National Library of Energy BETA

Sample records for hydrogen selective emitter

  1. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  2. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  3. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  4. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P.; Way, J. Douglas

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  5. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM); Zaidi, Saleem H. (Albuquerque, NM)

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  6. Effects of surface diffusion on high temperature selective emitters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; Joannopoulos, John D.; Schuh, Christopher A.

    2015-01-01

    Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structures curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented.

  7. Recent progress on the self-aligned, selective-emitter silicon solar cell

    SciTech Connect (OSTI)

    Ruby, D.S.; Yang, P.; Roy, M.

    1997-10-01

    We developed a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial, screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. We succeeded in finding a set of parameters which resulted in good emitter uniformity and improved cell performance. We used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed, multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. Our initial results found a statistically significant improvement of half an absolute percentage point in cell efficiency when the self-aligned emitter etchback was combined with a 3-step PECVD-nitride surface passivation and hydrogenation treatment. 12 refs., 4 figs., 3 tabs.

  8. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOE Patents [OSTI]

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  9. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM)

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  10. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  11. MIS-based sensors with hydrogen selectivity

    DOE Patents [OSTI]

    Li; ,Dongmei; Medlin, J. William; McDaniel, Anthony H.; Bastasz, Robert J.

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  12. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  13. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  14. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  15. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  16. Materials Down Select Decisions Made Within DOE's Chemical Hydrogen...

    Office of Environmental Management (EM)

    Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of ...

  17. Nano Structure Control and Selectivity of Hydrogen Release from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Structure Control and Selectivity of Hydrogen Release from Hydrogen Storage Pacific Northwest National Laboratory Contact PNNL About This Technology Illustration depicting...

  18. Systems and methods for selective hydrogen transport and measurement

    DOE Patents [OSTI]

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  19. Systems and methods for selective hydrogen transport and measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... Systems and methods for selective hydrogen transport and measurement United States Patent ...

  20. SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT United States Patent ...

  1. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  2. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  3. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    SciTech Connect (OSTI)

    Alves de Freitas, Antonio; Abrao, Alcidio; Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu

    2008-08-07

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  4. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  5. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    SciTech Connect (OSTI)

    Simpson, Lin

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  6. Asymmetrical field emitter

    DOE Patents [OSTI]

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  7. Asymmetrical field emitter

    DOE Patents [OSTI]

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  8. Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen Storage Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report Submitted by: The Chemical Hydrogen Storage Center of Excellence Coordinating Council Authors: Kevin C. Ott, Los Alamos National Laboratory Sue Linehan, Rohm and Haas Company Frank Lipiecki, Rohm and Haas Company Christopher L. Aardahl, Pacific Northwest National Laboratory May 2008 Acknowledgements The

  9. Selectivity and resistance to poisons of commercial hydrogen sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.; Post, Matthew B.; Burgess, Robert; Rivkin, Carl; Buttner, William J.

    2015-03-20

    The resistance of several models of catalytic, workfunction-based metal-oxide-semiconductor and electrochemical hydrogen sensors to chemical contaminants such as SO2, H2S, NO2 and hexamethyldisiloxane (HMDS) has been investigated. These sensor platforms are among the most commonly used for the detection of hydrogen. The evaluation protocols were based on the methods recommended in the ISO 26142:2010 standard. Permanent alteration of the sensor response to the target analyte (H2) following exposure to potential poisons at the concentrations specified in ISO 26142 was rarely observed. Although a shift in the baseline response was often observed during exposure to the potential poisons, only in amore » few cases did this shift persist after removal of the contaminants. Overall, the resistance of the sensors to poisoning was good. However, a change in sensitivity to hydrogen was observed in the electrochemical platform after exposure to NO2 and for a catalytic sensor during exposure to SO2. The siloxane resistance test prescribed in ISO 26142, based on exposure to 10 ppm HMDS, may possibly not properly reflect sensor robustness to siloxanes. In conclusion, further evaluation of the resistance of sensors to other Si-based contaminants and other exposure profiles (e.g., concentration, exposure times) is needed.« less

  10. Selective removal of carbonyl sulfide from a hydrogen sulfide containing gas mixture

    SciTech Connect (OSTI)

    Souby, M.C.

    1990-12-25

    This patent describes a process for the selective removal of carbonyl sulfide from a gas mixture also comprising hydrogen sulfide. It comprises contacting the gas mixture with an absorbent comprising from about 35% w to about 55% w of a tertiary amine; from about 5% w to about 15% w of water, and the balance being a physical co-solvent; regenerating the loaded absorbent to remove substantially all of the carbonyl sulfide and most of the hydrogen sulfide to provide a lean absorbent containing hydrogen sulfide in an amount of 0.2% w to 2% w; and recycling the lean absorbent to the contacting step.

  11. Diamond fiber field emitters

    DOE Patents [OSTI]

    Blanchet-Fincher, Graciela B. (Wilmington, DE); Coates, Don M. (Santa Fe, NM); Devlin, David J. (Los Alamos, NM); Eaton, David F. (Wilmington, DE); Silzars, Aris K. (Landenburg, PA); Valone, Steven M. (Santa Fe, NM)

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  12. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  13. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  14. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  15. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  16. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. A New Concept for the Fabrication of Hydrogen Selective Silica Membranes

    SciTech Connect (OSTI)

    Michael Tsapatsis

    2005-10-01

    It is attempted to synthesize hydrogen selective silica-based membranes through a novel thin film deposition concept. This report describes the progress made during the 1st Year of this award. All project Tasks, for Year 1, were completed and the first thin films were prepared and characterized. The goal of this work is to use crystalline layered silicates to form hydrogen selective membranes for use in high temperature hydrogen/carbon dioxide separations. It was proposed to: (A) Synthesize layered silicate materials; (B) Prepare dispersions of as synthesized or delaminated layered silicates; (C) Prepare membranes by coating the layered silicates on macro-mesoporous supports; and (D) Test the membranes for H{sub 2}/CO{sub 2} selectivity at high temperature and pressures and for structural and functional stability at high temperature in the presence of water vapor. All Year 1 project Tasks are completed. Layered silicate particles were synthesized hydrothermally. Crystal shape and size was optimized for the formation of thin films. Calcination procedures that avoid particle agglomeration were developed and suspensions of the calcined silicate particles were prepared. The silicate particles and suspensions were characterized by X-Ray Diffraction, Electron Microscopy and Dynamic Light Scattering. The characterization data indicate that plate like morphology, large aspect ratio and good dispersion have been achieved. A deposition process that leads to uniform, high-coverage ({approx}100%) coating of the layered silicate particles on porous alpha-alumina supports was developed.

  18. Hydrogen in plasma-nanofabrication: Selective control of nanostructure heating and passivation

    SciTech Connect (OSTI)

    Wolter, Matthias; Levchenko, Igor; Ostrikov, Kostya; Kersten, Holger

    2010-03-29

    The possibility of independent control of the surface fluxes of energy and hydrogen-containing radicals, thus enabling selective control of the nanostructure heating and passivation, is demonstrated. In situ energy flux measurements reveal that even a small addition of H{sub 2} to low-pressure Ar plasmas leads to a dramatic increase in the energy deposition through H recombination on the surface. The heat release is quenched by a sequential addition of a hydrocarbon precursor while the surface passivation remains effective. Such selective control offers an effective mechanism for deterministic control of the growth shape, crystallinity, and density of nanostructures in plasma-aided nanofabrication.

  19. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    Fuel Cell Technologies Publication and Product Library (EERE)

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen

  20. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  1. Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports

    SciTech Connect (OSTI)

    Lim, Hankwon; Oyama, S. Ted

    2011-08-15

    Thin and defect-free PdCu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a PdCu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the PdCu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the PdCu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense PdCu composite layer with no visible defects. Cross-sectional views of the membrane showed that the PdCu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

  2. Materials Down Select Decisions Made Within DOE’s Chemical Hydrogen Storage Center of Excellence

    Broader source: Energy.gov [DOE]

    Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  3. Diamond-graphite field emitters

    DOE Patents [OSTI]

    Valone, Steven M.

    1997-01-01

    A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

  4. Selectivity Principles in Anion Separation by Crystallization of Hydrogen-Bonding Capsules

    SciTech Connect (OSTI)

    Custelcean, Radu; Bock, Aurelien; Moyer, Bruce A

    2010-01-01

    The fundamental factors controlling anion selectivity in the crystallization of hydrogen-bonding capsules [Mg(H2O)6][X L2] (X = SO42-, 1a; SeO42-, 1b; SO32-, 1c; CO32-, 1d; L = tris[2-(3-pyridylurea)ethyl]-amine) from water have been investigated by solution and solid-state thermodynamic measurements, anion competition experiments, and X-ray structural analysis. The crystal structures of 1a-d are isomorphous, thereby simplifying the interpretation of the observed selectivities based on differences in anion coordination geometries. The solubilities of 1a-d in water follow the order: 1a < 1b < 1c < 1d, which is consistent with the selectivity for the tetrahedral sulfate and selenate anions observed in competitive crystallization experiments. Crystallization of the capsules is highly exothermic, with the most favorable {Delta}H{sub cryst}{sup o} of -99.1 and -108.5 kJ/mol corresponding to SO42- and SeO42-, respectively, in agreement with the X-ray structural data showing shape complementarity between these tetrahedral anions and the urea-lined cavities of the capsules. Sulfite, on the other hand, has a significantly less negative {Delta}H{sub cryst}{sup o} of -64.6 kJ/mol, which may be attributed to its poor fit inside the capsules, involving repulsive interactions. The more favorable entropy of crystallization for this anion, however, partly offsets the enthalpic disadvantage, resulting in a solubility product very similar to that of the selenate complex. Because of their very similar shape and size, SO42- and SeO42- have a propensity to form solid solutions, which limits the selectivity between these two anions in competitive crystallizations. In the end, a comprehensive picture of contributing factors to anion selectivity in crystalline hydrogen-bonding capsules emerges.

