustChilocco Wind ParkDepartment

117

U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1:Project | Department

118

U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy1.5Fuel andDepartment

119

Properties, Behavior and Material Compatibility of Hydrogen, Natural Gas and Blends Materials Testing and Design Requirements for Hydrogen Components and Tanks  

Broader source: Energy.gov [DOE]

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 29, 2010, in Beijing, China.

120

-30 -Mathematics The concentration in Mathematics is designed to acquaint the student with the most important  

E-Print Network [OSTI]

- 30 - Mathematics The concentration in Mathematics is designed to acquaint the student with the most important general concepts underlying the three branches of modern mathematics. Concentration in mathematics will provide an adequate basis for further study in either pure or applied mathematics. Because so

Wolfe, Patrick J.

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

122

DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION  

SciTech Connect (OSTI)

The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

Professor Richard Eisenberg

2012-07-18T23:59:59.000Z

123

Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS  

SciTech Connect (OSTI)

A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

Qingfeng Yu; Quanke Feng [Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 (China)

2006-07-01T23:59:59.000Z

124

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

gas trucks needs hydrogen storage, hydrogen compressors forcapacity. Liquid hydrogen storage consists of 5 days of thethis reason the liquid hydrogen storage at the station is

Parker, Nathan C

2007-01-01T23:59:59.000Z

125

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

gas trucks needs hydrogen storage, hydrogen compressors forcapacity. Liquid hydrogen storage consists of 5 days of thethis reason the liquid hydrogen storage at the station is

Parker, Nathan

2007-01-01T23:59:59.000Z

126

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

hydrogen storage, hydrogen compressors for both truck andthe reported values for hydrogen compressor cost had a wideefficiency of the compressor, Q is the hydrogen flow rate in

Parker, Nathan C

2007-01-01T23:59:59.000Z

127

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

hydrogen storage, hydrogen compressors for both truck andthe reported values for hydrogen compressor cost had a wideefficiency of the compressor, Q is the hydrogen flow rate in

Parker, Nathan

2007-01-01T23:59:59.000Z

128

The occupational endorsement certification in welding and materials technology is designed for beginning students who want to learn to  

E-Print Network [OSTI]

WELDING & MATERIALS TECHNOLOGY The occupational endorsement certification in welding and materials technology is designed for beginning students who want to learn to cut and weld, as well as students seeking more advanced courses who would like to take their welding skills further. Our program emphasizes

Ickert-Bond, Steffi

129

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they  

E-Print Network [OSTI]

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers of interest and other of their academic development and thus, you and your advisor will determine what type of activity or process you

Hill, Wendell T.

130

Effectiveness of Employing Multimedia Principles in The Design of Computer-Based Math Tutorials for Students with Learning Disabilities  

E-Print Network [OSTI]

DL). The animated tutorial prototype, which was studied as part of this project, was for young children. The study evaluated a prototype of online instructional tutorial in mathematics designed for students with disabilities. The tutorial prototype was instructional...

Kanitkar, Anjali Shridhar

2010-04-28T23:59:59.000Z

131

CSM RESEARCH INTERNSHIP POLICY External sponsors may support research and design projects by CSM students through Graduate or  

E-Print Network [OSTI]

CSM RESEARCH INTERNSHIP POLICY External sponsors may support research and design projects by CSM students through Graduate or Undergraduate Research Fellowships (RF), Research Assistantships (RA to the minimum stipend for Graduate Research Assistants. Sponsors should be aware that tuition payments

132

Designing catalysts for hydrogen production | Center for Bio-Inspired Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingabout Influenza DesigningFuelFuel

133

The role of biomass in California's hydrogen economy  

E-Print Network [OSTI]

economic analysis of hydrogen production by gasi?cation of2005. Biomass to hydrogen production detailed design andof using biomass for hydrogen production, particularly with

Parker, Nathan C; Ogden, Joan; Fan, Yueyue

2009-01-01T23:59:59.000Z

134

THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN  

SciTech Connect (OSTI)

We present the design and methods of the COS-Halos survey, a systematic investigation of the gaseous halos of 44 z = 0.15-0.35 galaxies using background QSOs observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. This survey has yielded 39 spectra of z{sub em} ? 0.5 QSOs with S/N ?10-15 per resolution element. The QSO sightlines pass within 150 physical kpc of the galaxies, which span early and late types over stellar mass log M{sub *}/M{sub ?} = 9.5-11.5. We find that the circumgalactic medium exhibits strong H I, averaging ? 1 in Ly? equivalent width out to 150 kpc, with 100% covering fraction for star-forming galaxies and 75% covering for passive galaxies. We find good agreement in column densities between this survey and previous studies over similar range of impact parameter. There is weak evidence for a difference between early- and late-type galaxies in the strength and distribution of H I. Kinematics indicate that the detected material is bound to the host galaxy, such that ?> 90% of the detected column density is confined within 200 km s{sup 1} of the galaxies. This material generally exists well below the halo virial temperatures at T ?< 10{sup 5} K. We evaluate a number of possible origin scenarios for the detected material, and in the end favor a simple model in which the bulk of the detected H I arises in a bound, cool, low-density photoionized diffuse medium that is generic to all L* galaxies and may harbor a total gaseous mass comparable to galactic stellar masses.

Tumlinson, Jason; Thom, Christopher; Sembach, Kenneth R. [Space Telescope Science Institute, Baltimore, MD (United States); Werk, Jessica K.; Prochaska, J. Xavier [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tripp, Todd M.; Katz, Neal; Meiring, Joseph D. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Dav, Romeel [University of the Western Cape, South African Astronomical Observatories, and African Institute for Mathematical Sciences, Cape Town (South Africa); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, 2300 RA Leiden (Netherlands); Ford, Amanda Brady [Steward Observatory, University of Arizona, Tucson, AZ (United States); O'Meara, John M. [Department of Chemistry and Physics, Saint Michael's College, Colchester, VT (United States); Peeples, Molly S. [Center for Galaxy Evolution, University of California Los Angeles, Los Angeles, CA (United States); Weinberg, David H. [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

2013-11-01T23:59:59.000Z

135

New Mexico Hydrogen Fuels Challenge Program Description The New...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

136

New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture  

SciTech Connect (OSTI)

The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

None

1982-01-01T23:59:59.000Z

137

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Designing a Root Cellar for the Alma Mater Society's New Student Union Building  

E-Print Network [OSTI]

Society (AMS) is building a new Student Union Building (SUB) to be a leader in green building technology by achieving LEED certified platinum status by the Canada Green Building Council. As part of the designs" guidelines set by the Canada Green Building Council and is aiming for its highest level of certification

138

System Analyses of High and Low-Temperature Interface Designs for a Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The lowtemperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MWt Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm2, and a current density of 0.25 amps/cm2). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MWt from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MWe of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heatpump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat.

E. A. Harvego; J. E. O'Brien

2009-07-01T23:59:59.000Z

139

DOE Announces Webinars on Engaging Students in Energy, Challenges...  

Broader source: Energy.gov (indexed) [DOE]

Engaging Students in Energy, Challenges in Hydrogen Infrastructure, and More DOE Announces Webinars on Engaging Students in Energy, Challenges in Hydrogen Infrastructure, and More...

140

Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network  

E-Print Network [OSTI]

emissions [19]. Hence, hydrogen can be produced on large scale from biomass feedstocks in centralized facilities and subsequently distributed at fueling stations and/or community locations as a universal clean fuel for transportation and power...

Damodharan, Shalini

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle  

E-Print Network [OSTI]

than sold on the market, and is mainly used as a feedstock for petroleum refining the transition from the current fossil-based economy towards a new one based on hydrogen. The adoption

Grossmann, Ignacio E.

