Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Visible Spectrum Incandescent Selective Emitter  

SciTech Connect (OSTI)

The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination was initially projected. The work performed provided answers to a number of important questions. The first is that, with the investigated approaches, the maximum sustained emitter efficiencies are about 1.5 times that of a standard incandescent bulb. This was seen to be the case for both thick and thin emitters, and for both mono-layer and bi-layer designs. While observed VIS/NIR ratios represent improvements over standard incandescent bulbs, it does not appear sufficient to overcome higher cost (i.e. up to five times that of the standard bulb) and ensure commercial success. Another result is that high temperatures (i.e. 2650 K) are routinely attainable without platinum electrodes. This is significant for reducing material costs. A novel dual heating arrangement and insulated electrodes were used to attain these temperatures. Another observed characteristic of the emitter was significant grain growth soon after attaining operating temperatures. This is an undesirable characteristic that results in substantially less optical scattering and spectral selectivity, and which significantly limits emitter efficiencies to the values reported. Further work is required to address this problem.

Sonsight Inc.

2004-04-30T23:59:59.000Z

2

Microstructured tungsten thermophotovoltaic selective emitters c by Natalija (Zorana) Jovanovi?.  

E-Print Network [OSTI]

This research investigates the fabrication, modeling, characterization, and application of tungsten two-dimensional (2D) photonic crystal (PhC) structures as selective emitters and means of achieving higher efficiencies ...

Jovanovic, Natalija Zorana

2008-01-01T23:59:59.000Z

3

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

4

Silicon cells made by self-aligned selective-emitter plasma-etchback process  

DOE Patents [OSTI]

Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM); Zaidi, Saleem H. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

5

Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process  

DOE Patents [OSTI]

A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

Ruby, D.S.; Schubert, W.K.; Gee, J.M.

1999-02-16T23:59:59.000Z

6

Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process  

DOE Patents [OSTI]

A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

7

Two-dimensional photonic crystals as selective emitters for thermophotovoltaic power conversion applications  

E-Print Network [OSTI]

This research investigates the use of two-dimensional (2D) photonic crystals (PhC) as selective emitters and means of achieving higher efficiencies in combustion-driven thermophotovoltaic (TPV) systems intended as auxiliary ...

Jovanovic, Natalija Zorana

2005-01-01T23:59:59.000Z

8

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect (OSTI)

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

9

MIS-based sensors with hydrogen selectivity  

DOE Patents [OSTI]

The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

Li; ,Dongmei (Boulder, CO); Medlin, J. William (Boulder, CO); McDaniel, Anthony H. (Livermore, CA); Bastasz, Robert J. (Livermore, CA)

2008-03-11T23:59:59.000Z

10

Ligand iron catalysts for selective hydrogenation  

DOE Patents [OSTI]

Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

2010-11-16T23:59:59.000Z

11

Review and Understanding of Screen-Printed Contacts and Selective-Emitter Formation: Preprint  

SciTech Connect (OSTI)

A comparison of the loss mechanisms in screen-printed solar cells relative to buried contact cells and cells with photolithography-defined contacts is presented in this paper. Model calculations show that emitter recombination accounts for about 0.5% absolute efficiency loss in conventional screen-printed cells with low-sheet-resistance emitters. Ohmic contact to high-sheet-resistance emitters by screen-printing has been investigated to regain this efficiency loss. Our work shows that good quality ohmic contacts to high sheet-resistance emitters can be achieved if the glass frit chemistry and Ag particle size are carefully tailored. The melting characteristics of the glass frit determine the firing scheme suitable for low contact resistance and high fill factors. In addition, small to regular Ag particles were found to help achieve a higher open-circuit voltage and maintain a low contact resistance. This work has resulted in cells with high fill factors (0.782) on high sheet-resistance emitters and efficiencies of 17.4% on planar float zone Si substrates, without the need for a selective emitter.

Hilali, M. M.; Rohatgi, A.; To, B.

2004-08-01T23:59:59.000Z

12

Thermophotovoltaic energy conversion using photonic bandgap selective emitters  

DOE Patents [OSTI]

A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

13

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents [OSTI]

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

14

Materials Down Select Decisions Made Within DOE's Chemical Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center...

15

Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters  

E-Print Network [OSTI]

The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy ...

Rinnerbauer, Veronika

16

Novel Approach for Selective Emitter Formation and Front Side Metallization of Crystalline Silicon Solar Cells  

SciTech Connect (OSTI)

In this project we will explore the possibility of forming the front side metallization and selective emitter layer for the crystalline silicon solar cells through using selective laser ablation to create contact openings on the front surface and a screen printer to make connections with conductive paste. Using this novel approach we expect to reduce the specific contact resistance of the silver gridlines by about one order of magnitude compared to the state-of-art industrial crystalline silicon solar cells to below 1 m??cm2, and use lightly doped n+ emitter layer with sheet resistance of not smaller than 100 ?/?. This represents an enabling improvement on crystalline silicon solar cell performance and can increase the absolute efficiency of the solar cell by about 1%. In this scientific report we first present our result on the selective laser ablation of the nitride layer to make contact openings. Then we report our work on the solar cell fabrication by using the laser ablated contact openings with self-doping paste. Through various electrical property characterization and SIMS analysis, the factors limiting the cell performance have been discussed. While through this proof-of-concept project we could not reach the target on cell efficiency improvement, the process to fabricate 125mm full-sized silicon solar cells using laser ablation and self-doping paste has been developed, and a much better understanding of technical challenges has been achieved. Future direction to realize the potential of the new technology has been clearly defined.

Baomin Xu

2010-07-28T23:59:59.000Z

17

Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer  

SciTech Connect (OSTI)

We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5??m when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the design of switchable metamaterials for active control in energy and sensing applications.

Wang, Hao; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

2014-08-18T23:59:59.000Z

18

Systems and methods for selective hydrogen transport and measurement  

DOE Patents [OSTI]

Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

Glatzmaier, Gregory C

2013-10-29T23:59:59.000Z

19

Photonically Engineered Incandescent Emitter  

DOE Patents [OSTI]

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

20

The selective hydrogenation of crotonaldehyde over bimetallic catalysts  

SciTech Connect (OSTI)

The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO{sub 2} catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO{sub 2} system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, {sup 1}H NMR and microcalorimetry. The Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO{sub 2} catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO{sub 2} catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO{sub 2}, Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts produced only butyraldehyde. Initial heats of adsorption ({approximately}90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the {sup 1}H NMR Knight shift.

Schoeb, A.M.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal stability of nano-structured selective emitters for thermophotovoltaic systems  

E-Print Network [OSTI]

A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

Lee, Heon Ju, 1977-

2012-01-01T23:59:59.000Z

22

Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results  

SciTech Connect (OSTI)

An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

Alves de Freitas, Antonio; Abrao, Alcidio [Centro de Quimica e do Meio Ambiente (Brazil); Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu [Centro de Metrologia das Radiacoes Instituto de Pesquisas Energeticas e Nucleares Av. Prof. Lineu Prestes, 2242-Cidade Universitaria-Zip Code 05508-000 Sao Paulo-SP (Brazil)

2008-08-07T23:59:59.000Z

23

Catalysts for the selective oxidation of hydrogen sulfide to sulfur  

DOE Patents [OSTI]

This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

2000-08-08T23:59:59.000Z

24

Measuring overall emittance of concentrator receiver pipes  

SciTech Connect (OSTI)

A simple and accurate method for measuring the overall emittance of receiver pipes used with cylindrical concentrators is described. Experimental measurements obtained for steel pipes with a black chrome over nickel selective surface are presented. The observed strong temperature dependence of emittance indicates that the use of room temperature emittance data will substantially overestimate collector efficiency. (SPH)

Gerich, J.W.; Reitter, T.A.; Merriam, M.F.

1980-03-01T23:59:59.000Z

25

The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts  

E-Print Network [OSTI]

of acetylene in the presence of ethylene [22], and the selective hydrogenation of acrolein toward its

Frenkel, Anatoly

26

SELECTIVE FILTER FOR SnO2 BASED GAS SENSOR : APPLICATION TO HYDROGEN TRACE DETECTION  

E-Print Network [OSTI]

are requested in several fields such as applications [1], fuel cell [2], radioactive waste storage and diverse selectivity of a sensor includes the addition of a catalyst to the tin oxide powder. In the case of hydrogen1 SELECTIVE FILTER FOR SnO2 BASED GAS SENSOR : APPLICATION TO HYDROGEN TRACE DETECTION G

Paris-Sud XI, Université de

27

Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles  

SciTech Connect (OSTI)

We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functions of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.

Rankin, Rees B.; Greeley, Jeffrey P.

2012-10-19T23:59:59.000Z

28

The selective adsorption of hydrogen sulfide from natural gas streams  

E-Print Network [OSTI]

on the Magnolia Petroleum Company's Clayton Ranch No. 1 gas well. This well has 100 grains of hydrogen sulfide per 100 ft. of gas, or 0. 0016 m. f. Back Pressure Regulator I Smiley Tester (PbAc) Flare Well Reducing Regulator Separator Heater... to flare The gas out the top passed upward through the adsorbing column, through another back pressure regulator to the positive displacement meter, and thence to flare. Smiley testers were installed in the exit line to test for hydrogen sulfide, using...

Fails, James Clayton

1959-01-01T23:59:59.000Z

29

Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions  

DOE Patents [OSTI]

A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

Hershcovitch, A.

1984-02-13T23:59:59.000Z

30

Diamond fiber field emitters  

DOE Patents [OSTI]

A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

Blanchet-Fincher, Graciela B. (Wilmington, DE); Coates, Don M. (Santa Fe, NM); Devlin, David J. (Los Alamos, NM); Eaton, David F. (Wilmington, DE); Silzars, Aris K. (Landenburg, PA); Valone, Steven M. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

31

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

SciTech Connect (OSTI)

It was proposed to investigate a new concept for the synthesis of molecular sieve hydrogen selective membranes. This concept is based on the use of exfoliated layered zeolite precursors in coating processes to make nanocomposite films with inorganic or polymeric matrices. We discovered that creating exfoliated zeolite layers was much more difficult than anticipated because the methods originally proposed (based on existing literature reports) were not successful in providing exfoliated layers while preserving their porous structure. Although the original goals of fabricating high-selectivity-high-flux membranes that are stable under conditions present in a water-gas-shift reactor and that are able to selectively permeate hydrogen over all other components of the mixtures present in these reactors were not accomplished fully, significant progress has been made as follows: (1) Proof-of-concept hydrogen-selective nanocomposite membranes have been fabricated; (2) Methods to exfoliate layered zeolite precursors preserving the layer structure were identified; and (3) Unexpectedly, membranes exhibiting high ideal selectivity for carbon dioxide over nitrogen at room temperature were produced. The findings listed above provide confidence that the proposed novel concept can eventually be realized.

Michael Tsapatsis

2009-01-07T23:59:59.000Z

32

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

SciTech Connect (OSTI)

It is attempted to synthesize hydrogen selective silica-based membranes through a novel thin film deposition concept. This report describes the progress made during the 1st Year of this award. All project Tasks, for Year 1, were completed and the first thin films were prepared and characterized. The goal of this work is to use crystalline layered silicates to form hydrogen selective membranes for use in high temperature hydrogen/carbon dioxide separations. It was proposed to: (A) Synthesize layered silicate materials; (B) Prepare dispersions of as synthesized or delaminated layered silicates; (C) Prepare membranes by coating the layered silicates on macro-mesoporous supports; and (D) Test the membranes for H{sub 2}/CO{sub 2} selectivity at high temperature and pressures and for structural and functional stability at high temperature in the presence of water vapor. All Year 1 project Tasks are completed. Layered silicate particles were synthesized hydrothermally. Crystal shape and size was optimized for the formation of thin films. Calcination procedures that avoid particle agglomeration were developed and suspensions of the calcined silicate particles were prepared. The silicate particles and suspensions were characterized by X-Ray Diffraction, Electron Microscopy and Dynamic Light Scattering. The characterization data indicate that plate like morphology, large aspect ratio and good dispersion have been achieved. A deposition process that leads to uniform, high-coverage ({approx}100%) coating of the layered silicate particles on porous alpha-alumina supports was developed.

Michael Tsapatsis

2005-10-01T23:59:59.000Z

33

Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008  

Fuel Cell Technologies Publication and Product Library (EERE)

Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen

34

Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports  

SciTech Connect (OSTI)

Thin and defect-free Pd–Cu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a Pd–Cu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the Pd–Cu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the Pd–Cu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense Pd–Cu composite layer with no visible defects. Cross-sectional views of the membrane showed that the Pd–Cu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

Lim, Hankwon; Oyama, S. Ted

2011-08-15T23:59:59.000Z

35

Electrochemical formation of field emitters  

DOE Patents [OSTI]

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

Bernhardt, Anthony F. (Berkeley, CA)

1999-01-01T23:59:59.000Z

36

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

37

Diamond-graphite field emitters  

DOE Patents [OSTI]

A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.

Valone, Steven M. (Santa Fe, NM)

1997-01-01T23:59:59.000Z

38

Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

to fuel in order for chemical hydrogen storage systems to be acceptable hydrogen storage media. Currently, ammonia borane is (or is contained within) the most promising chemical...

39

Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence  

Fuel Cell Technologies Publication and Product Library (EERE)

Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

40

Positron emitter labeled enzyme inhibitors  

DOE Patents [OSTI]

This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

1987-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Positron emitter labeled enzyme inhibitors  

DOE Patents [OSTI]

This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

Fowler, Joanna S. (Bellport, NY); MacGregor, Robert R. (Sag Harbor, NY); Wolf, Alfred P. (Setauket, NY); Langstrom, Bengt (Upsala, SE)

1990-01-01T23:59:59.000Z

42

Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen  

SciTech Connect (OSTI)

In a future energy scenario, in which storage and transport of liquid hydrogen in large quantities will be used, the efficiency of the liquefaction of hydrogen will be of utmost importance. The goal of the IDEALHY working party is to identify the most promising process for a 50 t/d plant and to select the components, with which such a process can be realized. In the first stage the team has compared several processes, which have been proposed or realized in the past. Based on this information a process has been selected, which is thermodynamically most promising and for which it could be assumed that good components already exist or can be developed in the foreseeable future. Main features of the selected process are the compression of the feed stream to a relatively high pressure level, o-p conversion inside plate-fin heat exchangers and expansion turbines in the supercritical region. Precooling to a temperature between 150 and 100 K will be obtained from a mixed refrigerant cycle similar to the systems used successfully in natural gas liquefaction plants. The final cooling will be produced by two Brayton cycles, both having several expansion turbines in series. The selected overall process has still a number of parameters, which can be varied. The optimum, i.e. the final choice will depend mainly on the quality of the available components. Key components are the expansion turbines of the two Brayton cycles and the main recycle compressor, which may be common to both Brayton cycles. A six-stage turbo-compressor with intercooling between the stages is expected to be the optimum choice here. Each stage may consist of several wheels in series. To make such a high efficient and cost-effective compressor feasible, one has to choose a refrigerant, which has a higher molecular weight than helium. The present preferred choice is a mixture of helium and neon with a molecular weight of about 8 kg/kmol. Such an expensive refrigerant requires that the whole refrigeration loop is extremely tight.

Quack, H.; Seemann, I.; Klaus, M.; Haberstroh, Ch. [Technische Universitaet Dresden, Dresden (Germany); Berstad, D.; Walnum, H. T.; Neksa, P. [SINTEF Energy Research, Trondheim (Norway); Decker, L. [Linde Kryotechnik AG, Pfungen (Switzerland)

2014-01-29T23:59:59.000Z

43

Monolithic multinozzle emitters for nanoelectrospray mass spectrometry  

DOE Patents [OSTI]

Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

Wang, Daojing (Daly City, CA); Yang, Peidong (Kensington, CA); Kim, Woong (Seoul, KR); Fan, Rong (Pasadena, CA)

2011-09-20T23:59:59.000Z

44

Amorphous-diamond electron emitter  

DOE Patents [OSTI]

An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

Falabella, Steven (Livermore, CA)

2001-01-01T23:59:59.000Z

45

Electrochemical formation of field emitters  

DOE Patents [OSTI]

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

Bernhardt, A.F.