  5. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    SciTech Connect (OSTI)

    Tang Yuechao; Yang Dong; Qin Feng; Hu Jianhua; Wang Changchun; Xu Hualong

    2009-08-15

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.

  6. Positron emitter labeled enzyme inhibitors

    DOE Patents [OSTI]

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  7. Positron emitter labeled enzyme inhibitors

    DOE Patents [OSTI]

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  8. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

  9. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  10. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOE Patents [OSTI]

    Wang, Daojing (Daly City, CA); Yang, Peidong (Kensington, CA); Kim, Woong (Seoul, KR); Fan, Rong (Pasadena, CA)

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  11. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  12. Amorphous-diamond electron emitter

    DOE Patents [OSTI]

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  13. Catalysts for the selective hydrogenation of unsaturated compounds consisting of alumina particles with a regular palladium distribution

    SciTech Connect (OSTI)

    Beren Glyum, A.S.; Goranskaya, T.P.; Karel'skii, V.V.; Lakhman, L.I.; Mund, S.L.; Zolotukhin, V.E.

    1986-08-01

    A study was carried out on the possibility of preparation of heterogeneous palladium catalysts for the selective hydrogenation of unsaturated compounds with different distributions of the active component on ..gamma..-Al/sub 2/O/sub 3/ granules. A regression equation was obtained relating the parameters of the preparation of these catalysts (palladium concentration in solution, temperature, impregnation time and pH) with the extent of the penetration of palladium into the support granule (l). A relationship was established between the parameters (l), palladium concentration in the catalyst, activity and selectivity in the hydrogenation of dienes in liquid pyrolysis products. The extremal curves for activity and selectivity are explained with the framework of a model taking account of the effect on the concentration of the active component, its dispersion, and the reaction conditions on the hydrogenation parameters.

  14. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    SciTech Connect (OSTI)

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

  15. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen

    SciTech Connect (OSTI)

    Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch.; Berstad, D.; Walnum, H. T.; Neksa, P.; Decker, L.

    2014-01-29

    In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.

  16. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOE Patents [OSTI]

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  17. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect (OSTI)

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  18. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  19. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  20. Transverse Emittance Reduction with Tapered Foil (Conference...

    Office of Scientific and Technical Information (OSTI)

    and also analyzed the emittance growth from the associated multiple coulomb scattering. ... To calculate the eigen emittances, it requires only to know the beam distribution at the ...

  1. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, Jacques I.; Wu, Chung P.

    1982-01-01

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  2. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  3. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  4. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation.more » γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.« less

  5. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority

    Broader source: Energy.gov [DOE]

    This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle.

  6. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, J.I.; Wu, C.P.

    1982-03-30

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

  7. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect (OSTI)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  8. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1990-05-22

    This patent describes a support provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

  9. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1989-07-06

    This document discusses a support provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  10. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  11. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  12. Thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1990-10-16

    A support is presented for use in a thermionic converted to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a large metal main support at the rear end that is attached to the housing, and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

  13. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    SciTech Connect (OSTI)

    Ozbilen, Ahmet Dincer, Ibrahim Rosen, Marc A.

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  14. Selective Catalytic Oxidation of Hydrogen Sulfide on Activated Carbons Impregnated with Sodium Hydroxide

    SciTech Connect (OSTI)

    Schwartz, Viviane [ORNL; Baskova, Svetlana [ORNL; Armstrong, Timothy R. [ORNL

    2009-01-01

    Two activated carbons of different origin were impregnated with the solution of sodium hydroxide (NaOH) of various concentrations up to 10 wt %, and the effect of impregnation on the catalytic performance of the carbons was evaluated. The catalytic activity was analyzed in terms of the capacity of carbons for hydrogen sulfide (H2S) conversion and removal from hydrogen-rich fuel streams and the emission times of H2S and the products of its oxidation [e.g., sulfur dioxide (SO2) and carbonyl sulfide (COS)]. The results of impregnation showed a significant improvement in the catalytic activity of both carbons proportional to the amount of NaOH introduced. NaOH introduces hydroxyl groups (OH-) on the surface of the activated carbon that increase its surface reactivity and its interaction with sulfur-containing compounds.

  15. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  16. Hybrid emitter all back contact solar cell

    DOE Patents [OSTI]

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  17. Emittance exchange results (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Emittance exchange results Citation Details In-Document Search Title: Emittance exchange results You are accessing a document from the Department of Energy's (DOE)...

  18. Emittance and Phase Space Exchange (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Emittance and Phase Space Exchange Citation Details In-Document Search Title: Emittance and Phase Space Exchange You are accessing a document from the Department of Energy's ...

  19. Emittance and phase space exchange for advanced beam manipulation...

    Office of Scientific and Technical Information (OSTI)

    Emittance and phase space exchange for advanced beam manipulation and diagnostics Citation Details In-Document Search Title: Emittance and phase space exchange for advanced beam ...

  20. Emittance and Phase Space Exchange for Advanced Beam Manipulation...

    Office of Scientific and Technical Information (OSTI)

    Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics Citation Details In-Document Search Title: Emittance and Phase Space Exchange for Advanced Beam ...

  1. Selective Hydrogenation of Acetylene in the Presence of Ethylene on K+ -beta-Zeolite Supported Pd and PdAg Catalysts

    SciTech Connect (OSTI)

    Huang,W.; Pyrz, W.; Lobo, R.; Chen, J.

    2007-01-01

    The selective hydrogenation of acetylene in the presence of ethylene has been studied on K+ exchanged {beta}-zeolite supported Pd and PdAg catalysts. Results from batch reactor studies with Fourier transform infrared spectroscopy (FTIR) have shown that the K+-{beta}-zeolite support is more selective than the Al2O3 or Na+-{beta}-zeolite supports toward the hydrogenation of acetylene. The rate and equilibrium constants for Pd/K+-{beta}-zeolite and PdAg/K+-{beta}-zeolite were determined using a Langmuir-Hinshelwood model. The selectivity of the PdAg bimetallic catalyst is twice of that of the Pd catalyst. Results from flow reactor studies show that the PdAg/K+-{beta}-zeolite catalyst has higher selectivity but lower activity toward acetylene hydrogenation than the Pd/K+-{beta}-zeolite catalyst. The selectivity to the undesirable ethane by-product is inhibited on the bimetallic catalyst. Extended X-ray absorption fine structure (EXAFS) studies and transmission electron microscope (TEM) analysis confirm the formation of Pd-Ag bimetallic bonds in the PdAg/K+-{beta}-zeolite catalyst.

  2. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    SciTech Connect (OSTI)

    Ding, Y.; Behrens, C.; Coffee, R.; Decker, F. -J.; Emma, P.; Field, C.; Helml, W.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J.

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  3. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  4. Structural Criteria for the Rational Design of Selective Ligands: Convergent Hydrogen Bonding Sites for the Nitrate Anion

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Gutowski, Maciej S.; Dixon, David A.; Garza , Jorge; Vargas, Rubicelia; Moyer, Bruce A.

    2004-06-30

    Molecular hosts for anion complexation are often constructed by combining two or more hydrogen bonding functional groups, DH. The deliberate design of complementary host architectures requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Herein, we present a detailed study of the structural aspects of hydrogen bonding interactions with the NO3 anion. A large number of crystal structures are analyzed to determine the number of hydrogen bond contacts per anion and to further characterize the structural aspects of these interactions. Electronic structure calculations are used to determine stable geometries and interaction energies for NO3 complexes with several simple molecules possessing DH groups, including water, methanol, N-methylformamide, and methane. Theoretical results are reported at several levels of density functional theory, including BP86/DN**, B3LYP/TZVP, and B3LYP/TZVP+, and at MP2/aug-cc-pVDZ. In addition, MP2 binding energies for these complexes were obtained at the complete basis set limit by extrapolating from single point energies obtained with larger correlation-consistent basis sets. The results establish that NO3 has an intrinsic hydrogen bonding topography in which there are six optimal sites for proton location. The structural features observed in crystal structures and in the optimized geometries of complexes are explained by a preference to locate the DH protons in these positions. For the strongest hydrogen bonding interactions, the NOH angle is bent at an angle of 115 10, and the hydrogen atom lies in the NO3 plane giving ONOH dihedral angles of 0 and 180. In addition, the D-H vector points towards the oxygen atom, giving DHO angles that are near linear, 170 10. Due to steric hindrance, simple alcohol OH and amide NH donors form 3:1 complexes with NO3, with HO distances of 1.85 0.5 . Thus, the optimal cavity radius for a tridentate host, defined as the distance from the center to the DH hydrogen atoms, is 2.65 0.15 .