142

DESIGNING THE SYLLABUS--TEMPLATE IDEAS The information you communicate to your students on your course syllabus plays an important role  

E-Print Network [OSTI]

DESIGNING THE SYLLABUS--TEMPLATE IDEAS The information you communicate to your students on your course syllabus plays an important role in influencing the decisions students make regarding plagiarism on Syllabus Design (reproduced below) that speaks to the key issues. Syllabus Design The best way

Indiana University

143

Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant  

SciTech Connect (OSTI)

Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

Piyush Sabharwal

2009-07-01T23:59:59.000Z

144

Economics Environmental Science Track This track of courses is designed for students who want to couple their training in economics  

E-Print Network [OSTI]

1 of 2 Economics Environmental Science Track This track of courses is designed for students who want to couple their training in economics with additional studies in environmental science. Ideally Sciences Environmental Sciences Land Resource Sciences Economics Electives In addition to the economics

Maxwell, Bruce D.

145

B.S. in Chemical Science The Chemical Science degree is designed for students who plan programs in fields  

E-Print Network [OSTI]

B.S. in Chemical Science The Chemical Science degree is designed for students who plan programs, and Geology. In addition, Chemical Science can be a valuable major for those interested in business and law. This degree is not intended as a chemical preparation for people who wish to do work directly in Chemistry

McQuade, D. Tyler

146

VERIFICATION OF THEORY BASED DESIGN FEATURES FOR DESIGNING ONLINE INSTRUCTION FOR STUDENTS WITH LEARNING DISABILITIES AND OTHER STRUGGLING LEARNERS  

E-Print Network [OSTI]

This study involved a comprehensive review of the literature on multimedia design to identify theory based design principles applicable to online instruction. Seven theories were reviewed. They included Cultural Historical ...

CHIU, CHI-HSUN

2013-05-31T23:59:59.000Z

147

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

148

Functional design criteria for SY-101 hydrogen mitigation test project Data Acquisition and Control System (DACS-1)  

SciTech Connect (OSTI)

Early in 1990, the potential for a large quantity of hydrogen and nitrous oxide to exist as an explosive mixture within some Hanford waste tanks was declared an unreviewed safety question. The waste tank safety task team was established at that time to carry out safety evaluations and plan the means for mitigating this potential hazard. Action was promptly taken to identify those tanks with the highest hazard and to implement interim operating requirements to minimize ignition sources.

Truitt, R.W.

1994-09-01T23:59:59.000Z

149

Students  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer Archive Home »SpotlightStudents

150

Modeling and simulation of a high pressure hydrogen storage tank with dynamic wall.  

E-Print Network [OSTI]

??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is (more)

Cumalioglu, Ilgaz

2005-01-01T23:59:59.000Z

151

Modeling and simulation of a high pressure hydrogen storage tank with Dynamic Wall.  

E-Print Network [OSTI]

??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is (more)

Cumalioglu, Ilgaz

2005-01-01T23:59:59.000Z

152

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

153

MULTIDICIPLINE TEAMS FOR INTELLIGENT INNOVATION: EDUCATING AND TRAINING ENGINEERING AND DESIGN STUDENTS TO CO-CREATION.  

E-Print Network [OSTI]

strategies INTRODUCTION In the 19th century, the Industrial Revolution led to major changes in agriculture brief. KEYWORDS: co-creation, multidiscipline design workshop, industrial design, design development, manufacturing, mining, transportation, and technology. Direct consequences of those industrial changes

Boyer, Edmond

154

Code for Hydrogen Hydrogen Pipeline  

E-Print Network [OSTI]

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

155

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

156

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

157

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

158

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen High temperature options for nuclear generation of hydrogen on a commercial basis are several years in the future. Thermo-chemical water splitting has been proven to be...

159

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

160

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

the reported values for hydrogen compressor cost had a widecosts of small compressors are given in H2A in terms of hydrogencosts of small compressors are given in H2A in terms of hydrogen

Parker, Nathan

2007-01-01T23:59:59.000Z

162

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

the reported values for hydrogen compressor cost had a widecosts of small compressors are given in H2A in terms of hydrogencosts of small compressors are given in H2A in terms of hydrogen

Parker, Nathan C

2007-01-01T23:59:59.000Z

163

Students can: Designandracea  

E-Print Network [OSTI]

MAGLEVvehicle.Inschool, studentswilldesignandconstructavehicle andcompleteaStudentDesignPortfolio. Studentscompeteforatrophyinoneof sevencategories:windpower

Ohta, Shigemi

164

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

165

HYDROGEN USE AND SAFETY The lightest and most common element in the universe, hydrogen has been  

E-Print Network [OSTI]

to your tank to prevent hydrogen gas from escaping. The nozzle will also be designed so hydrogen can of oil and gasoline spills, and it's easy to see why hydrogen offers such an exciting future gasoline, diesel, natural gas, and hydrogen. Fortunately, we have over 100 years of experience using motor

166

Jump-Starting Zero Energy Home Design and Student Careers | Department...  

Broader source: Energy.gov (indexed) [DOE]

of Minnesota team created a home design that meets the unique challenges of the state's climate -- extreme winter cold and hot, humid summers -- while minimizing energy use. |...

167

STUDENT BRIEFING ON TEAM DESIGN PROJECTS (TDP) 2010/11 Introduction  

E-Print Network [OSTI]

design proposal which could, for example, be used by a manufacturer/company as the basis for a marketable notes, together with costings and market evaluations, to enable company experts (for example the chief timetable for your project. Log-book. You must keep a bound log-book in which all your design work and notes

Paxton, Anthony T.

168

STUDENT BRIEFING ON TEAM DESIGN PROJECTS (TDP) 2011/12 Introduction  

E-Print Network [OSTI]

design proposal which could, for example, be used by a manufacturer/company as the basis for a marketable notes, together with costings and market evaluations, to enable company experts (for example the chief timetable for your project. Log-book. You must keep a bound log-book in which all your design work and notes

Paxton, Anthony T.

169

B.F.A. in Studio Art Graduation Certification Fabric Design Area of Emphasis Student Name _________________________ SS #______-_____-_______ rev. 04/12  

E-Print Network [OSTI]

you can graduate. ARST 4710 BFA Project in Fabric Design __3__ _____ __________________ ExhibitionB.F.A. in Studio Art Graduation Certification Fabric Design Area of Emphasis Student Name (542-1522) for a graduation certification appointment at least 2 terms before graduation

Arnold, Jonathan

170

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Culturally Appropriate Building Designs for First Nations at UBC  

E-Print Network [OSTI]

, and Ecological) assessment was conducted for the Plank House, Pit-House, and Wigam. Special considerationUBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation different styles of Aboriginal housing design, with focus placed on designs that could be considered

171

Theoretical Studies in Heterogenous Catalysis: Towards a Rational Design of Novel Catalysts for Hydrodesulfurization and Hydrogen Production  

SciTech Connect (OSTI)