1999-03-16T23:59:59.000Z

46

Metal-support interactions: their effects upon adsorption, electronic, and activity/selectivity properties of cobalt in CO hydrogenation. Final progress report, April 1, 1982-September 30, 1983  

SciTech Connect (OSTI)

Measurements of dispersion, extent of reduction, H/sub 2/ and CO adsorption stoichiometries, CO hydrogenation activity and selectivity, and H/sub 2/ adsorption/desorption kinetics were conducted on 18 catalysts. Hydrogen adsorption was found to be highly activated and quite reversible; the adsorption stoichiometry corresponds to one hydrogen atom per surface cobalt atom. CO adsorption stoichiometries on the other hand vary considerably with support, dispersion, and preparation. Binding energies and adsorption states for H/sub 2/ on cobalt vary with support. Activity and selectivity in CO hydrogenation on cobalt vary with support, dispersion, and preparation. The specific activity and selectivity for heavier hydrocarbons decrease with increasing dispersion.

Bartholomew, C.H.

1983-10-01T23:59:59.000Z

47

Effects of calcination on adsorption and CO hydrogenation activity/selectivity of potassium-promoted Fe/SiO/sub 2/  

SciTech Connect (OSTI)

Effects of calcination pretreatment on the kinetics and energetics of H/sub 2/ adsorption were determined by TPD. Pretreatment effects on the CO hydrogenation activity and selectivity properties were determined with a differential reactor. Calcination increases adsorption strength and dramatically changes CO hydrogenation selectivity.

Bartholomew, C.H.; Rankin, J.L.

1985-01-01T23:59:59.000Z

48

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents [OSTI]

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

1982-01-01T23:59:59.000Z

49

Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package  

SciTech Connect (OSTI)

This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

Benjamin Russ

2009-06-01T23:59:59.000Z

50

Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles  

E-Print Network [OSTI]

chemoselective hydrogenation of acrolein over supported goldAu nanoparticle catalyzed acrolein hydrogenation, the edges

Rioux, R. M.

2009-01-01T23:59:59.000Z

51

Diamondoid monolayers as electron emitters  

DOE Patents [OSTI]

Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

Yang, Wanli (El Cerrito, CA); Fabbri, Jason D. (San Francisco, CA); Melosh, Nicholas A. (Menlo Park, CA); Hussain, Zahid (Orinda, CA); Shen, Zhi-Xun (Stanford, CA)

2012-04-10T23:59:59.000Z

52

Fundamental studies in hydrogen-rich combustion : instability mechanisms and dynamic mode selection  

E-Print Network [OSTI]

Hydrogen-rich alternative fuels are likely to play a significant role in future power generation systems. The emergence of the integrated gasification combined cycle (IGCC) as one of the favored technologies for incorporating ...

Speth, Raymond L., 1981-

2010-01-01T23:59:59.000Z

53

Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment  

DOE Patents [OSTI]

A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.

Pankove, J.I.; Wu, C.P.

1982-03-30T23:59:59.000Z

54

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

SciTech Connect (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

55

Comparative environmental impact and efficiency assessment of selected hydrogen production methods  

SciTech Connect (OSTI)

The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

2013-09-15T23:59:59.000Z

56

Metal-support interactions: their effects upon adsorption, electronic, and activity/selectivity properties of cobalt in CO hydrogenation. Annual progress report, April 1, 1982-March 31, 1983  

SciTech Connect (OSTI)

During the past year, measurements of dispersion, extent of reduction, H/sub 2/ and CO adsorption stoichiometries, CO hydrogenation activity and selectivity, and H/sub 2/ adsorption/desorption kinetics were conducted on 18 catalysts. Hydrogen adsorption was found to be highly activated and quite reversible; the adsorption stoichiometry corresponds to one hydrogen atom per surface cobalt atom. CO adsorption stoichiometries on the other hand vary considerably with support, dispersion, and preparation. Binding energies and adsorption states for H/sub 2/ on cobalt vary with support. Activity and selectivity in CO hydrogenation on cobalt vary with support, dispersion, and preparation. The specific activity and selectivity for heavier hydrocarbons decrease with increasing dispersion.

Bartholomew, C.H.

1983-04-29T23:59:59.000Z

57

Thermionic converter emitter support arrangement  

SciTech Connect (OSTI)

A support is presented for use in a thermionic converted to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a large metal main support at the rear end that is attached to the housing, and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

Allen, D.T.

1990-10-16T23:59:59.000Z

58

Thermionic converter emitter support arrangement  

SciTech Connect (OSTI)

A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

Allen, Daniel T. (La Jolla, CA)

1990-01-01T23:59:59.000Z

59

Thermionic converter emitter support arrangement  

DOE Patents [OSTI]

A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

Allen, Daniel T. (La Jolla, CA)

1990-01-01T23:59:59.000Z

60

Thermionic converter emitter support arrangement  

SciTech Connect (OSTI)

This patent describes a support provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs.

Allen, D.T.

1990-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermionic converter emitter support arrangement  

SciTech Connect (OSTI)

This document discusses a support provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

Allen, D.T.

1989-07-06T23:59:59.000Z

62

Determination of Stability Constants of Hydrogen and Aluminum Fluorides with a Fluoride-Selective Electrode  

SciTech Connect (OSTI)

The ability to directly determine free fluoride ion concentration (or mean activity) simplifies gathering and interpretation of experimental data for studies of metal complexes. In this work, the new lanthanum fluoride electrode was used to measure free fluoride ion in an investigation of the hydrogen-fluoride and aluminum-fluoride systems in NH4NO3.

Baumann, E.W.

2003-01-06T23:59:59.000Z

63

Organic Thin-Film Transistors for Selective Hydrogen Peroxide and Organic Peroxide Vapor Detection  

E-Print Network [OSTI]

. The mobility changes are reversible under dry air flow, whereas positive threshold voltage shifts are reversed reactive products and increasing fixed positive charge. 1. INTRODUCTION Detection of vapor-phase hydrogen they can be prepared from readily available chemicals.4,5 Environmental monitoring of organic peroxides

Kummel, Andrew C.

64

Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection  

SciTech Connect (OSTI)

This report summarizes the sulfur-iodine (SI) thermochemical water splitting process for the purpose of supporting the process for evaluating and recommending a hydrogen production technology to deploy with the Next Generation Nuclear Plant (NGNP). This package provides the baseline process description as well as a comparison with the process as it was implemented in the Integrated Lab Scale (ILS) experiment conducted at General Atomics from 2006-2009.

Benjamin Russ

2009-05-01T23:59:59.000Z

65

Development of optical field emitter arrays  

E-Print Network [OSTI]

Optical field emitters are electron emission sources actuated by incident light. Optically actuated field emitters may produce ultrafast pulses of electrons when excited by ultrafast optical pulses, thus making them of ...

Yang, Yujia, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

66

Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies  

SciTech Connect (OSTI)

This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

2007-12-01T23:59:59.000Z

67

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

68

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes  

SciTech Connect (OSTI)

We are attempting to fabricate H{sub 2}-selective silica-based films by ''layer-by-layer'' deposition as a new approach for thin films. A sonication-assisted deposition method was mainly used for ''layer-by-layer'' deposition. In addition, other approaches such as a dip-coating and the use of a polymer matrix with a layered silicate were contrived as well. This report shows the progress done during the 2nd Year of this award.

Michael Tsapatsis

2006-07-31T23:59:59.000Z

69

An ESS system for ECRIS Emittance Research  

SciTech Connect (OSTI)

An emittance scanner named Electric-Sweep Scanner had been designed and fabricated in IMP. And it has been set up on the LECR3 beam line for the ion beam quality study. With some development, the ESS system has become a relatively dependable and reliable emittance scanner. Its experiment error is about 10 percent. We have done a lot of experiments of emittance measurement on LECR3 ion source, and have researched the relations between ion beam emittance and the major parameters of ECR ion source. The reliability and accuracy test results are presented in this paper. And the performance analysis is also discussed.

Cao, Y.; Sun, L.T.; He, W.; Ma, L.; Zhang, Z.M.; Zhao, H.Y.; Zhao, H.W.; Zhang, X.Z.; Guo, X.H.; Ma, B.H.; Li, J.; Wang, H.; Li, J.Y.; Li, X.X.; Feng, Y.C.; Lu, W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, 730000 Lanzhou (China)

2005-03-15T23:59:59.000Z

70

Low Emittance Electron Beam Studies  

SciTech Connect (OSTI)

We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*{sub 01} mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

Tikhoplav, Rodion; /Rochester U.; ,

2006-04-01T23:59:59.000Z

71

Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry. Membrane-Based Emitter for Coupling Microfluidics with...

72

Analysis of hydrogen isotope mixtures  

DOE Patents [OSTI]

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

73

Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry  

SciTech Connect (OSTI)

Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

2011-06-16T23:59:59.000Z

74

Electrospray emitters For diffusion vacuum pumps  

E-Print Network [OSTI]

Following similar principles as regular diffusion vacuum pumps, an electrospray emitter is set to produce a jet of charged particles that will drag air molecules out of a volume. To be a feasible concept, the emitted ...

Diaz Gómez Maqueo, Pablo (Pablo Ly)

2011-01-01T23:59:59.000Z

75

Dependence of Gas-Phase Crotonaldehyde Hydrogenation Selectivity and Activity on the Size of Pt Nanoparticles (1.7-7.1 nm) Supported on SBA-15  

SciTech Connect (OSTI)

The selectivity and activity for the hydrogenation of crotonaldehyde to crotyl alcohol and butyraldehyde was studied over a series of Pt nanoparticles (diameter of 1.7, 2.9, 3.6, and 7.1 nm). The nanoparticles were synthesized by the reduction of chloroplatinic acid by alcohol in the presence of poly(vinylpyrrolidone) (PVP), followed by encapsulation into mesoporous SBA-15 silica. The rate of crotonaldehyde hydrogenation and selectivity towards crotyl alcohol both increase with increasing particle size. The selectivity towards crotyl alcohol increased from 13.7 % to 33.9 % (8 Torr crotonaldehyde, 160 Torr H{sub 2} and 353 K), while the turnover frequency increases from 2.1 x 10{sup -2} s{sup -1} to 4.8 x 10{sup -2} s{sup -1} with an increase in the particle size from 1.7 nm to 7.1 nm. The decarbonylation pathway to form propene and CO is enhanced over the higher proportion of coordinatively unsaturated sites on the smaller nanoparticles. The apparent activation energy remains constant ({approx} 16 kcal mol{sup -1} for the formation of butyraldehyde and {approx} 8 kcal mol{sup -1} for the formation of crotyl alcohol) as a function of particle size. In the presence of 130-260 mTorr CO, the reaction rate decreases for all products with a CO reaction order of -0.9 for crotyl alcohol and butyraldehyde over 7.1 nm Pt particles; over 1.7 nm Pt particles, the order in CO is -1.4 and -0.9, respectively. Hydrogen reduction at 673 K after calcination in oxygen results in increased activity and selectivity relative to reduction at either higher or lower temperature; this is discussed with regards to the incomplete removal and/or change in morphology of the polymeric surface stabilizing agent, poly(vinylpyrrolidone) used for the synthesis of the Pt nanoparticles.

Grass, Michael; Rioux, Robert; Somorjai, Gabor A.

2008-08-03T23:59:59.000Z

76

Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water  

SciTech Connect (OSTI)

High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360°C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20–100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

2014-10-15T23:59:59.000Z

77

Head erosion with emittance growth in PWFA  

SciTech Connect (OSTI)

Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States) and SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States) and University of Oslo, Oslo, N-0316 (Norway) and SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Max Planck Institute for Physics, Munich (Germany); University of California, Los Angeles, CA 90095 (United States)

2012-12-21T23:59:59.000Z

78

BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS  

SciTech Connect (OSTI)

A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

Chevtsov, Pavel; Tiefenback, Michael

2008-10-01T23:59:59.000Z

79

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31T23:59:59.000Z

80

Heterojunction solar cell with passivated emitter surface  

DOE Patents [OSTI]

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Spontaneous fluctuations of transition dipole moment orientation in OLED triplet emitters  

E-Print Network [OSTI]

The efficiency of an organic light-emitting diode (OLED) depends on the microscopic orientation of transition dipole moments of the molecular emitters. The most effective materials used for light generation have threefold symmetry, which prohibit a priori determination of dipole orientation due to the degeneracy of the fundamental transition. Single-molecule spectroscopy reveals that the model triplet emitter tris(2-phenylisoquinoline)iridium(III) (Ir(piq)3) does not behave as a linear dipole, radiating with lower polarization anisotropy than expected. Spontaneous symmetry breaking occurs in the excited state, leading to a random selection of one of the three ligands to form a charge transfer state with the metal. This non-deterministic localization is revealed in switching of the degree of linear polarization of phosphorescence. Polarization scrambling likely raises out-coupling efficiency and should be taken into account when deriving molecular orientation of the guest emitter within the OLED host from ense...

Steiner, Florian; Vogelsang, Jan; Lupton, John M

2015-01-01T23:59:59.000Z

82

Effect of Pt promotion on Ni/Al{sub 2}O{sub 3} for the selective catalytic reduction of NO with hydrogen  

SciTech Connect (OSTI)

Ni/Al{sub 2}O{sub 3} (10 wt.% Ni) and Ni-Pt/Al{sub 2}O{sub 3} (10 wt.% Ni, 0.5 wt.% Pt) were comparatively tested in the hydrogen selective catalytic reduction process (H{sub 2}-SCR), at reaction temperatures below 350°C. Catalytic activity tests consisted in temperature programmed reactions (TPRea) under plug flow conditions from 50 to 350°C, with a temperature rate of 5°C/min, using a feed stream with a reactant ratio NO:H{sub 2}?=?1:1.3 and a GHSV of 4500 h{sup ?1}. Promotion with Pt increases the catalytic performances of the Ni based catalyst, in respect to NO conversion, N{sub 2} selectivity and N{sub 2} yield. The reaction temperatures for NO conversion above 95% decrease significantly due to Pt addition, from 250°C for Ni/Al{sub 2}O{sub 3} to 125°C for Ni-Pt/Al{sub 2}O{sub 3}. Characterization of catalysts was performed by: X ray powder diffraction (XRD) for the estimation of Ni crystallite size, temperature programmed reduction (TPR) for the catalyst reducibility, temperature programmed desorption of hydrogen (H{sub 2}-TPD) for the investigation of active sites and metal dispersion on the support, N{sub 2} adsorption-desorption isotherms at ?196°C for the determination of total specific surface area and pore size distribution, and H/D isotopic exchange on the catalyst surface.

Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: maria.mihet@itim-cj.ro; Borodi, G., E-mail: maria.mihet@itim-cj.ro; Almasan, V., E-mail: maria.mihet@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies-INCDTIM, 65-103 Donath Str., 400293 Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

83

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

are low risk Goal: Develop solar selective coatings for next- generation concentrated solar power towers that exhibit high absorptance with low thermal emittance, that can...

84

Emittance growth from electron beam modulation  

SciTech Connect (OSTI)

In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

Blaskiewicz, M.

2009-12-01T23:59:59.000Z

85

Light modulated switches and radio frequency emitters  

DOE Patents [OSTI]

The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, Mahlon T. (Los Alamos, NM); Tallerico, Paul J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

86

Emittance control in rf cavities and solenoids  

E-Print Network [OSTI]

We study emittance growth for transport of uniform and Gaussian beams of particles in rf cavities and solenoids and show analytically its dependence on initial beam parameters. Analytical results are confirmed with simulation studies over a broad range of different initial beams.

Eshraqi, Mohammad; Lombardi, Alessandra M

2009-01-01T23:59:59.000Z

87

Charge neutrality in heavily doped emitters Jesus A. del Alamo  

E-Print Network [OSTI]

of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface

del Alamo, Jesús A.

88

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

89

Front contact solar cell with formed emitter  

SciTech Connect (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

90

Front contact solar cell with formed emitter  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

91

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

92

Emissivity Tuned Emitter for RTPV Power Sources  

SciTech Connect (OSTI)

Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

2012-03-01T23:59:59.000Z

93

Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics  

E-Print Network [OSTI]

A new approach is introduced to significantly improve the performance of thermophotovoltaic (TPV) systems by using low-dimensional thermal emitters and photovoltaic (PV) cells. By reducing the thickness of both the emitter and the PV cell, strong spectral selectivity in both thermal emission and absorption can be achieved by confining photons in trapped waveguide modes inside the thin-films that act as thermal analogs to quantum wells. Simultaneously, photo-excited carriers travel shorter distances across the thin-films reducing bulk recombination losses resulting in a lower saturation current in the PV cell. We predict a TPV efficiency enhancement with near-field coupling between the thermal emitter and the PV cell of up to 38.7% using a germanium (Ge) emitter at 1000 K and a gallium antimonide (GaSb) cell with optimized thicknesses separated by 100 nm. Even in the far-field limit, the efficiency is predicted to reach 31.5%, which is an order of magnitude higher than the Shockley Queisser limit of 1.6% for a...