  5. Heterojunction solar cell with passivated emitter surface

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  6. Heterojunction solar cell with passivated emitter surface

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  7. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-01

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  8. Light modulated electron beam driven radiofrequency emitter

    DOE Patents [OSTI]

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  9. Light modulated switches and radio frequency emitters

    DOE Patents [OSTI]

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  10. Preliminary Study on Emittance Growth in the LHEC Recirculating Linac

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Preliminary Study on Emittance Growth in the LHEC Recirculating Linac Citation Details In-Document Search Title: Preliminary Study on Emittance Growth in the LHEC Recirculating Linac In this paper, we estimate the emittance growth in the LHeC recirculating Linac, the lattice design of which is presented in another paper of IPAC10 proceedings. The possible sources for emittance growth included here are: energy spread from RF acceleration in the SRF

  11. An Observation of a Transverse to Longitudinal Emittance Exchange...

    Office of Scientific and Technical Information (OSTI)

    longitudinal emittance exchange (epsilonsub xsub in Leftrightarrow epsilonsub zsub out and epsilonsub zsub in Leftrightarrow epsilonsub xsub out) has...

  12. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  13. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  14. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  15. THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.

    SciTech Connect (OSTI)

    RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

    2007-06-25

    A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

  16. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect (OSTI)

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

  17. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  19. Process for the selective removal of hydrogen sulphide and carbonyl sulfide from light hydrocarbon gases containing carbon dioxide

    SciTech Connect (OSTI)

    Bush, W.V.

    1988-06-07

    A process for the selective removal of H/sub 2/S and COS from a gas containing light hydrocarbons, H/sub 2/S, COS and CO/sub 2/, is described which comprises in a one step absorption, at treatment conditions, contacting the gas stream with a solvent stream consisting essentially of: (i) water, (ii) a bridgehead amine comprising a bicyclo tertiary amine or a bicyclo amidine to selectively hydrolyze the COS to H/sub 2/S and CO/sub 2/, (iii) a tertiary amine to selectively absorb the H/sub 2/S and to selectively exclude from absorption the CO/sub 2/ in the gas stream and the CO/sub 2/ produced by the hydrolysis of the COS, and (iv) a physical solvent acceptable for COS absorption wherein two streams are formed comprising: (1) a light hydrocarbon and CO/sub 2/-containing stream having 1 ppm to about 200 ppm H/sub 2/S and having 1 ppm COS to about 10 ppm COS and (2) a solvent stream rich in H/sub 2/S, water, tertiary amine and the bridgehead amine.

  20. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  1. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  2. Multi-channel polarized thermal emitter

    DOE Patents [OSTI]

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  3. Emittance and Current of Electrons Trapped in a Plasma Wakefield

    Office of Scientific and Technical Information (OSTI)

    Accelerator (Conference) | SciTech Connect Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak

  4. Benchmarking of measurement and simulation of transverse rms-emittance

    Office of Scientific and Technical Information (OSTI)

    growth (Journal Article) | SciTech Connect Benchmarking of measurement and simulation of transverse rms-emittance growth Citation Details In-Document Search Title: Benchmarking of measurement and simulation of transverse rms-emittance growth Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the

  5. Emittance and Phase Space Exchange (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Emittance and Phase Space Exchange Citation Details In-Document Search Title: Emittance and Phase Space Exchange Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance

  6. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices Ames ... than can be used to create more efficient thermophotovoltaic devices for power generation. ...

  7. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices ...

  8. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  9. An Observation of a Transverse to Longitudinal Emittance Exchange...

    Office of Scientific and Technical Information (OSTI)

    new beamline, including two magnetic dogleg channels and a TMsub 110 deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first...

  10. An ultimate storage ring lattice with vertical emittance generated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ultimate storage ring lattice with vertical emittance generated by damping wigglers Citation Details In-Document Search Title: An ultimate storage ring lattice...

  11. Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Advanced Materials Advanced Materials Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic ...

  12. Preliminary Study on Emittance Growth in the LHEC Recirculating...

    Office of Scientific and Technical Information (OSTI)

    and synchrotron radiation (SR) fluctuations in the recirculating arcs. 6-D multi-particle tracking is launched to calculate the emittance from the statistical point of view. ...

  13. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect (OSTI)

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  14. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... H 2 s, T 125-200C) * high hydrogen selectivities (S ... 3.2 kg Media H 2 Density mat ) ( m )( mat ) kg H 2 L 0.07 * HD polyethylene tank 6.2 kg ...

  15. Space-charge and emittance blowup in linacs

    SciTech Connect (OSTI)

    Jameson, R.A.

    1982-01-01

    Recent work leading to better understanding of beam emittance under space-charge conditions in linear transport and accelerating channels is reviewed. Some practical considerations are outlined for minimizing emittance growth by properly matching the input beam, including equipartitioning the energy balance, and by avoiding certain areas of tune-shift.

  16. Sharpening of field emitter tips using high-energy ions

    DOE Patents [OSTI]

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  17. Plasma treatment for producing electron emitters

    DOE Patents [OSTI]

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  18. High temperature fuel/emitter system for advanced thermionic fuel elements

    SciTech Connect (OSTI)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-10

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B and W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock and Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B and W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  19. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. New Low Emittance Lattice for the Super-B Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; Bettoni, S.; Paoloni, E.; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF

    2011-10-21

    New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.

  1. Method and apparatus for multispray emitter for mass spectrometry

    DOE Patents [OSTI]

    Smith, Richard D.; Tang, Keqi; Lin, Yuehe

    2004-12-14

    A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.

  2. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  3. Autothermal hydrogen storage and delivery systems

    DOE Patents [OSTI]

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  4. Space Charge and Equilibrium Emittances in Damping Rings

    SciTech Connect (OSTI)

    Venturini, Marco; Oide, Katsunobu; Wolski, Andy

    2006-06-21

    We present a model of dynamics to account for the possible impact of space charge on the equilibrium emittances in storage rings and apply the model to study the current design of the International Linear Collider (ILC) damping rings.

  5. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator...

  6. Non-blinking single-photon emitters in silica

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso de Mello

    2016-02-19

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less

  7. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect (OSTI)

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  8. Emittance and Phase Space Exchange for Advanced Beam Manipulation and

    Office of Scientific and Technical Information (OSTI)

    Diagnostics (Journal Article) | SciTech Connect Phase Space Exchange for Advanced Beam Manipulation and Diagnostics Citation Details In-Document Search Title: Emittance and Phase Space Exchange for Advanced Beam Manipulation and Diagnostics Alternative chicane-type beam lines are proposed for exact emittance exchange between transverse phase space (x,x') and longitudinal phase space (z,{delta}), where x is the transverse position, x' is the transverse divergence, and z and {delta} are

  9. Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET

    Office of Scientific and Technical Information (OSTI)

    CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION (Journal Article) | SciTech Connect Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION Citation Details In-Document Search Title: Lyalpha EMITTERS IN HIERARCHICAL GALAXY FORMATION. II. ULTRAVIOLET CONTINUUM LUMINOSITY FUNCTION AND EQUIVALENT WIDTH DISTRIBUTION We present theoretical predictions of the UV continuum luminosity function (UV LF) and

  10. Silicon Carbide Emitter Turn-Off Thyristor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jun; Wang, Gangyao; Li, Jun; Huang, Alex Q.; Melcher, Jerry; Atcitty, Stan

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  11. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  12. Emittance and Phase Space Tomography for the Fermilab Linac

    SciTech Connect (OSTI)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the large emittance measured.

  13. Hydrogen sensor (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Hydrogen sensor Title: Hydrogen sensor A hydrogen sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites ...

  14. Hydrogen Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  15. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  16. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  17. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  18. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  19. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  20. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOE Patents [OSTI]

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  1. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T.

    1992-01-01

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  2. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1992-03-17

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  3. Low Emittance Tuning Studies for SuperB

    SciTech Connect (OSTI)

    Liuzzo, Simone; Biagini, Maria; Raimondi, Pantaleo; Donald, Martin; /SLAC

    2012-07-06

    SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

  4. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  5. Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade Citation Details In-Document Search Title: Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics

  6. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  7. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    SciTech Connect (OSTI)

    James, Brian D.; Baum, George N.; Perez, Julie; Baum, Kevin N.

    2009-12-01

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  8. Hydrogen Scenarios

    Broader source: Energy.gov [DOE]

    Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  9. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Photoelectrochemical (PEC) Hydrogen can be produced directly from water using sunlight and a special class of semiconductor materials. These highly specialized semiconductors ...

  10. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-7 European Installations 4-6 Japanese Installations India Program ESA French Guiana (South America) 4 Satisfies ASME J-2719 (hydrogen fuel quality) ...

  11. PARMELA simulation for BNL 704MHz SRF gun in low emittance operation...

    Office of Scientific and Technical Information (OSTI)

    PARMELA simulation for BNL 704MHz SRF gun in low emittance operation Citation Details In-Document Search Title: PARMELA simulation for BNL 704MHz SRF gun in low emittance operation ...

  12. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  13. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  14. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOE Patents [OSTI]

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  15. Hydrogen Bibliography

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  16. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  17. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.

  18. Emittance preservation during bunch compression with a magnetized beam

    SciTech Connect (OSTI)

    Stratakis, Diktys

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  19. Electron Cloud at Low Emittance in CesrTA

    SciTech Connect (OSTI)

    Palmer, Mark; Alexander, James; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; /more authors..

    2012-07-06

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud's effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results.

  20. Emittance Measurements of the SSRL Gun Test Facility

    SciTech Connect (OSTI)

    Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; Meyerhofer, David; Reis, David; /Rochester U.

