National Library of Energy BETA

Sample records for hydrogen storage fuel

  1. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J. (Fremont, CA)

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  2. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" held on August 19, 2014. PDF icon Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Webinar Slides More

  3. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011. PDF icon infocallfeb11_lipman.pdf More Documents & Publications Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Financing Fuel Cells The Department of Energy Hydrogen and Fuel Cells

  4. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  5. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" held on August 19, ...

  6. Hydrogen fuel closer to reality because of storage advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one

  7. Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between flls. This is a challenging goal because hydrogen has physical characteristics that make it

  8. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  9. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  10. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  11. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  12. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems - Projected Performance and Cost Parameters | Department of Energy Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage

  13. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  14. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  15. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Experimental analysis and modeling FCTO Webinar Josh Eichman, PhD

  16. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect (OSTI)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  17. Hydrogen Electrochemical Energy Storage Device - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Hydrogen Electrochemical ...

  18. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Renewable hydrogen has no toxic or greenhouse gas emissions * Fuel cells using hydrogen achieve greater than 50% efficiency * Cost per mile will be comparable to...

  19. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Broader source: Energy.gov (indexed) [DOE]

    Technologies | Department of Energy Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: -technical glitches, which I'm sure we're all very familiar with. I'm going to go through a few housekeeping items before I turn it over to today's speaker. Today's webinar is being recorded, so a recording along with slides will be

  20. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES ...

  1. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  2. US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage and Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott McWhorter, PhD Representing: U.S. Department of Energy Fuel Cell Technologies Office 4 Hydrogen and Fuel Cells Program Overview Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome

  3. Fuel Cell Technologies Office Hydrogen Storage R&D Core Characterization Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office (FCTO) Hydrogen Storage R&D Core Characterization Capabilities An NREL-led National Laboratory Collaboration between NREL, LBNL, PNNL, and NIST NREL CORE CHARACTERIZATION CAPABILITIES The National Renewable Energy Laboratory (NREL) will offer specialized characterization for hydrogen storage materials through its DOE-FCTO core-capability validation laboratory. We offer PCT analysis of hydrogen storage materials to determine their gravimetric and volumetric

  4. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  5. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  6. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  7. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  8. Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage Materials Database Demonstration" held December 13, 2011.

  9. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. *

  10. Hydrogen Storage Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. PDF icon Hydrogen Storage More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

  11. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy Storage Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/2011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr. Monterey R. Gardiner Technology Manager Monterey.Gardiner@ee.doe.gov Fuel Cell Technologies Office U.S. Department of Energy May 14 th & 15 th 2014 at the Grand Sheraton Hotel 2 | Fuel Cell Technologies Program Source: US DOE 11/2/2011 eere.energy.gov * Previous Analysis Efforts by DOE * National Laboratories,

  12. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop

    Broader source: Energy.gov [DOE]

    Agenda and presentations from the Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop hosted by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office and Pacific Northwest National Laboratory in Dallas, Texas, on October 29, 2015.

  13. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    This document, revised in May 2015, describes the basis for the technical targets for onboard hydrogen storage for light-duty fuel cell vehicles in the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan and includes a detailed explanation of each target.

  14. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  15. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen

  16. An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  17. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STORAGE SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.3 - 1 3.3 Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including stationary power, portable power, and transportation. Also, hydrogen can be used as a medium to store energy created by intermittent renewable power sources (e.g., wind and solar) during periods of high availability and low

  18. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  19. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  20. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... International Journal of Hydrogen Energy 38(5): 2039-2061. 9 Grid Operation ... University of Technology and Energy Economics and Public Sector Management, WP-EM-20, http:...

  1. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas

  2. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOEs Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  3. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  4. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Revised May 2015 This target explanation is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Fiat Chrysler Automotive, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America,

  5. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop

    Broader source: Energy.gov [DOE]

    On January 25, 2006, the U.S. Department of Energy, together with the FreedomCAR & Fuel Partnership, held a workshop to review and discuss ongoing hydrogen storage and delivery analysis efforts...

  6. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive

  7. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  8. Target Explanation Document: Onboard Hydrogen Storage for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles This ...

  9. advanced hydrogen storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen storage materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  11. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  12. Hydrogen storage gets new hope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  13. Capacity Enhancement of Aqueous Borohydride Fuels for hydrogen storage in liquids

    SciTech Connect (OSTI)

    Schubert, David M.; Neiner, Doinita; Bowden, Mark E.; Whittemore, Sean M.; Holladay, Jamelyn D.; Huang, Zhenguo; Autrey, Thomas

    2015-10-05

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of Protonex Inc. for useful discussion regarding liquid hydrogen storage materials for portable power applications and the U.S. DoE Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office for their continued interest in liquid hydrogen storage carriers. Pacific Northwest National Laboratory is a multi-program national laboratory operated for DOE by Battelle. The authors dedicate the work to the memory of Professor Sheldon Shore. His contributions to boron hydride chemistry set the foundation for many who have followed.

  14. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  15. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  16. Hydrogen Storage Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Hydrogen Storage Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Storage Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the latest

  17. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  18. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage ...

  19. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Greenville Avenue Room Omni Dallas Hotel 555 S Lamar St, Dallas, TX 75202 Thursday, October 29, 2015 8:00 AM - 12:30 PM http://www.thecamx.org/other-meetings-events/ (under "Co-Located Meetings" tab) Organized by U.S. Department of Energy - Office of Energy Efficiency & Renewable Energy - Fuel Cell Technologies Office and Pacific Northwest National Laboratory Workshop Agenda:

  20. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Alane for Hydrogen Storage and Delivery - Accelerating Innovation Webinar Presentation - June 2012 (7,079 KB) <p> Schematic representation of &nbsp;mechanical alloying reaction during ball

  1. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  2. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  3. Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technical Targets | Department of Energy Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Download presentation slides from the "Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets" webinar presented by the U.S. Department of Energy Fuel Cell Technologies Office on June 25, 2013. PDF icon Hydrogen

  4. High Pressure Hydrogen Storage in Carbon Nanotubes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search High Pressure Hydrogen Storage in Carbon Nanotubes Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary Hydrogen storage for transportation is one of the most important problems faced in implementing a "hydrogen economy". Hydrogen can be produced in many ways, but then must be stored for use by fuel cells. The U.S. Department of Energy's

  5. Stationary High-Pressure Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Pressure Hydrogen Storage Stationary High-Pressure Hydrogen Storage This presentation by Zhili Feng of Oak Ridge National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_7_feng.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Materials for High Pressure Fuel Injection Systems R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels

  6. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells. ...

  7. Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis workshop. PDF icon wkshp_storage_agenda.pdf More Documents & Publications DOE and FreedomCAR and Fuels Partnership: Analysis Workshop DOE and FreedomCAR and Fuel Partnership Analysis Workshop Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda

  8. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  9. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  10. US DRIVE Hydrogen Storage Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technical Team Roadmap US DRIVE Hydrogen Storage Technical Team Roadmap The scope of the Hydrogen Storage Tech Team is to review and evaluate the potential, and limitations, of novel approaches, materials, and systems for hydrogen storage onboard light-duty fuel cell vehicles and provide feedback to the U.S. Department of Energy (DOE) and Partnership stakeholders. Generate system goals and performance targets, and establish test methods for hydrogen storage systems onboard vehicles.

  11. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles R&D of Large Stationary HydrogenCNGHCNG Storage Vessels

  12. Technical Forum Participants at the International Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ihfpvgrouplarge.pdf More Documents & Publications R&D of Large Stationary HydrogenCNGHCNG Storage Vessels Forum Agenda: International Hydrogen Fuel and Pressure Vessel ...

  13. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems—Current Performance and Cost

    Broader source: Energy.gov [DOE]

    This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year, and presents the current projected performance and cost of these systems against the DOE hydrogen storage system targets.

  14. Alane for Hydrogen Storage and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alane for Hydrogen Storage and Delivery June 2012 BROOKHAVEN NATIONAL LABORATORY Why Hydrogen? * Oil is a limited resource, generates green house gas and much of the worlds supply lies outside the U.S. * 1 lb of hydrogen has the same energy as 3 lbs of gasoline 2 H 2 O H 2 O ...only emission is water (H 2 O) Hydrogen is a clean fuel and produces no CO 2 Hydrogen---powered fuel cells can supply energy to power a nything f rom a utomobiles t o h omes t o computers. 3 BROOKHAVEN NATIONAL LABORATORY

  15. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage ... Monterey R. Gardiner Technology Manager Monterey.Gardiner@ee.doe.gov Fuel Cell ...

  17. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and ... Program Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage Workshop

  18. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  19. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  20. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  1. Hydrogen storage and supply system - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and ...

  2. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  3. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  4. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  5. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Spent fuel storage alternatives

    SciTech Connect (OSTI)

    O'Connell, R.H.; Bowidowicz, M.A.