Tong, Jonathan K; Huang, Yi; Boriskina, Svetlana V; Chen, Gang

2015-01-01T23:59:59.000Z

94

Multi-channel polarized thermal emitter  

DOE Patents [OSTI]

A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

2013-07-16T23:59:59.000Z

95

High efficiency quasi-monochromatic infrared emitter  

SciTech Connect (OSTI)

Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

2014-02-24T23:59:59.000Z

96

Workshop in Novel Emitters and Nanostructured Materials | U.S...  

Office of Science (SC) Website

Workshop in Novel Emitters and Nanostructured Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events...

97

Space Charge and Equilibrium Emittances in Damping Rings  

E-Print Network [OSTI]

SPACE CHARGE AND EQUILIBRIUM EMITTANCES IN DAMPING RINGS ?for the pos- sible impact of space charge on the equilibriumrings. INTRODUCTION Direct space charge effects have the

Venturini, Marco; Oide, Katsunobu; Wolski, Andy

2006-01-01T23:59:59.000Z

98

Theoretical study of transverse-longitudinal emittance coupling  

SciTech Connect (OSTI)

The effect of a weakly coupled periodic lattice in terms of achieving emittance exchange between the transverse and longitudinal directions is investigated using the generalized Courant-Snyder theory for coupled lattices. Recently, the concept and technique of transverse-longitudinal emittance coupling have been proposed for applications in the Linac Coherent Light Source and other free-electron lasers to reduce the transverse emittance of the electron beam. Such techniques can also be applied to the driver beams for the heavy ion fusion and beam-driven high energy density physics, where the transverse emittance budget is typically tighter than the longitudinal emittance. The proposed methods consist of one or several coupling components which completely swap the emittances of one of the transverse directions and the longitudinal direction at the exit of the coupling components. The complete emittance exchange is realized in one pass through the coupling components. In the present study, we investigate the effect of a weakly coupled periodic lattice in terms of achieving emittance exchange between the transverse and longitudinal directions. A weak coupling component is introduced at every focusing lattice, and we would like to determine if such a lattice can realize the function of emittance exchange.

Qin, H; Davidson, R C; Chung, M; Barnard, J J; Wang, T F

2011-04-14T23:59:59.000Z

99

Autothermal hydrogen storage and delivery systems  

DOE Patents [OSTI]

Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

2011-08-23T23:59:59.000Z

100

Sharpening of field emitter tips using high-energy ions  

DOE Patents [OSTI]

A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

Musket, Ronald G. (Danville, CA)

1999-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Blind Channel Identification for the Emitter Location Problem  

E-Print Network [OSTI]

a thesis entitled "Blind Channel Identification for the Emitter Location Problem: A Least Square ApproachBlind Channel Identification for the Emitter Location Problem: A Least Square Approach BY Cheung C. Chau B.S.E.E., Binghamton University, 2000 Thesis Submitted in Partial Fulfillment of the Requirements

Fowler, Mark

102

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

103

Comparison between arc drops in ignited thermionic converters with and without ion reflections at the emitter  

SciTech Connect (OSTI)

The output performance of two thermionic energy converters is compared. One converter has a normal emitter, working with zero field at the emitter which is close to the optimum working point, and the other has a low work function emitter and ion reflection at the emitter. A simple model of the plasma and the sheaths shows that a converter working with a low work function emitter and ion reflections gives a worse performance than a similar converter with a normal emitter.

Lundgren, L.

1985-07-01T23:59:59.000Z

104

Abstract --The influence on the thermal resistance of emitter design parameters like emitter area, aspect ratio, and distance to  

E-Print Network [OSTI]

Abstract -- The influence on the thermal resistance of emitter design parameters like emitter area-state) thermal resistance, but also in a faster thermal transient of the transistors. Accurate RC networks are extracted by measurements in order to model the thermal impedance transient of devices with or without Al

Technische Universiteit Delft

105

E-Print Network 3.0 - auger electron emitters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emitter... contact resistance - We used a triple-mesa fabrication process. Emitter metal was defined using electron... metallization. A conventional hi-layer electron...

106

Standard emitters (clocks) and calibrated standard emitters (clocks) in spaces with affine connections and metrics  

E-Print Network [OSTI]

It is shown that the general belief that the frequency and the absolute value of the velocity of periodic signals sent by a standard emitter do not change on the world line of the emitter needs to be revised and new conditions for the existence of a calibrted standard emitter should be taken into account. The notions of a standard clock and of a calibrated standard clock are introduced in a space with affine connections and metrics. The variation of the velocity and of the frequency of a standard clock could be compared with the constant velocity and the constant frequency of a calibrated standard clock along the world line of the observer. This calibrated standard clock is transported by meand of a generalized Fermi-Walker transport along the same world line of the observer. Some remarks about the synchronization of standard clocks in spaces with affine connections and metrics are given. PACS numbers: 95.30.Sf; 04.90.+h; 04.20.Cv; 04.90.+e

Sawa Manoff

2005-05-12T23:59:59.000Z

107

Hydrogen recovery process  

DOE Patents [OSTI]

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

108

New Low Emittance Lattice for the Super-B Accelerator  

SciTech Connect (OSTI)

New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.

Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; /SLAC; Bettoni, S.; /CERN; Paoloni, E.; /Pisa U. /INFN, Pisa; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF

2011-10-21T23:59:59.000Z

109

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

110

Code for Hydrogen Hydrogen Pipeline  

E-Print Network [OSTI]

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

111

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

112

Activated aluminum hydride hydrogen storage compositions and uses thereof  

DOE Patents [OSTI]

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

113

Matching of Infrared Emitters with Textiles For Improved Energy Utilization  

E-Print Network [OSTI]

the infrared absorptivity of fabrics over the wavelength spectrum of 0.7 to 25 microns (the range of operation of commercial infrared emitters). Since the operating ranges for several system components (detectors, beam splitters and sources) are much narrower...

Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

114

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect (OSTI)

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

115

Silicon heterojunction solar cell with passivated hole selective MoO{sub x} contact  

SciTech Connect (OSTI)

We explore substoichiometric molybdenum trioxide (MoO{sub x}, x?selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711?mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoO{sub x}, we observe a substantial gain in photocurrent of 1.9?mA/cm{sup 2} in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.

Battaglia, Corsin; Yin, Xingtian; Zheng, Maxwell; Javey, Ali, E-mail: ajavey@eecs.berkeley.edu [Electrical Engineering and Computer Sciences Department, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Martín de Nicolás, Silvia; De Wolf, Stefaan; Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2000 Neuchâtel (Switzerland)

2014-03-17T23:59:59.000Z

116

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

117

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen High temperature options for nuclear generation of hydrogen on a commercial basis are several years in the future. Thermo-chemical water splitting has been proven to be...

118

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

119

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

120

Metal supported carbon nanostructures for hydrogen storage.  

E-Print Network [OSTI]

??Carbon nanocones are the fifth equilibrium structure of carbon, first synthesized in 1997. They have been selected for investigating hydrogen storage capacity, because initial temperature… (more)

Matelloni, Paolo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Process, including membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents [OSTI]

Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

122

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

123

Analysis of emitter material transport in thermionic converter  

SciTech Connect (OSTI)

Output power and efficiency of a thermionic converter depend on temperatures, cesiated work functions, and emissivities of electrodes as well as the interelectrode gap size. Operation lifetime of a thermionic converter is directly related to the values as well as the stability of these parameters, which can be seriously altered by the transport of emitter material to the collector during operation. Loss rate of tungsten, a preferred emitter material, by sublimation at typical operating temperatures is small (about 3{times}10{sup 7} atom/cm{sup 2}sec at 2000 K). The loss rate, however, can be several orders of magnitude higher in the presence of gaseous contaminants. Accelerated transport of emitter material to collector surface changes the effective emissivity and work functions of the electrodes, resulting in performance degradation. A phenomenological model was developed to simulate emitter material transport to the collector in the presence of oxygen, water vapor, and carbon oxide contaminants. The model accounts for interaction of these contaminants with both emitter and collector. Model results were in agreement with experimental data and theoretical results of other investigators. An analysis was performed to determine steady-state chemical composition of deposited material onto the collector surface in the presence of H{sub 2}O, O{sub 2}, and H{sub 2} gaseous contaminants. {copyright} {ital 1996 American Institute of Physics.}

Paramonov, D.V.; El-Genk, M.S. [Institute for Space and Nuclear Power Studies, Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

1996-03-01T23:59:59.000Z

124

Low Emittance Tuning Studies for SuperB  

SciTech Connect (OSTI)

SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

Liuzzo, Simone; /INFN, Pisa; Biagini, Maria; /INFN, Rome; Raimondi, Pantaleo; /INFN, Rome; Donald, Martin; /SLAC

2012-07-06T23:59:59.000Z

125

Laser Assisted Emittance Transfer for Storage Ring Lasing  

SciTech Connect (OSTI)

In modern storage rings the transverse emittance of electron beams can be comparable to that from state-of-art photoinjectors, but the intrinsic low peak current and large energy spread pre-cludes the possibility of realizing short-wavelength high-gain free electron lasers (FELs) in storage rings. In this note I propose a technique to significantly increase beam peak current without greatly increasing beam energy spread, which is achieved by transferring part of the longitudinal emittance to transverse plane. It is shown that by properly repartitioning the emittance in 6-D phase space, the beam from a large storage ring may be used to drive a single-pass high-gain FEL in soft x-ray wavelength range.

Xiang, Dao; /SLAC

2011-06-01T23:59:59.000Z

126

Spring structure for a thermionic converter emitter support arrangement  

DOE Patents [OSTI]

A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

Allen, D.T.

1992-03-17T23:59:59.000Z

127

Spring structure for a thermionic converter emitter support arrangement  

SciTech Connect (OSTI)

A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

Allen, Daniel T. (La Jolla, CA)

1992-01-01T23:59:59.000Z

128

Study of narrowband single photon emitters in polycrystalline diamond films  

SciTech Connect (OSTI)

Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (?several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor, E-mail: igor.aharonovich@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

2014-11-03T23:59:59.000Z

129

Nanometer emittance ultralow charge beams from rf photoinjectors  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In this paper we discuss the generation of a new class of high brightness relativistic electron beams, characterized by ultralow charge (0.1–1 pC) and ultralow normalized emittance (<50??nm ). These beams are created in rf photoinjectors when the laser is focused on the cathode to very small transverse sizes (<30???m rms). In this regime, the charge density at the cathode approaches the limit set by the extraction electric field. By shaping the laser pulse to have a cigarlike aspect ratio (the longitudinal dimension much larger than the transverse dimension) and a parabolic temporal profile, the resulting space charge dominated dynamics creates a uniformly filled ellipsoidal distribution and the emittance can be nearly preserved to its thermal value. We also present a new method, based on a variation of the pepper-pot technique, for single shot measurements of the ultralow emittances for this new class of beams.

Li, R. K.; Roberts, K. G.; Scoby, C. M.; To, H.; Musumeci, P.

2012-09-01T23:59:59.000Z

130

Electrical Control of Optical Emitter Relaxation Pathways enabled by Graphene  

E-Print Network [OSTI]

Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of high fundamental interest, and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. While advanced dielectric and metallic systems have been developed to tailor the interaction between an emitter and its environment, active control of the energy flow has remained challenging. Here, we demonstrate in-situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 $\\mu$m. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into either electron-hole pairs, emitted photons or graphene near-infrared plasmons, confined to $<$15 nm to the sheet. These capabilities to dictate optical energy transfer processes through electrical control of t...

Tielrooij, K J; Ferrier, A; Badioli, M; Navickaite, G; Coop, S; Nanot, S; Kalinic, B; Cesca, T; Gaudreau, L; Ma, Q; Centeno, A; Pesquera, A; Zurutuza, A; de Riedmatten, H; Goldner, P; de Abajo, F J García; Jarillo-Herrero, P; Koppens, F H L

2014-01-01T23:59:59.000Z

131

Excellent oxidation endurance of boron nitride nanotube field electron emitters  

SciTech Connect (OSTI)

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600?°C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600?°C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39?mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

Song, Yenan [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Song, Yoon-Ho [Nano Electron-Source Creative Research Center, Creative and Challenging Research Division, ETRI, Daejeon 305-700 (Korea, Republic of); Milne, William I. [Electrical Engineering Division, Engineering Department, Cambridge University, Cambridge CB3 0FA (United Kingdom); Jin Lee, Cheol, E-mail: cjlee@korea.ac.kr [Department of Micro/Nano Systems, Korea University, Seoul 136-713 (Korea, Republic of); School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

2014-04-21T23:59:59.000Z

132

Ion trapping in the emitter sheath in thermionic converters  

SciTech Connect (OSTI)

The effect of ion trapping in the emitter sheath in ignited thermionic converters is studied. The ion trapping prevents the emitter-sheath barrier from being higher than approximately 0.1 eV, when the current decreases in the converter. This gives a condition for the constriction of the arc. I-V curves are calculated for an ignited thermionic converter with a hydrodynamic plasma theory that takes into account the effect of Coulomb scattering and volume recombination, but assumes that the electron temperature is constant in the plasma.

Lundgren, L.

1985-12-01T23:59:59.000Z

133

Purdue Hydrogen Systems Laboratory  

SciTech Connect (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

134

Hydrogen Bibliography  

SciTech Connect (OSTI)

The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

Not Available

1991-12-01T23:59:59.000Z

135

The effects of emitter-tied field plates on lateral PNP ionizing radiation response  

SciTech Connect (OSTI)

Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R. [Vanderbilt Univ., Nashville, TN (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L. [VTC Inc., Bloomington, MN (United States)

1998-03-01T23:59:59.000Z

136

Investigation of the tunneling emitter bipolar transistor as spin-injector into silicon  

E-Print Network [OSTI]

In this thesis is discussed the tunneling emitter bipolar transistor as a possible spin-injector into silicon. The transistor has a metallic emitter which as a spin-injector will be a ferromagnet. Spin-polarized electrons ...

Van Veenhuizen, Marc Julien

2010-01-01T23:59:59.000Z

137

E-Print Network 3.0 - alpha-emitters basic principles Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.1 Introduction Summary: a half-life of 3.6 days, and is an -emitter. Radium-226, in the uranium-238 series, also an alpha emitter... , Principles of Isotope Geology, 2nd ed....

138

E-Print Network 3.0 - alpha emitter ra-223 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Thvenin equivalent circuit seen looking into the emitter is useful... with a resistor rie from the emitter node to signal ground. Fig. 1(a) shows the BJT symbol with a...

139

E-Print Network 3.0 - alpha emitters bismuth-213 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Thvenin equivalent circuit seen looking into the emitter is useful... with a resistor rie from the emitter node to signal ground. Fig. 1(a) shows the BJT symbol with a...

140

Uniformity of wastewater dispersal using subsurface drip emitters  

E-Print Network [OSTI]

An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic...

Persyn, Russell Alan

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - auger emitter 119sb Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emitters, ... Source: Australian National University, Department of Engineering, Solar Energy Program Collection: Renewable Energy ; Engineering 10 IEEE ELECTRON DEVICE LETTERS,...