    2011-09-01

    A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

  1. Emittance and phase space exchange for advanced beam manipulation and

    Office of Scientific and Technical Information (OSTI)

    diagnostics (Journal Article) | SciTech Connect phase space exchange for advanced beam manipulation and diagnostics Citation Details In-Document Search Title: Emittance and phase space exchange for advanced beam manipulation and diagnostics Authors: Xiang, Dao ; Chao, Alex Publication Date: 2011-11-14 OSTI Identifier: 1101174 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 14; Journal Issue: 11;

  2. Analysis of kicker noise induced beam emittance growth

    SciTech Connect (OSTI)

    Zhang W.; Sandberg, J.; Ahrens, L.; Blacker, I.M.; Brennan, M.; Blaskiewicz, M.; Fischer, W.; Hahn, H.; Huang, H.; Kling, N.; Lafky, M.; Marr, G.; Mernick, K.; Mi, J.; Minty, M.; Naylor, C.; Roser, T.; Shrey, T.; van Kuik, B.; Zelenski, A.

    2012-05-20

    Over the last few years, physicists have occasionally observed the presence of noise acting on the RHIC beams leading to emittance growth at high beam energies. While the noise was sporadic in the past, it became persistent during the Run-11 setup period. An investigation diagnosed the source as originating from the RHIC dump kicker system. Once identified the issue was quickly resolved. We report in this paper the investigation result, circuit analysis, measured and simulated waveforms, solutions, and future plans.

  3. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  4. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  5. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  6. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  7. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  8. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  9. 4D Emittance Measurements Using Multiple Wire and Waist Scan Methods in the ATF Extraction Line

    SciTech Connect (OSTI)

    Rimbault, C.; Bambade, P.; Brossard, J.; Alabau, M.; Kuroda, S.; Scarfe, A.; Woodley, M.; /SLAC

    2011-11-02

    Emittance measurements performed in the diagnostic section of the Accelerator Test Facility (ATF) extraction line since 1998 led to vertical emittances three times larger than the expected ones, with a strong dependence on intensity. An experimental program is pursued to investigate potential sources of emittance growth and find possible remedies. This requires efficient and reliable emittance measurement techniques. In the past, several phase-space reconstruction methods developed at SLAC and KEK have been used to estimate the vertical emittance, based on multiple location beam size measurements and dedicated quadrupole scans. These methods have been shown to be very sensitive to measurement errors and other fluctuations in the beam conditions. In this context new emittance measurements have been performed revisiting these methods and newly developed ones with a systematic approach to compare and characterise their performance in the ATF extraction line.

  10. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOE Patents [OSTI]

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  11. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOE Patents [OSTI]

    Tanaka, John; Reilly, Jr., James J.

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  12. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  13. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  14. Study of Lower Emittance Lattices for SPEAR3 (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Study of Lower Emittance Lattices for SPEAR3 Citation Details In-Document Search Title: Study of Lower Emittance Lattices for SPEAR3 We study paths to significantly reduce the emittance of the SPEAR3 storage ring. Lattice possibilities are explored with the GLASS technique. New lattices are designed and optimized for practical dynamic aperture and beam lifetime. Various techniques are employed to optimize the nonlinear dynamics, including the Elegant-based genetic algorithm. Experimental studies

  15. Developments of fast emittance monitors for ion sources at RCNP (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Developments of fast emittance monitors for ion sources at RCNP Citation Details In-Document Search Title: Developments of fast emittance monitors for ion sources at RCNP Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance

  16. Energy Department Announces up to $4 Million to Advance Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecourt hydrogen storage at 875 bar or greater: Projects selected under this topic will support the development of low-cost, high-pressure hydrogen storage options for use at the ...

  17. Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance...

    Office of Scientific and Technical Information (OSTI)

    There is a smaller dynamic aperture for the lower emittance optics due to a stronger ... DAMPING; EFFICIENCY; GENETICS; LIFETIME; MAGNETS; OPTICS; OPTIMIZATION; RESONANCE

  18. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect (OSTI)

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrdinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  19. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  20. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect (OSTI)

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  1. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  2. Hydrogen Production: Photobiological

    Broader source: Energy.gov [DOE]

    The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen.

  3. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  4. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  5. Hydrogen Centers of Excellence - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Centers of Excellence April 27, 2004 Golden, Colo. - Secretary of Energy Spencer Abraham announced that the Department of Energy (DOE) has selected more than $150 million in hydrogen storage research projects to support President Bush's Hydrogen Fuel Initiative. The awards include the formation of three "Centers of Excellence," at the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory, integrating the expertise of the DOE

  6. Is transverse feedback necessary for the SSC emittance preservation? (Vibration noise analysis and feedback parameters optimization)

    SciTech Connect (OSTI)

    Parkhomchuk, V.V.; Shiltsev, V.D.

    1993-06-01

    The paper considers the Superconducting Super Collider (SSC) site ground motion measurements as well as data from accelerators worldwide about noises that worsen beam performance. Unacceptably fast emittance growth due to these noises is predicted for the SSC. A transverse feedback system was found to be the only satisfactory alternative to prevent emittance decay. Optimization of the primary feedback parameters was done.

  7. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  8. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-?m-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  9. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect (OSTI)

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  10. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect (OSTI)

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  11. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect (OSTI)

    Acevedo, O. L.; Quiroga, L.; Rodrguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the systems quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  12. Characterisation of the PXIE Allison-type emittance scanner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    D'Arcy, R.; Alvarez, M.; Gaynier, J.; Prost, L.; Scarpine, V.; Shemyakin, A.

    2016-01-26

    An Allison-type emittance scanner has been designed for PXIE at FNAL with the goal of providing fast and accurate phase space reconstruction. The device has been modified from previous LBNL/SNS designs to operate in both pulsed and DC modes with the addition of water-cooled front slits. Extensive calibration techniques and error analysis allowed confinement of uncertainty to the <5% level (with known caveats). With a 16-bit, 1 MHz electronics scheme the device is able to analyse a pulse with a resolution of 1 μs, allowing for analysis of neutralisation effects. As a result, this paper describes a detailed breakdown ofmore » the R&D, as well as post-run analysis techniques.« less

  13. Hydrogen-based electrochemical energy storage

    DOE Patents [OSTI]

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  14. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  15. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    Broader source: Energy.gov [DOE]

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  16. Intramolecular hydrogen bonding as a synthetic tool to induce...

    Office of Scientific and Technical Information (OSTI)

    chemical selectivity in acid catalyzed porphyrin synthesis Citation Details In-Document Search Title: Intramolecular hydrogen bonding as a synthetic tool to induce chemical ...

  17. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  18. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The ...

  19. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  20. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline ...

  1. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  2. Selected Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact / selected publications

  3. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  4. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  5. Stable catalyst layers for hydrogen permeable composite membranes

    DOE Patents [OSTI]

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  6. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect (OSTI)

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  7. Hydrogen compatibility handbook for stainless steels

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  8. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  9. Ly{alpha} EMITTERS AT z = 7 IN THE SUBARU/XMM-NEWTON DEEP SURVEY FIELD:

    Office of Scientific and Technical Information (OSTI)

    PHOTOMETRIC CANDIDATES AND LUMINOSITY FUNCTION (Journal Article) | SciTech Connect Ly{alpha} EMITTERS AT z = 7 IN THE SUBARU/XMM-NEWTON DEEP SURVEY FIELD: PHOTOMETRIC CANDIDATES AND LUMINOSITY FUNCTION Citation Details In-Document Search Title: Ly{alpha} EMITTERS AT z = 7 IN THE SUBARU/XMM-NEWTON DEEP SURVEY FIELD: PHOTOMETRIC CANDIDATES AND LUMINOSITY FUNCTION We conducted a deep narrowband NB973 (FWHM = 200 A centered at 9755 A) survey of z = 7 Ly{alpha} emitters (LAEs) in the

  10. Hydrogen Technologies Safety Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  11. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  12. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  13. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  14. Hydrogen Compatibility of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... establishes suitability Hydrogen suitability is the management and control of these variables 7 Example: hydrogen embrittlement in diaphragm compressor High-volume, ...

  15. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  16. Hydrogen Production Basics

    Broader source: Energy.gov [DOE]

    Hydrogen is an energy carrier, not an energy source—it stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds.

  17. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  18. z ? 1 Ly? emitters. I. The luminosity function , , ,

    SciTech Connect (OSTI)

    Wold, Isak G. B.; Barger, Amy J.; Cowie, Lennox L. E-mail: barger@astro.wisc.edu

    2014-03-10

    We construct a flux-limited sample of 135 candidate z ? 1 Ly? emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism data using a new data cube search method. These LAEs have luminosities comparable to those at high redshifts and lie within a 7 Gyr gap present in existing LAE samples. We use archival and newly obtained optical spectra to verify the UV redshifts of these LAEs. We use the combination of the GALEX UV spectra, optical spectra, and X-ray imaging data to estimate the active galactic nucleus (AGN) fraction and its dependence on Ly? luminosity. We remove the AGNs and compute the luminosity function (LF) from 60 z ? 1 LAE galaxies. We find that the best-fit LF implies a luminosity density increase by a factor of ?1.5 from z ? 0.3 to z ? 1 and ?20 from z ? 1 to z ? 2. We find a z ? 1 volumetric Ly? escape fraction of 0.7% 0.4%.