Traditionally, knowledge in heterogeneous catalysis has come through empirical research. Nowadays, there is a clear interest to change this since millions of dollars in products are generated every year in the chemical and petrochemical industries through catalytic processes. To obtain a fundamental knowledge of the factors that determine the activity of heterogeneous catalysts is a challenge for modern science since many of these systems are very complex in nature. In principle, when a molecule adsorbs on the surface of a heterogeneous catalyst, it can interact with a large number of bonding sites. It is known that the chemical properties of these bonding sites depend strongly on the chemical environment around them. Thus, there can be big variations in chemical reactivity when going from one region to another in the surface of a heterogeneous catalyst. A main objective is to understand how the structural and electronic properties of a surface affect the energetics for adsorption processes and the paths for dissociation and chemical reactions. In recent years, advances in instrumentation and experimental procedures have allowed a large series of detailed works on the surface chemistry of heterogeneous catalysts. In many cases, these experimental studies have shown interesting and unique phenomena. Theory is needed to unravel the basic interactions behind these phenomena and to provide a general framework for the interpretation of experimental results. Ideally, theoretical calculations based on density-functional theory have evolved to the point that one should be able to predict patterns in the activity of catalytic surfaces. As in the case of experimental techniques, no single theoretical approach is able to address the large diversity of phenomena occurring on a catalyst. Catalytic surfaces are usually modeled using either a finite cluster or a two-dimensionally periodic slab. Many articles have been published comparing the results of these two approaches. An important advantage of the cluster approach is that one can use the whole spectrum of quantum-chemical methods developed for small molecules with relatively minor modifications. On the other hand, the numerical effort involved in cluster calculations increases rather quickly with the size of the cluster. This problem does not exist when using slab models. Due to the explicit incorporation of the periodicity of the crystal lattice through the Bloch theorem, the actual dimension of a slab calculation depends only on the size of the unit cell. In practical terms, the slab approach is mainly useful for investigating the behavior of adsorbates at medium and high coverages. Very large unit cells are required at the limit of low to zero coverage, or when examining the properties and chemical behavior of isolated defect sites in a surface. In these cases, from a computational viewpoint, the cluster approach can be much more cost effective than the slab approach. Slab and cluster calculations can be performed at different levels of sophistication: semi-empirical methods, simple ab initio Hartree-Fock, ab initio post-Hartree-Fock (CI, MP2, etc), and density functional theory. Density-functional (DF) based calculations frequently give adsorption geometries with a high degree of accuracy and predict reliable trends for the energetics of adsorption reactions. This article provides a review of recent theoretical studies that deal with the behavior of novel catalysts used for hydrodesulfurization (HDS) reactions and the production of hydrogen (i.e. catalytic processes employed in the generation of clean fuels). These studies involve a strong coupling of theory and experiment. A significant fraction of the review is focused on the importance of size-effects and correlations between the electronic and chemical properties of catalytic materials. The article begins with a discussion of results for the desulfurization of thiophene on metal carbides and phosphides, systems which have the potential to become the next generation of industrial HDS catalysts. Then, systematic studies con

Rodriguez,J.A.; Liu, P.

2008-10-01T23:59:59.000Z

172

The Impact of Virtual Reality-based Learning Environment Design Features on Students' Academic Achievements  

E-Print Network [OSTI]

also explored selected instructional design features of the virtual learning environment that moderated the relationship between instructional method and the academic achievements. Analyses of 63 experimental or quasi-experimental studies that studied...

Merchant, Zahira

2012-08-15T23:59:59.000Z

173

Hydrogen Technical Analysis -- Dissemination of Information  

SciTech Connect (OSTI)

SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations of hydrogen energy technologies to non-traditional audiences. These activities were also designed to raise the visibility of the DOE Hydrogen Program to new audiences and to help the program continue to advance its mission and vision. We believe that the work conducted under this cooperative agreement was successful at meeting the objectives presented and funded over the period of performance. During Phase 1, SENTECHs activities resulted in the development and distribution of two glossy brochures that target the on-site distributed generation and public transit markets for hydrogen energy technologies; face-to-face industry outreach meetings with various firms with an interest in hydrogen energy, but who may not have made a commitment to be involved; and implementation of two educational forums on hydrogen for students - the future engineers, technicians, and energy consumers. The educational forums were conducted with in-kind cost-shared contributions from NHA and Dr. Robert Reeves, Professor Emeritus, Rensealler During Phase 2, SENTECH activities initially were focused on the development of additional brochures and the development of a series of training modules. This set of information dissemination activities built on the experience demonstrated in our phase one activities, and focused the effort within two critical issue areas facing the development of hydrogen as an energy carrier--effective communications and information dissemination on codes and standards. SENTECH joined with the National Fire Protection Association (NFPA) to scope out the training modules and identified a series of 12 that could be used to train a variety of audiences. The NFPA is an international nonprofit corporation, which has developed a reputation as a worldwide leader in providing fire, electrical, and life safety to the public since 1896. Its membership totals more than 75,000 individuals from around the world and in more than 80 national trade and professional organizations.

George Kervitsky, Jr.

2006-03-20T23:59:59.000Z

174

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Hydrogen Production by Gasification of Biomass." Departmentand Celik, Fuat (2005). "Gasification-Based Fuels andon a study of slagging gasification for MSW that reported

Parker, Nathan C

2007-01-01T23:59:59.000Z

175

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

Hydrogen Production by Gasification of Biomass." Departmentand Celik, Fuat (2005). "Gasification-Based Fuels andon a study of slagging gasification for MSW that reported

Parker, Nathan

2007-01-01T23:59:59.000Z

176

Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan C

2007-01-01T23:59:59.000Z

177

Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw  

E-Print Network [OSTI]

agricultural waste based-hydrogen; biomass gasification toWaste Conversion Efficiency 60% biogas Comment A conservative estimate from the gasification

Parker, Nathan

2007-01-01T23:59:59.000Z

178

Hydrogen Bibliography  

SciTech Connect (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

179

Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods  

SciTech Connect (OSTI)

This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods. The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

2014-09-30T23:59:59.000Z

180

Student Engagement and Enrollment Services -Office of Intercultural Relations (OIR) OIR Graphic Designer  

E-Print Network [OSTI]

, and more. The graphic designer is also responsible for maintaining the quality of the OIR brand. Ensure that maintain the positive image of OIR, its services and programming. Required hours 10-15 hours information on website for intercultural projects. o Develop the OIR brand. o Demonstrated photography skills

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CSI: Dognapping workshop : an outreach experiment designed to produce students that are hooked on science.  

SciTech Connect (OSTI)

The CSI: Dognapping Workshop is a culmination of the more than 65 Sandian staff and intern volunteers dedication to exciting and encouraging the next generation of scientific leaders. This 2 hour workshop used a 'theatrical play' and 'hands on' activities that was fun, exciting and challenging for 3rd-5th graders while meeting science curriculum standards. In addition, new pedagogical methods were developed in order to introduce nanotechnology to the public. Survey analysis indicated that the workshop had an overall improvement and positive impact on helping the students to understand concepts from materials science and chemistry as well as increased our interaction with the K-5 community. Anecdotal analyses showed that this simple exercise will have far reaching impact with the results necessary to maintain the United States as the scientific leader in the world. This experience led to the initiation of over 100 Official Junior Scientists.

Boyle, Timothy J.; Gorman, Anna K.; Pratt, Harry D., III; Hernandez-Sanchez, Bernadette A.; Lambert, Timothy N.; Ottley, Leigh Anna M.; Baros, Christina Marie

2008-04-01T23:59:59.000Z

182

Making biomimetic complexes to produce hydrogen fuel | Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biomimetic complexes to produce hydrogen fuel 4 Nov 2012 Souvik Roy, graduate student (Subtask 3, laboratory of Anne Jones). "I am involved mostly in mimicking Fe-hydrogenases,...