142

Electrospray Emitters For Diffusion Vacuum Pumps Pablo Diaz Gomez Maqueo, Paulo C. Lozano  

E-Print Network [OSTI]

Electrospray Emitters For Diffusion Vacuum Pumps Pablo Diaz Gomez Maqueo, Paulo C. Lozano June 2011 SSL # 12-11 #12;#12;Electrospray Emitters For Diffusion Vacuum Pumps Pablo Diaz Gomez Maqueo, Paulo C;Electrospray Emitters For Diffusion Vacuum Pumps by Pablo Diaz Gomez Maqueo Submitted to the Department

143

INFLUENCE OF EMITTER PROFILE CHARACTERISTICS ON THERMAL STABILITY AND PASSIVIATION QUALITY OF A-SI/SINX-PASSIVATED BORON EMITTERS  

E-Print Network [OSTI]

Institute of Solar Energy Research Hameln (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany 2 Institute We present emitter saturation current densities (J0E) of different types of BBr3 furnace on n-type silicon are suit- able for the fabrication of high efficiency solar cells [1]. Cz n

144

Targeting of Osseous Sites with Alpha-emitting Ra-223: Comparison with the Beta-emitter Sr-89 in Mice  

SciTech Connect (OSTI)

The bone-seeking property of and the potential to irradiate red marrow by the alpha-particle emitter Ra-223 (t1/2 = 11.43 d) were compared to those of the beta-emitter Sr-89 (t1/2 = 50.53 d). Methods: The biodistributions of Ra-223 and Sr-89 were studied in mice. Tissue uptakes were determined at 1 h, 6 h, 1 d, 3 d, and 14 d after intravenous administration. The potential redistribution of progeny from Ra-223 located in bone was investigated. Radiation absorbed doses were calculated for soft tissues and bone. Doses were also estimated for marrow-containing cavities assuming spheric geometries. Results: We found that both Sr-89 and Ra-223 selectively concentrated on bone surfaces relative to soft tissues. The measured bone uptake of Ra-223 was slightly higher than that of Sr-89. At the 24 h time-point, the femur uptake of Ra-223 was 40.1% of the administered activity per gram tissue. The uptake in spleen and most other soft tissues was higher for Ra-223 than for Sr-89. We observed rapid clearance of Ra-223 from soft tissues within the first 24 hours, but the bone surface uptake of Ra-223 increased with time up to 24 h. Among the soft tissues, the spleen had the greatest accumulation and retention of Ra-223. The femur-to-spleen ratio increased with time, from 6.4 at 6 h to 23.7 at 3 days after injections. We found little redistribution of Ra-223 daughter products away from bone (about 2% at 6 h and less than 1% detectable at 3 d). Estimates of dose to marrow-containing cavities showed that the Ra-223 alpha-emitter might have a marrow-sparing advantage compared to beta-emitters due to high linear-energy-transfer and short alpha range targeting osteoid surfaces. The alpha-emitters irradiate a smaller fraction of the marrow-containing volumes--sparing marrow and enhancing survival of marrow cells. At the same time, the bone surfaces receives a therapeutically effective radiation dose. Conclusion: The results of this study indicate that Ra-223 is a promising candidate for high linear-energy-transfer alpha-particle irradiation of cancer cells on bone surfaces. Radium-223 can, together with its daughter radionuclides, deliver an intense and highly localized field of radiation to bone surfaces with substantially less irradiation of healthy bone marrow dose compared to standard, bone-seeking beta-emitters such as Sr-89.

Henriksen, Gjermund; Fisher, Darrell R.; Roeske, John C.; Bruland, Oyvind S.; Larsen, Roy H.

2003-05-16T23:59:59.000Z

145

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

146

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets  

Broader source: Energy.gov (indexed) [DOE]

2005 2010 2012 2015 2017 Down-select BILI BILI R&D for BILI <3.80gge <3.00gge 2020 Production vehicles Hydrogen Fuel Initiative Hydrogen Fuel Initiative R&D to Meet Targets...

147

High efficiency rare-earth emitter for thermophotovoltaic applications  

SciTech Connect (OSTI)

In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573?K (1300?°C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

Sakr, E. S.; Zhou, Z.; Bermel, P., E-mail: pbermel@purdue.edu [Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907 (United States)

2014-09-15T23:59:59.000Z

148

Nonlocality from N>2 independent single-photon emitters  

SciTech Connect (OSTI)

We demonstrate that intensity correlations of second order in the fluorescence light of N>2 single-photon emitters may violate locality while the visibility of the signal remains below 1/{radical}(2){approx_equal}71%. For this, we derive a homogeneous Bell-Wigner-type inequality, which can be applied to a broad class of experimental setups. We trace the violation of this inequality back to path entanglement created by the process of detection.

Thiel, C.; Wiegner, R.; Zanthier, J. von [Institut fuer Optik, Information und Photonik, Universitaet Erlangen-Nuernberg, D-91058 Erlangen (Germany); Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

2010-09-15T23:59:59.000Z

149

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

150

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

151

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J and industry expectations · DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use #12;3 OAK

152

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

153

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

154

Hydrogen Transition Infrastructure Analysis  

SciTech Connect (OSTI)

Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

Melendez, M.; Milbrandt, A.

2005-05-01T23:59:59.000Z

155

Compact hydrogen/helium isotope mass spectrometer  

DOE Patents [OSTI]

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01T23:59:59.000Z

156

Metal-support interactions: Their effects upon adsorption, electronic, and activity/selectivity properties of cobalt in CO hydrogenation: Final progress report for the period April 1, 1984 to July 1, 1987  

SciTech Connect (OSTI)

Cobalt, iron and nickel catalysts find wide application in the fuels and chemical industries, particularly in hydrogenation and hydrotreating reactions. Most commercial catalysts containing these metals consist of a metal or metal oxide phase dispersed throughout a high surface area ceramic carrier or support. Effects of surface structure, dispersion and support on activity and selectivity of the active catalytic phase were assumed until recent times to be of secondary importance. However, in the past decade there was evidence that surface structure/dispersion and metal-support interactions can dramatically influence the adsorption and activity/selectivity properties of the metals in a number of reactions. While it is desirable to study separately the effects of surface structure, dispersion and metal-support interactions, these effects are often interrelated. During the past three years, the BYU Catalysis Laboratory has been involved in an investigation of the interaction of cobalt (and to a lesser extent iron) metal(s) with alumina, silica, titania, and carbon. Results of this investigation over these past three years are summarized in this brief report. 22 refs.

Bartholomew, C.H.

1987-07-01T23:59:59.000Z

157

Geothermal hydrogen sulfide removal  

SciTech Connect (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

158

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

159

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

160

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays  

DOE Patents [OSTI]

Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

2010-10-19T23:59:59.000Z

162

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

163

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

SciTech Connect (OSTI)

Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

2009-09-01T23:59:59.000Z

164

E-Print Network 3.0 - auger emitter dependent Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Technology (MIT) Collection: Engineering 7 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 THE BURIED EMITTER SOLAR CELL CONCEPT...

165

E-Print Network 3.0 - alpha emitters produced Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 THE BURIED EMITTER SOLAR CELL CONCEPT Summary: techniques for producing...

166

E-Print Network 3.0 - alpha particle emitters Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

longitudinal emittance growth in the rebuncher. Therefore opening a ... Source: TRIUMF Isotope Separation and ACceleration (ISAC) facility, beta-NMR Group Collection: Physics 48...

167

E-Print Network 3.0 - alpha emitters ii Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exceeded... toxicity alpha ... Source: Yucca Mountain Project, US EPA Collection: Environmental Sciences and Ecology 22 Fabrication and Characterization of Porous Metal Emitters...

168

Hydrogen-based electrochemical energy storage  

DOE Patents [OSTI]

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

Simpson, Lin Jay

2013-08-06T23:59:59.000Z

169

Stable catalyst layers for hydrogen permeable composite membranes  

DOE Patents [OSTI]

The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

Way, J. Douglas; Wolden, Colin A

2014-01-07T23:59:59.000Z

170

Deterministic photon-emitter coupling in chiral photonic circuits  

E-Print Network [OSTI]

The ability to engineer photon emission and photon scattering is at the heart of modern photonics applications ranging from light harvesting, through novel compact light sources, to quantum-information processing based on single photons. Nanophotonic waveguides are particularly well suited for such applications since they confine photon propagation to a 1D geometry thereby increasing the interaction between light and matter. Adding chiral functionalities to nanophotonic waveguides lead to new opportunities enabling integrated and robust quantum-photonic devices or the observation of novel topological photonic states. In a regular waveguide, a quantum emitter radiates photons in either of two directions, and photon emission and absorption are reverse processes. This symmetry is violated in nanophotonic structures where a non-transversal local electric field implies that both photon emission and scattering may become directional. Here we experimentally demonstrate that the internal state of a quantum emitter determines the chirality of single-photon emission in a specially engineered photonic-crystal waveguide. Single-photon emission into the waveguide with a directionality of more than 90\\% is observed under conditions where practically all emitted photons are coupled to the waveguide. Such deterministic and highly directional photon emission enables on-chip optical diodes, circulators operating at the single-photon level, and deterministic quantum gates. Based on our experimental demonstration, we propose an experimentally achievable and fully scalable deterministic photon-photon CNOT gate, which so far has been missing in photonic quantum-information processing where most gates are probabilistic.

Immo Söllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiršansk?; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

2015-01-12T23:59:59.000Z

171

Nano Structure Control and Selectivity of Hydrogen Release from Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccounts andThe Role ofStorage - Energy Innovation

172

C. Plennevaux et al., Electrochemistry Communications 26 (2013) 1720 Contribution of CO2 on hydrogen evolution and hydrogen permeation in low  

E-Print Network [OSTI]

Introduction The risk of hydrogen embrittlement of steels is a primary concern for material selection in oil the risk of hydrogen embrittlement. Sulfide stress cracking (SSC) is one of the main risks of steel on hydrogen evolution and hydrogen permeation in low alloy steels exposed to H2S environment C. Plennevauxa

Paris-Sud XI, Université de

173

Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates  

SciTech Connect (OSTI)

Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

Zhao, Y.; Xu, Q.; Cheah, S.

2013-01-01T23:59:59.000Z

174

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

175

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

176

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

177

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

178

The Influence of Graphene Curvature on Hydrogen Adsorption: Towards Hydrogen Storage Devices  

E-Print Network [OSTI]

The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices.

Goler, Sarah; Tozzini, Valentina; Piazza, Vincenzo; Mashoff, Torge; Beltram, Fabio; Pellegrini, Vittorio; Heun, Stefan

2013-01-01T23:59:59.000Z

179

Surface application of molybdenum silicide onto gated poly-Si emitters for enhanced field emission performance  

E-Print Network [OSTI]

the merits of molybdenum Mo silicide formation on gated polycrystalline silicon poly-Si field emitters. Metal, any metal silicide can be adopted without reSurface application of molybdenum silicide onto gated poly-Si emitters for enhanced field emission

Lee, Jong Duk

180

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Delivery Mark Paster  

E-Print Network [OSTI]

Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

182

Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing  

SciTech Connect (OSTI)

The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

Carlsten, B.E.

1997-02-01T23:59:59.000Z

183

Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry  

SciTech Connect (OSTI)

An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-?m-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

2011-06-09T23:59:59.000Z

184

Numerical studies of emittance exchange in 2-D charged-particle beams  

SciTech Connect (OSTI)

We describe results obtained from a two-dimensional particle-following computer code that simulates a continuous, nonrelativistic, elliptical charged-particle beam with linear continuous focusing. Emittances and focusing strengths can be different in the two transverse directions. The results can be applied, for example, for a quadrupole transport system in a smooth approximation to a real beam with unequal emittances in the two planes. The code was used to study emittance changes caused by kinetic-energy exchange between transverse directions and by shifts in charge distributions. Simulation results for space-charge-dominated beams agree well with analytic formulas. From simulation results, an empirical formula was developed for a ''partition parameter'' (the ratio of kinetic energies in the two directions) as a function of initial conditions and beamline length. Quantitative emittance changes for each transverse direction can be predicted by using this parameter. Simulation results also agree with Hofmann's generalized differential equation relating emittance and field energy.

Guy, F.W.

1986-01-01T23:59:59.000Z

185

Characterization of Drip Emitters and Computing Distribution Uniformity in a Drip Irrigation System at Low Pressure Under Uniform Land Slopes  

E-Print Network [OSTI]

Characteristics of emitters under low pressure are essential for designing drip irrigation systems. Low pressure data for drip emitters are not available from manufacturers. A laboratory test was conducted to evaluate the performance of five types...

Dutta, Deba P.

2010-01-15T23:59:59.000Z

186

Cluster radioactivities from an island of cluster emitters  

SciTech Connect (OSTI)

We have recently developed a realistic model for studying cluster radioactivities from actinide nuclei. This model uses a cubic potential in the overlapping region connected by a Yukawa-plus-exponential potential in the post-scission region. In the present work we use this model to study {sup 4}He, {sup 12}C, {sup 16}O, and {sup 28}Si radioactivities in the region of nuclides with proton and neutron number in the range {ital Z}=56--64 and {ital N}=58--72, which has been recently identified by Poenaru {ital et} {ital al}. as a new island of such cluster emitters. It is found that charge equilibration is not needed in the study of these radioactivities and the half-lives obtained for these decays lie very close to those reported by Poenaru {ital et} {ital al}. using their analytical super asymmetric fission model.

Shanmugam, G.; Carmel Vigila Bai, G.M. [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627 002 (India)] [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627 002 (India); Kamalaharan, B. [Department of Physics, Presidency College, Madras 600 005 (India)] [Department of Physics, Presidency College, Madras 600 005 (India)

1995-05-01T23:59:59.000Z

187

Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring  

E-Print Network [OSTI]

Measurement Of Transverse Instability Thresholds In Low And high Emittance optics At The Photon Factory Storage Ring

Sakanaka, S; Kamiya, Yu; Katoh, M; Kobayakawa, H

1990-01-01T23:59:59.000Z

188

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

189

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

190

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

191

Proposal and design of a new SiC-emitter lateral NPM Schottky collector bipolar transistor on  

E-Print Network [OSTI]

Proposal and design of a new SiC-emitter lateral NPM Schottky collector bipolar transistor on SOI, a SiC emitter lateral NPM Schottky collector bipolar transistor (SCBT) with a silicon-on-insulator (SOI on simulation results, the authors demonstrate for the first time that the proposed SiC emitter lateral NPM

Kumar, M. Jagadesh

192

Hydrogen and Infrastructure Costs  

Broader source: Energy.gov (indexed) [DOE]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

193

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

194

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

195

Hydrogen Program Overview  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen

196

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

197

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

198

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

199

An Intermediate-band imaging survey for high-redshift Lyman Alpha Emitters: The Mahoroba-11  

E-Print Network [OSTI]

We present results of our intermediate-band optical imaging survey for high-$z$ Ly$\\alpha$ emitters (LAEs) using the prime focus camera, Suprime-Cam, on the 8.2m Subaru Telescope. In our survey, we use eleven filters; four broad-band filters ($B$, $R_{\\rm c}$, $i^\\prime$, and $z^\\prime$) and seven intermediate-band filters covering from 500 nm to 720 nm; we call this imaging program as the Mahoroba-11. The seven intermediate-band filters are selected from the IA filter series that is the Suprime-Cam intermediate-band filter system whose spectral resolution is $R = 23$. Our survey has been made in a $34^\\prime \\times 27^\\prime$ sky area in the Subaru XMM Newton Deep Survey field. We have found 409 IA-excess objects that provide us a large photometric sample of strong emission-line objects. Applying the photometric redshift method to this sample, we obtained a new sample of 198 LAE candidates at $3 42.67$ between $z \\sim 3$ and 5.

Yamada, S F; Sumiya, R; Umeda, K; Shioya, Y; Ajiki, M; Nagao, T; Murayama, T; Taniguchi, Y; Yamada, Sanae F.; Sasaki, Shunji S.; Sumiya, Ryoko; Umeda, Kazuyoshi; Shioya, Yasuhiro; Ajiki, Masaru; Nagao, Tohru; Murayama, Takashi; Taniguchi, Yoshiaki

2005-01-01T23:59:59.000Z

200

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Space-charged-induced emittance growth in the transport of high-brightness electron beams  

SciTech Connect (OSTI)

The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes.

Jones, M.E.; Carlsten, B.E.

1987-03-01T23:59:59.000Z

202

Longitudinal pulse shaping for the suppression of coherent synchrotron radiation-induced emittance growth  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The damaging effect of coherent synchrotron radiation (CSR) on the emittance and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. We propose a mitigation approach in which the dynamical effect of the longitudinal component of CSR is suppressed by appropriately preparing the initial longitudinal current profile of the beam. In a chicane, a linear theory for the mechanism of CSR-induced emittance growth is used to demonstrate how this procedure can produce a beam whose core experiences suppressed transverse emittance growth. The dynamics of such a beam is illustrated for the Berlin-Zeuthen CSR benchmark chicane.

Mitchell, Chad; Qiang, Ji; Emma, Paul

2013-06-01T23:59:59.000Z

203

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect (OSTI)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

204

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

205

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

206

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

207

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

208

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

209

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

210

Production of Hydrogen from Underground Coal Gasification  

DOE Patents [OSTI]

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

211

Wind to Hydrogen in California: Case Study  

SciTech Connect (OSTI)

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

212

Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center  

SciTech Connect (OSTI)

A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

2012-07-01T23:59:59.000Z

213

alumina-titania high emittance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and analysis of lateral SiC N-emitter SiGe P-base Schottky metal-collector (NPM) HBT on SOI Engineering Websites Summary: on SOI M. Jagadesh Kumar *, C. Linga Reddy...