  19. Accelerated evolution of the Ly? luminosity function at z ? 7 revealed by the Subaru ultra-deep survey for Ly? emitters at z = 7.3

    SciTech Connect (OSTI)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shibuya, Takatoshi; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Shimasaku, Kazuhiro; Nakajima, Kimihiko; Furusawa, Hisanori; Iye, Masanori

    2014-12-10

    We present the ultra-deep Subaru narrowband imaging survey for Ly? emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (?0.5 deg{sup 2}) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Ly?) = 2.4 10{sup 42} erg s{sup 1} (5?) for z = 7.3 LAEs, about four times deeper than previous Subaru z ? 7 studies, which allows us to reliably investigate the evolution of the Ly? luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ?65 LAEs by our survey in the case of no Ly? LF evolution from z = 6.6 to 7.3. We identify a decrease of the Ly? LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Ly? LF with the best-fit Schechter parameters of L{sub Ly?}{sup ?}=2.7{sub ?1.2}{sup +8.0}10{sup 42} erg s{sup ?1} and ?{sup ?}=3.7{sub ?3.3}{sup +17.6}10{sup ?4} Mpc{sup ?3} for a fixed ? = 1.5. Moreover, the evolution of the Ly? LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ? 7, but suggested only at z > 8, this accelerated Ly? LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Ly? production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Ly? cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within cosmic ionized bubbles that are selectively absorbing Ly? and the large ionizing photon escape fraction of galaxies causing weak Ly? emission.

  20. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect (OSTI)

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  1. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    SciTech Connect (OSTI)

    Zhou, F.; Bohler, D.; Ding, Y.; Gilevich, S.; Huang, Z.; Loos, H.; Ratner, D.; Vetter, S.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  2. On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

    SciTech Connect (OSTI)

    Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC

    2011-06-23

    The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.

  3. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOE Patents [OSTI]

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  4. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOE Patents [OSTI]

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  5. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect (OSTI)

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  6. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media

    SciTech Connect (OSTI)

    Poddubny, Alexander N.; Belov, Pavel A.; Kivshar, Yuri S.

    2011-08-15

    We study the radiative decay and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the medium longitudinal and transverse dielectric constants are opposite, and that the isofrequency contour corresponds to a hyperbolic medium. We reveal that the Purcell enhancement factor remains finite even in the absence of losses and that it depends on the emitter size.

  7. Workshop in Novel Emitters and Nanostructured Materials | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Workshop in Novel Emitters and Nanostructured Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 09.01.11 Workshop in Novel Emitters and Nanostructured Materials Print Text Size: A A A Subscribe FeedbackShare Page The Solid-State Lighting Science Energy Frontier Research Center (SSLS EFRC) is hosting a workshop in conjunction with

  8. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop

  9. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  10. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  11. Hydrogen Delivery Roadmap

    Broader source: Energy.gov [DOE]

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  12. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  13. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  14. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    SciTech Connect (OSTI)

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.; Tang, Keqi

    2014-12-01

    Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utility of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.

  15. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  16. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop ...

  17. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  18. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of ...

  19. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  20. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Overview of HyRAM (Hydrogen Risk Assessment Models) Software for Science-Based Safety, Codes, ...

  1. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  2. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  3. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  4. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  5. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA PDF icon ...

  6. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  7. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  8. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    SciTech Connect (OSTI)

    Shen, L.; Liang, Z. C. Liu, C. F.; Long, T. J.; Wang, D. L.

    2014-02-15

    Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 ?/? performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 ?/? that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 10{sup 20} cm{sup ?3} and 7.78 10{sup 20} cm{sup ?3} and with junction depths between 0.46 ?m and 0.55 ?m possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 ?/? sheet resistance.

  9. Intramolecular hydrogen bonding as a synthetic tool to induce chemical

    Office of Scientific and Technical Information (OSTI)

    selectivity in acid catalyzed porphyrin synthesis (Journal Article) | SciTech Connect Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Citation Details In-Document Search Title: Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Authors: Megiatto Jr., Jackson D. ; Patterson, Dustin ; Sherman, Ben ; Moore, Thomas A. ; Gust, Devens ; Moore, Ana L.

  10. Intramolecular hydrogen bonding as a synthetic tool to induce chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selectivity in acid catalyzed porphyrin synthesis Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Authors: Megiatto, J. D., Patterson, D., Sherman, B. D., Moore, T. A., Gust, D., and Moore, A. L. Title: Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Source: Chemical Communications Year: 2012 Volume: 48 Pages: 4558-4560 ABSTRACT: A straightforward

  11. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  12. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  13. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  14. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  15. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  16. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  17. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  18. Hydrogen Infrastructure Strategies

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  19. Effect of the electrostatic plasma lens on the emittance of ahigh-current heavy ion beam

    SciTech Connect (OSTI)

    Chekh, Yu.; Goncharov, A.; Protsenko, I.; Brown, I.G.

    2004-01-10

    We describe measurements we have made of the emittance of a high-current, moderate-energy ion beam after transport through a permanent-magnet electrostatic plasma lens. The results indicate the absence of emittance growth due to the lens, when the lens is adjusted for optimal beam focusing. The measured emittance for a 16 keV Cu{sup 2+} ion beam formed by a vacuum arc ion source was about 0.4 {pi} {center_dot} mm {center_dot} mrad at a beam current of 50 mA rising more-or-less linearly to 1.5 {pi} {center_dot} mm {center_dot} mrad at 250 mA, and was conserved in beam transport through the lens. These results have significance for the application of high-current ion sources and the electrostatic plasma lens to particle accelerator injection.

  20. Emittance-Imposed Alignment and Frequency Tolerances for the TESLA Collider

    SciTech Connect (OSTI)

    Baboi, N

    2004-09-02

    One option in building a future 500 GeV c.m. linear collider is to use superconducting 1.3 GHz 9-cell cavities. However, wakefields excited by the bunch train in the TESLA (TeV-Energy Super Conducting Linear Accelerator) collider can resonantly drive the beam into unstable operation such that a BBU (Beam Break Up) mode results or at the very least significant emittance dilution occurs. The largest kick factors (proportional to the transverse fields which kick the beam off axis) are found in the first three dipole bands and hence multi-bunch emittance growth is mainly determined from these bands. These higher order dipole modes are damped by carefully orientating special couplers placed at both ends of the cavities. We investigate the dilution in the emittance of a beam with a random misalignment of cavities down the complete main linac. The beneficial effects of frequency errors on ameliorating the beam dilution are discussed.

  1. Low emittance growth funneling line: preliminary design and beam dynamics study

    SciTech Connect (OSTI)

    Guy, F.W.

    1985-01-01

    A theoretical design study has resulted in a conceptual funneling-line design that has a transverse emittance growth limited to only 15% based on beam-dynamics calculations. Two 2-MeV, 100-mA proton beams are funneled from a two-channel, 212.5-MHz radio-frequency quadrupole (RFQ) to a single beam suitable for injection into a 425-MHz linac. The design uses permanent-magnet quadrupoles, dipoles, and combined-function elements. The low emittance growth is obtained by arranging the focusing strength, the periodic structure, and the bending elements so as to minimize abrupt changes in the beam environmental with consequent charge redistribution and space-charge-caused emittance growth.

  2. Purification of Hydrogen

    DOE Patents [OSTI]

    Newton, A.S.

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  3. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  4. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  5. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  6. Electrostatic removal of lithium fluoride from field-emitter tips at elevated temperatures

    SciTech Connect (OSTI)

    Panitz, J.A. )

    1994-09-01

    The electrostatic removal of lithium fluoride (LiF) from field-emitter tips has been visualized at elevated temperatures in the transmission electron microscope (TEM). The apex of a field-emitter tip coated with [similar to]1500 A of LiF provides a unique substrate for observing the removal process in the TEM in real time, and its curvature generates the required electrostatic field strength. The influence of the imaging electron beam on coating morphology has been visually assessed. A LiF coating can tolerate an electron dose of [similar to]2000 [ital e][sup [minus

  7. PARMELA simulation for BNL 704MHz SRF gun in low emittance operation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: PARMELA simulation for BNL 704MHz SRF gun in low emittance operation Citation Details In-Document Search Title: PARMELA simulation for BNL 704MHz SRF gun in low emittance operation Authors: Wang E. ; Kewisch, J. ; Ben-Zvi, I. Publication Date: 2013-09-29 OSTI Identifier: 1113197 Report Number(s): BNL--100964-2013-CP R&D Project: KBCH139; 18074; KB0202011 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation:

  8. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect (OSTI)

    Kalliakos, Sokratis Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J.; Brody, Yarden; Schwagmann, Andre; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.

    2014-06-02

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  9. Microelectrode for energy and current control of nanotip field electron emitters

    SciTech Connect (OSTI)

    Lneburg, S.; Mller, M. Paarmann, A. Ernstorfer, R.

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 1030??m. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  10. New Materials for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

  11. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  12. Apparatus for storing hydrogen isotopes

    DOE Patents [OSTI]

    McMullen, John W.; Wheeler, Michael G.; Cullingford, Hatice S.; Sherman, Robert H.

    1985-01-01

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

  13. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOE Patents [OSTI]

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  14. Nanoamorphous carbon-based photonic crystal infrared emitters

    DOE Patents [OSTI]

    Norwood, Robert A.; Skotheim, Terje

    2011-12-13

    Provided is a tunable radiation emitting structure comprising: a nanoamorphous carbon structure having a plurality of relief features provided in a periodic spatial configuration, wherein the relief features are separated from each other by adjacent recessed features, and wherein the nanoamorphous carbon comprises a total of from 0 to 60 atomic percent of one or more dopants of the dopant group consisting of: transition metals, lanthanoids, electro-conductive carbides, silicides and nitrides. In one embodiment, a dopant is selected from the group consisting of: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La and other lanthanides, Hf, Ta, W, Rh, Os, Ir, Pt, Au, and Hg. In one embodiment, a dopant is selected from the group consisting of: electro-conductive carbides (like Mo.sub.2C), silicides (like MoSi.sub.2) and nitrides (like TiN).