183

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energys FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

184

(Hydrogen) Service Stations 101 Steven M. Schlasner  

E-Print Network [OSTI]

(Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 #12;2 DISCLAIMER Opinions · Comparison of Conventional with Hydrogen Fueling Stations · Hydrogen Fueling Life Cycle · Practical Design,000 retail outlets (350 company-owned) in 44 states · Brands: Conoco, Phillips 66, 76 · 32,800 miles pipeline

185

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

186

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

187

Enhanced Hydrogen Dipole Physisorption, Final Report  

SciTech Connect (OSTI)

The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

Ahn, Channing

2014-01-03T23:59:59.000Z

188

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

189

Hydrogen Technology Research at SRNL  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E.

2011-02-13T23:59:59.000Z

190

Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots  

E-Print Network [OSTI]

-scale ..................................................... 35 1.25 Atoms nucleation and growth rate during synthesis .................................. 36 1.26 The AM 1.5 solar spectrum as function of photon energy. ........................ 37 1.27 Thermal solar energy systems (A) parabolic dish (B... Page 1.1 Hydrogen production pathways ................................................................. 4 1.2 Solar to hydrogen conversion pathways, STC is solar thermochemical, CST is concentrating solar thermal, and PEC...

Alenzi, Naser D.

2012-02-14T23:59:59.000Z

191

This form is designed to help advisors and officers determine the role of advisors in student organizations. Directions: The advisor and each officer should respond to the following  

E-Print Network [OSTI]

Checklist This form is designed to help advisors and officers determine the role of advisors in student organizations. Directions: The advisor and each officer should respond to the following items not to be the responsibility of the advisor, it would be valuable to clarify which officer will assume that responsibility

Mohanty, Saraju P.

192

UCLA CHEMISTRY MAJOR 2012-2013 CHEMISTRY MAJOR (B.S.): This major is designed primarily for students who are interested in attending  

E-Print Network [OSTI]

UCLA CHEMISTRY MAJOR 2012-2013 CHEMISTRY MAJOR (B.S.): This major is designed primarily for students who are interested in attending graduate school in Chemistry or related areas. It also satisfies this major and others offered in the Department of Chemistry and Biochemistry, consult the Undergraduate

Levine, Alex J.

193

Energy-Efficient Graphical User Interface Design Keith S. Vallerio Member, IEEE,, Lin Zhong Student Member, IEEE, and Niraj K. Jha Fellow, IEEE,  

E-Print Network [OSTI]

Energy-Efficient Graphical User Interface Design Keith S. Vallerio Member, IEEE,, Lin Zhong Student hardware and software energy optimization. However, most of these techniques focus on compute frequently use graphical user interfaces (GUIs) to handle human-computer interaction. This paper is the first

Zhong, Lin

194

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

195

Investigating students' mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development  

E-Print Network [OSTI]

; and in explain- ing the lubricating mechanism of oil. When students were asked to sketch how the smoothest

Zollman, Dean

196

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

197

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

198

Development of a Compressed Hydrogen Gas  

E-Print Network [OSTI]

Kpsi "Saran Wrap" Tank Energy Density for Hydrogen Storage Systems " Advance the development of a cost · Satisfying hydrogen gas permeation requirements · Increasing energy density efficiency · Developing cost · Design » T700 carbon fiber overwrap with high interspersed winding pattern with design FOS of 2.45 » NGV

199

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J and industry expectations · DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK

200

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

202

Hydrogen Transition Infrastructure Analysis  

SciTech Connect (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

203

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

SciTech Connect (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

204

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

205

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

206

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

207

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

208

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

209

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for Students of insurance. Your coverage is governed by a policy of student accident and sickness insurance underwritten

Suzuki, Masatsugu

210

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for International Students is governed by a policy of student accident and sickness insurance underwritten by BCS Insurance Company BCS

Suzuki, Masatsugu

211

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hydrogen systems (TIR) 01-2009 Safety Being revised SAE J2594 Design for recycling PEM fuel cell system 09-2003 Perf. Static SAE J2600 Compressed hydrogen fueling receptacles...

212

Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)  

SciTech Connect (OSTI)

Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

2011-09-15T23:59:59.000Z

213

Student Affairs STUDENT CONDUCT  

E-Print Network [OSTI]

Student Affairs CODE OF STUDENT CONDUCT 2014-15 #12;Contents Letter from the Dean of Students ....................................................................ii Binghamton University's Code of Student Conduct Preamble...................... 1 Section I: Rules of Student Conduct.............................................................. 1 Section II: Definitions

Suzuki, Masatsugu

214

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

215

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

216

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

217

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

218

Carbon Aerogels for Hydrogen Storage  

SciTech Connect (OSTI)

This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the spillover process (i.e. kinetics of hydrogen dissociation, diffusion and recombination) and allow for optimization of these materials to meet the DOE targets for hydrogen storage. In a parallel effort, we are also designing CA materials as nanoporous scaffolds for metal hydride systems. Recent work by others has demonstrated that nanostructured metal hydrides show enhanced kinetics for reversible hydrogen storage relative to the bulk materials. This effect is diminished, however, after several hydriding/dehydriding cycles, as the material structure coarsens. Incorporation of the metal hydride into a porous scaffolding material can potentially limit coarsening and, therefore, preserve the enhanced kinetics and improved cycling behavior of the nanostructured metal hydride. Success implementation of this approach, however, requires the design of nanoporous solids with large accessible pore volumes (> 4 cm{sup 3}/g) to minimize the gravimetric and volumetric capacity penalties associated with the use of the scaffold. In addition, these scaffold materials should be capable of managing thermal changes associated with the cycling of the incorporated metal hydride. CAs are promising candidates for the design of such porous scaffolds due to the large pore volumes and tunable porosity of aerogel framework. This research is a joint effort with HRL Laboratories, a member of the DOE Metal Hydride Center of Excellence. LLNL's efforts have focused on the design of new CA materials that can meet the scaffolding requirements, while metal hydride incorporation into the scaffold and evaluation of the kinetics and cycling performance of these composites is performed at HRL.

Baumann, T F; Worsley, M; Satcher, J H

2008-08-11T23:59:59.000Z

219

Detroit Commuter Hydrogen Project  

SciTech Connect (OSTI)

This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

Brooks, Jerry; Prebo, Brendan

2010-07-31T23:59:59.000Z

220

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

222

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect (OSTI)

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

223

H2 Educate! Student Guide  

Fuel Cell Technologies Publication and Product Library (EERE)

H2 Educate! Teacher and Student Guides - These new guides were developed by the National Energy Education Development (NEED) Project's Teacher Advisory Board for the DOE Hydrogen Program. Sentech, Inc

224

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

225

Elective Focus Area in Mechanical Engineering The Design EFA offers advanced courses in engineering design and prepares students for successful careers in  

E-Print Network [OSTI]

.) to consulting and energy (power plants, wind farms, etc.). It provides an in-depth background in the computational methods commonly used in modeling, analysis, synthesis, simulation, and design optimization of mechanical, thermal, and fluid systems. Developing an understanding of how design/analysis software functions

Kusiak, Andrew

226

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

227

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

228

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

229

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect (OSTI)

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

230

Student Services Student Services  

E-Print Network [OSTI]

Student Services _______________ 1.9 Page 1 Student Services DIVISION OF STUDENT AFFAIRS Office for Student Affairs The Division of Student Affairs seeks to create a campus environment that fully engages students in the integration of their academic and personal development through quality programs

231

Student Services Student Services  

E-Print Network [OSTI]

Student Services Student Services DIVISION OF STUDENT AFFAIRS Office in the Administration Building, Room 201 (970) 491-5312 studentaffairs.colostate.edu Blanche Hughes, Vice President for Student Affairs The Division of Student Affairs seeks to create a campus environment that fully engages students

Collett Jr., Jeffrey L.

232

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

233

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

234

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

235

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: Why Hydrogen?