214

Study of Collective Effects for the PEP Low-Emittance Optics  

E-Print Network [OSTI]

for the PEP Low-Emittance Optics" MS. Zisman,(l] M Borland,[found from the collider optics. 5 As is obvious. thelore" for the PEP collider optics. 13 where the transverse

Zisman, M.S.

2010-01-01T23:59:59.000Z

215

Characterization of wastewater subsurface drip emitters and design approaches concerning system application uniformity  

E-Print Network [OSTI]

applications showed low application uniformities, which was reflected in overloading of the field near the supply manifold while low emitter discharge rates occurred at the end of lateral. Designers are seeking appropriate operation pressures and drip zone...

Duan, Xiaojing

2009-06-02T23:59:59.000Z

216

Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector  

E-Print Network [OSTI]

We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

2015-01-01T23:59:59.000Z

217

Storage of charge carriers on emitter molecules in organic light-emitting diodes  

E-Print Network [OSTI]

Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)[subscript 2](acac)] are studied by time-resolved electroluminescence ...

Reineke, Sebastian

218

Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic  

SciTech Connect (OSTI)

The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

2010-06-01T23:59:59.000Z

219

E-Print Network 3.0 - alpha -ray emitter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recoil separator RITU was used to observe a new proton emitter 164 Ir. The nuclide... clean alpha decay spectra without beam pulsing, which results in a loss of a part of the ......

220

Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions  

E-Print Network [OSTI]

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

222

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

223

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

224

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

225

Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters  

SciTech Connect (OSTI)

Thermionic converters with interelectrode gaps smaller than 10 microns are capable of substantial performance improvements over conventional ignited mode diodes. Previous devices which have demonstrated operation at such small gaps have done so at low power densities and emitter temperatures. Higher power operation requires overcoming two primary design issues: thermal distortion of the emitter due to temperature gradients and degradation of the in-gap spacers at higher emitter temperatures. This work describes two innovations for solution of these issues. The issue of thermal distortion was addressed by an isothermal emitter incorporating a heat-pipe into its structure. Such a heat-pipe emitter, with a single-crystal emitting surface, was fabricated and characterized. Finite-element computational modeling was used to analyze its distortion with an applied heat flux. The calculations suggested that thermal distortion would be significantly reduced as compared with a solid emitter. Ongoing work and preliminary experimental results are described for a system of active interelectrode gap control. In the present design an integral transducer determines the interelectrode gap of the converter. Initial designs for spacing actuators and their required cesium vapor seals are discussed. A novel hot-shell converter design incorporating active spacing control and low-temperature seals is presented. A converter incorporating the above features would be capable of near ideal-converter performance at high power densities. In addition, active spacing control can potentially completely eliminate short-circuit failures in thermionic converter systems.

Fitzpatrick, G.O.; Koester, J.K.; Chang, J.; Britt, E.J.; McVey, J.B. [Space Power, Inc., San Jose, CA (United States)

1996-12-31T23:59:59.000Z

226

Emittance studies at the Los Alamos National Laboratory Free-Electron Laser  

SciTech Connect (OSTI)

Recent emittance studies at the Los Alamos FEL have indicated several areas of concern in the linac and beamline feeding the wiggler. Four emittance growth mechanisms of special importance have been studied. First, a rapid growth of the electron beam's emittance immediately after the spherical gridded Pierce gun resulted, in part, from the long time required for our pulsing electronics to ramp the grid voltage up at the start and down at the end of the pulse, which created a pulse with a cosine-like current distribution as a function of time. The growth was compounded by the extremely small radial beam size (almost a waist) leaving the gun. In addition, we saw evidence of electrostatic charging of the insulators in the gun, reducing the quality of the electron beam further. Second, the action of the solenoidal focusing fields in the low-voltage bunching region was studied, and criteria for a minimum emittance growth were established. Third, maximum misalignment angles and displacements for various elements of the beamline were calculated for the desired low emittance growth. Finally, emittance growth in the horizontal dimension through the nonisochronous bend caused by varying energy depression on the particles due to longitudinal wake fields was both calculated and observed. In addition, we measured energy depressions caused by the wake fields generated by various other elements in the beamline. Strategies were developed to relieve the magnitude of these wake-field effects. 10 refs., 12 figs.

Carlsten, B.E.; Feldman, D.W.; Lumpkin, A.H.; Stein, W.E.; Warren, R.W.

1987-01-01T23:59:59.000Z

227

DOE Working Group Meeting Renewable Hydrogen Production UsingRenewable Hydrogen Production Using  

E-Print Network [OSTI]

P-101 E-201 V-302 WASTE WATER VIRENT REACTOR SYSTEM R-100 B-201 AIR R-203 E-202 DI WATER HOT AIR in the aqueous phase and has highoperates in the aqueous phase and has high hydrogen selectivity at low temperaturehydrogen selectivity at low temperature.. ·· Impact:Impact: Sugars and sugar alcohols areSugars and sugar

228

Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures  

SciTech Connect (OSTI)

Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utility of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.

Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.; Tang, Keqi

2014-12-01T23:59:59.000Z

229

Hydrogen energy systems studies  

SciTech Connect (OSTI)

In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

1996-10-01T23:59:59.000Z

230

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect (OSTI)

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

231

Hydrogen Bus Technology Validation Program  

E-Print Network [OSTI]

and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

2005-01-01T23:59:59.000Z

232

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

233

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

234

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

235

Selective etching of high-k HfO{sub 2} films over Si in hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas  

SciTech Connect (OSTI)

Inductively coupled hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} and Si were drastically changed depending on the additive-H{sub 2} flow rate in C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas. The highly selective etching of HfO{sub 2} over Si was done in the condition with an additive-H{sub 2} flow rate, where the Si surface was covered with the fluorocarbon polymer. The results of x-ray photoelectron spectroscopy indicated that the carbon content of the selectively etched HfO{sub 2} surface was extremely low compared with the preetched surface contaminated by adventitious hydrocarbon in atmosphere. In the gas phase of the C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas, Hf hydrocarbide molecules such as metal-organic compounds and Hf hydrofluoride were detected by a quadrupole mass analyzer. These findings indicate that the fluorine species, carbon, and hydrogen can work to etch HfO{sub 2} and that the carbon species also plays an important role in selective etching of HfO{sub 2} over Si.

Takahashi, Kazuo; Ono, Kouichi [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2006-05-15T23:59:59.000Z

236

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

237

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

238

Energy Procedia 29 (2012) 1 11 1876-6102 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Canadian Hydrogen and Fuel Cell Association.  

E-Print Network [OSTI]

, compactness, and lower operating costs in comparison with other designs, air- cooled PEM fuel cells (AC-cooled PEM fuel cell. To mimic the heat generation inside the MEA, rubber heater films are used. Pressure of the Hydrogen and Fuel Cell Association "Keywords: PEM fuel cells; thermal management; air-cooled; convective

Bahrami, Majid

239

DOE Hydrogen Program Overview  

Broader source: Energy.gov (indexed) [DOE]

Intl. J. Hydrogen Energy 27: 1217-1228 Melis A, Seibert M and Happe T (2004) Genomics of green algal hydrogen research. Photosynth. Res. 82: 277- 288 Maness P-C, Smolinski...

240

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

242

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

243

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

244

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

245

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

246

Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration  

DOE Patents [OSTI]

A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

Golden, Timothy Christopher; Weist Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

2010-04-13T23:59:59.000Z

247

Hydrogen Production CODES & STANDARDS  

E-Print Network [OSTI]

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

248

Sensitive hydrogen leak detector  

DOE Patents [OSTI]

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

249

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

250

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

251

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels, but fall with increased scale to $3-4/kg (~$2-3/gal gasoline) Hydrogen Cost in Selected Cities 0.06 0.08 0

California at Davis, University of

252

Safety, codes and standards for hydrogen installations :  

SciTech Connect (OSTI)

Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

2014-04-01T23:59:59.000Z

253

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

254

Method for producing hydrogen  

SciTech Connect (OSTI)

In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

Preston, J.L.

1980-02-26T23:59:59.000Z

255

Multistage Zeeman deceleration of hydrogen atoms  

SciTech Connect (OSTI)

The deceleration of beams of neutral particles possessing an electron spin with time-dependent inhomogeneous magnetic fields is demonstrated experimentally. Half the kinetic energy of a velocity-selected part of a pulsed supersonic beam of hydrogen atoms in the ground state is removed using six pulsed magnetic field stages.

Vanhaecke, Nicolas [Physical Chemistry, ETH Zuerich, CH-8093 Zuerich (Switzerland); Laboratoire Aime Cotton, batiment 505, Campus d'Orsay, 91405 Orsay (France); Meier, Urban; Andrist, Markus; Meier, Beat H.; Merkt, Frederic [Physical Chemistry, ETH Zuerich, CH-8093 Zuerich (Switzerland)

2007-03-15T23:59:59.000Z

256

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

257

Multiple intrinsically identical single photon emitters in the solid-state  

E-Print Network [OSTI]

Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.

Lachlan J. Rogers; Kay D. Jahnke; T. Teraji; Luca Marseglia; Christoph. Müller; Boris Naydenov; Hardy Schauffert; C. Kranz; Junichi Isoya; Liam P. McGuinness; Fedor Jelezko

2014-06-05T23:59:59.000Z

258

Total hemispherical emittance measured at high temperatures by the calorimetric method  

SciTech Connect (OSTI)

A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements ({+-} 5 percent). The probable error of the CVE measurements was typically less than 1 percent.

DiFilippo, F. [Case Western Reserve Univ., Cleveland, OH (United States); Mirtich, M.J.; Banks, B.A. [Lewis Research Center, Cleveland, OH (United States); Stidham, C.; Kussmaul, M. [Cleveland State Univ., OH (United States)

1994-09-01T23:59:59.000Z

259

Configuration and technology implications of potential nuclear hydrogen system applications.  

SciTech Connect (OSTI)

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

260

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

In-plane emission of indistinguishable photons generated by an integrated quantum emitter  

SciTech Connect (OSTI)

We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2014-06-02T23:59:59.000Z

262

Microelectrode for energy and current control of nanotip field electron emitters  

SciTech Connect (OSTI)

Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30??m. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

Lüneburg, S.; Müller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de; Ernstorfer, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)] [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

2013-11-18T23:59:59.000Z

263

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

264

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

265

Terahertz radiation by optical rectification in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenylmalondialdehyde  

E-Print Network [OSTI]

Terahertz radiation by optical rectification has been observed at room temperature in a hydrogen-bonded organic molecular ferroelectric crystal, 2-phenyl malondialdehyde (PhMDA). The radiated electromagnetic wave consisted of a single-cycle terahertz pulse with a temporal width of $\\sim$ 0.5 ps. The terahertz radiation amplitude divided by the sample thickness in PhMDA was nearly equivalent to that in a typical terahertz wave emitter ZnTe. This is attributable to a long coherence length in the range of 130 $\\sim$ 800 $\\mu$m for the terahertz radiation from PhMDA. We also discussed the possibility of PhMDA as a terahertz wave emitter in terms of the phase-matching condition.

Guan, W; Sotome, M; Kinoshita, Y; Takeda, R; Inoue, A; Horiuchi, S; Okamoto, H

2014-01-01T23:59:59.000Z

266

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

267

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

268

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

269

Nanoamorphous carbon-based photonic crystal infrared emitters  

DOE Patents [OSTI]

Provided is a tunable radiation emitting structure comprising: a nanoamorphous carbon structure having a plurality of relief features provided in a periodic spatial configuration, wherein the relief features are separated from each other by adjacent recessed features, and wherein the nanoamorphous carbon comprises a total of from 0 to 60 atomic percent of one or more dopants of the dopant group consisting of: transition metals, lanthanoids, electro-conductive carbides, silicides and nitrides. In one embodiment, a dopant is selected from the group consisting of: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La and other lanthanides, Hf, Ta, W, Rh, Os, Ir, Pt, Au, and Hg. In one embodiment, a dopant is selected from the group consisting of: electro-conductive carbides (like Mo.sub.2C), silicides (like MoSi.sub.2) and nitrides (like TiN).

Norwood, Robert A. (Tucson, AZ); Skotheim, Terje (Tucson, AZ)

2011-12-13T23:59:59.000Z

270

High Pressure Hydrogen Materials Compatibility of Piezoelectric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

271

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

272

Hydrogen energy systems studies  

SciTech Connect (OSTI)

For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

1995-09-01T23:59:59.000Z

273

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

274

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

275

Hydrogen Industrial Trucks  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

276

Hydrogen purification system  

DOE Patents [OSTI]

The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

Golben, Peter Mark

2010-06-15T23:59:59.000Z

277

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

278

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

279

Sustainable hydrogen production  

SciTech Connect (OSTI)

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

280

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

282

Hydrogen Delivery - Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

283

Enhancing hydrogen spillover and storage  

DOE Patents [OSTI]

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

2011-05-31T23:59:59.000Z

284

Enhancing hydrogen spillover and storage  

SciTech Connect (OSTI)

Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

2013-02-12T23:59:59.000Z

285

Hydrogen issue in Core Collapse Supernovae  

E-Print Network [OSTI]

We discuss results of analyzing a time series of selected photospheric-optical spectra of core collapse supernovae (CCSNe). This is accomplished by means of the parameterized supernovae synthetic spectrum (SSp) code ``SYNOW''. Special attention is addressed to traces of hydrogen at early phases, especially for the stripped-envelope SNe (i.e. SNe Ib-c). A thin low mass hydrogen layer extending to very high ejection velocities above the helium shell, is found to be the most likely scenario for Type Ib SNe.

A. Elmhamdi; I. J. Danziger; D. Branch; B. Leibundgut

2006-11-06T23:59:59.000Z

286

Locating RF Emitters with Large UAV Teams Paul Scerri, Robin Glinton, Sean Owens and Katia Sycara  

E-Print Network [OSTI]

Locating RF Emitters with Large UAV Teams Paul Scerri, Robin Glinton, Sean Owens and Katia Sycara efficient way for a team of UAVs with Received Signal Strength Indicator (RSSI) sen- sors to locate radio locations requires integrating multiple signals from different UAVs into a Bayesian filter, hence requir

Scerri, Paul

287

Radiation-induced gain degradation in lateral PNP BJTs with lightly and heavily doped emitters  

SciTech Connect (OSTI)

Ionizing radiation may cause failures in ICs due to gain degradation of individual devices. The base current of irradiated bipolar devices increases with total dose, while the collector current remains relatively constant. This results in a decrease in the current gain. Lateral PNP (LPNP) transistors typically exhibit more degradation than vertical PNP devices at the same total dose, and have been blamed as the cause of early IC failures at low dose rates. It is important to understand the differences in total-dose response between devices with heavily- and lightly-doped emitters in order to compare different technologies and evaluate the applicability of proposed low-dose-rate hardness-assurance methods. This paper addresses these differences by comparing two different LPNP devices from the same process: one with a heavily-doped emitter and one with a lightly-doped emitter. Experimental results demonstrate that the lightly-doped devices are more sensitive to ionizing radiation and simulations illustrate that increased recombination on the emitter side of the junction is responsible for the higher sensitivity.

Wu, A. [Univ. of Arizona, Tucson, AZ (United States); Schrimpf, R.D. [Vanderbilt Univ., Nashville, TN (United States); Pease, R.L. [RLP Research, Inc., Albuquerque, NM (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); Kosier, S.L. [VTC Inc., Bloomington, MN (United States)

1997-06-01T23:59:59.000Z

288

A WhatandWhere Fusion Neural Network for Recognition and Tracking of Multiple Radar Emitters  

E-Print Network [OSTI]

is proposed for classification of radar pulses in autonomous Electronic Support Measure systems. Radar type a high level of performance on complex, incomplete and overlapping radar data. #12; 1 Introduction RadarA What­and­Where Fusion Neural Network for Recognition and Tracking of Multiple Radar Emitters Eric

Grossberg, Stephen

289

Precise half-life measurement of the superallowed beta(+) emitter (26)Si  

E-Print Network [OSTI]

We measured the half-life of the superallowed 0(+) -> 0(+) beta(+) emitter (26)Si to be 2245.3(7) ms. We used pure sources of (26)Si and employed a high-efficiency gas counter, whichwas sensitive to positrons from both this nuclide and its daughter...