  15. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  16. A new InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT)

    SciTech Connect (OSTI)

    Tsai, Jung-Hui; Lee, Ching-Sung; Lour, Wen-Shiung; Ma, Yung-Chun; Ye, Sheng-Shiun

    2011-05-15

    Excellent characteristics of an InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT) are first demonstrated. The insertion of a thin n-GaAs emitter layer between tynneling confinement and base layers effectivelty eliminates the potential spike at base-emitter junction and reduces the collector-emitter offset voltage, while the thin InGaP tunneling confinement layer is employed to reduce the transporting time across emitter region for electrons and maintain the good confinement effect for holes. Experimentally, the studied T-HEBN exhibits a maximum current gain of 285, a relatively low offset voltage of 40 mW, and a current-gain cutoff frequency of 26.4 GHz.

  17. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4: Perform research on the Proton Exchange membrane

  18. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  20. Method or forming emitters for a back-contact solar cell

    DOE Patents [OSTI]

    Li, Bo; Cousins, Peter J.; Smith, David D.

    2014-08-12

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  1. Method of forming emitters for a back-contact solar cell

    DOE Patents [OSTI]

    Li, Bo; Cousins, Peter J; Smith, David D

    2014-12-16

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  2. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect (OSTI)

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  3. High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate. Current WOLED technology requires the use of multiple emissive materials, which are expensive to manufacture and also generate color instability and color aging issues, affecting WOLED performance and operational lifetime.

  4. Method of forming emitters for a back-contact solar cell

    SciTech Connect (OSTI)

    Li, Bo; Cousins, Peter J.; Smith, David D.

    2015-09-29

    Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

  5. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect (OSTI)

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  6. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOE Patents [OSTI]

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  7. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  8. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect (OSTI)

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  9. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  10. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  11. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  12. Hydrogen production by high-temperature water splitting using electron-conducting membranes

    DOE Patents [OSTI]

    Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam

    2004-04-27

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.

  13. Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions

    DOE Patents [OSTI]

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    A high concentration of positive molecular ions of hydrogen or deuterium gas is extracted from a positive ion source having a short path length of extracted ions, relative to the mean free path of the gas molecules, to minimize the production of other ion species by collision between the positive ions and gas molecules. The ion source has arrays of permanent magnets to produce a multi-cusp magnetic field in regions remote from the plasma grid and the electron emitters, for largely confining the plasma to the space therebetween. The ion source has a chamber which is short in length, relative to its transverse dimensions, and the electron emitters are at an even shorter distance from the plasma grid, which contains one or more extraction apertures.

  14. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  15. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  16. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  17. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  18. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  19. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  20. Hydrogen Release Behavior

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (United States Driving Research and Innovation for Vehicle efficiency and Energy ... In addition, the need for lower-cost, more reliable, and more durable hydrogen central ...

  2. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  3. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research ...

  4. Hydrogen Industrial Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  5. Hawaii Hydrogen Energy Park

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  7. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  8. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... committees of ASME, SAE and ISO * Hydrogen has been used ... "approval" by the code official is required before ... or as meeting a standard. Listed - Equipment, ...

  9. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  10. Electrochemical Hydrogen Compression (EHC)

    Broader source: Energy.gov [DOE]

    This presentation by Pinakin Patel and Ludwig Lipp of Fuel Cell Energy was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 20, 2013.

  11. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  12. Hydrogen Safety Sensors

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Hydrogen Education in Texas

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  15. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  16. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  17. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  18. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  19. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  20. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  1. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  2. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  3. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  4. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  5. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  7. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  8. Limiting Effects in the Transverse-to-Longitudinal Emittance Exchange Technique for Low Energy Relativistic Electron Beams

    SciTech Connect (OSTI)

    Rihaoui, M.M.; Piot, P.; Power, J.G.; Gai, W.; /Argonne

    2009-05-01

    Transverse to longitudinal phase space manipulation hold great promises, e.g., as a potential technique for repartitioning the emittances of a beam. A proof-of-principle experiment to demonstrate the exchange of a low longitudinal emittance with a larger transverse emittance is in preparation at the Argonne Wakefield Accelerator using a {approx}12 MeV electron beam. In this paper we explore the limiting effects of this phase space manipulation method including high order and collective effects. A realistic start-to-end simulation of the planned proof-of-principle experiment including sensitivity studies is also presented.

  9. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  10. The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by Newton Pimenta and Cristiano Pinto of the State University of Campinas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_12_ohi.pdf More Documents & Publications Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  11. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  12. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  13. Physical Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Physical storage is the most mature hydrogen storage technology. The current near-term technology for onboard automotive physical hydrogen storage is 350 and 700 bar (5,000 and 10,000 psi) nominal working-pressure compressed gas vessels—that is, "tanks."

  14. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  16. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect (OSTI)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  17. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  18. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  19. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  20. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  1. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  2. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  3. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    SciTech Connect (OSTI)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.; Mishagin, V.V.; Sorokin, A.V.; Stupishin, N.V

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.

  4. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    SciTech Connect (OSTI)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  5. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  6. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    SciTech Connect (OSTI)

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

  7. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOE Patents [OSTI]

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  8. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  9. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  10. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOE Patents [OSTI]

    Csonka, P.L.

    1992-05-12

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence. 16 figs.

  11. Apparatus and method for improving radiation coherence and reducing beam emittance

    DOE Patents [OSTI]

    Csonka, Paul L.

    1992-01-01

    A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence.

  12. Analytical results from the quantum theory of a single-emitter nanolaser

    SciTech Connect (OSTI)

    Larionov, Nikolay V.; Kolobov, Mikhail I.

    2011-11-15

    We provide analytical results obtained in the framework of the quantum theory for a single-emitter nanolaser: an incoherently pumped single two-level system interacting with a single-cavity mode of finite finesse. In the good-cavity limit we analytically calculate the linewidth of such a laser, its amplitude fluctuation spectrum, and the intracavity Mandel Q parameter. Our analytical results are in very good agreement with numerical simulations of the master equation.

  13. SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy

    SciTech Connect (OSTI)

    Huang, C.Y.; Guatelli, S; Oborn, B; Allen, B

    2014-06-01

    Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 based microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.

  14. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  15. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  16. Formation of compressed flat electron beams with high transverse-emittance ratios

    SciTech Connect (OSTI)

    Zhu, J.; Piot, P.; Mihalcea, D.; Prokop, C. R.

    2014-08-01

    Flat beamsbeams with asymmetric transverse emittanceshave important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilabs Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ?37??MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25???m (emittance ratio is ?400), 0.13????m, 15 nm before compression, and 0.41???m, 0.20???m, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2?nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  17. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2008-05-15

    Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 501000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

  18. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region

    SciTech Connect (OSTI)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2005-12-01

    Despite their long history and wide range of applicability that includes electric propulsion, detailed understanding of the driving physics inside orificed hollow cathodes remains elusive. The theoretical complexity associated with the multicomponent fluid inside the cathode, and the difficulty of accessing empirically this region, have limited our ability to design cathodes that perform better and last longer. A two-dimensional axisymmetric theoretical model of the multispecies fluid inside an orificed hollow cathode is presented. The level of detail attained by the model is allowed by its extended system of governing equations not solved for in the past within the hollow cathode. Such detail is motivated in part by the need to quantify the effect(s) of the plasma on the emitter life, and by the need to build the foundation for future modeling that will assess erosion of the keeper plate. Results from numerical simulations of a 1.2-cm-diam cathode operating at a discharge current of 25 A and a gas flow rate of 5 SCCM show that approximately 10 A of electron current, and 3.45 A of ion current return back to the emitter surface. The total emitted electron current is 33.8 A and the peak emitter temperature is found to be 1440 K. Comparisons with the measurements suggest that anomalous heating of the plasma is possible near the orifice region. The model predicts heavy species temperatures as high as 2034 K and peak voltage drops near the emitting surface not exceeding 8 V.

  19. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    SciTech Connect (OSTI)

    Maxson, Jared Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan

    2015-06-08

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, hν≤E{sub g}+E{sub a}. These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4−4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ∼10{sup −4}. The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  20. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  1. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  2. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  3. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  4. Make the most of catalytic hydrogenations

    SciTech Connect (OSTI)

    Landert, J.P.; Scubla, T. [Biazzi S.A., Chailly-Montreux (Switzerland)

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  5. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S.; Nair, Balakrishnan G.; Small, Troy; Heck, Brian

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  6. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  7. Emittance measurements for optimum operation of the J-PARC RF-driven H{sup −} ion source

    SciTech Connect (OSTI)

    Ueno, A. Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectively reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.

  8. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  9. Advancing the hydrogen safety knowledge base

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weiner, S. C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  10. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  11. Hydrogen Sensor Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the Hydrogen Sensor Workshop held June 8, 2011, in Chicago, Illinois.The workshop was hosted by the U.S. Department of Energy's National Renewable Energy Laboratory.

  12. Hydrogen Compatible Materials Workshop

    Broader source: Energy.gov [DOE]

    Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

  13. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  14. DOE Hydrogen Program Overview

    Broader source: Energy.gov [DOE]

    Presentation by 01-Paster to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  15. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  16. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  17. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  18. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  19. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  20. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  1. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. PDF icon Hydrogen Storage More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  2. Advanced Hydrogen Liquefaction Process

    SciTech Connect (OSTI)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  3. Safetygram Gaseous Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is a colorless, odorless, tasteless, highly flammable gas. It is also the lightestweight gas. Since hydrogen is noncorrosive, special materials of construction are not usually required. The American Society of Mechanical Engineers (ASME) code and the American National Standards Institute (ANSI) Pressure Piping code specify vessel and piping design requirements for the pressures and temperatures involved. Applicable Dangerous Goods regulations specify requirements for vessels used for transportation.