    1983-01-01

    This paper compares a small onsite wet storage pool to a dry cask storage facility in order to determine what type of spent fuel storage alternatives would best serve the utilities in consideration of the Nuclear Waste Policy Act of 1982. The Act allows the DOE to provide a total of 1900 metric tons (MT) of additional spent fuel storage capacity to utilities that cannot reasonably provide such capacity for themselves. Topics considered include the implementation of the Act (DOE away-from reactor storage), the Act's impact on storage needs, and an economic evaluation. The Waste Act mandates schedules for the determination of several sites, the licensing and construction of a high-level waste repository, and the study of a monitored retrievable storage facility. It is determined that a small wet pool storage facility offers a conservative and cost-effective approach for many stations, in comparison to dry cask storage.

  8. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Environmental Management (EM)

    Department of Energy Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 1:43pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  9. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement DE-FOA-0001412: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations includes up to $35 million in funding across four areas of interest: research and development (R&D) for hydrogen fuel technologies; demonstration and deployment for manufacturing technologies and Climate Action Champions; R&D within consortia for fuel cell performance and durability and hydrogen storage materials; and cost and performance analyses for hydrogen production and delivery, hydrogen storage, and fuel cells.

  10. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  11. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  12. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  13. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Materials R&D Workshop Hydrogen Storage Lab PI Workshop: HyMARC and NREL-Led Characterization Effort Combinatorial Approach for Hydrogen Storage Materials...

  14. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  15. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation » Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell and hydrogen technologies pave the way for the adoption of cleaner fuels and more efficient energy storage in vehicles and buildings. Explore EERE's hydrogen and fuel cells success stories below. December 8, 2015 Photo Courtesy | Doosan Fuel Cell America, Inc. Doosan Fuel Cell Takes Closed

  16. Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation Services DOE and Industry Canada, Sacramento, May 14-15, 2014 Hydrogenics is a world leader in water electrolysis products and hydrogen fuel cell power systems 2 Onsite Generation Electrolyzers Industrial Hydrogen Hydrogen Fueling Power Systems Fuel Cell Modules Stand-by Power Mobility Power Energy Storage Power-to-Gas 

  17. Status of Hydrogen Storage Technologies

    Broader source: Energy.gov [DOE]

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  18. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage, and Dispensing Workshop | Department of Energy Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop This presentation was given by DOE's Sunita Satyapal at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 20, 2012. PDF icon Fuel Cell Technologies Program Overview More Documents & Publications Fuel Cell Technologies Program Overview:

  20. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity hydrogen storage materials Savannah River National Laboratory Contact SRNL About This Technology Plot of Number of hydrogen atoms per lithium atom vs the Mol ratio of C<sub>60</sub>:Li.&nbsp; An ratio of 1:6

  1. NREL: Hydrogen and Fuel Cells Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Research Photo of a fuel cell electric vehicle refueling at a hydrogen dispensing station. NREL hydrogen and fuel cell research focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation, stationary, and portable applications. Projects range from fundamental research to overcome technical barriers, manufacturing process improvement to enable high-volume fuel cell production,

  2. Hydrogen Storage Technologies: Long-Term Commercialization Approach with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Products First | Department of Energy Technologies: Long-Term Commercialization Approach with First Products First Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First More Documents & Publications DOE Hydrogen and Fuel Cell

  3. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNLs objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNLs Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  4. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  5. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  6. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  7. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  8. solid-state hydrogen storage gaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid-state hydrogen storage gaps - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride

  10. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  11. Prediction of Novel Hydrogen Storage Reactions

    Broader source: Energy.gov [DOE]

    This presentation on the Prediction of Novel Hydrogen Storage Reactions was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  12. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  13. NREL: Hydrogen and Fuel Cells Research - NREL Fuel Cell and Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Program Photo of scientist in laboratory setting. NREL technician conducts cyclic voltammetry experiment. Photo by Dennis Schroeder, NREL 18844 NREL Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation, stationary, and portable applications. Led by Laboratory Program Manager Keith Wipke, these

  14. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen ...

  15. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay ...

  16. Hydrogen and Fuel Cell Activity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity Hydrogen and Fuel Cell Activity This presentation by John Christensen of the Defense Logistics Agency was given at the Fuel Cell Meeting in April 2007. PDF icon fuel_cell_mtng_christensen.pdf More Documents & Publications U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics The Defense Logistics Agency, Hydrogen-Powered Forklift Test-Bed Brief State of the States: Fuel Cells

  17. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming (Augusta, GA)

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  18. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  19. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  20. A Brief Overview of Hydrogen Storage Issues and Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Brief Overview of Hydrogen Storage Issues and Needs A Brief Overview of Hydrogen Storage Issues and Needs Presentation by George Thomas at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_thomas.pdf More Documents & Publications On-Board Storage Systems Analysis The U.S. National Hydrogen Storage Project Overview (presentation) DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected

  1. Materials-Based Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials-Based Hydrogen Storage The Fuel Cell Technologies Office's (FCTO's) applied materials-based hydrogen storage technology research, development, and demonstration (RD&D) activities focus on developing materials and systems that have the potential to meet U.S. Department of Energy (DOE) 2020 light-duty vehicle system targets with an overarching goal of meeting ultimate full-fleet, light-duty vehicle system targets. Materials-based research is currently being pursued

  2. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Reactions and Their Application to Destabillzed Hydride Mixtures Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials...

  3. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Technologies Roadmap May Hydrogen Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66

  4. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect (OSTI)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  5. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  6. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  7. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  8. Physical Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage » Physical Hydrogen Storage Physical Hydrogen Storage Physical storage is the most mature hydrogen storage technology. The current near-term technology for onboard automotive physical hydrogen storage is 350 and 700 bar (5,000 and 10,000 psi) nominal working-pressure compressed gas vessels-that is, "tanks." While low-pressure liquid hydrogen, near the normal boiling point of 20 K, is routinely used for bulk hydrogen storage and transport, there is currently little

  9. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  10. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  11. NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Technology Analysis NREL's hydrogen systems analysis activities provide direction, insight, and support for the development, demonstration, and deployment of a broad range of hydrogen technologies. Analysis focuses on hydrogen production, storage, and delivery systems for fuel cell electric vehicles (FCEVs) as well as stationary fuel cells and emerging-market applications such as material handling and backup power. NREL's hydrogen systems analysts evaluate R&D goals

  12. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Environmental Management (EM)

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  13. Combinatorial Approaches for Hydrogen Storage Materials (presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon ht_nist_bendersky.pdf More Documents & Publications High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop Hydrogen Storage Lab PI Workshop: HyMARC and

  14. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department ...

  15. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  16. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon pressurerelief_compressedcontainers_ostw.pdf More Documents & Publications Fueling Components Testing and Certification CSA International Certification Discussion Hydrogen Technology Workshop U.S. Department of Energy Onboard Storage

  17. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016.

  18. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  19. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  20. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  1. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  2. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle

  3. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  4. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  5. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  6. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  7. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Storage - Challenges and Opportunities Hydro-Pac Inc., A High Pressure Company

  8. The U.S. National Hydrogen Storage Project Overview (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D...

  9. Agenda for the Hydrogen Delivery and Onboard Storage Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage...

  10. Hydrogen Storage Materials Requirements to Meet the 2017 On Board...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets...

  11. Hydrogen storage compositions (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Hydrogen storage compositions Citation Details In-Document Search Title: Hydrogen storage compositions Compositions for hydrogen storage and methods of making such...

  12. Chemical Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for these irreversible hydrogen storage systems. Significant technical issues remain...

  13. Hydrogen Storage Research and Development Activities

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage research and development (R&D) activities are aimed at increasing the gravimetric and volumetric energy density and reducing the cost of hydrogen storage systems for...

  14. Combinatorial Approach for Hydrogen Storage Materials (presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon ht_ge_soloveichik.pdf More Documents & Publications Final Report for the DOE Metal Hydride Center of Excellence Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed

  15. Regenerative Fuel Cells for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel Cells Workshop, April 19, 2011 PDF icon rev_fc_wkshp_mittelsteadt.pdf More Documents & Publications Reversible Fuel Cells Workshop Summary Report Development of Reversible Fuel Cell Systems at Proton Energy Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton

  16. Hydrogen Storage Basics | Department of Energy

    Office of Environmental Management (EM)

    Storage Basics Hydrogen Storage Basics Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 miles between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up

  17. Amineborane Based Chemical Hydrogen Storage - Final Report

    SciTech Connect (OSTI)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also demonstrated that H2-release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical hydride based H2release systems may require the use of synergistic dehydrogenation methods to induce H2-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.