236

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

237

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

238

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1 (Circulation Hydrogen Ultrahigh Purification System) is designed to solve these two tasks: providing, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen

Kammel, Peter

239

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

240

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

242

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

243

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

244

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

245

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

246

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

247

The OLYMPUS Internal Hydrogen Target  

E-Print Network [OSTI]

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.

J. C. Bernauer; V. Carassiti; G. Ciullo; B. S. Henderson; E. Ihloff; J. Kelsey; P. Lenisa; R. Milner; A. Schmidt; M. Statera

2014-04-02T23:59:59.000Z

248

Results of the 2004 Knowledge and Opinions Surveys for the Baseline Knowledge Assessment of the U.S. Department of Energy Hydrogen Program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Hydrogen Program focuses on overcoming critical barriers to the widespread use of hydrogen fuel cell technology. The transition to a new, hydrogen-based energy economy requires an educated human infrastructure. With this in mind, the DOE Hydrogen Program conducted statistical surveys to measure and establish baselines for understanding and awareness about hydrogen, fuel cells, and a hydrogen economy. The baseline data will serve as a reference in designing an education program, and it will be used in comparisons with future survey results (2008 and 2011) to measure changes in understanding and awareness. Scientific sampling was used to survey four populations: (1) the general public, ages 18 and over; (2) students, ages 12-17; (3) state and local government officials; and (4) potential large-scale hydrogen users. It was decided that the survey design should include about 1,000 individuals in each of the general public and student categories, about 250 state and local officials, and almost 100 large-scale end users. The survey questions were designed to accomplish specific objectives. Technical questions measured technical understanding and awareness of hydrogen technology. Opinion questions measured attitudes about safety, cost, the environment, and convenience, as well as the likelihood of future applications of hydrogen technology. For most of the questions, "I don't know" or "I have no opinion" were acceptable answers. Questions about information sources assessed how energy technology information is received. The General Public and Student Survey samples were selected by random digit dialing. Potential large-scale end users were selected by random sampling. The State and Local Government Survey was of the entire targeted population of government officials (not a random sample). All four surveys were administered by computer-assisted telephone interviewing (CATI). For each population, the length of the survey was less than 15 minutes. Design of an education program is beyond the scope of the report, and comparisons of the baseline data with future results will not be made until the survey is fielded again. Nevertheless, a few observations about the data are salient: For every population group, average scores on the technical knowledge questions were lower for the fuel cell questions than for the other technical questions. State and local officials expressed more confidence in hydrogen safety than large-scale end users, and they were much more confident than either the general public or students. State and local officials also scored much higher on the technical questions. Technical understanding appears to influence opinions about safety. For the General Public, Student, and Large-Scale End User Surveys, respondents with above-average scores on the eleven technical questions were more likely to have an opinion about hydrogen technology safety, and for those respondents who expressed an opinion, their opinion was more likely to be positive. These differences were statistically significant. Using criteria of "Sometimes" or "Frequently" to describe usage, respondents rated media sources for obtaining energy information. The general public and students responded that television is the primary media source of energy information. State and local officials and large-scale end users indicated that their primary media sources are newspapers, the Internet, and science and technology journals. In order of importance, the general public values safety, cost, environment, and convenience. The Large-Scale End User Survey suggests that there is presently little penetration of hydrogen technology; nor is there much planning for it.

Schmoyer, Richard L [ORNL; Truett, Lorena Faith [ORNL; Cooper, Christy [U.S. Department of Energy

2006-04-01T23:59:59.000Z

249

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

250

Low Cost Hydrogen Production Platform  

SciTech Connect (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

251

Student Health Benefit Plan  

E-Print Network [OSTI]

and programs tailored to the needs of students. The SHBP coordinates care with University Health Services (UHS), UMass Amherst's fully accredited health center. UHS provides comprehensive primary care, walk-in care2 2013-2014 Student Health Benefit Plan (SHBP) Designed for the Students of Policy Period: August 1

Massachusetts at Amherst, University of

252

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

253

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

254

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

255

Thermoelectric Materials by Design, Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

256

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

257

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

258

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect (OSTI)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

259

Hydrogen Bus Technology Validation Program  

E-Print Network [OSTI]

and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

260

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

262

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

263

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to  

E-Print Network [OSTI]

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to: Represent the student body of the Medical College of Wisconsin-section of the student body. Fairly administer and distribute all funds including those designated as Student Activity

264

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteranstoHuubHydrogenStudents

265

Development of Advanced Small Hydrogen Engines  

SciTech Connect (OSTI)

The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

Krishna Sapru; Zhaosheng Tan; Ben Chao

2010-09-30T23:59:59.000Z

266

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

267

LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS  

SciTech Connect (OSTI)

During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

2005-11-21T23:59:59.000Z

268

DOE Hydrogen Program Overview  

Broader source: Energy.gov (indexed) [DOE]

Intl. J. Hydrogen Energy 27: 1217-1228 Melis A, Seibert M and Happe T (2004) Genomics of green algal hydrogen research. Photosynth. Res. 82: 277- 288 Maness P-C, Smolinski...

269

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

270

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

271

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

272

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

273

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

274

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

275

EPA P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet  

Broader source: Energy.gov [DOE]

The U.S. Environmental Protection Agency (EPA), as part of the P3-People, Prosperity and the Planet Award Program, is seeking applications proposing to research, develop, and design solutions to real-world challenges involving the overall sustainability of human society. The P3 competition highlights the use of scientific principles in creating innovative projects focused on sustainability. The P3 Award Program was developed to foster progress toward sustainability by achieving the mutual goals of improved quality of life, economic prosperity, and protection of the planetpeople, prosperity, and the planetthe three pillars of sustainability.

276

Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry  

E-Print Network [OSTI]

Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry Lawrence As tooling was being designed for compressed hydrogen tank experiments, a series of discoveries were made. Their preliminary results may change the best solutions to hydrogen storage. Recent Progress LLNL tank design

277

Hydrogen Production CODES & STANDARDS  

E-Print Network [OSTI]

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

278

Sensitive hydrogen leak detector  

DOE Patents [OSTI]

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

279

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

280

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

282

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

283

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

284

Electrochemical Hydrogen Compressor  

SciTech Connect (OSTI)

The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

David P. Bloomfield; Brian S. MacKenzie

2006-05-01T23:59:59.000Z

285

Method for producing hydrogen  

SciTech Connect (OSTI)

In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

Preston, J.L.

1980-02-26T23:59:59.000Z

286

Hydrogen pipeline compressors annual progress report.  

SciTech Connect (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

287

One-Step No-Bake Hydrogen Storage Material | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

One-Step No-Bake Hydrogen Storage Material Scientists have designed a simple and direct method for the synthesis of a solid-state hydrogen storage material, alane (AlH3). Alane,...

288

Hydrogen Generation From Electrolysis  

SciTech Connect (OSTI)

Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of todays technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available today that perform in a range of efficiencies, >95%, that are suitable for the overall operational goals. The balance of plant scales well both operationally and in terms of cost becoming a smaller portion of the overall cost equation as the systems get larger. Capital cost reduction of the cell stack power supplies is achievable by modifying the system configuration to have the cell stacks in electrical series driving up the DC bus voltage, thereby allowing the use of large-scale DC power supply technologies. The single power supply approach reduces cost. Elements of the cell stack cost reduction and efficiency improvement work performed in the early stage of the program is being continued in subsequent DOE sponsored programs and through internal investment by Proton. The results of the trade study of the 100 kg H2/day system have established a conceptual platform for design and development of a next generation electrolyzer for Proton. The advancements started by this program have the possibility of being realized in systems for the developing fueling markets in 2010 period.

Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

2009-03-06T23:59:59.000Z

289

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a technical note. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogens production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

290

Safety Issues with Hydrogen as a Vehicle Fuel  

SciTech Connect (OSTI)

This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

L. C. Cadwallader; J. S. Herring

1999-09-01T23:59:59.000Z

291

Safety Issues with Hydrogen as a Vehicle Fuel  

SciTech Connect (OSTI)

This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

Cadwallader, Lee Charles; Herring, James Stephen

1999-10-01T23:59:59.000Z

292

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

293

Performance characterization of a hydrogen catalytic heater.  

SciTech Connect (OSTI)

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

Johnson, Terry Alan; Kanouff, Michael P.

2010-04-01T23:59:59.000Z

294

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

295

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

296

27Student Life Student Life  

E-Print Network [OSTI]

26 III Student LIfe #12;27Student Life Student Life The student conduct. The University over the years has adopted rules and regulations coveringacademicmattersandstudentdeportment. But if students conduct themselves honorably at all times, they will have little trouble

Dresden, Gregory

297

Analysis of hydrogen isotope mixtures  

DOE Patents [OSTI]

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

298

An in situ tensile test apparatus for polymers in high pressure hydrogen  

SciTech Connect (OSTI)

Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

Alvine, K. J., E-mail: kyle.alvine@pnnl.gov; Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

2014-10-15T23:59:59.000Z

299

An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen  

SciTech Connect (OSTI)

Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

2014-10-10T23:59:59.000Z

300

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

302

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

303

SY101 in situ viscometer instrument system design description  

SciTech Connect (OSTI)

This documents the design and description of the in situ viscometer, developed for the hydrogen mitigation project.

Pearce, K.L.; Stokes, T.I.; Vagelatos, N.

1994-08-18T23:59:59.000Z

304

Department of Engineering Science REQUEST TO SCHEDULE DESIGN PROJECT PRESENTATION  

E-Print Network [OSTI]

Department of Engineering Science REQUEST TO SCHEDULE DESIGN PROJECT PRESENTATION Notes: 1. Before a student's design project presentation can be scheduled, the student must certify that the following steps. ----------------------------------------------------------------------------------------------------------- Student's name:_________________________________________________________ Design Project title

Ravikumar, B.

305

High Pressure Hydrogen Materials Compatibility of Piezoelectric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

306

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

307

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

308

Final Report: Metal Perhydrides for Hydrogen Storage  

SciTech Connect (OSTI)

Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

2011-07-26T23:59:59.000Z

309

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

310

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

311

Hydrogen Industrial Trucks  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

312

Hydrogen purification system  

DOE Patents [OSTI]

The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

Golben, Peter Mark

2010-06-15T23:59:59.000Z

313

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

314

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

315

Sustainable hydrogen production  

SciTech Connect (OSTI)

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

316

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

317

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

318

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

319

Enhancing hydrogen spillover and storage  

DOE Patents [OSTI]

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

320

Enhancing hydrogen spillover and storage  

SciTech Connect (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Donor Newsletter June 2008 Issue 4 Collaboration powers hydrogen  

E-Print Network [OSTI]

the University's 5-strong fleet of hydrogen- powered fuel cell vehicles, designed to test the possibilitiesDonor Newsletter June 2008 Issue 4 Collaboration powers hydrogen and fuel cell research and fuel cell research on campus. The University featured heavily in the news in April when it opened

Birmingham, University of

322

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

323

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents [OSTI]

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

324

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

325

Student Trainee (Pathways Internship)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program . The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to...

326

Student Trainee (Account Specialist)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

327

Student Trainee (Financial Analyst)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

328

Student Trainee (Electrical Engineering)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

329

Student Trainee (General Engineering)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

330

Student Trainee (Electronics Engineering)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

331

Student Trainee (Mechanical Engineering)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

332

Student Trainee (Civil Engineering)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

333

System for thermochemical hydrogen production  

DOE Patents [OSTI]

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

334

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen storage of hydrogen, by 2008; · Complete U.S. adoption of a Global Technical Regulation (GTR) for hydrogen, storage, and use of hydrogen incorporate project safety requirements into the procurements, by 2005

335

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect (OSTI)

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

336

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

337

August 2006 Hydrogen Program  

E-Print Network [OSTI]

after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

338

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

339

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

340

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

342

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

343

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

344

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

It appears to us that hydrogen is a highly promising option0616 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

345

Analyses of Compressed Hydrogen On-Board  

E-Print Network [OSTI]

analyses based on new carbon fiber winding/placement processes and/orlower cost fibers Planned, FY'11 (TBD designs and cost inputs for the fuel cycle to project: 1) Refueling cost 2) Well-to-Tank energy use and GHG emissions (ANL lead) This project provides an independent cost assessment of the hydrogen storage

346

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

347

STUDENT APPLICATION STUDENT INFORMATION  

E-Print Network [OSTI]

: State: ZIP Code: Home phone: Cell phone: Email: Ethnicity (circle all that apply): African Contact: Relationship: Address: Lives with student: Yes No Cell phone: E-mail: Work phone: City: State Parent/Guardian: Relationship: Address: Lives with student: Yes No Cell phone: E-mail: Work phone: City

Texas at Austin, University of

348

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

349

Designing Silicon Nanostructures for High Energy Lithium Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

350

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

351

Improving Vehicle Fuel Efficiency Through Tire Design, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

352

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

353

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

354

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System  

E-Print Network [OSTI]

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

Victoria, University of

355

NGNP-HPS SHAW-HPA-000 NGNP Hydrogen Plant Alternatives Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy DRL Design Readiness Level EDI Electro-Deionization FUS Feed and Utility Systems HAD Hydroiodic Acid Decomposition HHV High Heating Value HPAS Hydrogen Plant...

356

Student Learning Outcomes College: Engineering  

E-Print Network [OSTI]

Student Learning Outcomes College: Engineering Department: Electrical and Computer Engineering Degree Program: Bachelor of Science in Computer Engineering 1) Students will have the ability to apply knowledge of mathematics, science, and engineering. 2) Students will have the ability to design and conduct

Raja, Anita

357

Student Learning Outcomes College: Engineering  

E-Print Network [OSTI]

Student Learning Outcomes College: Engineering Department: Electrical and Computer Engineering Degree Program: Bachelor of Science in Electrical Engineering 1) Students will have the ability to apply knowledge of mathematics, science, and engineering. 2) Students will have the ability to design and conduct

Raja, Anita

358

STUDENT DISCIPLINARY ACTION FORM INSTRUCTIONS  

E-Print Network [OSTI]

STUDENT DISCIPLINARY ACTION FORM INSTRUCTIONS Labor Program Office Berea College While one across campus. The "Student Disciplinary Action Form" was designed to provide labor supervisors directly with the student and discuss the matter in private. Calmly discuss the offense and the corrective

Baltisberger, Jay H.

359

STUDENT EMPLOYMENT Student Involvement Outcomes  

E-Print Network [OSTI]

STUDENT EMPLOYMENT Student Involvement Outcomes reflective assessment High impact practices ASSOCIATED STUDENTS, CSUF, INC. Committed TO ON-CAMPUS ENGAGEMENT · SUPPORTING STUDENT SUCCESS · UNIFYING THE STUDENT VOICE · FOSTERING TITAN PRIDE #12;Organizational Structure Associated Students, CSUF, Inc. (ASI

de Lijser, Peter

360

Student Life 7 STUDENT LIFE  

E-Print Network [OSTI]

Student Life 7 STUDENT LIFE ACTIVITIES Students at UNC Charlotte are encouraged to participate in extracurricular activities. The Student Government Association, the Campus Activities Board, and Student Media are a few of the available activities that can play a significant role in each student's development

Xie,Jiang (Linda)

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A manual of recommended practices for hydrogen energy systems  

SciTech Connect (OSTI)

Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

1997-12-31T23:59:59.000Z

362

Advancing the Hydrogen Safety Knowledge Base  

SciTech Connect (OSTI)

A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

Weiner, Steven C.