Iacob, V. E.; Hardy, John C.; Banu, A.; Chen, L.; Golovko, V. V.; Goodwin, J.; Horvat, V.; Nica, N.; Park, H. I.; Trache, L.; Tribble, Robert E.

2010-01-01T23:59:59.000Z

290

A FREEWARE 1D EMITTER MODEL FOR SILICON SOLAR CELLS Keith R. McIntosh  

E-Print Network [OSTI]

Centre for Sustainable Energy Systems, Australian National University, Canberra, ACT 0200, AUSTRALIA 2 Leibniz University of Hannover, Inst. of Solid-State Physics, Dep. Solar Energy, Appelstrasse 2, 30167A FREEWARE 1D EMITTER MODEL FOR SILICON SOLAR CELLS Keith R. McIntosh 1 and Pietro P. Altermatt 2 1

291

Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency  

E-Print Network [OSTI]

Absorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit. ©2009 Optical Society and links 1. W. Shockley, and H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar

Fan, Shanhui

292

Emitter tests in an open thermionic converter with vapor injection through the collector  

SciTech Connect (OSTI)

Mo and Pt emitters and a Ni collector with 400 laser-bored holes were used in an ''open'' thermionic converter. The alkali vapor was introduced into the converter through the array of holes in the collector from an adjacent alkali metal reservoir with separately controlled temperature. The overall results from the open thermionic converter are comparable to results from enclosed converters. The results found with a Cs plasma are encouraging, with barrier indices down to below 1.8 eV, at emitter temperatures around 1500 K in the case of a Mo emitter. The output power density was around 3.5 W cm/sup -2/. In the case of a Pt emitter, both Cs and K plasmas were used, with power densities up to 5.7 and 1.8 W cm/sup -2/, respectively close to 1800 K. The structure of the laser-bored collector may have contributed to these results, as well as the efficient removal of impurities in the ''open'' converter.

Wriedt, S.; Moeller, K.; Holmlid, L.

1986-12-15T23:59:59.000Z

293

Precise half-life measurement of the superallowed beta(+) emitter (10)C  

E-Print Network [OSTI]

The half-life of (10)C has been measured to be 19.310(4) s, a result with 0.02% precision, which is a factor of three improvement over the best previous result. Since (10)C is the lightest superallowed 0(+)-> 0(+) beta(+) emitter, its ft value has...

Iacob, V. E.; Hardy, John C.; Golovko, V.; Goodwin, J.; Nica, N.; Park, H. I.; Trache, L.; Tribble, Robert E.

2008-01-01T23:59:59.000Z

294

Method or forming emitters for a back-contact solar cell  

DOE Patents [OSTI]

Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

Li, Bo; Cousins, Peter J.; Smith, David D.

2014-08-12T23:59:59.000Z

295

Method of forming emitters for a back-contact solar cell  

DOE Patents [OSTI]

Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.

Li, Bo; Cousins, Peter J; Smith, David D

2014-12-16T23:59:59.000Z

296

Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter-Morphologies  

E-Print Network [OSTI]

1 Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter@chemsys.t.u-tokyo.ac.jp Field emission properties of single-walled carbon nanotubes (SWNTs), which have been prepared through: single-walled carbon nanotube, field emission, alcohol catalytic chemical vapor deposition, ethanol

Maruyama, Shigeo

297

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

298

Process for exchanging hydrogen isotopes between gaseous hydrogen and water  

DOE Patents [OSTI]

A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

1980-08-12T23:59:59.000Z

299

An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector  

SciTech Connect (OSTI)

An experimental program to perform a proof of principle of transverse to longitudinal emittance exchange ({epsilon}{sub x{sub in}} {Leftrightarrow} {epsilon}{sub z{sub out}} and {epsilon}{sub z{sub in}} {Leftrightarrow} {epsilon}{sub x{sub out}}) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM{sub 110} deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as x{sub in}, x'{sub in}, y{sub in}, y'{sub in}, z{sub in}, or {delta}{sub in}, and measuring the changes in all of the beam output vector's elements, x{sub out}, x'{sub out}, y{sub out}, y'{sub out}, z{sub out}, {delta}{sub out}, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, {epsilon}{sub z{sub in}} of 21.1 {+-} 1.5 mm{center_dot}mrad was observed to be exchanged with {epsilon}{sub x{sub out}} of 20.8 {+-} 2.00 mm{center_dot}mrad. Diagnostic limitations in the {epsilon}{sub z{sub out}} measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The {epsilon}{sub x{sub in}} of 4.67 {+-} 0.22 mm{center_dot}mrad was observed to be exchanged with {epsilon}{sub z{sub out}} of 7.06 {+-} 0.43 mm{center_dot}mrad. The apparent {epsilon}{sub z{sub out}} growth is consistent with calculated values in which the correlation term is neglected.

Koeth, Timothy W.; /Rutgers U., Piscataway

2009-05-01T23:59:59.000Z

300

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technologies for the separation and recovery of hydrogen from refinery streams  

SciTech Connect (OSTI)

The effective use and recovery of hydrogen from the major hydrogen-containing streams in the refinery is an important strategy to meet the refining demands of the 1990`s. Hydrogen upgrading in refinery applications can be achieved by pressure swing adsorption (PSA), selective permeation using polymer membranes, and cryogenic separation. Each of these processes has different characteristics which are of advantage in different situations. Process selection and specific application examples are discussed.

Wilcher, F.P.; Miller, G.Q.; Mitariten, M.J. [UOP, Des Plaines, IL (United States)

1995-12-31T23:59:59.000Z

302

Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II  

SciTech Connect (OSTI)

The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

2011-07-05T23:59:59.000Z

303

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen storage of hydrogen, by 2008; · Complete U.S. adoption of a Global Technical Regulation (GTR) for hydrogen, storage, and use of hydrogen incorporate project safety requirements into the procurements, by 2005

304

Milagro Observations of Potential TeV Emitters  

E-Print Network [OSTI]

This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increase...

Abdo, A A; Allen, B T; Aune, T; Barber, A S; Berley, D; Braun, J; Chen, C; Christopher, G E; DeYoung, T; Dingus, B L; Ellsworth, R W; Gonzalez, M M; Goodman, J A; Hays, E; Hoffman, C M; Huntemeyer, P H; Imran, A; Kolterman, B E; Linnemann, J T; McEnery, J E; Morgan, T; Mincer, A I; Nemethy, P; Pretz, J; Ryan, J M; Parkinson, P M Saz; Schneider, M; Shoup, A; Sinnis, G; Smith, A J; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

2014-01-01T23:59:59.000Z

305

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

306

August 2006 Hydrogen Program  

E-Print Network [OSTI]

after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

307

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

308

Hydrogen Delivery- Current Technology  

Broader source: Energy.gov [DOE]

Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

309

Renewable Resources for Hydrogen (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

Jalalzadeh-Azar, A. A.

2010-05-03T23:59:59.000Z

310

Hydrogen in semiconductors and insulators  

E-Print Network [OSTI]

type can be applied to hydrogen storage materials. Keywords:can be applied to hydrogen storage materials. Manuscript O-of the formalism to hydrogen storage materials. A partial

Van de Walle, Chris G.

2007-01-01T23:59:59.000Z

311

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in the cost of hydrogen production, distribution, and use.accelerate R&D of zero-emission hydrogen production methods.Renewable hydrogen production is a key area for focused

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

312

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

313

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

314

Hydrogen Fuel Quality  

SciTech Connect (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

315

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

316

Hydrogen Data Book from the Hydrogen Analysis Resource Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

317

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

318

Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

Almlie, Jay

2011-10-01T23:59:59.000Z

319

A photometric survey for Lyalpha-HeII dual emitters: Searching for Population III stars in high-redshift galaxies  

E-Print Network [OSTI]

We present a new photometric search for high-z galaxies hosting Population III (PopIII) stars based on deep intermediate-band imaging observations obtained in the Subaru Deep Field (SDF), by using Suprime-Cam on the Subaru Telescope. By combining our new data with the existing broad-band and narrow-band data, we searched for galaxies which emit strongly both in Ly_alpha and in HeII 1640 (``dual emitters'') that are promising candidates for PopIII-hosting galaxies, at 3.93 2 Msun/yr was found by our photometric search in 4.03 x 10^5 Mpc^3 in the SDF. This result disfavors low feedback models for PopIII star clusters, and implies an upper-limit of the PopIII SFR density of SFRD_PopIII < 5 x 10^-6 Msun/yr/Mpc^3. This new selection method to search for PopIII-hosting galaxies should be useful in future narrow-band surveys to achieve the first observational detection of PopIII-hosting galaxies at high redshifts.

Nagao, Tohru; Maiolino, Roberto; Grady, Celestine; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew; Motohara, Kentaro; Murayama, Takashi; Schaerer, Daniel; Shioya, Yasuhiro; Taniguchi, Yoshiaki

2008-01-01T23:59:59.000Z

320

NOVEL COMPUTATIONAL SIMULATION OF REDOX REACTIONS WITHIN A METAL ELECTROSPRAY EMITTER  

SciTech Connect (OSTI)

To further both our fundamental understanding implications of the electrolytic nature of the electrospray and our understanding of the analytical ion source, in the context of electrospray mass spectrometry (ES-MS), a computational simulation of the oxidation of chemical species inside a metal emitter has been developed. The analysis code employs a boundary integral method for the solution of the Laplace equation for the electric potential and current, and incorporates standard activation and concentration polarization functions for the redox active species in the system to define the boundary conditions. The specific system modeled consisted of a 100 {mu}m i .d., inert metal capillary CHICN/H2O (90/10 V/V). ES emitter and a spray solution comprised of an analyte dissolved in Variable parameters included the concentration (i.e., 5, 10, 20, and 50 ~M) of the easily oxidized analyte ferrocene (Fe, dicyclopentadienyl iron) in the solution, and solution conductivities of 1.9, 3.8, and 7.6 x 107 Mho/cm. ES currents were on the order of 0.05 {mu}A and the flow rate was 5 @A_nin. Under these defined conditions, the two most prominent reactions at the emitter metakolution interface were assumed to be H20 oxidation (2H20 = 02 + 4H+ + 4e") and Fe oxidation (Fe = Fe' +e-). Using this model it was possible to predict the inter-facial potentials, as well as the current density for each of the reactions, as a function of axial position from the emitter spray tip back upstream, under the various operational conditions. Computational fluid dynamics (CFD) calculations showed that the imposed flow rate through the emitter was adequate to prevent significant back-diffusion of Fe+ into the emitter against the flow direction. The computational simulations predict the same behavior for the ES ion source as has been observed experimentally and is consistent with the controlled-current electrolytic cell analogy of Van Berkel and Zhou (Anal. Chem. 1995, 67,.2916-2923). Furthermore, the simulations demonstrate that the majority of the current involved in the redox reactions originated within a 200- 300 ~m region near the spray tip.

BULLOCK, J.S.IV; GILES, G.E.; GRAY, L.J.; VAN BERKEL, G.J.

1999-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advancing the Hydrogen Safety Knowledge Base  

SciTech Connect (OSTI)

A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

Weiner, Steven C.

2014-12-01T23:59:59.000Z

322

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect (OSTI)

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

323

Chromatographic hydrogen isotope separation  

DOE Patents [OSTI]

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

324

NREL's Hydrogen Program  

SciTech Connect (OSTI)

The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

None

2011-01-01T23:59:59.000Z

325

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory direction and review) #12;Outline of the presentation Background Hydrogen delivery through steel pipelines

326

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

327

Selection Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear...

328

Studies and calculations of transverse emittance growth in high-energy proton storage rings  

SciTech Connect (OSTI)

In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

Mane, S.R.; Jackson, G.

1989-03-01T23:59:59.000Z

329

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect (OSTI)

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: �¢���¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). �¢���¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. �¢���¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. �¢���¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. �¢���¢ Maintain safety as the top priority in the system design and operation. �¢���¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

330

Hydrogen storage compositions  

DOE Patents [OSTI]

Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

2011-04-19T23:59:59.000Z

331

National Hydrogen Energy Roadmap  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

332

The Hydrogen Connection  

SciTech Connect (OSTI)

As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

Barilo, Nick F.

2014-05-01T23:59:59.000Z

333

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

334

ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE  

SciTech Connect (OSTI)

OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

2003-02-01T23:59:59.000Z

335

Getter pump for hydrogen and hydrocarbon gases  

DOE Patents [OSTI]

A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

Hsu, Wen Ling

1987-10-14T23:59:59.000Z

336

Webinar: Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

337

Bulk Hydrogen Strategic Directions for  

E-Print Network [OSTI]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia #12;Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything storage is an economic solution to address supply/demand imbalance #12;Breakout Session - Bulk Hydrogen

338

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

339

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE Rev January 2013 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas or where hydrogen response procedure requirements. All work areas where hydrogen sulfide is used or may be present within

Machel, Hans

340

Apparatus and method for improving radiation coherence and reducing beam emittance  

DOE Patents [OSTI]

A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence. 16 figs.

Csonka, P.L.

1992-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator  

SciTech Connect (OSTI)

In recent experiments plasma electrons became trapped in a plasma wakefield accelerator (PWFA). The transverse size of these trapped electrons on a downstream diagnostic yields an upper limit measurement of transverse normalized emittance divided by peak current, {var_epsilon}{sub N,x}/I. The lowest upper limit for {var_epsilon}{sub N,x}/I measured in the experiment is 1.3 {center_dot} 10{sup -10} m/A.

Kirby, N; Blumenfeld, I; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /SLAC /UCLA /USC

2008-09-24T23:59:59.000Z

342

Apparatus and method for improving radiation coherence and reducing beam emittance  

DOE Patents [OSTI]

A method and apparatus for increasing the coherence and reducing the emittance of a beam-shaped pulse operates by splitting the pulse into multiple sub-beams, delaying the propagation of the various sub-beams by varying amounts, and then recombining the sub-beams by means of a rotating optical element to form a pulse of longer duration with improved transverse coherence.

Csonka, Paul L. (105 E. 39th Ave., Eugene, OR 97405)

1992-01-01T23:59:59.000Z

343

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

pathway, with hydrogen production at refueling stations (with centralized hydrogen production and gaseous hydrogenwith centralized hydrogen production and liquid hydrogen (

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

344

Examining hydrogen transitions.  

SciTech Connect (OSTI)

This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

Plotkin, S. E.; Energy Systems

2007-03-01T23:59:59.000Z

345

Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector  

SciTech Connect (OSTI)

The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.; /Fermilab

2011-03-01T23:59:59.000Z

346

Space Charge Correction on Emittance Measurement of Low Energy Electron Beams  

SciTech Connect (OSTI)

The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

Treado, Colleen J.; /Massachusetts U., Amherst

2012-09-07T23:59:59.000Z

347

Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-field Thermophotovoltaic Applications  

E-Print Network [OSTI]

Recently, near-field radiative heat transfer enhancement across nanometer vacuum gaps has been intensively studied between two hyperbolic metamaterials (HMMs) due to unlimited wavevectors and high photonic density of state. In this work, we theoretically analyze the energy conversion performance of a thermophotovoltaic (TPV) cell made of In0.2Ga0.8Sb when paired with a HMM emitter composed of tungsten nanowire arrays embedded in Al2O3 host at nanometer vacuum gaps. Fluctuational electrodynamics integrated with effective medium theory and anisotropic thin-film optics is used to calculate the near-field radiative heat transfer. It is found that the spectral radiative energy is enhanced by the epsilon-near-zero and hyperbolic modes at different polarizations. As a result, the power output from a semi-infinite TPV cell is improved by 1.85 times with the nanowire HMM emitter over that with a plain tungsten emitter at a vacuum gap of 10 nm. Moreover, by using a thin TPV cell with 10 um thickness, the conversion eff...

Chang, Jui-Yung; Wang, Liping

2014-01-01T23:59:59.000Z

348

Formation of compressed flat electron beams with high transverse-emittance ratios  

SciTech Connect (OSTI)

Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ?37??MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25???m (emittance ratio is ?400), 0.13????m, 15 nm before compression, and 0.41???m, 0.20???m, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2?nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

2014-08-01T23:59:59.000Z

349

Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.  