  18. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan R&D Manager Office of Technology and Innovations Phone: 847 768 0812

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  19. High capacity hydrogen storage nanocomposite materials

    DOE Patents [OSTI]

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  20. Cold/Cryogenic Composites for Hydrogen Storage Applications in FCEVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies Office (FCTO) Cold/Cryogenic Composites for Hydrogen Storage Applications in FCEVs October 29, 2015 Dallas, TX Dr. Ned Stetson H 2 Storage Program Manager Fuel Cell Technologies Office U.S. Department of Energy Fuel Cell Technologies Office | 2 DOE H 2 Storage Program Contacts http://energy.gov/eere/fuelcells/fuel-cell-technologies-office Ned Stetson - Program Manager 202-586-9995 ned.stetson@ee.doe.gov Grace Ordaz 202-586-8350 grace.ordaz@ee.doe.gov

  1. hydrogen-fuel-cell-powered generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 6, 2011 DOE Launches Comprehensive Hydrogen Storage Materials Clearinghouse Free access resource aims to accelerate advanced materials research and

  3. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  4. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  5. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  6. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  7. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  8. Webinar: Hydrogen Storage Materials Database Demonstration | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Database Demonstration," originally presented on December 13, 2011. In addition to this text version of the audio, you can view the presentation slides. Lindsay Southerland: Good morning. My name is Lindsay Southerland and I'm with BCS, Inc. It is my pleasure to welcome you to the Hydrogen Storage Materials Database webinar, which is sponsored by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Program. Our featured presenters today are Ned Stetson, hydrogen storage

  9. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  10. Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards $4.6 Million to Advance Hydrogen Storage Systems Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems April 8, 2015 - 2:54pm Addthis The Energy Department today announced up to $4.6 million for four projects to develop advanced hydrogen storage materials that have potential to enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. Advanced hydrogen storage systems will be

  11. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  12. California National Guard Sustainability Planning, Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Guard Sustainability Planning, Hydrogen Fuel Goals California National Guard Sustainability Planning, Hydrogen Fuel Goals Overview of California Guard Army Facilities, ANG ...

  13. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  14. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  15. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  16. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  17. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  18. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  19. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program Citation Details In-Document Search Title: 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology

  20. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Learning Demonstration Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the Interactive Composite Data Product demo map. Learn More Subscribe to the biannual Fuel Cell and Hydrogen Technology Validation newsletter, which highlights recent technology validation activities at NREL. Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and

  1. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver

  2. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  3. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  4. Hydrogen Storage Grand Challenge Individual Projects

    Broader source: Energy.gov [DOE]

    Hydrogen Storage Grand Challenge individual projects funded for three Centers of Excellence, led by the National Renewable Energy Laboratory, Sandia National Laboratories, and Los Alamos National Laboratory

  5. Hydrogen for Energy Storage Analysis Overview (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage Analysis Overview National Hydrogen Association Conference & Expo Darlene Steward, Todd Ramsden, Kevin Harrison National Renewable Energy Laboratory May 3-6, ...

  6. Hydrogen storage composition and method

    DOE Patents [OSTI]

    Wicks, G.G.; Heung, L.K.

    1994-01-01

    A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR){sub X} where R is an organic ligand of the form C{sub n}H{sub 2n+1}, and organometals of the form MO{sub x}Ry where R is an alkyl group, where M is an oxide-forming metal, n, x and y are integers and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 motes of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

  7. Hydrogen storage composition and method

    DOE Patents [OSTI]

    Heung, Leung K (Aiken, SC); Wicks, George G. (Aiken, SC)

    2003-01-01

    A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form C.sub.n H.sub.2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

  8. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality Results | Department of Energy Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon scs_05_rockward.pdf More Documents & Publications Effects of Impurities on Fuel Cell Performance and

  9. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with

  10. Energy Department Announces up to $4 Million for Advanced Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Up to $4 million in fiscal year 2014 funding will be made available for the continued development of advanced hydrogen storage systems and novel materials to provide adequate onboard storage for a wide range of applications including fuel cell ele

  11. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    71 Hydrogen and Fuel Cells Success Stories en Doosan Fuel Cell Takes Closed Plant to Full Production http:energy.goveeresuccess-storiesarticlesdoosan-fuel-cell-takes-closed-p...

  12. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  15. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  16. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  17. Hydrogen and Fuel Cell Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Marketing Summaries (107) Success Stories (1) Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  18. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Attendee List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRST NAME LAST NAME ORGANIZATION Jesse Adams U.S. DOE Fuel Cell Technologies Office Kyle Alvine Pacific Northwest National Laboratory Gene Berry Lawrence Livermore National Laboratory Ravi Deo U.S. DOE Advanced Manufacturing Office John Gangloff U.S. DOE Fuel Cell Technologies Office Allan Goldberg That Video Guy David Gotthold Pacific Northwest National Laboratory Patrick Hipp Composite Technology Development, Inc. Thanh Hua Argonne National Laboratory Justin Jackson National Aeronautics and

  19. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications DOE

  20. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  1. Autothermal hydrogen storage and delivery systems

    DOE Patents [OSTI]

    Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  2. Potential of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials (presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Throughput Experimentation with Ammonia Borane Solid Hydrogen Storage Materials Jonathan L. Male Pacific Northwest National Laboratory June 26, 2006 US Department of Energy Energy Efficiency and Renewable Energy (Chemical) Hydrogen Storage DOE EERE Chemical Hydrogen Center * Controlling release of hydrogen from NH 3 BH 3 - Regeneration of NH 3 BH 3 - Engineering, experiment and theory - Materials Discovery DOE BES Hydrogen Fuel Initiative * Structure and dynamics (Neutron and NMR) -

  3. DOE Theory Focus Session on Hydrogen Storage Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Theory Focus Session on Hydrogen Storage Materials DOE Theory Focus Session on Hydrogen Storage Materials This agenda provides information about the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. PDF icon theory_session_agenda.pdf More Documents & Publications Summary Report from Theory Focus Session on Hydrogen Storage Materials U.S. Department of Energy Theorty Focus Session on Hydrogen Storage Materials Prediction of New Hydrogen Storage Compounds and

  4. Cryo-Hydrogen Storage Workshop Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Workshop Welcome Cryo-Hydrogen Storage Workshop Welcome Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_6_stetson.pdf More Documents & Publications Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report Cryogenic Hydrogen Storage Systems Workshop Agenda Cryo-Compressed Hydrogen

  5. Activated aluminum hydride hydrogen storage compositions and uses thereof -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal 837,976 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Activated

  6. Cryogenic Capable High Pressure Containers for Compact Storage of Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Onboard Vehicles - Energy Innovation Portal 283176 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to

  7. High-Throughput/Combinatorial Techniques in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation) High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation)...

  8. High Througput Combinatorial Techniques in Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop Summary of the...

  9. DOE Materials-Based Hydrogen Storage Summit: Defining Pathways...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive...

  10. Cryo-Compressed Hydrogen Storage: Performance and Cost Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage: Performance and Cost Review Cryo-Compressed Hydrogen Storage: Performance and Cost Review Presented at the R&D Strategies for Compressed,...

  11. Summary Report from Theory Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials Kinetics, Mechanics and Microstructure Changes in Storage Media DOE Theory Focus Session on Hydrogen ...

  12. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems ...

  13. 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report...

  14. Hydrogen Storage Testing and Analysis Research and Development

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage R&D activities include testing, analysis, and developing recommended best practices. The status of hydrogen storage testing and analysis projects is detailed in the...

  15. Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryo-Compressed Hydrogen Storage: Performance and Cost Review Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications High-Pressure Tube ...

  16. Technical Assessment of Organic Liquid Carrier Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive...

  17. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications...

  18. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  19. Hydrogen storage compositions (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Hydrogen storage compositions Citation Details In-Document Search Title: Hydrogen storage compositions You are accessing a document from the Department of Energy's (DOE) SciTech...

  20. Hydrogen Storage Systems Analysis Meeting: Summary Report, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 This report highlights DOE's systems analysis work related to hydrogen storage materials and process ...

  1. Cost Analysis of Hydrogen Storage Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Stephen Lasher on cost analysis of hydrogen storage systems. PDF icon wkshpstoragelasher.pdf More Documents & Publications Analyses of Hydrogen Storage Materials ...

  2. Prediction of New Hydrogen Storage Compounds and Mixtures

    Broader source: Energy.gov [DOE]

    Presentation on the Prediction of New Hydrogen Storage Compounds and Mixtures given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  3. Storage, generation, and use of hydrogen

    DOE Patents [OSTI]

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  4. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a “bottom-up” costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  5. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction...

  6. Status & Direction for Onboard Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Direction for Onboard Hydrogen Storage Status & Direction for Onboard Hydrogen Storage Presentation prepared by Andy Abele for the DOE Hydrogen Manufacturing R&D Workshop. PDF icon mfg_wkshp_abele.pdf More Documents & Publications High Pressure Hydrogen Tank Manufacturing Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications HYDROGEN TO THE HIGHWAYS

  7. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop Safety and Regulatory Structure for CNG, CNG-Hydrogen Vehicles and Fuels in India International Hydrogen Fuel ...

  8. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita...

  9. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory...

  10. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

  11. Infinity Fuel Cell and Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Place: Suffield, Connecticut Zip: 6078 Sector: Hydro, Hydrogen Product: A team of fuel cell, hydrogen and...