2014-12-01T23:59:59.000Z

363

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect (OSTI)

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

364

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

SciTech Connect (OSTI)

This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis??s existing GATE centers have become the campus??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

Erickson, Paul

2012-05-31T23:59:59.000Z

365

Chromatographic hydrogen isotope separation  

DOE Patents [OSTI]

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

366

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful elementhydrogento power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z

367

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory direction and review) #12;Outline of the presentation Background Hydrogen delivery through steel pipelines

368

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

369

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

370

Hydrogen storage compositions  

DOE Patents [OSTI]

Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

2011-04-19T23:59:59.000Z

371

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

372

The Hydrogen Connection  

SciTech Connect (OSTI)

As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

Barilo, Nick F.

2014-05-01T23:59:59.000Z

373

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

374

Webinar: Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

375

Bulk Hydrogen Strategic Directions for  

E-Print Network [OSTI]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia #12;Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything storage is an economic solution to address supply/demand imbalance #12;Breakout Session - Bulk Hydrogen

376

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

377

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE Rev January 2013 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas or where hydrogen response procedure requirements. All work areas where hydrogen sulfide is used or may be present within

Machel, Hans

378

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

379

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

380

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

SciTech Connect (OSTI)

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

382

Examining hydrogen transitions.  

SciTech Connect (OSTI)

This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

Plotkin, S. E.; Energy Systems

2007-03-01T23:59:59.000Z

383

Thermal Hydraulic Analysis of HTGR Coupled with Hydrogen Plant  

SciTech Connect (OSTI)

The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) to produce electricity and hydrogen. Although the hydrogen production processes using the nuclear energy are in an early stage of development, coupling hydrogen plant to HTGR requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions. This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

Chang Oh; Cliff Davis; Robert Barner; Paul Pickard

2006-06-01T23:59:59.000Z

384

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

385

Hydrogen storage and generation system  

DOE Patents [OSTI]

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

386

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect (OSTI)

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

387

LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials  

SciTech Connect (OSTI)

The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

2010-09-05T23:59:59.000Z

388

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

389

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

390

Hydrogen production from carbonaceous material  

DOE Patents [OSTI]

Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

2004-09-14T23:59:59.000Z

391

ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE  

SciTech Connect (OSTI)

OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

2003-02-01T23:59:59.000Z

392

Materials for the scavanging of hydrogen at high temperatures  

DOE Patents [OSTI]

A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

1997-01-01T23:59:59.000Z

393

Materials for the scavanging of hydrogen at high temperatures  

DOE Patents [OSTI]

A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

1997-01-01T23:59:59.000Z

394

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

395

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

396

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs. Many analyses inrespect to size and hydrogen production method. These costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

397

Renewable Hydrogen From Wind in California  

E-Print Network [OSTI]

SuitabilityforHydrogenProductionintheSacramentoAreaRenewableEnergy forHydrogenProductioninCaliforniamodel of renewable hydrogen production in California, which

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

398

Hydrogen Storage Materials Workshop Proceedings Workshop, October...  

Broader source: Energy.gov (indexed) [DOE]

hydrogen. Significant technical barriers remain for safe, cost-effective hydrogen storag compliqh2storworkproceedings.pdf More Documents & Publications Hydrogen Program...

399

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

400

Maximizing Light Utilization Efficiency and Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

402

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

403

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

404

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

405

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

406

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

407

Hydrogen production from microbial strains  

SciTech Connect (OSTI)

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

408

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

409

Hydrogenase mimic produces hydrogen under the light  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteranstoHuubHydrogenStudentsObjective

410

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network [OSTI]

as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular...

Harkness, J.; Doctor, R. D.

411

Reactions of Methylene Hydrogen  

E-Print Network [OSTI]

was orystallized out as a yellow solid from aloohol and then from ethyl aostate. Melting point 170C Analysis: Calculated for C17H14O2U s - 10.10$ Found I = 10.00$ SUMMARY 0 It was found that the methods given in the literature for the preparation... following* 1. Metallic sodium replaces either one, or both of the hydrogens, the latter being given off as a free gas. 2. Sodium hydroxide replaces the hydrogen by the metal, with a splitting off of water. 3. Sodium ethylate reacts, giving the metal 3...

Griffin, E. L.

1912-05-15T23:59:59.000Z

412

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

413

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

414

The JET Hydrogen-Oxygen Recombination Sensor A Safety Device for Hydrogen Isotope Processing Systems  

E-Print Network [OSTI]

The JET Hydrogen-Oxygen Recombination Sensor A Safety Device for Hydrogen Isotope Processing Systems

415

Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed  

E-Print Network [OSTI]

Internship Students ­ Engine / Powertrain Development FEV is offering challenging internships. At FEV, engineering intern will be part of a team and receives project tasks and responsibilities within a group, which are mentored and supervised by an experienced project engineer. The tasks include

Hutcheon, James M.

416

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for the Dependents. It is not a contract of insurance. Your coverage is governed by a policy of student accident and sickness insurance

Suzuki, Masatsugu

417

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

418

IEA Agreement on the production and utilization of hydrogen: 1999 annual report  

SciTech Connect (OSTI)

The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

2000-01-31T23:59:59.000Z

419

IEA agreement on the production and utilization of hydrogen: 2000 annual report  

SciTech Connect (OSTI)

The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

2001-12-01T23:59:59.000Z

420

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Cassette Based System for Hydrogen Storage and Delivery  

SciTech Connect (OSTI)

A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

Britton Wayne E.

2006-11-29T23:59:59.000Z

422

Hydrogen,Fuel Cells & Infrastructure  

E-Print Network [OSTI]

;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

423

Oxidation resistant organic hydrogen getters  

DOE Patents [OSTI]

A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

2008-09-09T23:59:59.000Z

424

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

425

Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

426

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

427

Student Life 407 Student Life  

E-Print Network [OSTI]

Student Life 407 Student Life The University of North Carolina at Charlotte provides a comfortable and enjoyable environment for students that is conducive to studying. The services, facilities, and programs of the University promote individual student development and foster a community which promotes the involvement

Xie,Jiang (Linda)

428

374 STUDENT LIFE Student Life  

E-Print Network [OSTI]

374 STUDENT LIFE Student Life The University of North Carolina at Charlotte provides a comfortable and enjoyable environment for students that is conducive to studying. The services, facilities, and programs of the University promote individual student development and foster a community which promotes the involvement

Xie,Jiang (Linda)

429

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network [OSTI]

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

430

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

431

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

432

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

433

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

434

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

435

Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles  

SciTech Connect (OSTI)

A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

Stewart, W.F.

1982-09-01T23:59:59.000Z

436

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

437

Hydrogen Piping Experience in Chevron  

E-Print Network [OSTI]

Hydrogen Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 #12;Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few

438

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in combustion engines, or converted into hydrogen at fuelengines are now nearly zero-emitting. What do these lessons imply for hydrogen?Hydrogen will find it difficult to compete with the century-long investment in petroleum fuels and internal combustion engines.