SciTech Connect (OSTI)

Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50–1000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

2008-05-15T23:59:59.000Z

350

Cold weather hydrogen generation system and method of operation  

DOE Patents [OSTI]

A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

Dreier, Ken Wayne (Madison, CT); Kowalski, Michael Thomas (Seymour, CT); Porter, Stephen Charles (Burlington, CT); Chow, Oscar Ken (Simsbury, CT); Borland, Nicholas Paul (Montpelier, VT); Goyette, Stephen Arthur (New Hartford, CT)

2010-12-14T23:59:59.000Z

351

Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report  

SciTech Connect (OSTI)

The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

1993-05-14T23:59:59.000Z

352

Hydrogen storage and generation system  

DOE Patents [OSTI]

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

353

Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?selective solar thermal absorbers  

SciTech Connect (OSTI)

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?hydrogen silsesquioxane and tetraethyl orthosilicate precursors, respectively, which comprise Si-O cage-like structures and Si-O networks. Fourier transform infrared spectroscopy shows that the dissociation of Si-O cage-like structures and Si-O networks at high temperatures have enabled the formation of new bonds at the Ni/SiO{sub x} interface to passivate the surface of Ni nanoparticles and prevent oxidation. X-ray photoelectron spectroscopy and Raman spectroscopy demonstrate that the excess Si in the SiO{sub x} (x?emittance ?18% measured at 300?°C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-08-21T23:59:59.000Z

354

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

355

Hydrogen production from carbonaceous material  

DOE Patents [OSTI]

Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

2004-09-14T23:59:59.000Z

356

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

357

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

358

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

pieces of hardware: 1. Hydrogen production equipment (e.g.when evaluating hydrogen production costs. Many analyses inrespect to size and hydrogen production method. These costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

359

Renewable Hydrogen From Wind in California  

E-Print Network [OSTI]

Suitability for Hydrogen Production in the Sacramento Area” Renewable Energy  for Hydrogen Production in Californiamodel of renewable hydrogen production in California, which

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

360

Hydrogen Storage Materials Workshop Proceedings Workshop, October...  

Broader source: Energy.gov (indexed) [DOE]

hydrogen. Significant technical barriers remain for safe, cost-effective hydrogen storag compliqh2storworkproceedings.pdf More Documents & Publications Hydrogen Program...

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas and Hydrogen Infrastructure Opportunities Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen...

362

Maximizing Light Utilization Efficiency and Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

363

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

364

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

365

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

366

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

367

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

368

Hydrogen Fuel Quality - Focus: Analytical Methods Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

369

Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions  

SciTech Connect (OSTI)

The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland)] [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico)] [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland) [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

2014-02-15T23:59:59.000Z

370

Hydrogen production from microbial strains  

SciTech Connect (OSTI)

The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

Harwood, Caroline S; Rey, Federico E

2012-09-18T23:59:59.000Z

371

Hydrogen: Fueling the Future  

SciTech Connect (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

372

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network [OSTI]

as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular...

Harkness, J.; Doctor, R. D.

373

Reactions of Methylene Hydrogen  

E-Print Network [OSTI]

was orystallized out as a yellow solid from aloohol and then from ethyl aostate. Melting point 170°C Analysis: Calculated for C17H14O2U s - 10.10$ Found I = 10.00$ SUMMARY 0 It was found that the methods given in the literature for the preparation... following* 1. Metallic sodium replaces either one, or both of the hydrogens, the latter being given off as a free gas. 2. Sodium hydroxide replaces the hydrogen by the metal, with a splitting off of water. 3. Sodium ethylate reacts, giving the metal 3...

Griffin, E. L.

1912-05-15T23:59:59.000Z

374

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

375

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

376

The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems  

E-Print Network [OSTI]

The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

377

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

378

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

379

Mg-Based Nano-layered Thin Films for Hydrogen Storage  

E-Print Network [OSTI]

-plane direction as a function of the distance from interface. . . . . . . . . . . . . . . 152 xvii LIST OF TABLES TABLE Page 1.1 Selected hydrogen storage targets for light-duty vehicles proposed by DOE in 2009... for hydrogen storage in light-duty vehicles shown in Table 1.1 [10]. Development of materials-based storage will be further discussed in the literature review section. 1.1.3 Hydrogen combustion: fuel cells Fuel cells are electrochemical devices that essentially...

Junkaew, Anchalee

2013-11-26T23:59:59.000Z

380

Hydrogen,Fuel Cells & Infrastructure  

E-Print Network [OSTI]

;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oxidation resistant organic hydrogen getters  

DOE Patents [OSTI]

A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

2008-09-09T23:59:59.000Z

382

Hydrogen Distribution and Delivery Infrastructure  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

383

Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

384

Hydrogen Delivery Infrastructure Options Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

385

PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.  

SciTech Connect (OSTI)

NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.

OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.; KRINSKY, S.; LITVINENKO, V.N.

2007-06-25T23:59:59.000Z

386

Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate  

SciTech Connect (OSTI)

The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

Miracoli, R. [ESS Bilbao, Vizcaya (Spain); INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Gammino, S.; Celona, L.; Mascali, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Castro, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F. [CEA-IRFU, Gif sur Yvette Cedex (France); Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNAO, Str. Pr. Campeggi, Pavia (Italy)

2012-05-15T23:59:59.000Z

387

Ultra High p-doping Material Research for GaN Based Light Emitters  

SciTech Connect (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

388

Precise half-life measurements for the superallowed beta(+) emitters Ar-34 and Cl-34  

E-Print Network [OSTI]

PHYSICAL REVIEW C 74, 055502 (2006) Precise half-life measurements for the superallowed ?+ emitters 34Ar and 34Cl V. E. Iacob,* J. C. Hardy, J. F. Brinkley, C. A. Gagliardi, V. E. Mayes, N. Nica, M. Sanchez-Vega, G. Tabacaru, L. Trache, and R. E... 15, 17 (2002). [5] J. C. Hardy et al., Nucl. Phys. A223, 157 (1974). 055502-7 V. E. IACOB et al. PHYSICAL REVIEW C 74, 055502 (2006) [6] V. E. Iacob, E. Mayes, J. C. Hardy, R. G. Neilson, M. Sanchez- Vega, A. Azhari, C. A. Gagliardi, L. Trache...

Iacob, V. E.; Hardy, John C.; Brinkley, J. F.; Gagliardi, Carl A.; Mayes, V. E.; Nica, N.; Sanchez-Vega, M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.

2006-01-01T23:59:59.000Z

389

Muon capture in hydrogen  

E-Print Network [OSTI]

Theoretical difficulties in reconciling the measured rates for ordinary and radiative muon capture are discussed, based on heavy-baryon chiral perturbation theory. We also examine ambiguity in our analysis due to the formation of p$\\mu$p molecules in the liquid hydrogen target.

S. Ando; F. Myhrer; K. Kubodera

2001-10-30T23:59:59.000Z

390

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

391

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

392

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

393

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

394

A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring  

SciTech Connect (OSTI)

Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEPII tunnel. The design features a hybrid lattice with double bend achromat (DBA) cells in two arcs and theoretical minimum emittance (TME) cells in the remaining four arcs. Damping wigglers are used to reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intrabeam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this report, we present the results of study, including the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, RF system, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.

Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Corbett, Willian; Fox, John; Hettel, Robert; Huang, Xiaobiao; Huang, Zhirong; Ng, Cho-Kuen; Nosochkov, Yuri; Novokhatski, Sasha; Radedeau, Thomas; Raubenheimer, Tor; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Wang, Lanfa; Wang, Min-Huey; /SLAC

2010-06-02T23:59:59.000Z

395

Detroit Commuter Hydrogen Project  

SciTech Connect (OSTI)

This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

Brooks, Jerry; Prebo, Brendan

2010-07-31T23:59:59.000Z

396

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

397

Hydrogen Piping Experience in Chevron  

E-Print Network [OSTI]

Hydrogen Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 #12;Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few

398

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

in combustion engines, or converted into hydrogen at fuelengines are now nearly zero-emitting. What do these lessons imply for hydrogen?Hydrogen will find it difficult to compete with the century-long investment in petroleum fuels and internal combustion engines.

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

399

Proceedings NATIONAL HYDROGEN VISION MEETING  

E-Print Network [OSTI]

's Plan directs us to explore the possibility of a hydrogen economy..." Spencer Abraham, Secretary be found at the end of this document.) The intent was to identify a common vision of a "hydrogen economy of the Group: Which factors are most likely to support/inhibit the development of a "hydrogen economy

400

January 2005 HYDROGEN EMBRITTLEMENT OF  

E-Print Network [OSTI]

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline R&D Project Review Meeting Oak Ridge National Laboratory, Oak Ridge TN January 5-6, 2005 #12;2 January 2005 Hydrogen

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Composites Technology for Hydrogen Pipelines  

E-Print Network [OSTI]

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

402

CODE OF PRACTICE HYDROGEN SULFIDE  

E-Print Network [OSTI]

CODE OF PRACTICE HYDROGEN SULFIDE 1 The following generic Code of Practice applies to all work areas within the University of Alberta that use hydrogen sulfide gas. It outlines responsibilities, safe procedure requirements. All work areas where hydrogen sulfide is used within the University of Alberta must

Machel, Hans

403

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

404

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

1993-05-18T23:59:59.000Z

405

Hydrogen and sulfur recovery from hydrogen sulfide wastes  

DOE Patents [OSTI]

A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

1993-01-01T23:59:59.000Z

406

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

407

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

408

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

409

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

410

International Hydrogen Infrastructure Challenges Workshop Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE...

411

Upcoming Webinar December 16: International Hydrogen Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges NOW, DOE, and NEDO Upcoming Webinar December 16: International Hydrogen Infrastructure Challenges...

412

A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

413

Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost...

414

Controlled Hydrogen Fleet and Infrastructure Demonstration and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

415

Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents [OSTI]

An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

416

Catalytic two-stage coal hydrogenation and hydroconversion process  

DOE Patents [OSTI]

A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

1989-01-01T23:59:59.000Z

417

Support and crystallite effects in CO hydrogenation on nickel  

SciTech Connect (OSTI)

The adsorption and reaction of carbon monoxide and hydrogen were studied on seven alumina-supported catalysts containing 0.5-23% nickel, four silica-supported catalysts containing 2.7-15% nickel, and 2.8 and 15% nickel on titanium oxide. On the silica and alumina-supported catalysts, hydrogen adsorption, per cent reduction of metal, carbon monoxide/hydrogen adsorption ratio, and methane yield increased with increasing metal dispersion, the methane turnover number decreased with increasing metal dispersion, and the carbon monoxide turnover number was not affected by dispersion. Hydrogen adsorption was suppressed by the titanium dioxide support. The suppression of hydrogen adsorption and the activity for carbon monoxide hydrogenation decreased as a function of support in the order TiO/sub 2/ > Al/sub 2/O/sub 3/ > SiO/sub 2/ and apparently depended on the strength of the electronic interaction of support and metal. The selectivity shifted to higher hydrocarbons as the metal dispersion increased and as the carbon monoxide/hydrogen adsorption ratio increased. Effects of preparation method are also reported.

Bartholomew, C.H.; Pannell, R.B.; Butler, J.L.

1980-10-01T23:59:59.000Z

418

Separating hydrogen from coal gasification gases with alumina membranes  

SciTech Connect (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

419

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect (OSTI)

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

420

Destabilized and catalyzed borohydride for reversible hydrogen storage  

DOE Patents [OSTI]

A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

Mohtadi, Rana F. (Northville, MI); Nakamura, Kenji (Toyota, JP); Au, Ming (Martinez, GA); Zidan, Ragaiy (Alken, SC)

2012-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one be Stored? Hydrogen storage will be required onboard vehicles and at hydrogen production sites, hydrogen

422

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

SciTech Connect (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

423

A pepper-pot emittance meter for low-energy heavy-ion beams  

SciTech Connect (OSTI)

A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beam intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.

Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands)

2013-02-15T23:59:59.000Z

424

Thermionic energy conversion with a preferentially oriented tungsten emitter. [Nb; W  

SciTech Connect (OSTI)

A Thermionic converter with a W(110) emitter was tested with updated instrumentation. The purpose was to verify and establish that the present setup was suitable for testing state of the art converters such as the advanced thermionic initiative converter in the near future. The experimental results were characterized and compared to computer simulations generated with a one dimensional computer code. Thermionic converter applications require an emitter that produces large current density and a collector that yields a high output voltage. Practical converters should be easy to fabricate from readily available materials and provide long service lives. In order to develop such a converter, programs to screen and test the numerous promising electrode combinations are absolutely necessary. The evaluation of rare and expensive thermionic materials became feasible with the introduction of this device because of the small size of its electrode. The present result showed that the maximum power output from the preferentially oriented W(110) diminode was 9.0 watts/cm{sup 2}.

Tsao, B.; Ramalingam, M.L. (Universal Energy Systems, Inc. 4401 Dayton-Xenia Road Dayton, OH (USA)); Donovan, B.D.; Cloyd, J.S. (Aerospace Power Division WRDC/POOC, Wright-Patterson AFB, OH (USA))

1991-01-05T23:59:59.000Z

425

Picoelectrospray Ionization Mass Spectrometry Using Narrow-bore Chemically Etched Emitters  

SciTech Connect (OSTI)

Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored due to difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, while the signal decreases monotonically with decreasing flow rates at higher concentrations. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. No unimolecular response was observed within this flow rate range during the analysis of an equimolar mixture of peptides, indicating that ionization efficiency is an analyte-dependent characteristic in given experimental conditions. While little to no gain in signal-to-noise was achieved at ultralow flow rates for concentration-limited analyses, experiments consuming the same amount of analyte suggest that mass-limited analyses will benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. By operating under optimal conditions, consumption of just 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. These findings have important implications for the analysis of trace biological samples.

Marginean, Ioan; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

2014-01-01T23:59:59.000Z

426

Effects of emitter sheath ion reflection and trapped ions on thermionic converter performance using an isothermal electron model  

SciTech Connect (OSTI)

This paper couples exact collisionless sheath calculations to an isothermal electron model of a thermionic converter. The emitter sheath structure takes into account reflected ions, trapped ions, and surface emission ions. It is shown that lessening the net loss of ions at the emitter in the ignited mode by these phenomena degrades performance. In addition, it is shown that when the emitter returns too many of the ions, the arc is extinguished because there is insufficient resistive heating to maintain the necessary plasma electron temperature for ionization. These results suggest that the ignited mode cannot be improved much. However, nonignited modes in which the electron temperature remains low, such as the pulsed mode, do not suffer from this adverse behavior.

Main, G.L.; Lam, S.H.

1987-06-01T23:59:59.000Z

427

Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system  

E-Print Network [OSTI]

We propose a scheme for the ultrafast control of the emitter-field coupling rate in cavity quantum electrodynamics. This is achieved by the control of the vacuum field seen by the emitter through a modulation of the optical modes in a coupled-cavity structure. The scheme allows the on/off switching of the coupling rate without perturbing the emitter and without introducing frequency chirps on the emitted photons. It can be used to control the shape of single-photon pulses for high-fidelity quantum state transfer, to control Rabi oscillations and as a gain-modulation method in lasers. We discuss two possible experimental implementations based on photonic crystal cavities and on microwave circuits.

Robert Johne; Ron Schutjens; Sartoon Fattah poor; Chao-Yuan Jin; Andrea Fiore

2015-03-20T23:59:59.000Z

428

Solid evacuated microspheres of hydrogen  

DOE Patents [OSTI]

A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

1982-01-01T23:59:59.000Z

429

Molecular simulation studies of metal organic frameworks focusing on hydrogen purification   

E-Print Network [OSTI]

The process of purifying hydrogen gas using pressure swing adsorption columns heavily relies on highly efficient adsorbents. Such materials must be able to selectively adsorb a large amount of impurities, and must also ...

Banu, Ana Maria

2014-06-30T23:59:59.000Z

430

Advanced hydrogen utilization technology demonstration  

SciTech Connect (OSTI)

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

431

Hydrogen Economy: Opportunities and Challenges *  

E-Print Network [OSTI]

A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

432

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

433

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

434

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

435

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies Loading

436

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomerHydrogen Companies

437

Adsorption of hydrogen on copper catalysts  

SciTech Connect (OSTI)

Copper catalysts display a high activity and selectivity in the hydrogenation of various carbonyl compounds, and copper is a component of the complex catalysts for the synthesis of methanol from CO and H/sub 2/. The adsorption of H/sub 2/ on copper catalysts has been studied by means of thermal desorption. The molecular form of adsorption of H/sub 2/ has been established, the thermal desorption parameters calculated, and the heat of adsorption of H/sub 2/ on a copper surface estimated.