  12. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage fields are the largest energy storage resource in the region Goleta Playa Del Rey Honor Rancho Aliso Canyon 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO SCALE RECIPROCATING COMPRESSOR STATION CENTRIFUGAL COMPRESSOR STATION PRESSURE LIMITING STATION STORAGE FIELD 4/00 P AC IF IC GA S

  13. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueled transportation systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  16. Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    Download presentation slides and questions and answers from the DOE Fuel Cell Technologies Office webinar, Introduction to SAE Hydrogen Fueling Standardization, held on September 11, 2014.

  17. Reference Designs for Hydrogen Fueling Stations Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  18. Compressed Hydrogen Storage Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage Workshop Agenda Compressed Hydrogen Storage Workshop Agenda Agenda for the first day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_day1_agenda.pdf More Documents & Publications Cryogenic Hydrogen Storage Systems Workshop Agenda Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary

  19. Cryogenic Hydrogen Storage Systems Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Workshop Agenda Cryogenic Hydrogen Storage Systems Workshop Agenda Agenda for the second day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_day2_agenda.pdf More Documents & Publications Compressed Hydrogen Storage Workshop Agenda Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary

  20. The U.S. National Hydrogen Storage Project Overview (presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon doe_overview_satyapal.pdf More Documents & Publications A Brief Overview of Hydrogen Storage Issues and Needs On-Board Storage Systems Analysis Target Explanation

  1. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage

    Office of Scientific and Technical Information (OSTI)

    for Automotive Applications (Journal Article) | SciTech Connect Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications Citation Details In-Document Search Title: Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to

  2. Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen Storage Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report Submitted by: The Chemical Hydrogen Storage Center of Excellence Coordinating Council Authors: Kevin C. Ott, Los Alamos National Laboratory Sue Linehan, Rohm and Haas Company Frank Lipiecki, Rohm and Haas Company Christopher L. Aardahl, Pacific Northwest National Laboratory May 2008 Acknowledgements The

  3. 2008 DOE Theory Focus Session on Hydrogen Storage Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8 DOE Theory Focus Session on Hydrogen Storage Materials 2008 DOE Theory Focus Session on Hydrogen Storage Materials The U.S. Department of Energy, through the Office of Science (Basic Energy Sciences) and the Office of Energy Efficiency and Renewable Energy (Fuel Cell Technologies) held a second Theory Focus Session on Hydrogen Storage Materials on March 24, 2008 in San Francisco, California, in conjunction with the 2008 Spring Materials Research Society Meeting. The meeting provided

  4. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  5. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  6. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon...

  7. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  8. Say hello to cheaper hydrogen fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Say hello to cheaper hydrogen fuel cells Say hello to cheaper hydrogen fuel cells Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel cells. April 22, 2011 image description Los Alamos National Laboratory researchers Gang Wu, left, and Piotr Zelenay examine a new non-precious-metal catalyst that can significantly reduce the cost of hydrogen fuel cells while maintaining performance. Contact Communications Office (505) 667-7000 Los Alamos scientists

  9. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  10. Underground Storage Tanks: New Fuels and Compatibility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Underground Storage Tanks: New Fuels and Compatibility Biomass 2014 Demand-Developing Biomarkets Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels July 29, 2014 Ryan Haerer EPA Office of Underground Storage Tanks 1 Storing High Octane Fuels in Underground Storage Tanks (USTs)  Mid range E20-E30 high octane fuels being considered as possible path forward  Storing high octane ethanol blended fuels will require careful consideration of material

  11. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  12. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect (OSTI)

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  13. Virtual Center of Excellence for Hydrogen Storage- Chemical Hydrides

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  14. ANL Capabilities for Hydrogen Storage: Chemical Hydride Center

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  15. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to SAE Hydrogen Fueling Standardization Will James U.S. Department of Energy Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov SAE INTERNATIONAL U.S. DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization SAE INTERNATIONAL PARTICIPANTS AND AGENDA 4 DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization *Will James -

  16. Overview of Hydrogen and Fuel Cells: National Academy of Sciences March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Cells: National Academy of Sciences March 2011 Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Presentation by Sunita Satyapal to the National Academy of Sciences Committee on Transition to Alternative Vehicles and Fuels on March 22, 2011. PDF icon Overview of Hydrogen and Fuel Cells More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Small Fuel Cell Systems with Hydrogen Storage

  17. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-3954P Geologic Storage of Hydrogen Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal Staff Economist, Ph.D. Earth Systems Department 2 Geologic Storage Why underground storage?

  18. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Showcase | Department of Energy Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tvp_04_hitchcock.pdf More Documents & Publications Hydrogen Education in Texas DOE Vehicle Technologies Program 2009

  19. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  20. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy Savers [EERE]

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Hydrogen and Fuel Cell Technologies Research,...

  1. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  2. Hydrogen Fuel Cell Basics | Department of Energy

    Energy Savers [EERE]

    Education » Increase Your H2IQ » Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell-an energy conversion device that can efficiently capture and use the power of hydrogen-is the key to making it happen. Learn about fuel cell applications, benefits, how they work, and challenges and research directions. Fuel Cell Applications Stationary Power Stations Stationary fuel cells can be

  3. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  4. Hydrogen Storage "Think Tank" Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Think Tank" Report Hydrogen Storage "Think Tank" Report This report is a compilation of information exchanged at a forum on March 14, 2003, in Washington, D.C. The forum was assembled for innovative and non-conventional brainstorming on this issue of hydrogen storage technologies. PDF icon Hydrogen Storage "Think Tank" Report More Documents & Publications Hydrogen Program Goal-Setting Methodologies Report to Congress FY 2003 Progress Report for Hydrogen, Fuel

  5. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of person at work in laboratory setting. NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research projects support the development and adoption of cost-effective, high-performance fuel cell systems and sustainable hydrogen technologies for transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery

  6. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  7. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  8. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2015-10-01

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  9. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2013-10-01

    This report summarizes comments from the Peer Review Panel at the 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 13-17, 2013, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  10. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  11. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  12. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  13. Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Expo | Department of Energy 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010. PDF icon Overview of Hydrogen and Fuel Cell Activities More Documents & Publications Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Fuel

  14. South Carolina Hydrogen and Fuel Cell Alliance | Open Energy...

    Open Energy Info (EERE)

    Hydrogen and Fuel Cell Alliance Jump to: navigation, search Name: South Carolina Hydrogen and Fuel Cell Alliance Place: Columbia, South Carolina Zip: 29201 Sector: Hydro, Hydrogen...

  15. Hydrogen Fuel for Material Handling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel for Material Handling Hydrogen Fuel for Material Handling Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo PDF icon...

  16. Hydrogen Storage R&D Core Characterization Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet summarizing the hydrogen storage R&D core characterization capabilities of the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and the National Institute for Standards and Technology (NIST) Center for Neutron Research. These labs are part of an NREL-led national laboratory collaboration supported by the U.S. Department of Energy Fuel Cell Technologies Office.

  17. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  18. Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy | Department of Energy Technical Advisory Committee Biennial Report to the Secretary of Energy Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy HTAC review for U.S. Department of Energy of hydrogen programs and technologies for the production, distribution, delivery, storage and use of hydrogen energy and fuel cells. PDF icon Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy More

  19. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop PDF icon mfg_wkshp_plenary.pdf More Documents & Publications DOE Hydrogen Program Overview U.S. Department of Energy Hydrogen Program A Brief Overview of Hydrogen Storage Issues and Needs

  20. Hydrogen Storage and Production Project

    SciTech Connect (OSTI)

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  1. Degradation of EBR-II driver fuel during wet storage

    SciTech Connect (OSTI)

    Pahl, R. G.

    2000-03-09

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH.

  2. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. PDF icon ssawg_summary_report_0608.pdf More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

  3. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NRELFS-5600-48437 * Revised December 2010 Hydrogen electrical energy storage and dispatch scenario Electricity Hydrogen Storage Electrolyzer Fuel Cell Electricity Hydrogen Storage ...

  4. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2011-12-13

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  5. Multi-component hydrogen storage material

    DOE Patents [OSTI]

    Faheem, Syed A.; Lewis, Gregory J.; Sachtler, J.W. Adriaan; Low, John J.; Lesch, David A.; Dosek, Paul M.; Wolverton, Christopher M.; Siegel, Donald J.; Sudik, Andrea C.; Yang, Jun

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0hydrogen storage compared to binary systems such as MgH.sub.2--LiNH.sub.2.

  6. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, Hydrogen Fueling Guideline Steve Mathison Development Fueling-MC Method Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor SAE TIR J2601 Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Guideline SAE TIR J2601 CURRENT USES AND SUPPORTING ORGANIZATIONS 4 US (DOE,CaFCP/ CARB, CEC) EU CEP/ H2 Mobility/ NOW

  7. NREL: Hydrogen and Fuel Cells Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. The following online resources provide publications about hydrogen and fuel cell R&D. NREL Publications Database The NREL publications database offers a wide variety of documents related to hydrogen and fuel cell technologies. Search the database or find publications according to these popular keywords: Fuel cell electric vehicles | fuel cell backup power | fuel

  8. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  9. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the DOE Hydrogen and Fuel Cells Program focuses ...