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

439

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network [OSTI]

's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary be found at the end of this document.) The intent was to identify a common vision of a "hydrogen economy of the Group: Which factors are most likely to support/inhibit the development of a "hydrogen economy

440

January 2005 HYDROGEN EMBRITTLEMENT OF  

E-Print Network [OSTI]

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline R&D Project Review Meeting Oak Ridge National Laboratory, Oak Ridge TN January 5-6, 2005 #12;2 January 2005 Hydrogen

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Composites Technology for Hydrogen Pipelines  

E-Print Network [OSTI]

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

442

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas. It outlines responsibilities, safe procedure requirements. All work areas where hydrogen sulfide is used within the University of Alberta must

Machel, Hans

443

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

444

STRUCTURAL ENGINEERING MINOR The Minor in Structural Engineering is a unique opportunity offered to students of the College of Environmental Design to  

E-Print Network [OSTI]

of steel, concrete or timber (CE122N, CE123N, CE124) These basic courses are complemented by additional exist in major architectural-engineering companies that appreciate the holistic approach to design: Ove of the joint degree are also employed with smaller companies emphasizing either architectural design

Alvarez-Cohen, Lisa

445

Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 3rd A Frame Problem Approach for Adaptive Cyber Security Design  

E-Print Network [OSTI]

Problem Approach for Adaptive Cyber Security Design R. Shaikh, T. Bryla, and S. Ahmed Pace University entails the motivation and efforts to integrate the Frame Problem approach to the distributed cyber in the context of network security counteraction against cyber-attacks. A simple simulator is designed

Tappert, Charles

446

Design Procedure for a Very High Speed Slotless Permanent Magnet Motor Pierre-Daniel Pfister, Student Member, IEEE and Yves Perriard, Senior Member, IEEE  

E-Print Network [OSTI]

Design Procedure for a Very High Speed Slotless Permanent Magnet Motor Pierre-Daniel Pfister speed slotless permanent magnet motor design procedure using an analyti- cal model. The multiphysics in the center, a magnet, an air gap, and the stator yoke. In our case, the shaft radius is set to zero

Psaltis, Demetri

447

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

1993-05-18T23:59:59.000Z

448

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

1993-01-01T23:59:59.000Z

449

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

450

Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide  

SciTech Connect (OSTI)

The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

2007-09-30T23:59:59.000Z

451

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

452

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

453

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

454

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

455

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

456

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

457

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

458

A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

459

Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost...

460

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen Storage in Metal-Organic Frameworks  

SciTech Connect (OSTI)

Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

Omar M. Yaghi

2012-04-26T23:59:59.000Z

462

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one be Stored? Hydrogen storage will be required onboard vehicles and at hydrogen production sites, hydrogen

463

Student Handbook SERVICES FOR STUDENTS WITH DISABILITIES  

E-Print Network [OSTI]

Student Handbook SERVICES FOR STUDENTS WITH DISABILITIES #12;Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Services for Students with Disabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Step students should take

Texas at Austin, University of

464

Solid evacuated microspheres of hydrogen  

DOE Patents [OSTI]

A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

1982-01-01T23:59:59.000Z

465

Advanced hydrogen utilization technology demonstration  

SciTech Connect (OSTI)

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

466

Hydrogen Economy: Opportunities and Challenges *  

E-Print Network [OSTI]

A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

467

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

468

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

469

Student Leadership Celebration Do you know a student who is an effective leader? Who plays an important role in  

E-Print Network [OSTI]

Student Leadership Celebration Do you know a student who is an effective leader? Who plays an important role in student clubs and organizations? Who is actively involved in Faculty or University? The Student Leadership Awards are designed to acknowledge and celebrate the accomplishments of student leaders

470

Geothermal hydrogen sulfide removal  

SciTech Connect (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

471

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

472

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies Loading

473

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies

474

Microsoft Word - 911167_0 Pt Design Rpt_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Revision 0 ENGINEERING SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Nuclear Heat Supply System Point Design Study for NGNP Conceptual Design...

475

Student Trainee (Operations Research Analyst)  

Broader source: Energy.gov [DOE]

This position is being filled under the Pathways Internship Program. The program is designed to provide students enrolled in a wide variety of educational institutions, from high school to graduate...

476

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

SciTech Connect (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

477

Development of efficient photoreactors for solar hydrogen production  

SciTech Connect (OSTI)

The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, Fl 32922-5703 (United States)

2011-01-15T23:59:59.000Z

478

Ris-R-1531(EN) Design and building of a new  

E-Print Network [OSTI]

: 52 Tables: 13 References: 23 Abstract: For hydrogen to become the future energy carrier a suitable way of storing hydrogen is needed, especially if hydrogen is to be used in mobile applicationsRisø-R-1531(EN) Design and building of a new experimental setup for testing hydrogen storage

479

HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL  

SciTech Connect (OSTI)

Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City] [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products] [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory] [Sandia Natl Laboratory

2012-09-06T23:59:59.000Z

480

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

SciTech Connect (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen student design" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

482

Hydrogen fueling station development and demonstration  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

483

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

484

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

485

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

report on renewable hydrogen production. We hope that youis one method of hydrogen production at small and mediumis one method of hydrogen production at small and medium

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

486

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirdevelop alternative hydrogen-energy scenarios. The scenariosof alternative hydrogen energy pathways to characterize an

Pigneri, Attilio

2005-01-01T23:59:59.000Z

487

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

488

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

Pigneri, Attilio

2005-01-01T23:59:59.000Z

489

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Partnership Finalizes Hydrogen Energy Roadmap, World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

490

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

491

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

492

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

SciTech Connect (OSTI)

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

493

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

494

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect (OSTI)

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

495

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

496

Development of High-Efficiency Clean Combustion Engines Designs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 --...

497

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Breakout Session - Bulk Hydrogen Storage RD&D Needs Top 6 Categories: Advanced Concepts Advanced Materials Codes & Standards Studies & Analyses Tools & Techniques Demonstration &...

498

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

499

Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a  

E-Print Network [OSTI]

a set of well-documented inverters of various ratings capable of quickly implementing a new control-powernts2\\ece power design archives\\documents\\specification documents\\sd00004-001 modular inverter systemModular Inverter for Advanced Control Applications May 2006 In the fall of 2003, a team of graduate

Kimball, Jonathan W.

500

Impact of hydrogen partial pressure on coal liquefaction. Final technical report  

SciTech Connect (OSTI)

This program was conducted to determine the effects of hydrogen partial pressure on the SRC-I direct coal liquefaction process and SRC-I Demonstration Plant design. A native solvent was produced in quantity and slurried with Kentucky number 9 Mulford coal in a series of coal liquefaction runs under varying hydrogen gas rates, temperatures, residence times, and hydrogen partial pressures. The results showed that hydrogen partial pressure significantly affected product distribution; the magnitude of the effect was comparable to changes in temperature and residence time. Also, the impact of hydrogen partial pressure was enhanced by increases in both temperature and residence time. Operating at low hydrogen partial pressure did not show any apparent advantage; it reduced coal conversion, reduced oil yield, and had a detrimental effect on the yield distribution of other products. An increase in hydrogen partial pressure had the following effects: increased coal conversion; increased conversion of asphaltenes and preasphaltenes to lighter products; significantly increased the oil yield; increased light gas yields; decreased sulfur content in the SRC; increased hydrogen content of the recycle solvent; and increased hydrogen consumption. This study strongly suggests that further studies should be conducted to optimize the effects of hydrogen partial pressure on the process, both within and, preferably, beyond the constraints of the current basic SRC-I design, considering the major impact of this variable on the process. 10 references, 37 figures, 10 tables.

Kang, D.; Hoover, D.S.; Schweighardt, F.K.

1984-06-01T23:59:59.000Z