Pavlenko, N.V.; Tripol'skii, A.I.; Golodets, G.I.

1987-10-01T23:59:59.000Z

438

High-Performance Palladium Based Membrane for Hydrogen Separation and Purification  

SciTech Connect (OSTI)

The mission of the DOE's Fuel Cell Technologies'�Hydrogen Fuels R&D effort is to research, develop, and validate technologies for producing, storing, and delivering hydrogen in an efficient, clean, safe, reliable, and affordable manner. A key program technical milestone for hydrogen technology readiness is to produce hydrogen from diverse, domestic resources at $2.00-$3.00 per gallon of gasoline equivalent (gge) delivered, untaxed. Low-cost, high-temperature hydrogen separation membranes represent a key enabling technology for small-scale distributed hydrogen production units. Availability of such membranes with high selectivity and high permeability for hydrogen will allow their integration with hydrocarbon reforming and water gas shift reactions, potentially reducing the cost of hydrogen produced. Pd-metal-based dense membranes are known for their excellent hydrogen selectivity and permeability characteristics, however, utilization of these membranes has so far been limited to small scale niche markets for hydrogen purification primarily due to the relatively high cost of Pd-alloy tubes compared to pressure swing adsorption (PSA) units. This project was aimed at development of thin-film Pd-alloy membranes deposited on Pall Corporation's DOE-based AccuSep® porous metal tube substrates to form a composite hydrogen separation membrane for these applications. Pall's composite membrane development addressed the typical limitations of composite structures by developing robust membranes capable of withstanding thermal and mechanical stresses resulting from high temperature (400C), high pressure (400 psi steam methane reformer and 1000 psi coal) operations and thermal cycling involved in conventional hydrogen production. In addition, the Pd-alloy membrane composition was optimized to be able to offer the most stability in the typical synthesis gas environments produced by reforming of natural gas and bio-derived liquid fuels (BILI) validating the technical effectiveness and economic feasibility of the technology demonstrated. Results from this research added technology and product design information that offers the potential to significantly advance the commercial viability of hydrogen production.

Scott Hopkins

2012-01-31T23:59:59.000Z

439

WHITE ORGANIC LIGHT-EMITTING DIODES USING 1,1,2,3,4,5-HEXAPHENYLSILOLE (HPS) AS GREENISH-BLUE EMITTER  

E-Print Network [OSTI]

WHITE ORGANIC LIGHT-EMITTING DIODES USING 1,1,2,3,4,5- HEXAPHENYLSILOLE (HPS) AS GREENISH, Hong Kong, P. R. China Abstract White organic light-emitting diodes (WOLEDs) with the structure of ITO emitter and the 1,1,2,3,4,5- hexaphenylsilole (HPS) layer was used as the greenish- blue emitter. White

440

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

compressor Compressed hydrogen storage Figure 2: High-compressor Compressed hydrogen storage Clean Energy Group lduction, and a hydrogen compression, storage, and Energy

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

442

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

443

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

report on renewable hydrogen production. We hope that youis one method of hydrogen production at small and mediumis one method of hydrogen production at small and medium

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

444

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirdevelop alternative hydrogen-energy scenarios. The scenariosof alternative hydrogen energy pathways to characterize an

Pigneri, Attilio

2005-01-01T23:59:59.000Z

445

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

446

High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gas and Blends - Materials Testing and Design Requirements for Hydrogen Components and Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Hydrogen...

447

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network [OSTI]

concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

Pigneri, Attilio

2005-01-01T23:59:59.000Z

448

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Partnership Finalizes Hydrogen Energy Roadmap,” World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are “

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

449

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

450

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

451

Selective ion source  

DOE Patents [OSTI]

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

Leung, K.N.

1996-05-14T23:59:59.000Z

452

Selective ion source  

DOE Patents [OSTI]

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

453

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Breakout Session - Bulk Hydrogen Storage RD&D Needs Top 6 Categories: Advanced Concepts Advanced Materials Codes & Standards Studies & Analyses Tools & Techniques Demonstration &...

454

Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

455

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

456

Quantum Confinement in Hydrogen Bond  

E-Print Network [OSTI]

In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

Santos, Carlos da Silva dos; Ricotta, Regina Maria

2015-01-01T23:59:59.000Z

457

Selective Hydrogenation Catalysts for the Sustainable Production of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b(SC)Wastes withBio-Based

458

Materials Down Select Decisions Made Within DOE's Chemical Hydrogen  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definition Rating Indexof EnergyStorage

459

Isolated Palladium Atoms Allow Highly-Selective Catalysis of Hydrogenation  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyElianeScienceScience| U.S.Reactions | U.S.

460

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma  

SciTech Connect (OSTI)

A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan) [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States)] [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan)] [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan)] [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)] [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

2014-02-15T23:59:59.000Z

462

Monolithic integration of a quantum emitter with a compact on-chip beam-splitter  

SciTech Connect (OSTI)

A fundamental component of an integrated quantum optical circuit is an on-chip beam-splitter operating at the single-photon level. Here, we demonstrate the monolithic integration of an on-demand quantum emitter in the form of a single self-assembled InGaAs quantum dot (QD) with a compact (>10??m), air clad, free standing directional coupler acting as a beam-splitter for anti-bunched light. The device was tested by using single photons emitted by a QD embedded in one of the input arms of the device. We verified the single-photon nature of the QD signal by performing Hanbury Brown-Twiss measurements and demonstrated single-photon beam splitting by cross-correlating the signal from the separate output ports of the directional coupler.

Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Coles, R. J.; O'Hara, J.; Royall, B.; Fox, A. M.; Skolnick, M. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2014-06-09T23:59:59.000Z

463

Organic light-emitting diodes using open-shell molecule as emitter: the emission from doublet  

E-Print Network [OSTI]

We fabricate OLEDs using a stable neutral {\\pi} radical, BDPA, as the emitter. There is only one electron in the singly occupied molecular orbital (SOMO) of this open-shell molecule. This feature makes the excited state of open-shell molecules be neither singlet nor triplet, but doublet. The key issue of how to harvest the triplet energy in an OLED is thus bypassed, due to the radiative decay of doublet is totally spin allowed. In the BDPA-based OLED, the emission was confirmed to be from the electronic transition from LUMO to SOMO, via the frontier molecular orbital analysis combined with the spectroscopy measurements. The maximum luminance of the OLEDs is 4879 cd/m2 which is comparable to the first reported Fluorescence-, Phosphorecence- and TADF-based OLEDs.

Peng, Qiming; Chen, Youchun; He, Chuanyou; Obolda, Ablikim; Li, Feng

2014-01-01T23:59:59.000Z

464

Locating RF Emitters with Large UAV Teams Paul Scerri, Robin Glinton, Sean Owens, Steven Okamoto and Katia Sycara  

E-Print Network [OSTI]

Locating RF Emitters with Large UAV Teams Paul Scerri, Robin Glinton, Sean Owens, Steven Okamoto The rapidly improving availability of small, unmanned aerial vehicles (UAVs) and their ever reducing cost is leading to considerable interest in multi-UAV applications. How- ever, while UAVs have become smaller

Scerri, Paul

465

Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray Spectroscopy  

E-Print Network [OSTI]

Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray,8], x-ray [9­11], and -ray radiation [12,13]. The electron density wave gener- ated by an intense laser manuscript received 15 February 2012; published 10 August 2012) X-ray spectroscopy is used to obtain single

Geddes, Cameron Guy Robinson

466

CONCEPT: N-TYPE SILICON SOLAR CELLS WITH SURFACE-PASSIVATED SCREEN-PRINTED ALUMINUM-ALLOYED REAR EMITTER  

E-Print Network [OSTI]

THE ALU+ CONCEPT: N-TYPE SILICON SOLAR CELLS WITH SURFACE- PASSIVATED SCREEN-PRINTED ALUMINUM stability during firing in a conveyor belt furnace at 900°C. We implement our newly developed passivated Al-p+ emitter into an n + np + solar cell structure, the so-called ALU + cell. An independently confirmed

467

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 1, NO. 1, JULY 2011 49 High Efficiency n-Type Emitter-Wrap-Through  

E-Print Network [OSTI]

, Verena Mertens, Stefan Bordihn, Christina Peters, and J¨org W. M¨uller Abstract--In the ALBA-II project, Emmerthal, Germany, are developing high-efficiency emitter-wrap-through (EWT) solar cells on n-type silicon cell development as it offers high bulk carrier lifetimes. The EWT device structure allows us to em

468

amide hydrogen exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economics of Hydrogen Technologies Renewable Energy Websites Summary: Internal Combustion Engine Transportation Applications Hydrogen Fuel Cell Vehicles Hydrogen Internal Power...

469

Study of Collective Effects for the PEP Low-Emittance Optics  

SciTech Connect (OSTI)

Experimental studies have been performed on the PEP storage ring run at 7.1 GeV in the low-emittance mode. The motivation for this work is to explore the capability of PEP as a dedicated synchrotron radiation source. The long straight sections and low emittance available at PEP make its use for this purpose very attractive, and would produce a source of very high brightness x-ray beams for the scientific community. During the studies, single-bunch current limitations were measured as a function of RF voltage. Thresholds were in the range of 1-2 mA per bunch, which is lower than expected based upon transverse impedance estimates from the PEP collider optics. An increase in threshold current by about 50% was realized by modifying the optics to reduce the magnitude of the horizontal beta functions in the straight sections and at the RF locations. The reason for the lower than expected thresholds has not been resolved. To permit its effective use as a synchrotron radiation source, a beam current of 50-100 mA is desired, which will require that PEP be run in the multibunch mode. Our goal in this study was to investigate the multibunch operating mode to ascertain that reasonable beam intensities were possible. By utilizing many low intensity (0.1-0.25 mA) bunches, stable and reproducible currents of 15-20 mA were achieved. In an attempt to improve this value, one of the idle RF stations was operated in a tune-splitting mode, with only partial success. By adjusting the tuner positions of the unused RF stations, up to 33 mA was ultimately stored, albeit with some evidence for instability. Possible approaches to improving the multibunch stability are discussed.

Zisman, M.S.; Borland, M.; Galayda, J.; Jackson, A.; Kramer, S.; Winick, H.

1988-07-01T23:59:59.000Z

470

Nancy Garland DOE Hydrogen Program  

E-Print Network [OSTI]

commercialization decision by 2015 Fuel cell vehicles in showroom and hydrogen at fuel stations by 2020 #12;Hydrogen, and distributed combined heat and power applications. #12;DOE Hydrogen Program Budget $544DOT $37,301Earmarks (EE,830$30,000$29,432Storage R&D (EE) $14,363$25,325$22,564Production & Delivery R&D (EE) FY 05 Appropriations* ($000) FY 05

471

Potential Fusion Market for Hydrogen Production Under Environmental Constraints  

SciTech Connect (OSTI)

Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO{sub 2} emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO{sub 2} emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important.

Konishi, Satoshi [Kyoto University (Japan)

2005-05-15T23:59:59.000Z

472

Isotope separation by selective photodissociation of glyoxal  

DOE Patents [OSTI]

Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

Marling, John B. (Pleasanton, CA)

1976-01-01T23:59:59.000Z

473

Sandia National Laboratories: Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal,GridInfrastructureHydrogen Sandia

474

Sandia National Laboratories: Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at ExploraGlobalFacilityHeliostatHiroshiHydrogen

475

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar CoHydrogen Jump to:

476

Experiment Hazard Class 11 - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arrestors must be provided on all hydrogen supplies and must be located immediately downstream of the first regulator or other location determined by a safety review. Flammable...

477

Hydrogen Codes and Standards (Presentation)  

SciTech Connect (OSTI)

Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

Ohi, J.

2006-05-01T23:59:59.000Z

478

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

479

Hydrogen Technology Research at SRNL  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E.

2011-02-13T23:59:59.000Z

480

Catalyzed borohydrides for hydrogen storage  

DOE Patents [OSTI]

A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

Au, Ming (Augusta, GA)

2012-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "hydrogen selective emitter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Technical and Economic Assessment of Regional Hydrogen Transition Strategies  

E-Print Network [OSTI]

system spatial layouts for hydrogen production and deliveryWe estimate costs for hydrogen production, delivery anda hydrogen depot (i.e. hydrogen production facility or city-

Ogden, Joan; Yang, Christopher; Nicholas, Michael

2007-01-01T23:59:59.000Z

482

The Hydrogen Laboratory and The Brazilian Reference Center for...  

Energy Savers [EERE]

The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by...

483

Determining the lowest-cost hydrogen delivery mode  

E-Print Network [OSTI]

costs to estimate hydrogen pipeline costs. Davis, CA: ITS-hydrogen. The cost of hydrogen pipeline delivery de- pendshydrogen trucks, and hydrogen pipelines, were devel- oped

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

484

Determining the lowest-cost hydrogen delivery mode  

E-Print Network [OSTI]

costs to estimate hydrogen pipeline costs. Davis, CA: ITS-hydrogen trucks, and hydrogen pipelines, were devel- opedFor large amounts of hydrogen, pipeline transmission is pre-

Yang, Christopher; Ogden, Joan M

2007-01-01T23:59:59.000Z

485

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production  

E-Print Network [OSTI]

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

486

Photoinduced Hydrogen Abstraction from Phenols by Aromatic Ketones. A New Mechanism for Hydrogen Abstraction by  

E-Print Network [OSTI]

Photoinduced Hydrogen Abstraction from Phenols by Aromatic Ketones. A New Mechanism for Hydrogen carried out of the kinetics of inter- and intramolecular phenolic hydrogen abstraction phenolic hydrogen, which yields the corresponding phenoxyl-hemipinacol biradical. The biradicals have also

Leigh, William J.

487

2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 -...

488

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

489

Analysis of Renewable Hydrogen Rangan Banerjee  

E-Print Network [OSTI]

Analysis of Renewable Hydrogen Rangan Banerjee Energy Systems Engineering IIT Bombay Lecture Dioxide Concentrations #12;Hydrogen Energy Can hydrogen energy mitigate the energy problem? Can hydrogen,COOKED FOOD etc.. #12;Source : Energy After Rio: UNDP Publication. #12;Hydrogen pathways Photo chemical Solar

Banerjee, Rangan

490

Hydrogen purifier module with membrane support  

DOE Patents [OSTI]

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

2012-07-24T23:59:59.000Z

491

Metal salt catalysts for enhancing hydrogen spillover  

DOE Patents [OSTI]

A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

Yang, Ralph T; Wang, Yuhe

2013-04-23T23:59:59.000Z

492

Hydrogen Production From Metal-Water Reactions  

E-Print Network [OSTI]

Hydrogen Production From Metal-Water Reactions Why Hydrogen Production? Hydrogen is a critical. Current methods of hydrogen storage in automobiles are either too bulky (large storage space for gas phase) or require a high input energy (cooling or pressurization systems for liquid hydrogen), making widespread use

Barthelat, Francois

493

Novel Hydrogen Purification Device Integrated with PEM Fuel Cells  

SciTech Connect (OSTI)

A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

Joseph Schwartz; Hankwon Lim; Raymond Drnevich

2010-12-31T23:59:59.000Z

494

8. annual U.S. hydrogen meeting: Proceedings  

SciTech Connect (OSTI)

The proceedings contain 35 papers arranged under the following topical sections: Government`s partnership role for hydrogen technology development; Government/industry partnerships -- Demonstrations; Entering the market -- Partnerships in transportation; Hydrogen -- The aerospace fuel; Codes and Standards; Advanced technologies; and Opportunities for partnerships in the utility market. Of the three markets identified (transportation, power production, and village power) papers are presented dealing with the first two. Three parts of the transportation market were covered: cars, trucks, and buses. Progress was reported in both fuel cell and internal combustion engine vehicle propulsion systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1997-01-01T23:59:59.000Z

495

Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms  

DOE Patents [OSTI]

A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

2006-01-24T23:59:59.000Z

496

Leak Detection and H2 Sensor Development for Hydrogen Applications  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

Brosha, Eric L. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

497

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Catalyst Development Water and Thermal Management Economic Analysis of PEM Fuel Cell Systems #12; Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12

498

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

499

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

500

Electrochemical Hydrogen Compressor  

SciTech Connect (OSTI)

The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

David P. Bloomfield; Brian S. MacKenzie

2006-05-01T23:59:59.000Z