  10. Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meeting: Summary Report, March 29, 2005 Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 This report highlights DOE's systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems. PDF icon ssawg_mtg.pdf More Documents & Publications Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 Hydrgoen Storage Systems Analysis

  11. Summary Report from Theory Focus Session on Hydrogen Storage Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Theory Focus Session on Hydrogen Storage Materials Summary Report from Theory Focus Session on Hydrogen Storage Materials This report provides information about the Theory Focus Session on Hydrogen Storage Materials held on May 18, 2006 in Crystal City, Va. PDF icon theory_session_summary.pdf More Documents & Publications Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials Kinetics, Mechanics and Microstructure Changes in Storage Media DOE

  12. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

  13. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  14. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  15. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Pressure Vessel Forum | Department of Energy DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010, in Beijing, China. PDF icon U.S. DOE Hydrogen and Fuel Cell Activities More Documents & Publications DOE Hydrogen and Fuel Cell Overview:

  16. Hydrogen and Fuel Cell Technical Advisory Committee

    SciTech Connect (OSTI)

    2012-03-21

    The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under Section 807 of the Energy Policy Act of 2005 to provide technical and programmatic advice to the Energy Secretary on DOE's hydrogen research, development, and demonstration efforts.

  17. Welcome to Hydrogen and Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TA BLE OF CON TEN TS Table of Contents INTRODUCTION a. Welcome to the World of Hydrogen and Fuel Cells!....................................................................1 b. Knowledge Inventories i. Pre-Knowledge Inventory ......................................................................................................3 ii. Post-Knowledge Inventory ....................................................................................................5 HYDROGEN a. Introductory Activity -

  18. Hydrogen and Fuel Cell Technologies Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Overview Hydrogen and Fuel Cell Technologies Overview Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Hydrogen and Fuel Cell Technologies Overview More Documents & Publications Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells DOE Hydrogen and Fuel Cell

  19. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-08-01

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  20. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Broader source: Energy.gov (indexed) [DOE]

    summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C. ssawgminutes1206.pdf More Documents & Publications Hydrgoen Storage...

  1. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry ...

  2. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  3. NREL: Hydrogen and Fuel Cells Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell News The following news stories highlight hydrogen and fuel cell research at NREL. For more information about NREL's research, development, and deployment of transportation and hydrogen technologies, refer to the Transportation and Hydrogen Newsletter. Subscribe to the RSS feed RSS . Learn about RSS. March 10, 2016 NREL to Collaborate with Small Clean Energy Businesses as Part of DOE Pilot Program The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory

  4. Nanomaterials for Hydrogen Storage Applications: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemann, Michael U.; Srinivasan, Sesha S.; Phani, Ayala R.; Kumar, Ashok; Goswami, D. Yogi; Stefanakos, Elias K.

    2008-01-01

    Nmore » anomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS 2 / MoS 2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc.) and their hydrogen storage characteristics are outlined.« less

  5. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  6. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  7. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  8. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides Download presentation slides from the...

  9. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  10. Basic Research for the Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    PEM Fuel Cells Carnegie Mellon University Rapid Ab Initio Screening of Ternary Alloys for Hydrogen Production Rensselaer Polytechnic Institute Sol-Gel Based Polybenzimidazole...

  11. NREL: Hydrogen and Fuel Cells Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Hydrogen & Fuel Cells Research Home Projects Success Stories Research Staff Facilities...

  12. Webinar: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  13. Method and System for Hydrogen Evolution and Storage

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  14. Method and system for hydrogen evolution and storage

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  15. Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference

    Broader source: Energy.gov [DOE]

    Presentation by Sunita Satyapal at the Hydrogen and Fuel Cells 2011 International Conference on May 17, 2011.

  16. Liquid-hydrogen-fueled passenger aircraft

    SciTech Connect (OSTI)

    Not Available

    1986-03-11

    This Chinese translation discusses the idea that passenger aircraft will eventually use liquid-hydrogen fuel. There is a large reserve of hydrogen and hydrogen poses no danger to the environment. Hydrogen has high calorific value, high specific heat, low density, and low temperature. Aircraft will have to have liquid fuel tanks to carry the hydrogen and will have to be partially redesigned. Lockheed and NASA have considered such designs. A problem remains in the planning--the high cost of large extraction of liquid hydrogen.

  17. Hydrogen Storage "Think Tank" Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage "Think Tank" Report Hydrogen Storage "Think Tank" Report This report is a compilation of information exchanged at a forum on March 14, 2003, in Washington, D.C....

  18. Hydrogen and Fuel Cell Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Marketing Summaries (107) Success Stories (1) Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a full-grown

  19. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOE Patents [OSTI]

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  20. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Hydrogen & Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Dr. Sunita Satyapal Director Fuel Cell Technologies Office U.S. Department of Energy June 2014 2 | Fuel Cell Technologies Office eere.energy.gov Fuel Cell Market Market Growth Fuel cell markets continue to grow * >25% increase in global MWs shipped since 2012 * 35% increase in revenues from fuel cell systems shipped over last year * Consistent ~30% annual growth in global systems

  1. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies

  2. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Hydrogen) Marianne Mintz and Jerry Gillette, Argonne Catherine Mertes and Eric Stewart, RCF June 24, 2014 * Developed with the support of DOE's Office of Fuel Cell ...

  3. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Broader source: Energy.gov [DOE]

    Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

  4. High-Throughput and Combinatorial Screening of Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (presentation) | Department of Energy High-Throughput and Combinatorial Screening of Hydrogen Storage Materials (presentation) High-Throughput and Combinatorial Screening of Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon ht_snl_ronnebro_mcdaniel.pdf More Documents & Publications High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop

  5. Explanations of FreedomCAR/DOE Hydrogen Storage Technical Targets

    Broader source: Energy.gov [DOE]

    Summary of FreedomCAR Targets and Basis for Targets prepared for the Grand Challenge Hydrogen Storage Solicitation.

  6. Fuel removal, transport, and storage

    SciTech Connect (OSTI)

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  7. Powertech: Hydrogen Expertise Storage Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertech: Hydrogen Expertise Storage Needs Powertech: Hydrogen Expertise Storage Needs This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_10_das.pdf More Documents & Publications CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D Type 4 Tank Testing, Certification and Field Performance Data

  8. Hydrogen Storage Grand Challenge Centers of Excellence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Centers of Excellence Hydrogen Storage Grand Challenge Centers of Excellence DOE's Hydrogen Storage Grand Challenge Centers of Excellence and partners, led by NREL, SNL, and LANL PDF icon grand_challenge_centers.pdf More Documents & Publications Hydrogen Storage Grand Challenge Individual Projects Final Solar and Wind H2 Report EPAct 812.doc Microsoft Word - H2 National Release 2.doc

  9. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  10. NREL: Hydrogen and Fuel Cells Research - Early Fuel Cell Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrations Early Fuel Cell Market Demonstrations Photo of fuel cell backup power system in outdoor setting. Photo of fuel cell forklifts in warehouse setting. Fuel cell backup power systems offer longer continuous runtimes and greater durability than traditional batteries in harsh outdoor environments. For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries. Learn More Subscribe to the biannual Fuel Cell and Hydrogen

  11. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel...

  12. Cryocompressed Hydrogen Storage and Liquid Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryocompressed Hydrogen Storage & Liquid Delivery Jacob Leachman, Ph.D. Assistant Professor DOE H 2 Transmission & Delivery Workshop 2/26/2014 H Y P E R H drogen roperties for nergy esearch This presentation does not contain any proprietary, confidential, or otherwise restricted information. Jacob Leachman * DOE H 2 Transmission & Distribution Workshop * 2/25/2014 H Y P E R Why Cryogenic Hydrogen? * LH 2 tanker trucks delivered 80-90 % of total small merchant H 2 in 2010. 1 * Cryo-H

  13. Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy - DOT December 2009 CNG and Hydrogen Fuels Workshop Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon overview_doedot_ostw.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Safety and Regulatory Structure

  14. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

  15. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  16. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  17. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminants Image of a generic bar graph. Material Screening Data Tool Explore the results of fuel cell system contaminants studies. As fuel cell systems become more commercially competitive, and as automotive fuel cell research and development trends toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. At NREL, we are researching system-derived contaminants and hydrogen fuel quality. Air contaminants are of interest as

  18. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  19. Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Gutowska, Anna [Richland, WA; Li, Liyu [Richland, WA; Li, Xiaohong S [Richland, WA; Shin, Yongsoon [Richland, WA

    2011-06-21

    Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.

  20. Alternative Fuels Data Center: Hydrogen Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Delicious Rank Alternative Fuels Data Center:

  1. On-Site and Bulk Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » On-Site and Bulk Hydrogen Storage On-Site and Bulk Hydrogen Storage On-site hydrogen storage is used at central hydrogen production facilities, transport terminals, and end-use locations. Storage options today include insulated liquid tanks and gaseous storage tanks. The four types of common high pressure gaseous storage vessels are shown in the table. Type I All-metal cylinder Type II Load-bearing metal liner hoop wrapped with resin-impregnated continuous filament Type III

  2. Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Fuel Cell Technologies Office Overview: 2015 Hydrogen, Hydrocarbons, and Bioproduct Precursors...