  4. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  5. Cryogenic hydrogen release research.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  6. Significant Quantum Effects in Hydrogen Activation

    SciTech Connect (OSTI)

    Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.

    2014-05-27

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

  7. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  8. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  9. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.

  10. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  11. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  12. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  13. Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- Sandia National Laboratories (SNL), under the National Laboratory R&D competitive funding opportunity, is developing, characterizing, and refining advanced solar-selective coatings with high solar-weighted absorptivity (a > 0.95) and low emittance (e

  14. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: • Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). • Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. • Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. • Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. • Maintain safety as the top priority in the system design and operation. • Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  15. Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Hydrogen Delivery A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as a dispenser at a refueling station or stationary power site. Infrastructure includes the pipelines, trucks, storage facilities, compressors, and dispensers involved in the process of delivering fuel. Delivery technology for hydrogen infrastructure is currently available commercially, and several U.S. companies deliver bulk hydrogen

  16. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  17. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  18. Author Select

    Office of Scientific and Technical Information (OSTI)

    Authors Please use the pane on the left to start the selection process.

  19. Getter pump for hydrogen and hydrocarbon gases

    DOE Patents [OSTI]

    Hsu, Wen Ling

    1987-10-14

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  20. Getter pump for hydrogen and hydrocarbon gases

    DOE Patents [OSTI]

    Hsu, Wen L.

    1989-01-01

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm.sup.2. The graphite may be heated to a temperature greater than 1000.degree. C. The new device offers high capacity, low noise, and gas species selectivity.

  1. A Resonant Cavity Approach to Non-Invasive, Pulse-to-Pulse EmittanceMeasurement

    SciTech Connect (OSTI)

    Kim, J.S.; Nantista, C.D.; Miller, R.H.; Weidemann, A.W.; /FARTECH, San Diego /SLAC

    2010-06-15

    We present a resonant cavity approach for non-invasive, pulse-to-pulse, beam emittance measurements of non-circular multi-bunch beams. In a resonant cavity, desired field components can be enhanced up to Q{sub L{lambda}}/{pi}, where Q{sub L{lambda}} is the loaded quality factor of the resonant mode {lambda}, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad-cavity, with its quadrupole mode (TM{sub 220} for rectangular cavities) at beam operating frequency, rotated 45{sup o} with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole moment measurements, performed at different betatron phases in a linear transport system determine the beam emittance, i.e. the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms-beam size of a large aspect ratio beam. The resolution for such a measurement of rms-beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of ten microns. A prototype quad-cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear Accelerator Center (SLAC). Results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor.

  2. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    SciTech Connect (OSTI)

    Zeno, K.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  3. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  4. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOE Patents [OSTI]

    Elliott, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  5. DOE National Hydrogen Learning Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Projects » DOE National Hydrogen Learning Demonstration DOE National Hydrogen Learning Demonstration DOE's Technology Validation project is a government/industry partnership created to address the national challenge of ensuring reliable, domestic, diverse energy sources while reducing U.S. dependence on foreign oil and protecting the environment. In April 2004, DOE selected teams to participate in "learning demonstrations" that include testing, demonstrating, and

  6. Cold weather hydrogen generation system and method of operation

    DOE Patents [OSTI]

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  7. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  8. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  9. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  10. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  11. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  12. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  13. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  14. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  15. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  16. Renewable Hydrogen: The Environmental Perspective | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen: The Environmental Perspective Renewable Hydrogen: The Environmental Perspective Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF ...

  17. Florida Hydrogen Initiative Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Initiative Inc Jump to: navigation, search Name: Florida Hydrogen Initiative Inc Place: Florida Sector: Hydro, Hydrogen Product: Provides grants to aid the development of...

  18. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  19. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions...

  20. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Ltd Jump to: navigation, search Name: Hydrogen Solar Ltd Place: Guildford, United Kingdom Zip: GU2 7YG Sector: Hydro, Hydrogen, Solar Product: Hydrogen Solar Ltd is...

  1. Nanolipoprotein Particles for Hydrogen Production - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanolipoprotein Particles for Hydrogen Production Lawrence Livermore National Laboratory Contact...

  2. National Hydrogen Association | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association Jump to: navigation, search Name: National Hydrogen Association Place: Washington, Washington, DC Zip: 20036 Sector: Hydro, Hydrogen Product: The source for...

  3. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  4. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  5. The London Hydrogen Partnership | Open Energy Information

    Open Energy Info (EERE)

    London Hydrogen Partnership Jump to: navigation, search Name: The London Hydrogen Partnership Place: London, United Kingdom Zip: SE1 2AA Sector: Hydro, Hydrogen Product: The London...

  6. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen...

  7. Hunterston Hydrogen Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

  8. German Hydrogen Association DWV | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association DWV Jump to: navigation, search Name: German Hydrogen Association (DWV) Place: Berlin, Germany Zip: 12205 Sector: Hydro, Hydrogen Product: String...

  9. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  10. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?selective solar thermal absorbers

    SciTech Connect (OSTI)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng; Zhang, Qinglin; Li, Juchuan

    2014-08-21

    Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?C. The SiO{sub x} (x?hydrogen silsesquioxane and tetraethyl orthosilicate precursors, respectively, which comprise Si-O cage-like structures and Si-O networks. Fourier transform infrared spectroscopy shows that the dissociation of Si-O cage-like structures and Si-O networks at high temperatures have enabled the formation of new bonds at the Ni/SiO{sub x} interface to passivate the surface of Ni nanoparticles and prevent oxidation. X-ray photoelectron spectroscopy and Raman spectroscopy demonstrate that the excess Si in the SiO{sub x} (x?emittance ?18% measured at 300?C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

  11. Author Select

    Office of Scientific and Technical Information (OSTI)

    Selection List Select "add" or "add all", which appear after author's names in the middle pane, to add to the search strategy that appears in this pane. Return to Search >>

  12. Author Select

    Office of Scientific and Technical Information (OSTI)

    Author Select Last Name First Name search Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select "Go". An attempt will be...

  13. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  14. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  15. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect (OSTI)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  16. Optimization and beam control in large-emittance accelerators: Neutrino factories;

    SciTech Connect (OSTI)

    Carol Johnstone

    2004-08-23

    Schemes for intense sources of high-energy muons require collection, rf capture, and transport of particle beams with unprecedented emittances, both longitudinally and transversely. These large emittances must be reduced or ''cooled'' both in size and in energy spread before the muons can be efficiently accelerated. Therefore, formation of muon beams sufficiently intense to drive a Neutrino Factory or Muon Collider requires multi-stage preparation. Further, because of the large beam phase space which must be successfully controlled, accelerated, and transported, the major stages that comprise such a facility: proton driver, production, capture, phase rotation, cooling, acceleration, and storage are complex and strongly interlinked. Each of the stages must be consecutively matched and simultaneously optimized with upstream and downstream systems, meeting challenges not only technically in the optics and component design, but also in the modeling of both new and extended components. One design for transverse cooling, for example, employs meter-diameter solenoids to maintain strong focusing--300-500 mr beam divergences--across ultra-large momentum ranges, {ge} {+-}20% {delta}p/p, defying conventional approximations to the dynamics and field representation. To now, the interplay of the different systems and staging strategies has not been formally addressed. This work discusses two basic, but different approaches to a Neutrino Factory and how the staging strategy depends on beam parameters and method of acceleration.

  17. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  18. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  19. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  20. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. ...

  1. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  2. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  3. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Buffleben, George M.

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  4. Process for thermochemically producing hydrogen

    DOE Patents [OSTI]

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  5. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  6. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  7. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  8. Composite metal membranes for hydrogen separation applications

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-06-01

    A novel multilayer metal membrane has been developed that can be used for the separation of hydrogen from feed streams with near perfect selectivity. The membrane is comprised of very thin layers of fully dense palladium film deposited on both sides of a thin Group V metal foil, ion-milled prior to sputtering of the palladium. Palladium loading are kept low using the thin film deposition technology: 0.0012 grams of palladium per square centimeter of membrane is typically used, although thinner coatings have been employed. This membrane operates at temperatures on the order of 300 C and is capable of high rates of hydrogen flow. Flows are dependent on the pressure differential applied to the membrane, but flows of 105 sccm/cm{sup 2} and higher are regularly observed with differentials below one atmosphere. Long term testing of the membrane for a period in excess of 775 hours under constant conditions showed stable flows and an 85% hydrogen recovery efficiency. A system has been successfully applied to the hydrogen handling system of a proton exchange membrane fuel cell and was tested using a pseudo-reformate feed stream without any degradation in performance.

  9. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  10. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  11. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

  12. National Hydrogen Learning Demonstration Status

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen Learning Demonstration Status" held February 6, 2012.

  13. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http:...

  14. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  15. Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage Materials Database Demonstration" held December 13, 2011.

  16. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  17. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  18. Hydrogen Production Technical Team Roadmap

    Broader source: Energy.gov [DOE]

    The mission of the Hydrogen Production Technical Team (HPTT) is to enable the development of hydrogen production technologies, using clean, domestic resources, which will allow for an as-produced, delivered, and dispensed cost of $2 to $4 per gasoline gallon equivalent (gge) of hydrogen.

  19. Novel Hydrogen Carriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen carriers store hydrogen in some other chemical state rather than as free hydrogen ... Carriers are a unique way to deliver hydrogen by hydriding a chemical compound at the site ...