  3. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  4. Energy Department Announces New Investment in Nuclear Fuel Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202)...

  5. Review of Used Nuclear Fuel Storage and Transportation Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry...

  6. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear fuel for extended

  7. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation...

  8. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

  9. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the ...

  10. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita ...

  11. Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers Pressure Relief Devices for Compressed Hydrogen Vehicle Fuel Containers These slides were presented at the...

  12. The Department of Energy Hydrogen and Fuel Cells Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies September 2011 The...

  13. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation ... May 14, 2012. PDF icon Hydrogen and Fuel Cells Program Overview More Documents & ...

  14. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation ... May 9, 2011. PDF icon Hydrogen and Fuel Cells Program Overview More Documents & ...

  15. Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation ... Department of Energy Hydrogen and Fuel Cells Program More Documents & Publications ...

  16. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation ... May 13, 2013. PDF icon Hydrogen and Fuel Cells Program Overview More Documents & ...

  17. Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation ... Department of Energy Hydrogen and Fuel Cells Program More Documents & Publications ...

  18. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  19. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  20. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  1. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE)...

  2. US National Institute of Hydrogen Fuel Cell Commercialization...

    Open Energy Info (EERE)

    Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name: US National Institute of Hydrogen Fuel Cell Commercialization Place: Columbia, South Carolina...

  3. Marine Hydrogen and Fuel Cell Association MHFCA | Open Energy...

    Open Energy Info (EERE)

    Hydrogen and Fuel Cell Association MHFCA Jump to: navigation, search Name: Marine Hydrogen and Fuel Cell Association (MHFCA) Place: Leipzig, Germany Zip: D-04318 Sector: Hydro,...

  4. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory...

  5. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Technology available for licensing: Two alternative strategies for detecting impurities in the hydrogen used in fuel...

  6. Legislative Update: State and Regional Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call...

  7. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2014 Budget Request Rollout to Stakeholders Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to Stakeholders Presentation slides from the Hydrogen and Fuel...

  8. Hydrogen and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM MANUFACTURING WORKSHOP Hydrogen and Fuel Cell Technologies Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Manager 8/11/2011 2 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov Purpose * Identify and prioritize challenges and barriers to manufacture of hydrogen and fuel cell systems and components * Identify and prioritize R&D activities that government can support to overcome

  9. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program DOE/CESA/TTC Hydrogen and Fuel Cells Webinar December 14, 2010 2 Examples of DOE-funded Partners and Locations - Fuel Cell Technologies Program TX NM AZ NC AR CA CO HI WA IL KY MA MN MO MS AL NV TN UT WV ID FL MI ND OR OH IN MT WY IO NE KS OK AK LA GA WI SC VA PA DE MD DC NJ NY RI CT VT NH ME SD Source: US DOE 12/2010 2 3 Fuel Cells: Addressing Energy Challenges 4

  10. Executive Summaries for the Hydrogen Storage Materials Center of Excellence- Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE

    Broader source: Energy.gov [DOE]

    This report contains the executive summaries of the final technical reports from the three Hydrogen Storage Centers of Excellence that operated from 2005 through 2010 to develop advanced hydrogen storage materials in the areas of Chemical Hydrogen Storage Materials, Hydrogen Sorbents, and Reversible Metal Hydrides.

  11. Theoretical Studies of Hydrogen Storage Alloys.

    SciTech Connect (OSTI)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  12. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF icon ssawg_summary_report.pdf More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

  13. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  14. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  15. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...pmaterialsveenstra.pdf More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D

  16. Surveillance of LWR spent fuel in wet storage. Final report, October 1984

    SciTech Connect (OSTI)

    Bailey, W.J.; Johnson, A.B. Jr.

    1984-10-01

    Battelle, Pacific Northwest Laboratories established a surveillance program for EPRI that documents the integrity of spent light-water reactor fuel and structural materials (spent fuel storage pool liners, racks, piping, etc.) during wet storage. The program involves providing an update on the overall performance of spent fuel in wet storage, monitoring Licensee Event Reports (LERs) for pertinent significant occurrences, identifying lead spent fuel assemblies that are of particular interest to EPRI, monitoring developments in fuel design and performance and assessing their influence on spent fuel storage characteristics, and identifying specific actions or programs that may be needed to maintain the viability of wet storage of spent fuel for extended periods. Experience to date indicates that wet storage is a well-developed technology with no associated major technological problems. Spent fuel storage pools are operated without substantial risk to the public or the plant personnel. A list of lead spent fuel assemblies is presented. Pertinent occurrences from LERs are listed. Very few fuel assemblies have suffered major mechanical damage as a result of handling operations at spent fuel storage pools. Experience to date with handling operations at spent fuel storage pools indicates that failed fuel rods and inadvertent fracturing of fuel rods can be accommodated. Minor problems have occurred with spent fuel storage pool components such as liners, racks, and piping. Surveillance continues to be needed on: (1) possible effects on handling and storage of spent fuel from extended burnup, hydrogen injection at boiling water reactors, and rod consolidation operations; (2) extended pool exposure of neutron-absorbing materials; (3) cracking of spent fuel storage pool piping at pressurized water reactors; and (4) control of impurities in spent fuel pool waters. 120 references, 13 figures, 10 tables.

  17. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  18. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable energies 2 * Climate protection: Global responsibility for the next generation. * Energy security: More independency from fossil fuels. * Securing the economy: Creating new markets and jobs through innovations. Three

  19. Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technical Advisory Committee Meeting | Department of Energy February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Presentation by Sunita Satyapal at the Hydrogen and Fuel Cell Technical Advisory Committee meeting on February 17, 2011. PDF icon Overview of Hydrogen and Fuel Cell Activities More Documents & Publications Overview of Hydrogen

  20. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  1. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  2. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  3. Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. The U.S. Department of Energy (DOE) is the

  4. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel ... Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels The ...

  5. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011

  6. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3/3/2011 eere.energy.gov Overview of Hydrogen and Fuel Cells FUEL CELL TECHNOLOGIES PROGRAM National Academy of Sciences Committee on Transition to Alternative Vehicles and Fuels Dr. Sunita Satyapal Program Manager Fuel Cell Technologies Program U.S. Department of Energy 3/22/2011 2 | Fuel Cell Technologies Program Source: US DOE 3/3/2011 eere.energy.gov Global Market Overview International Landscape favors H 2 & Fuel Cells * Germany (>$1.2B; 1,000 H 2 stations) * European Commission

  7. International Hydrogen Fuel and Pressure Vessel Forum

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27–29, 2010 in Beijing, China. High pressure...

  8. Hydrogen & Fuel Cells Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Fuel Cells Program Overview Hydrogen & Fuel Cells Program Overview 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary PDF icon pl003_satyapal_joint_plenary_2011_o.pdf More Documents & Publications Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview EERE Fuel Cell Technologies Program

  9. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon 20080910_state_regional_vision.pdf More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  10. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon

  11. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Office of Environmental Management (EM)

    Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell...

  12. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference This presentation by DOE's ...

  13. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  14. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  15. QER- Comment of Canadian Hydrogen and Fuel Cell Association

    Broader source: Energy.gov [DOE]

    Dear Sir/Madam, The Canadian Hydrogen and Fuel Cell Association (CHFCA) was pleased to participate in the September 18, 2014 special dialogue on the Quadrennial Energy Review (QER) that was held in Ottawa, Ontario, Canada. At this time, we understand the QER is seeking to provide a multiyear roadmap that focuses on energy infrastructure with specific attention on the transmission, storage and distribution (TS&D) systems that make up North America’s oil, gas and electricity infrastructure.

  16. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  17. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  18. Technical Assessment of Compressed Hydrogen Storage Tank Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report describing the U.S. Department of Energy's (DOE) assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were

  19. Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications Technical report describing DOE's assessment of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well an independent reviews of system cost

  20. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Animated Map Correlates Fuel Cell Usage for Backup Power with Grid Outages Snapshot graphic of a U.S. map that shows the location and operational status of backup power fuel cells systems as well as the location of grid outages. Learn how NREL developed the time-lapse geographical visualization map or view the animation, which covers January 2010 to December 2013. Learning Demonstration Validates Hydrogen Fuel

  1. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE Hydrogen Program Review, describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter. PDF icon Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review More Documents & Publications Fuel Cell Transit

  2. High-Throughput and Combinatorial Screening of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    htsnlronnebromcdaniel.pdf More Documents & Publications High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop Combinatorial Approaches for...

  3. Hydrogen storage materials and method of making by dry homogenation

    DOE Patents [OSTI]

    Jensen, Craig M. (Kailua, HI); Zidan, Ragaiy A. (Honolulu, HI)

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  4. Discovery of novel hydrogen storage materials: an atomic scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of novel hydrogen storage materials: an atomic scale computational approach Home Author: C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, V. Ozolins Year: 2008 Abstract:...

  5. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. PDF icon ssawgsummaryreport0608.pdf More Documents & Publications Hydrgoen...

  6. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint PDF icon 34851.pdf More Documents...

  7. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of...

  8. Hydrogen Storage Technologies: Long-Term Commercialization Approach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: Long-Term Commercialization Approach with First Products First Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First Presented...

  9. Executive Summaries for the Hydrogen Storage Materials Center...

    Broader source: Energy.gov (indexed) [DOE]

    contains the executive summaries of the final technical reports from the three Hydrogen Storage Centers of Excellence that operated from 2005 through 2010 to develop advanced...

  10. Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

    Broader source: Energy.gov [DOE]

    This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C.

  11. Final Report for the DOE Chemical Hydrogen Storage Center of...

    Broader source: Energy.gov (indexed) [DOE]

    and recommendations from the DOE's Chemical Hydrogen Storage Center of Excellence, led by Los Alamos National Laboratory with Pacific Northwest National Laboratory from 2005 ...

  12. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  13. High Throughput/Combinatorial Screening of Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Adriaan Sachtler from the High Throughput Combinatorial Analysis of Hydrogen Storage Materials Meeting PDF icon sachtler.pdf More Documents & Publications ...

  14. Cryo-Compressed Hydrogen Storage: Performance and Cost Review

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  15. Analyses of Compressed Hydrogen On-Board Storage Systems

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  16. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposition | Department of Energy Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel Cell Seminar and Exposition on October 19, 2010. PDF icon Hydrogen and Fuel Cell Technologies Update More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop 2010 Fuel Cell Project Kick-off Welcome DOE Hydrogen and Fuel Cell

  17. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. | Department of Energy Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from

  18. Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum Agenda for the International Hydrogen Fuel and Pressure Vessel Forum held Sept. 27-29, 2010, in Beijing, China PDF icon Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum More Documents & Publications International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Workshop Agenda: Compressed Natural Gas and

  19. Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview | Department of Energy Hydrogen and Fuel Cells Program Overview Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Hydrogen and Fuel Cells Program overview. PDF icon 01_satyapal_plenary_2015_amr.pdf More Documents & Publications Hydrogen and Fuel Cells Program

  20. Alternative Fuels Data Center: Hydrogen Benefits and Considerations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Hydrogen Benefits and Considerations on Digg Find More places

  1. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places

  2. Alternative Fuels Data Center: Hydrogen Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share

  3. Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives

  4. Hydrogen Storage Engineering Center of Excellence | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Center of Excellence Hydrogen Storage Engineering Center of Excellence The collaborative Hydrogen Storage Engineering Center of Excellence (HSECoE) conducts engineering research, development, and demonstration (RD&D) activities to address the engineering challenges posed by various storage technologies. These efforts include comprehensive system modeling and engineering analyses and assessments of materials-based storage system technologies for detailed comparisons against the

  5. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE Hydrogen and Fuel Cells Program describes the ...

  6. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  7. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest

  8. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview Total Energy USA Houston, Texas Dr. Sunita Satyapal Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy 11/27/2012 National Support for Clean Energy "We've got to invest in a serious, sustained, all-of- - President Barack Obama "Advancing hydrogen and fuel cell technology is an important part of the Energy Department's efforts to support the President's all-of-the-above energy

  9. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect (OSTI)

    McClaine, Andrew W.

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: Magnesium hydride slurry is stable for months and pumpable. The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (Milk of Magnesia) and magnesium oxide. We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. ? During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under a

  10. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Students & Educators » Higher Education » Hydrogen and Fuel Cell Programs Hydrogen and Fuel Cell Programs The links below provide information about colleges and universities that offer courses and other activities related to hydrogen and fuel cells. Many of these institutions have departments, centers, laboratories, and instructors dedicated to hydrogen and fuel cell research. Colleges and Universities with Fuel Cell-Specific Courses or Research Programs - Fuel Cell 2000's

  11. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Transformation » Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Find information about federal and state financial incentives for hydrogen fuel cell projects. Federal Incentives The Emergency Economic Stabilization Act of 2008 includes tax incentives to help minimize the cost of hydrogen and fuel cell projects. It offers an investment tax credit of 30% for qualified fuel cell property or $3,000/kW of the fuel

  12. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore » of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  13. Temperature for Spent Fuel Dry Storage

    Energy Science and Technology Software Center (OSTI)

    1992-07-13

    DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) calculates allowable initial temperatures for dry storage of light-water-reactor spent fuel and the cumulative damage fraction of Zircaloy cladding for specified initial storage temperature and stress and cooling histories. It is made available to ensure compliance with NUREG 10CFR Part 72, Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation (ISFSI). Although the program''s principal purpose is to calculate estimatesmore »of allowable temperature limits, estimates for creep strain, annealing fraction, and life fraction as a function of storage time are also provided. Equations for the temperature of spent fuel in inert and nitrogen gas storage are included explicitly in the code; in addition, an option is included for a user-specified cooling history in tabular form, and tables of the temperature and stress dependencies of creep-strain rate and creep-rupture time for Zircaloy at constant temperature and constant stress or constant ratio of stress/modulus can be created. DATING includes the GEAR package for the numerical solution of the rate equations and DPLOT for plotting the time-dependence of the calculated cumulative damage-fraction, creep strain, radiation damage recovery, and temperature decay.« less

  14. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Wednesday, 28 June 2006 00:00 Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store

  15. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  16. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  17. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  18. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Onboard Hydrogen Storage Systems for Transportation Applications Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_storage.pdf More Documents & Publications Status & Direction for Onboard Hydrogen Storage US DRIVE Hydrogen Storage Technical Team Roadmap

  19. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Broader source: Energy.gov [DOE]

    This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

  20. New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades six through eight) to understand the need for renewable energy sources and explore the emerging technology of hydrogen power. It is also an opportunity to engage the future generation of engineers and scientists. Los Alamos National Laboratory is a co-sponsor of the annual regional event along with the Public Service

  1. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Newsletter and Hydrogen Technology Validation Newsletter The Fuel Cell and Hydrogen Technology Validation biannual newsletter highlights recent fuel cell and hydrogen technology validation activities at NREL. Features include technical accomplishments, new website content, updates to our composite data products (CDPs), and our latest publications. Please contact our Technology Validation Team if you have any questions about the newsletter or about subscribing. Subscribe Subscribe

  2. Integrated technical and economic assessments of transport and storage of hydrogen

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)]|[Illinois Univ., Urbana, IL (United States); Smith, J.R. [Lawrence Livermore National Lab., CA (United States)

    1994-04-01

    Transportation will be a major market for hydrogen because of its great size and the value of energy at the wheels of a vehicle in comparison to its heating value. Hydrogen also offers important potential efficiency gains over hydrocarbon fuels. However, hydrogen end-use technologies will not develop without a reliable hydrogen supply infrastructure. By the same token, reliable infrastructures will not develop without end-use demand. Our task is to analyze the costs of various infrastructure options for providing hydrogen, as the number of vehicles serviced increased from very small numbers initially, to moderate numbers in the mid-term and to determine if a smooth transition may be possible. We will determine viable market sizes for transport and storage options by examining the technologies and the capital and operating costs of these systems, as well as related issues such as safety, construction time, etc. The product of our work will be data based scenarios of the likely transitions to hydrogen fuel, beginning with small and progressing to larger numbers of vehicles. We are working closely with the suppliers of relevant technologies to (1) determine realistic component costs, and (2) to assure availability of our analyses to business. Preliminary analyses indicate that the cost of transport and storage is as important as production cost in determining the cost of hydrogen fuel to the consumer, and that home electrolysis and centrally processed liquid hydrogen may provide hydrogen in the initial stages.

  3. Hydrogen & Fuel Cells Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Fuel Cells Program Overview Hydrogen & Fuel Cells Program Overview Plenary presentation at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon 03_satyapal_plenary_2013_amr.pdf More Documents & Publications DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cells Program Overview:

  4. Bonfire Tests of High Pressure Hydrogen Storage Tanks

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  5. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24/2011 eere.energy.gov ASME 2011- Plenary 5th International Conference on Energy Sustainability, Washington, DC DOE Hydrogen and Fuel Cell Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 8, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/24/2011 eere.energy.gov * Overview * Status, Progress and Key Challenges * Recent Analyses & Publications * Future Plans Agenda 3 | Fuel Cell Technologies Program Source: US DOE 8/24/2011

  6. Underground Storage Tanks: New Fuels and Compatibility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Underground Storage Tanks: New Fuels and Compatibility Underground Storage Tanks: New Fuels and Compatibility Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency PDF icon haerer_biomass_2014.pdf More Documents & Publications Regulatory and Commercial

  7. Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Donald Anton Savannah River National Laboratory Troy Semelsberger Don Siegel Los Alamos National Laboratory University of Michigan Bruce Hardy Kriston Brooks Savannah River National Laboratory Pacific Northwest National Laboratory Materials Requirements Webinar June 25, 2013 2 Webinar Objective Give guidance to the materials development community as to the important materials characteristic for both adsorbent and

  8. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Fuel Cell Engines and Related Technologies Course Hydrogen Fuel Cell Engines and Related Technologies Course Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and

  9. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Briefing | Department of Energy January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation by Sunita Satyapal to the National Petroleum Council on January 5, 2011. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders

  10. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  11. Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day October 8, 2015 - 11:15am Addthis Stacked for Success: Celebrating National Hydrogen and Fuel Cell Day David Friedman Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy Do you know the atomic weight of hydrogen? It's 1.008, which makes today, October 8, a great day to celebrate National Hydrogen and Fuel

  12. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  13. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    SciTech Connect (OSTI)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  14. Report on Hydrogen Storage Panel Findings in DOE-BES Sponsored Workshop on Basic Research for Hydrogen Production, Storage and Use

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  15. Compressed Natural Gas and Hydrogen Fuels Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on

  16. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program PDF icon safety_guidance.pdf More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Webina

  17. Hydrogen Fuel Cell Engines and Related Technologies Course Manual |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and maintenance. It also presents the different types of fuel cells and hybrid electric vehicles. PDF icon Introduction: Hydrogen Fuel Cell Engines

  18. Hydrogen Energy Storage for Grid and Transportation Services Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Workshop Convened by the U.S. Department of Energy and Industry Canada Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sheraton Grand Hotel, Sacramento, California, May 14-15, 2014 Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles. Workshop Scope: A broad range of services from hydrogen storage systems in the

  19. Discovery of novel hydrogen storage materials: an atomic scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computational approach | Energy Frontier Research Centers Discovery of novel hydrogen storage materials: an atomic scale computational approach Home Author: C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, V. Ozolins Year: 2008 Abstract: Practical hydrogen storage for mobile applications requires materials that exhibit high hydrogen densities, low decomposition temperatures, and fast kinetics for absorption and desorption. Unfortunately, no reversible materials are currently known that possess

  20. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities. Process analysis of several leading routes to AB (Purdue's formate-based metathesis route and PNNL's NH{sub 4}BH{sub 4}-based route) indicated the cost to produce first-fill AB to be on the order of $9-10/kg AB, assuming a NaBH{sub 4} cost of $5/kg for a 10,000 metric tons/year sized AB plant. The analysis showed that the dominant cost component for producing first-fill AB is the cost of the NaBH4 raw material. At this AB cost and assuming 2.5 moles hydrogen released per mole of AB, it may be possible to meet DOE's 2010 storage system cost target, but the 2015 target will likely require lower cost AB and demonstrates the importance of having a low-cost route to NaBH{sub 4}. Substantial progress has also been made to define feasible pathways for the regeneration of spent ammonia borane fuel.

  1. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department's Hydrogen Program addresses the full range of barriers facing the development and deployment of hydrogen and fuel cell technologies. This is the first in a series ...

  2. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Hydrogen Program--together with other DOE activities--addresses the full range of barriers facing the development and deployment of hydrogen and fuel cell technologies. This ...

  3. Infinity Fuel Cell and Hydrogen Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Inc Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Inc Address: 431A Hayden Station Road Place: Windsor, Connecticut Zip: 06095 Region: Northeast - NY...

  4. Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy...

    Open Energy Info (EERE)

    Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap AgencyCompany Organization:...

  5. Help Design the Hydrogen Fueling Station of Tomorrow

    Broader source: Energy.gov [DOE]

    University students can join the Energy Department-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station.

  6. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  7. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This animation demonstrates the multiple safety systems in hydrogen-fueled vehicles that detect and prevent the accidental release of hydrogen. View text version of animation....

  8. Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Their Application to Destabillzed Hydride Mixtures | Department of Energy Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures A presentation demonstrating the development of a set of thermodynamic guidelines aimed at facilitating more-robust screening of candidate storage reactions.

  9. Borazine-boron nitride hybrid hydrogen storage system

    DOE Patents [OSTI]

    Narula, Chaitanya K. (Knoxville, TN) [Knoxville, TN; Simonson, J. Michael (Knoxville, TN) [Knoxville, TN; Maya, Leon (Knoxville, TN) [Knoxville, TN; Paine, Robert T. (Albuquerque, NM) [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  10. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Fuel Cell Technologies Publication and Product Library (EERE)

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevan

  11. Nuclear Fuels Storage & Transportation Planning Project Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents October 1, 2014 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among

  12. Report on Hydrogen Storage Panel Findings in DOE-BES Sponsored...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Panel Findings in DOE-BES Sponsored Workshop on Basic Research for Hydrogen Production, Storage and Use Report on Hydrogen Storage Panel Findings in DOE-BES...

  13. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  14. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  15. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) held on June 24, 2014.

  16. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  17. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deputy Program Manager United States Department of Energy Fuel Cell Technologies Program 6 th International Hydrogen and Fuel Cell Expo, Japan March 3, 2010 Advancing Presidential Priorities Economic * Create green jobs through Recovery Act energy projects * Double renewable energy generation by 2012 * Weatherize one million homes annually Environmental * Implement an economy-wide cap-and-trade program to reduce greenhouse gas emissions 80 percent by 2050 * Make the US a leader on climate

  18. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  19. 10 Questions Regarding SAE Hydrogen Fueling Standards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 Questions Regarding SAE Hydrogen Fueling Standards 10 Questions Regarding SAE Hydrogen Fueling Standards November 7, 2014 - 4:03pm Addthis The Department of Energy's (DOE's) Fuel Cell Technologies Office has made significant investment in hydrogen and fuel cell research and development (R&D) over the last decade, helping to cut fuel cell cost in half and enabling the commercialization of fuel cells for several early market applications. Working closely with industry has been

  20. Introduction to SAE Hydrogen Fueling Standardization Webinar: Q&A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to SAE Hydrogen Fueling Standardization Webinar: Q&A September 11, 2014 http://energy.gov/eere/fuelcells/2014-webinar-archives Q: Could you talk about the crash-induced safety issues and the countermeasures implemented to minimize the spread of fire and/or explosion? Vehicle hydrogen storage undergoes multiple crash and fire testing, which is much more extreme than conventional gasoline storage validation. For instance, in addition to the conventional crash and drop tests,

  1. Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives

    Broader source: Energy.gov (indexed) [DOE]

    Conference Call | Department of Energy Presentation by US Fuel Cell Council on legislative updates to state and regional hydrogen and fuel cell representatives PDF icon usfcc_legislative_update.pdf More Documents & Publications U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Connecticut Fuel Cell Activities: Markets, Programs, and Models The Hydrogen Tax Incentive Act of 2008

  2. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Bus Evaluations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel Cell Bus Evaluations Transit buses are one of the best early transportation applications for fuel cell technology. Buses operate in congested areas where pollution is already a problem. These buses are centrally located and fueled, highly visible, and subsidized by government. By evaluating the experiences of these early adopters, NREL can determine the status of bus fuel cell systems and establish lessons learned to aid other fleets in implementing the next generation of these

  3. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect (OSTI)

    Ozolins, Vidvuds; Herberg, J.L.; McCarty, Kevin F.; Maxwell, Robert S.; Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  4. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 11, 2015 - 11:38am Addthis Funding: Up to 35 million Open Date: December 10, ... Opportunity Announcement to Support Innovations in Fuel Cell and Hydrogen Fuel ...

  5. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  6. Hydrogen and Fuel Cell Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fupwgfall11devlin.pdf More Documents & Publications Expanding the Use of Biogas with Fuel Cell Technologies Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE ...

  7. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It also presents the different types of fuel cells and hybrid electric vehicles. PDF icon Introduction: Hydrogen Fuel Cell Engines and Related Technologies PDF icon Module 1: ...

  8. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webinar entitled "An...

  9. Hydrogen and fuel cell research | Open Energy Information

    Open Energy Info (EERE)

    and fuel cell research Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen and fuel cell research AgencyCompany Organization: National Renewable Energy Laboratory...

  10. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  11. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by Sunita Satyapal at a...

  12. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  13. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  14. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal Staff Economist, Ph.D. Earth Systems Department 2 Geologic Storage Why underground storage? ...

  15. 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling

    Energy Savers [EERE]

    Station | Department of Energy 4 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 - 12:00am Addthis The 10th annual Hydrogen Student Design Contest will challenge student teams to design a transportable, containerized hydrogen fueling station solution. Registration for the contest, supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable

  16. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  17. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles (FCEVs) | Department of Energy Below is the text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: [Audio starts mid-sentence] ... housekeeping items before I turn it over to today's speakers. Today's webinar is being recorded. So a recording along with slides will be posted

  18. DOE Hydrogen and Fuel Cells Program Budget

    SciTech Connect (OSTI)

    DOE

    2012-03-16

    Budget information for hydrogen and fuel cell research, development, and other activities at the U.S. Department of Energy (DOE) is provided here. Included are budgets for DOE's Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Nuclear Energy, and Science.

  19. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  20. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 9, 2014 - 2:20pm Addthis University students can join the...