  20. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Jump to: navigation, search Logo: HydroGen Name: HydroGen Address: Head Office, 9 GreenMeadows Place: Cardiff, Wales Country: United Kingdom Sector: Hydro, Hydrogen,...

  1. Photoelectrochemical Hydrogen Production - Final Report

    SciTech Connect (OSTI)

    Miller, E.L.; Marsen, B.; Paluselli, D.; Rocheleau, R.

    2004-11-17

    The scope of this photoelectrochemical hydrogen research project is defined by multijunction photoelectrode concepts for solar-powered water splitting, with the goal of efficient, stable, and economic operation. From an initial selection of several planar photoelectrode designs, the Hybrid Photoelectrode (HPE) has been identified as the most promising candidate technology. This photoelectrode consists of a photoelectrochemical (PEC) junction and a solid-state photovoltaic (PV) junction. Immersed in aqueous electrolyte and exposed to sunlight, these two junctions provide the necessary voltage to split water into hydrogen and oxygen gas. The efficiency of the conversion process is determined by the performance of the PEC- and the PV-junctions and on their spectral match. Based on their stability and cost effectiveness, iron oxide (Fe2O3) and tungsten oxide (WO3) films have been studied and developed as candidate semiconductor materials for the PEC junction (photoanode). High-temperature synthesis methods, as reported for some high-performance metal oxides, have been found incompatible with multijunction device fabrication. A low-temperature reactive sputtering process has been developed instead. In the parameter space investigated so far, the optoelectronic properties of WO3 films were superior to those of Fe2O3 films, which showed high recombination of photo-generated carriers. For the PV-junction, amorphous-silicon-based multijunction devices have been studied. Tandem junctions were preferred over triple junctions for better stability and spectral matching with the PEC junction. Based on a tandem a-SiGe/a-SiGe device and a tungsten trioxide film, a prototype hybrid photoelectrode has been demonstrated at 0.7% solar-to-hydrogen (STH) conversion efficiency. The PEC junction performance has been identified as the most critical element for higher-efficiency devices. Research into sputter-deposited tungsten trioxide films has yielded samples with higher photocurrents of up to 1.3 mA/cm2. An improved a-Si/aSi tandem device has been demonstrated that would provide a better voltage match to the recently improved WO3 films. For a hybrid photoelectrode based on these component devices the projected STH efficiency is 1.3%. For significant efficiency enhancements, metal oxide films with increased optical absorption, thus lower bandgap, are necessary. Initial experiments were successful in lowering the WO3 bandgap by nitrogen doping, from 3.0 eV to 2.1 eV. Optimizing the electronic properties of these compounds, or other reduced-bandgap materials such as Fe2O3, is the most immediate challenge. As the photocurrent levels of the PEC junction are improved, increasing attention will have to be paid to the matching PV junction.

  2. SEARCHING FOR z {approx} 7.7 Ly{alpha} EMITTERS IN THE COSMOS...

    Office of Scientific and Technical Information (OSTI)

    universe is a useful probe of the epoch of reionization, as the Lyalpha line should be attenuated by the intergalactic medium (IGM) at low to moderate neutral hydrogen fractions. ...

  3. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling ... Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and ...

  4. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  5. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2...

  6. Webinar: International Hydrogen Infrastructure Challenges Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Webinar: International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and ...

  7. Liquid Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Liquid Hydrogen Delivery Liquid Hydrogen Delivery Hydrogen is most commonly transported and delivered as a liquid when high-volume transport is needed in the absence of pipelines. To liquefy hydrogen it must be cooled to cryogenic temperatures through a liquefaction process. Trucks transporting liquid hydrogen are referred to as liquid tankers. Liquefaction Gaseous hydrogen is liquefied by cooling it to below -253°C (-423°F). Once hydrogen is liquefied it can be stored at

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning ...

  9. International Hydrogen Infrastructure Challenges Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE ...

  10. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: Energy.gov (indexed) [DOE]

    tv03veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

  12. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  13. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  14. Container for hydrogen isotopes

    DOE Patents [OSTI]

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  15. PHOTOBIOLOGICAL HYDROGEN RESEARCH

    SciTech Connect (OSTI)

    Philippidis, George; Tek, Vekalet

    2009-07-01

    The project objectives are to develop bio-hydrogen production by:  Cloning the structural and subunit genes (cooKMUX and cooLH resp.) of the O{sub 2}- tolerant NiFe-hydrogenase from the photosynthetic bacterium Rubrivivax gelatinosus CBS strain in collaboration with NREL.  Cloning the active site maturation genes (hypA-F) of the CBS hydrogenase in collaboration with NREL.  Transforming the structural and subunits genes, along with the maturation genes, into E. coli and determining the minimum number of genes required for expression of a functional hydrogenase.  Upon expression of a functional hydrogenase, purifying and characterizing the recombinant hydrogenase from E. coli and performing bioreactor studies to optimize hydrogen production by E. coli.

  16. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  17. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  18. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  19. Advanced hydrogen utilization technology demonstration

    SciTech Connect (OSTI)

    Hedrick, J.C.; Winsor, R.E.

    1994-06-01

    This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

  20. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  1. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  2. Flash hydrogenation of biomass

    SciTech Connect (OSTI)

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  3. Coal liquefaction and hydrogenation: Processes and equipment. (Latest citations from the US Patent database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations of selected patents concerning methods, processes, and apparatus for coal liquefaction and hydrogenation. Included are patents for catalytic two-stage, catalytic single-step, fixed-bed, hydrogen-donor, internal heat transfer, and multi-phase processes. Topics also include catalyst production, catalyst recovery, desulfurization, pretreatment of coals, energy recovery processes, solvent product separation, hydrogenating gases, and pollution control. (Contains 250 citations and includes a subject term index and title list.)

  4. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect (OSTI)

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  5. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    SciTech Connect (OSTI)

    Singh, Abhishek; Surdi, Harshad; Nikesh, V. V.; Prabhu, S. S.; Döhler, G. H.

    2013-12-15

    We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs) based photoconductive emitters (PCE) on the emission of Tera-Hertz (THz) radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  6. Stochastic Boundary, Diffusion, Emittance Growth and Lifetime calculation for the RHIC e-lens

    SciTech Connect (OSTI)

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-20

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), a low energy electron beam with proper Gaussian transverse profiles was proposed to collide head-on with the proton beam. In this article, using a modified version of SixTrack [1], we investigate stability of the single particle in the presence of head-on beam-beam compensation. The Lyapunov exponent and action diffusion are calculated and compared between the cases without and with beam-beam compensation for two different working points and various bunch intensities. Using the action diffusion results the emittance growth rate and lifetime of the proton beam is also estimated for the different scenarios.

  7. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect (OSTI)

    Murphy, R. J. [Code 7650, Naval Research Laboratory, Washington, DC 20375 (United States); Kozlovsky, B. [Tel Aviv University, Tel Aviv (Israel); Share, G. H., E-mail: murphy@ssd5.nrl.navy.mil, E-mail: benz@wise.tau.ac.il, E-mail: share@astro.umd.edu [University of Maryland, College Park, MD 20742 (United States)

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup 1}) to a GeV nucleon{sup 1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for ?-particle reactions where only crude estimates were possible. Here we re-evaluate the ?-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but ?-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  8. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.

    1989-01-01

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  9. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  10. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    SciTech Connect (OSTI)

    Manzolaro, M. Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G.; Meneghetti, G.

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  11. Destabilized and catalyzed borohydride for reversible hydrogen storage

    DOE Patents [OSTI]

    Mohtadi, Rana F.; Nakamura, Kenji; Au, Ming; Zidan, Ragaiy

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  12. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  13. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    SciTech Connect (OSTI)

    Lueking, Angela; Badding, John; Crespi, Vinent

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical carbon nanoshells, even after chemical “capping” of the gas-imbued nanoshells to limit gas diffusivity. Subsequently, spectral probes of gas vibrational modes adsorbed in various carbon nanostructures (including activated carbons, single-wall carbon nanotubes, polymers of intrinsic microporosity (PIMs), and UV-irradiated PIMs with decreased pore size) were found only at high pressure. The vibrational mode of the adsorbed film became perturbed in high density films, and the perturbation was sensitive to surface functional groups, pore size, and pore dimension. Experimental results were corroborated with first-principle modeling using density functional theory. Development of semi-empirical correlations that relate the spectral features to pore dimension, geometry, and chemical potential of the adsorbed film are on-going.

  14. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Relevance - Objectively Assess Progress Toward Targets and Market Needs - Provide ... 4 Innovation for Our Energy Future History: 4 OEMEnergy Teams Selected ...

  15. Selective Catalaytic Oxidation of Hydrogen Sulfide to Elemental...

    Office of Scientific and Technical Information (OSTI)

    desulfurization technology with integrated sulfur ... will construct ultra-clean, modular, co-production ... sulfur contaminant, present in the coal-derived fuel gases. ...

  16. Selective Catalaytic Oxidation of Hydrogen Sulfide to Elemental...

    Office of Scientific and Technical Information (OSTI)

    ... Figure 6 is a highly tentative roadmap for maturing this technology. Figure 6. Tentative roadmap for SCOHS process development. FY00 FY01 FY02 FY03 >FY04 Proof-of-Concept Catalyst ...

  17. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  18. Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    SciTech Connect (OSTI)

    Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Majeski, Richard; Chung, Moses; Gutierrez, Michael S.; Kabcenell, Aaron N.

    2010-05-15

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beam distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.

  19. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  20. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications