Sample records for hydrogen refueling station

  1. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  2. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,”Year 2006 UCD—ITS—RR—06—04 Hydrogen Refueling Station Costs

  3. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression This presentation by Matther Weaver of Pdc...

  4. Optimization of compression and storage requirements at hydrogen refueling stations.

    SciTech Connect (OSTI)

    Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

    2008-01-01T23:59:59.000Z

    The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

  5. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

  6. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

  7. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  8. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  9. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

  10. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

  11. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: 1) the lack ofon the Costs of Hydrogen Infrastructure for Transportstudy. Studies of Hydrogen Infrastructure in China There

  12. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: (1) the lack of1.3.3. Studies of hydrogen infrastructure in China Thereon the costs of hydrogen Infrastructure for transport

  13. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  14. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

  15. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    storing and transporting hydrogen. Golden, CO: NREL; 1998. [V. Survey of the economics of hydrogen technologies. Golden,liquid or gaseous form. Hydrogen can be produced from a va-

  16. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    total installed capital cost (TIC) 1% Of TIC 25% Estimate ofcost estimates for six station types SMR 100 a Equipment capital

  17. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    identify particularly useful cost data and cost models thatcontaining hydrogen cost data for production, storage,Volume Validates cost data with Industry Operating Costs

  18. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    vs. delivered hydrogen, compressor type, storage pressure).pump High-pressure hydrogen compressor Compressed hydrogenpipeline High-pressure hydrogen compressor Pipeline Station:

  19. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  20. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    station. H2Gen’s estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).capital costs of about $250,000. Existing hydrogen station cost analyses tend to under-estimate

  1. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    surrounding the hydrogen infrastructure expansion, includingM. (2003) “Initiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) identifying

  2. Hydrogen Refueling Protocols Webinar (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Protocols Webinar (Text Version) Hydrogen Refueling Protocols Webinar (Text Version) Below is the text version of the webinar titled "Hydrogen Refueling Protocols,"...

  3. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    hydrogen storage Hydrogen pipeline Gas meter Compressedbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

  4. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    hydrogen dispenser Hydrogen pipeline High-pressure hydrogenbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

  5. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    of Reciprocating Hydrogen Compressor Costs: (Industry)Summary of Diaphragm Hydrogen Compressor Costs (Industry)vs. delivered hydrogen, compressor type, storage pressure).

  6. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    S.E. , (1997) “Hydrogen Infrastructure Report”, p. E-5.M. (2003) “Initiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) the lack of

  7. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? ”kg/day unit. hybrids or 20 hydrogen fuel cell vehicles (eachand Development of a PEM Fuel Cell, Hydrogen Reformer, and

  8. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a fuel cell or hydrogen combustion engine “gen-set. ” ByCell H 2 = hydrogen ICE = internal-combustion engine kg =

  9. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    Installed Capital Figure 4-21: Cost Estimates for 1,000 kg/station. H2Gen’s estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).

  10. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14T23:59:59.000Z

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  11. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  12. HYAPPROVAL HANDBOOK FOR THE APPROVAL OF HYDROGEN REFUELLING STATIONS FIRST PRELIMINARY ACHIEVEMENTS

    E-Print Network [OSTI]

    . Achievements during the first 15 months: analyses of HRS technology concepts and of equipment and safety levels/ database of Fire Associations & First Responders/ calendar of hydrogen events/ general description of CGH2 interfaces. Introduction Hydrogen already plays a significant role in the world's energy

  13. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

  14. Refueling Stations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) | Open EnergyOpenRefueling

  15. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  16. Fact #832: August 4, 2014 Over Half of the Refueling Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada...

  17. Operating experience with a liquid-hydrogen fueled Buick and refueling system

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-01-01T23:59:59.000Z

    An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

  18. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  19. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  20. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  1. After the gas station : redevelopment opportunities from rethinking America's vehicle refueling infrastructure

    E-Print Network [OSTI]

    Turco, Andrew

    2014-01-01T23:59:59.000Z

    Gas stations are found throughout the US, but their ubiquity causes them to go largely unnoticed. Because their purpose - refueling vehicles - is so uniform and so integral to the existing automotive transportation system, ...

  2. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

  3. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    systems in China, particularly for the cost of hydrogenthe capital cost for equipment imported to China. Hydrogenestate costs in Shanghai are among the highest in China. $

  4. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    systems in China, particularly for the cost of hydrogento the capital cost for equipment imported to China. 2.4.6.estate costs in Shanghai are among the highest in China and

  5. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01T23:59:59.000Z

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  6. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  7. Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how you can help improve the H-Prize H2 Refuel competition, which involves designing a small-scale hydrogen refueler system for homes, community centers, or businesses.

  8. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  9. Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-09-01T23:59:59.000Z

    A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

  10. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  11. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  12. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  13. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

  14. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  15. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01T23:59:59.000Z

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  16. Hydrogen Vehicles and Refueling Infrastructure in India | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |PanelEnergy Refueling

  17. Questions, Answers, and Clarifications Addendum 2 Hydrogen Refueling Infrastructure Solicitation

    E-Print Network [OSTI]

    Competition, if only a percentage of $3,150,000 available funds is used for one 100% renewable hydrogen For the 100% Renewable Hydrogen Competition, if $3,150,000 of the available funds is used to fund a portion competition is intentionally prioritized so that 100% renewable hydrogen is funded before the funding is used

  18. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  20. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31T23:59:59.000Z

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  1. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  2. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    survey: automotive hydrogen infrastructure. Fuel Cell Today.2003. Initiating hydrogen infrastructures: preliminary2005. Initiating hydrogen infrastructures: analysis of

  3. Qualitative Risk Assessment For An LNG Refueling Station And Review Of Relevant Safety Issues, Revision 2

    SciTech Connect (OSTI)

    Siu, Nathan; Herring, J Stephen; Cadwallader, Lee; Reece, Wendy; Byers, James

    2014-06-25T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of liquefied natural gas vehicle refueling facility.

  4. November 10, 2004: First hydrogen refueling station opens in Washington,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptemberTechnologies |

  5. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the path for next-generation nuclear

  6. Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, Joan M

    2007-01-01T23:59:59.000Z

    of a Fossil Fuel-Based Hydrogen Infrastructure with Carbonexpensive, then a hydrogen infrastructure would be postponedto the future hydrogen infrastructure. People will refuel at

  7. (Hydrogen) Service Stations 101 Steven M. Schlasner

    E-Print Network [OSTI]

    (Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 #12;2 DISCLAIMER Opinions · Comparison of Conventional with Hydrogen Fueling Stations · Hydrogen Fueling Life Cycle · Practical Design,000 retail outlets (350 company-owned) in 44 states · Brands: Conoco, Phillips 66, 76 · 32,800 miles pipeline

  8. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    station Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  9. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, Gopal [HD Systems

    2013-06-01T23:59:59.000Z

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  10. Department of Energy Announces $64 Million in Hydrogen Research...

    Office of Environmental Management (EM)

    of over 64 million in research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American...

  11. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    2002. Initiating hydrogen infrastructures: preliminaryAnalysis of the hydrogen infrastructure needed to enableA. , 2006. Hydrogen Infrastructure Transition Analysis:

  12. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  13. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04T23:59:59.000Z

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  14. Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*

    E-Print Network [OSTI]

    aspects of hydrogen utilization. production distribution utilization How do we achieve safe, efficient Forecourt storage (refueling stations) requirements being developed (IHIG) Distribution storage (delivery 75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane

  15. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  16. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

  17. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  18. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Partnership Finalizes Hydrogen Energy Roadmap,” World WideCommercialization Strategy for Hydrogen Energy Technologies,Economic Analysis of Hydrogen Energy Station Concepts: Are “

  19. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  20. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    connections) Installation Costs: 1. Engineering and Designstation works properly) 6. Contingency Operating Costs: 1.Feedstock Costs (natural gas, electricity) 2. Equipment

  1. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  2. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings...

    Office of Environmental Management (EM)

    H2USA Workshop: Hydrogen Fueling Station Component Listings Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings April 21, 2015 - 1:04pm Addthis H2USA will host an...

  3. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

  4. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26T23:59:59.000Z

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: �¢���¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). �¢���¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. �¢���¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. �¢���¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. �¢���¢ Maintain safety as the top priority in the system design and operation. �¢���¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  5. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    E-Print Network [OSTI]

    and compressed natural gas (CNG) and pure hydrogen to vehicles, and the co-production of electricity from system will be installed which will mix hydrogen with compressed natural gas (CNG) in a pre

  6. Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,

    E-Print Network [OSTI]

    for the production of hydrogen or syngas from many fuels, including natural gas, diesel fuel, coal, and renewable hydrogen generating and dispensing system is shown in Figure 2. The hydrogen-rich syngas generated the water. The syngas is purified in a Pressure Swing Adsorption (PSA) system. The PSA delivers high purity

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  9. BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop

    E-Print Network [OSTI]

    efforts were undertaken · Conversion took place during a period of less regulation on pipeline activityBP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines

  10. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect (OSTI)

    Block, Gus

    2011-07-31T23:59:59.000Z

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  11. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01T23:59:59.000Z

    Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

  12. DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION

    E-Print Network [OSTI]

    from central production plants; however, the next phase to fostering the hydrogen economy will likely of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrateDEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION David E. Guro Air Products

  13. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01T23:59:59.000Z

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  14. Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County

    E-Print Network [OSTI]

    Nicholas, Michael A

    2004-01-01T23:59:59.000Z

    the Hindenburg disaster. The airship, Hindenburg, was filledpaint on the skin of the airship was extremely flammable,

  15. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES ANDBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  16. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01T23:59:59.000Z

    combustion engine transit bus demonstration and hydrogenHydrogen FCVs have some important differences from gasoline internal combustion engine (

  17. Refuel Colorado

    Broader source: Energy.gov (indexed) [DOE]

    * 4CORE * State Fleet * West Slope CNG Collaborative * EV Stakeholder Group * Colorado Propane Gas Association * Colorado Hydrogen Coalition Partners Colorado Energy Office |...

  18. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    l l Hydrogen Energy Stations Ohio, and Florida. FurtherRenewable Energy Trust NJ: New Jersey BPU OH: Ohio Fuel Cellenergy technol- ogies include California, Connecticut, Massachusetts, Michigan, New Jersey, New York, Ohio and

  19. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    y d r o g e n Energy Stations New York State Energy Researchin an effort led by the New York State Energy Research andNYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

  20. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05T23:59:59.000Z

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  1. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  2. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasicsFueling Stations

  3. 2015 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models

    Broader source: Energy.gov [DOE]

    The Hydrogen Education Foundation announced the 11th annual Hydrogen Student Design Contest, which will challenge student teams to develop business and financing models for hydrogen fueling stations. Registration for the Contest is open until January 16, 2015.

  4. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...

    Energy Savers [EERE]

    World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station April 18, 2013 - 12:00am Addthis EERE...

  5. Study of a transaugmented two-stage small circular-bore railgun for injection of hypervelocity hydrogen pellets as a fusion reactor refueling mechanism

    SciTech Connect (OSTI)

    Tompkins, M.W.; Anderson, M.A.; Feng, Q.; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States)] [Univ. of Illinois, Urbana, IL (United States)

    1997-01-01T23:59:59.000Z

    Injection of hypervelocity hydrogen pellets has become widely accepted as the most effective means of refueling magnetically confined fusion reactors. Pellet velocities on the order of 10 km/s are desired and hydrogen pellet erosion during acceleration must be minimized. It is important to maintain uniform bore surfaces during repetitive shots, implying that, if a railgun is to be used to accelerate the pellets, damage to the sidewalls and rails of the railgun due to local heating must be limited. In order to reduce the amount of power dissipated within the bore and increase the propulsive force generated by the plasma-arc armature while minimizing losses due to pellet, rail, and sidewall ablation, the authors have employed a magnetic field transaugmentation mechanism consisting of a two-turn pulsed electromagnet. The two-stage gun consists of a light-gas gun which accelerates a 4- to 5-mg pellet to a speed around 1.2 km/s and injects it into the plasma-arc armature railgun. Currently, they have achieved a final output velocity for a hydrogen pellet of 2.11 km/s with a time-averaged acceleration of 4,850 km/s{sup 2} using a 58-cm railgun pulsed with a peak rail current of 9.2 kA and 28.0 kA of transaugmentation current. This paper will present a description of the hydrogen-pellet-injector railgun system, a discussion of the data on hydrogen pellet acceleration, and projections for future systems.

  6. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper...

  7. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucksRidesHydrogen

  8. Regulations, Codes, and Standards (RCS) Template for California Hydrogen Dispensing Stations

    SciTech Connect (OSTI)

    Rivkin, C.; Blake, C.; Burgess, R.; Buttner, W.; Post, M.

    2012-11-01T23:59:59.000Z

    This report explains the Regulations, Codes, and Standards (RCS) requirements for hydrogen dispensing stations in the State of California. The reports shows the basic components of a hydrogen dispensing station in a simple schematic drawing; the permits and approvals that would typically be required for the construction and operation of a hydrogen dispensing station; and a basic permit that might be employed by an Authority Having Jurisdiction (AHJ).

  9. Inexpensive delivery of compressed hydrogen with advanced vessel technology

    E-Print Network [OSTI]

    of flexible refueling (compressed/cryogenic H2/(L)H2) #12;The PVT properties of H2 drive storage and delivery) Explore station demand from 70 kg H2/day to 1000 kg H2/day · Real hydrogen thermodynamic and PVT diagram and vessel characteristics to minimize delivery cost · Hydrogen and material properties Increased

  10. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Broader source: Energy.gov (indexed) [DOE]

    document establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707completevisiondeployme...

  11. SNL Issues a Request for Quotation for a Hydrogen Station Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Quotation for a Hydrogen Station Test Device DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services 10 Questions Regarding SAE...

  12. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Post, M.; Saur, G.; Peters, M.

    2013-11-01T23:59:59.000Z

    This report includes 18 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 2 of 2013.

  13. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Peters, M.

    2014-05-01T23:59:59.000Z

    This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

  14. The Fuel-Travel-Back Approach to Hydrogen Station Siting

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

    2009-01-01T23:59:59.000Z

    W. (2003). "Initiating hydrogen infrastructures: preliminarycompact, lower-cost hydrogen infrastructure, it is possibleBuilding a Hydrogen Energy Infrastructure." Annual Review of

  15. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    psi) High-pressure hydrogen compressor Compressed hydrogen2005 High-pressure hydrogen compressor Compressed hydrogenthe hydrogen, a hydrogen compressor, high-pressure tank

  16. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  17. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  18. The Status of Renewable Hydrogen and Energy Station Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (H2E3) Basic Research for the Hydrogen Fuel Initiative Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen...

  19. A Near-Term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  20. A Near-term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    Photovoltaic System Additional Equipment $/yr Installation Costs Contingency Electricity Fixed Operating Costs Total Annual Cost ($/yr) Hydrogen Price (

  1. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

  2. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Cell Deployment and Hydrogen Infrastructure, Worldwide Web,of deploying hydrogen infrastructure. stream of hydrogenfeasibility of a hydrogen infrastructure is enhanced by

  3. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

  4. The Importance of Interregional Refueling Availability to the Purchase Decision

    E-Print Network [OSTI]

    Nicholas, Michael A

    2009-01-01T23:59:59.000Z

    surveys about refueling availability No experience using aof Interregional Refueling Availability to the Purchasewith refueling availability (pretest only) ? Respondents

  5. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen is increasingly becoming a fuel for clean, reliable power and is helping reduce the nation's overall carbon footprint. In fact, U.S. shipments of fuel cells'...

  6. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20T23:59:59.000Z

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  7. Determining the lowest-cost hydrogen delivery mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2007-01-01T23:59:59.000Z

    current lack of hydrogen infrastructure. Hydrogen fuel isof developing hydrogen infrastructure systems. This analysisa refueling infrastructure for hydrogen vehicles: a southern

  8. Determining the Lowest-Cost Hydrogen Delivery Mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2008-01-01T23:59:59.000Z

    current lack of hydrogen infrastructure. Hydrogen fuel isof developing hydrogen infrastructure systems. This analysisa Refueling Infrastructure for Hydrogen Vehicles: A Southern

  9. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01T23:59:59.000Z

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  10. An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, J

    2010-01-01T23:59:59.000Z

    Water High-pressure hydrogen compressor Compressed hydrogenWater High-pressure hydrogen compressor Compressed hydrogenReciprocating gas compressor Figure 13 Hydrogen refueling

  11. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/GeneratorFuel Cell Deployment and Hydrogen Infrastructure, WorldwideOffice (2005), “Florida Hydrogen Business Partnership,”

  12. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01T23:59:59.000Z

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  13. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/Generatorliter V-10 engine and about 26 kilograms of hydrogen, stored

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

  15. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02T23:59:59.000Z

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  16. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  17. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Bradley, Eric Craig [ORNL; Zaharia, Nathaniel M [ORNL; Cooper, Eliott J [ORNL

    2012-07-01T23:59:59.000Z

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  18. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

    2012-07-15T23:59:59.000Z

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt–cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy’s Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  19. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  20. Hydrogen Fueling Infrastructure Research and Station Technology Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor

  1. EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) | OpenEUHYFIS Hydrogen

  2. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs. Davis, ITS-Davis.production of hydrogen with pipeline distribution. Theatmosphere, and pipeline delivery of hydrogen to refueling

  3. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs. Davis, ITS-Davis.production of hydrogen with pipeline distribution. Theatmosphere, and pipeline delivery of hydrogen to refueling

  4. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    Ideally a robust hydrogen infrastructure would rapidlya serviceable hydrogen infrastructure that is extensiveadding hydrogen dispensing infrastructure to a gasoline

  5. Interested in Hydrogen and Fuel Cell Technologies? Help Shape...

    Broader source: Energy.gov (indexed) [DOE]

    Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize...

  6. Hydrogen and Hydrogen/Natural Gas Station and Vehicle Operations - 2006 Summary Report

    SciTech Connect (OSTI)

    Francfort; Donald Karner; Roberta Brayer

    2006-09-01T23:59:59.000Z

    This report is a summary of the operations and testing of internal combustion engine vehicles that were fueled with 100% hydrogen and various blends of hydrogen and compressed natural gas (HCNG). It summarizes the operations of the Arizona Public Service Alternative Fuel Pilot Plant, which produces, compresses, and dispenses hydrogen fuel. Other testing activities, such as the destructive testing of a CNG storage cylinder that was used for HCNG storage, are also discussed. This report highlights some of the latest technology developments in the use of 100% hydrogen fuels in internal combustion engine vehicles. Reports are referenced and WWW locations noted as a guide for the reader that desires more detailed information. These activities are conducted by Arizona Public Service, Electric Transportation Applications, the Idaho National Laboratory, and the U.S. Department of Energy’s Advanced Vehicle Testing Activity.

  7. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire

    E-Print Network [OSTI]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire the hydrogen community and government agencies by increasing awareness of the status of refueling

  8. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  9. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01T23:59:59.000Z

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  10. Malm Hydrogen and CNG/Hydrogen filling station and Hythane bus project

    E-Print Network [OSTI]

    has continued and the latest step is now to test hydrogen mixed together with natural gas for local to the specification of natural gas. The mixture can be used directly in the current CNG city buses without any Energikonsult AB, Sweden, 2005-04-15 bengt.ridell@carlbro.se 1. Background The largest private utility company

  11. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  12. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  13. Hydrogen Vehicles and Refueling Infrastructure in India

    Broader source: Energy.gov (indexed) [DOE]

    in taxis, three-wheelers etc Increase the number of buses to at least 10,000 Impact on air quality Particulate pollution stabilised PM10 at ITO Traffic Intersection (March...

  14. Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution

    E-Print Network [OSTI]

    Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    the hydrogen delivery networks (trucks and pipelines) thattruck and pipeline network paths from hydrogen depot forlength of pipeline and truck-based hydrogen delivery modes,

  15. Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution

    E-Print Network [OSTI]

    Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    Natural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbonbe achieved with hydrogen infrastructure technologies. One

  16. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect (OSTI)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01T23:59:59.000Z

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    arguments for hydrogen infrastructure in hopes of keepingfor use while hydrogen infrastructure is scarce. This wouldstages of hydrogen refueling infrastructure development.

  19. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30T23:59:59.000Z

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  20. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01T23:59:59.000Z

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  1. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  2. Control method for high-pressure hydrogen vehicle fueling station dispensers

    DOE Patents [OSTI]

    Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

    2006-06-13T23:59:59.000Z

    A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

  3. DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss

    E-Print Network [OSTI]

    system integration for efficient operation of the unit. High- Efficiency Natural Gas Steam Reformer looks to introduce innovative, compact natural gas steam reforming system and appliance quality hydrogen Natural Gas Water Gas Clean Up CO2 & Water CO2 Rejection/ Recovery Appliance Quality Hydrogen Compression

  4. Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building

    E-Print Network [OSTI]

    heat losses from the stack, and possibly results in higher reliability. A convenient way of providing potentially lead to lower costs for hydrogen production because the equipment used for hydrogen generation, comply with safety requirements, and develop equipment that is suitable for commercial applications

  5. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  6. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    : Facilitate the creation and adoption of model building codes and equipment standards for hydrogen systems of hydrogen building codes for NFPA's hearing cycle. Facilitate in the adoption of the ICC codes in three key for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen

  7. EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING

    E-Print Network [OSTI]

    Brown, Michael R.

    EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING BY SPHEROMAK INJEXTIQN INTO A TOKAMAK M ABSTRACT. The first measurements of current drive (refluxing) and refuelling by spheromak injection injection, and refuelling is attributed to the rapid incorporation of the dense spheromak plasma

  8. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    SciTech Connect (OSTI)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01T23:59:59.000Z

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  9. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, R.C.; Jones, C.R.

    1998-12-15T23:59:59.000Z

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  10. List of Refueling Stations Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy Information

  11. Service station requirements for safe use of hydrogen based fuels: NHA work group update

    SciTech Connect (OSTI)

    Coutts, D.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the results of the meeting of the working group on safety standards. A standard for an odorant for hydrogen leak detection is set forth. Recent activities with the National Fire Protection Association and the International Standard Organization are enumerated. The path forward is also summarized.

  12. UC Davis Models: Geospatial Station Network Design Tool and Hydrogen Infrastructure Rollout Economic Analysis Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeedEnergyUC Davis Models Geospatial Station Network

  13. Help Design the Hydrogen Fueling Station of Tomorrow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargetingduty H2-Diesel

  14. Help Design the Hydrogen Fueling Station of Tomorrow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargetingduty H2-DieselHelp Design

  15. H2 Refuel H-Prize Technical Data Collection Requirements

    Broader source: Energy.gov [DOE]

    Download the presentation slides from the Fuel Cell Technologies Office webinar "H2 Refuel H-Prize Technical Data Collection Requirements Webinar Slides" held on May 14, 2015.

  16. An Overview of Automotive Home and Neighborhood Refueling

    E-Print Network [OSTI]

    Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

  17. B-2 Bomber During In-flight Refueling Normal Heart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Bomber During In-flight Refueling Normal Heart Image Technology to Detect Concealed Nuclear Material in Trucks and Cargo Containers Single Abnormality Possible Heart Attack Disc...

  18. Webinar: Introduction to SAE Hydrogen Fueling Standardization...

    Broader source: Energy.gov (indexed) [DOE]

    to the new SAE J2601 and J2799 standard related to public refueling of hydrogen fuel cell electric vehicles. So as Alli also mentioned, I'm going to be moderating today's...

  19. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  20. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  1. Potential Carriers andPotential Carriers and Approaches for HydrogenApproaches for Hydrogen

    E-Print Network [OSTI]

    Refueling Type On-Board Storage Type Compressed Gaseous Hydrogen · Pipeline · Low-P Tube Trailer · HighPotential Carriers andPotential Carriers and Approaches for HydrogenApproaches for Hydrogen © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland Matthew Hooks Stefan

  2. Lessons and Challenges for Early Hydrogen Refueling Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t hLessons Learned:

  3. Hydrogen Home Refueling: Status, Key Issues, and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e&Funding and the AB

  4. Connecting Transitions in Galaxy Properties to Refueling

    E-Print Network [OSTI]

    Kannappan, Sheila J; Eckert, Kathleen D; Moffett, Amanda J; Wei, Lisa H; Pisano, D J; Baker, Andrew J; Vogel, Stuart N; Fabricant, Daniel G; Laine, Seppo; Norris, Mark A; Jogee, Shardha; Lepore, Natasha; Hough, Loren E; Weinberg-Wolf, Jennifer

    2013-01-01T23:59:59.000Z

    We relate transitions in galaxy structure and gas content to refueling, here defined to include both the external gas accretion and the internal gas processing needed to renew reservoirs for star formation. We analyze two z=0 data sets: a high-quality ~200-galaxy sample (the Nearby Field Galaxy Survey, data release herein) and a volume-limited ~3000-galaxy sample with reprocessed archival data. Both reach down to baryonic masses ~10^9Msun and span void-to-cluster environments. Two mass-dependent transitions are evident: (i) below the "gas-richness threshold" scale (V~125km/s), gas-dominated quasi-bulgeless Sd--Im galaxies become numerically dominant, while (ii) above the "bimodality" scale (V~200km/s), gas-starved E/S0s become the norm. Notwithstanding these transitions, galaxy mass (or V as its proxy) is a poor predictor of gas-to-stellar mass ratio M_gas/M_*. Instead, M_gas/M_* correlates well with the ratio of a galaxy's stellar mass formed in the last Gyr to its preexisting stellar mass, such that the two...

  5. Minimizing or eliminating refueling of nuclear reactor

    DOE Patents [OSTI]

    Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

    1989-01-01T23:59:59.000Z

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  6. 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 -...

  7. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  8. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    of refueling today's gasoline vehicles. Using currently available high-pressure tank storage technology that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen

  9. Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system

    E-Print Network [OSTI]

    Bowers, Roshawn Elizabeth

    2005-11-01T23:59:59.000Z

    A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive...

  10. President's Hydrogen Fuel Mark Paster

    E-Print Network [OSTI]

    or diesel fuel. #12;Emissions from Fossil Fuel Combustion Vehicles and power plants are significant powered vehicle, and be able to refuel it near their homes and places of work, by 2020." - Secretary Strategy Produce hydrogen from renewable, nuclear, and coal with technologies that will all yield virtually

  11. The Least-cost Hydrogen for Southern California Zhenhong Lin*

    E-Print Network [OSTI]

    Fan, Yueyue

    of hydrogen infrastructure build-up in Southern California during 2010-2060. Given an exogenous demand, the model generates temporal and spatial decisions for building a hydrogen infrastructure, in terms of when emissions, and oil dependence [1]-[3]. Although a hydrogen refueling infrastructure does not currently exist

  12. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect (OSTI)

    Saur, G.; Ainscough, C.

    2011-12-01T23:59:59.000Z

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  13. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    the stations include compressors, hydrogen storage andthan compressors to supply pressurized gaseous hydrogen to

  14. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect (OSTI)

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01T23:59:59.000Z

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  15. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31T23:59:59.000Z

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  16. Energy Department Applauds World's First Fuel Cell and Hydrogen...

    Office of Environmental Management (EM)

    World's First Fuel Cell and Hydrogen Energy Station in Orange County Energy Department Applauds World's First Fuel Cell and Hydrogen Energy Station in Orange County August 16, 2011...

  17. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document...

    Broader source: Energy.gov (indexed) [DOE]

    contamination detection and identifies the technical requirements for implementing a hydrogen contaminant detector (HCD) at a station. The rollout of hydrogen fueling stations,...

  18. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  19. Sandia National Laboratories: More California Gas Stations Can...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More California Gas Stations Can Provide...

  20. Alternative Fueling Station Locator App Provides Info at Your...

    Broader source: Energy.gov (indexed) [DOE]

    iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station...

  1. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    canned gasoline, gasoline storage and delivery in barrels,gasoline pump, dispensing hose, ?ow meter and underground storagethan gasoline. This being said, our handling and storage

  2. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Broader source: Energy.gov (indexed) [DOE]

    layouts. This work presents the hydrogen community with a uniform, cost-optimal formula for designing and building hydrogen stations. The piping and instrumentation diagrams...

  3. 2015 Hydrogen Student Design Contest Challenges Students to Develop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Hydrogen Student Design Contest Challenges Students to Develop Innovative Hydrogen Fueling Station Business and Financing Models 2015 Hydrogen Student Design Contest Challenges...

  4. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    to the rate of refueling today's gasoline vehicles. Using currently available high-pressure tank storage that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost

  5. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  6. Assessing reliability in energy supply systems

    E-Print Network [OSTI]

    McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    pathway supplying hydrogen via pipeline from a centralizedgas with pipeline distribution of hydrogen, and 2) on-sitehydrogen is transported to the refueling stations via pipeline

  7. Assessing Reliability in Energy Supply Systems

    E-Print Network [OSTI]

    McCarthy, Ryan; Ogden, Joan M.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    pathway supplying hydrogen via pipeline from a centralizedgas with pipeline distribution of hydrogen, and 2) on-sitehydrogen is transported to the refueling stations via pipeline

  8. Sandia National Laboratories: fully certified commercial hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fully certified commercial hydrogen fueling station Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research...

  9. Sandia National Laboratories: Reference Station Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  10. IEEE Workshop on Applications of Computer Vision 3-4 December, 2002, Orlando FL Monocular, Vision Based, Autonomous Refueling System

    E-Print Network [OSTI]

    Farag, Aly A.

    Based, Autonomous Refueling System Aly Farag, Emir Dizdarevic, Ahmed Eid, and Allbert Lörincz of a vision based platform for automated refueling tasks. The platform is an autonomous docking system in principle, with the specific application­ refueling of vehicles. The system is based on monochromatic

  11. Hydrogen Technical Analysis: Energy Station

    E-Print Network [OSTI]

    , which represents approximately 50% of the energy supplied by the fuel. More efficient heat recovery approximately 50% of the energy supplied by the fuel. More efficient heat recovery systems and improved system with buildings and potential for cogeneration Analyze potential for heat recovery from fuel cell

  12. Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations

    E-Print Network [OSTI]

    Wong, Vincent

    initial policy. Simulation results confirm the convergence of the game between EVCSs. The results also assumed that EVs are charged only at home. However, considering that conventional internal combustion engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provide

  13. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    alternative fuels/engines. Energy Policy, 7–27. OPIS, 2007.OPIS Homepage [accessed January 16, 2007], available from /organizations, such as MPSI, OPIS, and the Lundberg Survey (

  14. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    vehicles: the case of natural gas vehicles. Energy Policywith compressed natural gas vehicles in New Zealand andin California and natural gas vehicles in New Zealand (

  15. Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for2013 is All

  16. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten Years | Department of Energy

  17. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten Years |Energy 4:ofand Canada

  18. CX-009556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Validation of Hydrogen Refueling Station Performance and Advanced Refueling Components CX(s) Applied: A9, B5.22 Date: 12/10/2012 Location(s): California Offices(s): Golden Field Office

  19. Integration Of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability

    E-Print Network [OSTI]

    Kang, Jee E

    2013-01-01T23:59:59.000Z

    G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2009). Hydrogen fuel cell vehicle and stationCaFCP) (2010). Hydrogen fuel cell vehicle and station

  20. Integration of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability

    E-Print Network [OSTI]

    Kang, Jee Eun

    2013-01-01T23:59:59.000Z

    G. S. (2013), “Refueling Hydrogen Fuel Cell Vehicles with 68CaFCP) (2009). Hydrogen fuel cell vehicle and stationCaFCP) (2010). Hydrogen fuel cell vehicle and station

  1. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  2. Tri-Generation Success Story: World's First Tri-Gen EnergyStation...

    Energy Savers [EERE]

    Energy Department, the Fountain Valley energy station is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public...

  3. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

  4. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  5. Development of National Liquid Propane (Autogas) Refueling Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt059tiday2012o...

  6. Development of National Liquid Propane (Autogas) Refueling Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt059tiday2011...

  7. Development of National Liquid Propane (Autogas) Refueling Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt059day2010...

  8. Documnet for Hydrogen State and Regional Workshop, March 30,...

    Broader source: Energy.gov (indexed) [DOE]

    - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Communicating Hydrogen: Matching Message with Media Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

  9. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure...

  10. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  11. 20,000 and Counting: Alternative Fueling and Charging Stations...

    Broader source: Energy.gov (indexed) [DOE]

    gas, electricity, E85 (up to 85% ethanol), hydrogen, liquefied natural gas, and propane. The Station Locator offers drivers several ways to search for and sort information:...

  12. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A. [Univ. of Victoria, British Columbia (Canada)

    1994-12-31T23:59:59.000Z

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  13. REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands

    E-Print Network [OSTI]

    REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. Könighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

  14. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

    2006-07-01T23:59:59.000Z

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  15. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    what about bringing other fuels to this market? Many gaseous fuels, including propane for your grill and compressed gases at paintball parties, are safe and popular, and...

  16. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof|than Ever | Department of Energy

  17. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  18. RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING

    E-Print Network [OSTI]

    RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING P.s. Jensen and V. Andersen Association Euratom - Ris0 National Laboratory Abstract. The use of a guide tube technique to inject pellets in pellet-plasma experiments guide tube on the mass and (v ~ 150 m/s) is negligible. jectories

  19. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12T23:59:59.000Z

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  20. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE INTERNATIONAL Worldwide hydrogen Infrastructure Developments Status 2014 8 Europe: Germany * Demo-project Clean Energy Partnership 15 public stations + 35 in process in 2016 *...

  1. Sandia National Laboratories: Hydrogen Fueling Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Station Technology Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  2. Sandia National Laboratories: Hydrogen Contaminant Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  3. Sandia National Laboratories: Hydrogen Financial Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  4. Idaho_SheepStation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104Sheep Station Site

  5. Study on neutronic of very small Pb - Bi cooled no-onsite refueling nuclear power reactor (VSPINNOR)

    SciTech Connect (OSTI)

    Arianto, Fajar, E-mail: ariantofajar@gmail.com [Laboratory of Nuclear and Biophysics, Department of Physics, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia and Laboratory of Atom and Nuclear, Department of Physics, Diponegoro University, Jl. Prof. Soedarto, S.H., Tembala (Indonesia); Su'ud, Zaki, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Zuhair [Center for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency, Kawasan Puspiptek, Gedung No. 80, Serpong, Tangerang 15310 (Indonesia)

    2014-09-30T23:59:59.000Z

    A conceptual design study on Very Small Pb-Bi No-Onsite Refueling Cooled Nuclear Reactor (VSPINNOR) with Uranium nitride fuel using MCNPX program has been performed. In this design the reactor core is divided into three regions with different enrichment. At the center of the core is laid fuel without enrichment (internal blanket). While for the outer region using fuel enrichment variations. VSPINNOR fast reactor was operated for 10 years without refueling. Neutronic analysis shows optimized result of VSPINNOR has a core of 50 cm radius and 100 cm height with 300 MWth thermal power output at 60% fuel fraction that can be operated 18 years without refueling or fuel shuffling.

  6. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAs part of itsRefiningHydrogen |

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department ofHydrogen |

  8. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  9. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  10. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01T23:59:59.000Z

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  11. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01T23:59:59.000Z

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  12. Density dependence of the onset of neoclassical tearing modes in H-mode and pellet refuelled discharges on JET and ASDEX Upgrade

    E-Print Network [OSTI]

    Density dependence of the onset of neoclassical tearing modes in H-mode and pellet refuelled discharges on JET and ASDEX Upgrade

  13. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel

  14. Nancy Garland DOE Hydrogen Program

    E-Print Network [OSTI]

    commercialization decision by 2015 Fuel cell vehicles in showroom and hydrogen at fuel stations by 2020 #12;Hydrogen, and distributed combined heat and power applications. #12;DOE Hydrogen Program Budget $544DOT $37,301Earmarks (EE,830$30,000$29,432Storage R&D (EE) $14,363$25,325$22,564Production & Delivery R&D (EE) FY 05 Appropriations* ($000) FY 05

  15. H2 Refuel H-Prize Overview and Q&A | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 MarchH-Tank FarmRefuel H-Prize Overview

  16. NREL: Hydrogen and Fuel Cells Research - Webinar May 12: Overview...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    financial inputs such as station capital cost, operating cost, and financing mechanisms. Register for the webinar. Printable Version Hydrogen & Fuel Cells Research Home Projects...

  17. Sandia National Laboratories: critical R&D barriers to hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  18. Hydrogen storage of energy for small power supply systems

    E-Print Network [OSTI]

    Monaghan, Rory F. D. (Rory Francis Desmond)

    2005-01-01T23:59:59.000Z

    Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

  19. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling

    SciTech Connect (OSTI)

    Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-07-01T23:59:59.000Z

    In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

  20. Hydrogen Cryomagnetics

    E-Print Network [OSTI]

    Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

    2014-01-01T23:59:59.000Z

    in our current approach. The liquefaction of hydrogen allows also for its use in transport applications for example BMW developed a car that utilises liquid hydrogen instead of compressed gas hydrogen making the use of cryogenic hydrogen even more... efficient. 11     Figure 13. Decentralised production of hydrogen pathways for Energy and Hydrogen Cryomagnetic solutions for a hospital environment. The shaded region in the figure represents the decentralised production of hydrogen using renewable...

  1. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    diesel engines. #12;2 contaminants to the localized air shed. No onsite production of hydrogen, Inc., project "LowCost Hydrogen Refueling Station Deployment Program" are addressed. Air Products and Chemicals, Inc. plans to install a hydrogen fueling station at a gasoline station located at 1819

  2. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues facing hydrogen infrastructure fuel cell electric vehicles in the U.S. Europe, Germany, Scandinavia, and Japan. o H2 Fueling o H2 Quality o H2 metering o H2 Station...

  3. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01T23:59:59.000Z

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  4. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  5. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08T23:59:59.000Z

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  7. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01T23:59:59.000Z

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  8. Hydrogen Bonding Increases Packing Density in the Protein Interior

    E-Print Network [OSTI]

    Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

  9. May 19-22, 2003 DTE Hydrogen Power Park

    E-Print Network [OSTI]

    biomass/solar power to hydrogen generation and storage to electrical generation and vehicle fueling energy into an end-to-end hydrogen energy station concept that utilizes solar & biomass power combined/ Compression and Controls Water Supply Storage Equipment w/ Controls Electricity Water Hydrogen Customer Site

  10. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity DeliveryApplication of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles technologies to support hydrogen dispensing stations Submitted by Hawai`i Natural Energy Institute School

  11. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  12. Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  13. U.S. DOE Webinar Series - 2011-2012 Hydrogen Student Design Contest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrogen fueling station at Humboldt State University 8 2011-2012 Contest Supporters Media Partners 2011-2012 Theme: Design a Combined Hydrogen, Heat and Power System for your...

  14. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  15. DOE Hydrogen Program U.S. Department of Energy Hydrogen Program

    E-Print Network [OSTI]

    and other organizations to help prospective hydrogen fueling station developers and local code officials the challenge of applying codes and standards to allow safe but expeditious permitting of new hydrogen fueling jurisdictions have used existing codes and standards available from organizations such as the International Code

  16. U.S.Air Force Advanced Power

    E-Print Network [OSTI]

    Tractor · Robins AFB H2 Fuel Cell Forklift/Toolcat · Fisher-Tropsch Synthetic FuelTest · Robins E-85 Effort · Solar - Electric Drive U.S.Air Force Advanced PowerTechnology Office Our Customers TheWarfighter Homeland Defense RefuelerFuel Cell MB-4Fuel Cell Microgrid Hydrogen Refueling Station Renewable Wind Power Renewable Solar

  17. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  18. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  19. Hydrogen Analysis

    Broader source: Energy.gov (indexed) [DOE]

    A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter...

  20. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01T23:59:59.000Z

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  1. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

    2013-07-01T23:59:59.000Z

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  2. Hydrogen Storage Technologies Hydrogen Delivery

    E-Print Network [OSTI]

    Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission and clean advanced lightduty vehicles, as well as related energy infrastructure. For more information about

  3. High-Efficiency Plasma Refuelling by Pellet Injection from the Magnetic High-Field Side into ASDEX Upgrade

    SciTech Connect (OSTI)

    Lang, P.T.; Buechl, K.; Kaufmann, M.; Lang, R.S.; Mertens, V.; Mueller, H.W.; Neuhauser, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)] [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany); ASDEX Upgrade% NI Teams

    1997-08-01T23:59:59.000Z

    High-efficiency refuelling of ELMy {ital H}-mode tokamak discharges with solid deuterium pellets injected from the magnetic high-field side is demonstrated. Compared to standard low-field side injection, the fuelling efficiency was enhanced by a factor of 4, the pellet penetration more than 2 times. This experimental result can be qualitatively explained by the magnetic force pushing a diamagnetic plasma cloud towards lower magnetic field, causing rapid particle loss for shallow low-field side injection, but enhancing fuelling efficiency and pellet penetration for high-field side injection. {copyright} {ital 1997} {ital The American Physical Society}

  4. Webinar June 25: H2 Refuel H-Prize Overview and Q&A | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe WaterWeatherization|BrowseH2 Refuel

  5. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Broader source: Energy.gov (indexed) [DOE]

    iPhone users now have access to a free app that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, E85, propane, and hydrogen. The...

  6. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect (OSTI)

    Hall, Karen I.

    2007-05-12T23:59:59.000Z

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  7. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  8. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Program A Prospectus for Biological H 2 Production The Hydrogen Economy The hydrogen economy pertains to a world fundamentally different from the one we now know. Hydrogen...

  9. Vehicles and E85 Stations Needed to Achieve Ethanol Goals

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

  10. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  11. Skate Station UF Services

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    friends, practice your English, and try new activities! Where: Skate Station Funworks We will be meeting and more orderly manner. Everyone will be served eventually. Fire Drills/Alarms: Whenever you hear a fire should park your bike in well-lighted areas and lock it up when you park it. The best lock is a U

  12. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2013-11-06T23:59:59.000Z

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panel’s initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panel’s recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panel’s work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called “cabinets,” but for simplicity, they are all referred to as “enclosures” in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical basis be developed to enable code bodies to write requirements for the range of enclosures from the smallest to the largest.

  13. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  14. HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

  15. Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    Infrastructure Questions, Answers and Clarifications Hydrogen Fuel Infrastructure Solicitation PON-12Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel for multiple hydrogen fueling stations? A.6 No. Q.7 Can the 65% Energy Commission share be increased to 75%? A

  16. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31T23:59:59.000Z

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  17. The Village Base Station Kurtis Heimerl

    E-Print Network [OSTI]

    California at Irvine, University of

    removes the need for diesel generators, as well as the implied diesel, roads, and refueling trips. The key deployment due to low power requirements that enable local generation via solar or wind; · explicit support. At around 20W, its power consumption is low enough to avoid diesel genera- tors and the corresponding

  18. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  19. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  20. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  1. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  2. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  3. Hydrogen Delivery Analysis Models

    Broader source: Energy.gov (indexed) [DOE]

    insert our Research Targets to see the impact List of Delivery Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid Hydrogen Truck...

  4. Hydrogen Station Test Device Design and Fabrication | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from potential suppliers are due no later than October 8, 2014, at 8:00 p.m. Eastern Daylight Time. Device requirements and additional information can be found at the at the...

  5. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 05gedistributedh2fuelingstation.pdf More Documents & Publications BILIWG: Consistent...

  6. DOE Announces Webinars on Hydrogen Station Analysis Tools and...

    Office of Environmental Management (EM)

    the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required....

  7. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Bgqrpgsrcb&2;Fwbpmecl&2;Dscjgle&2;Qrrgml&2; @qcb&2;ml&2;ECEP&2;QANM&2;Rcaflmjmew Ucg&2;Ucg*&2;Ic Jgs EC&2;Ejmj&2;Pcqcpaf BMC&2;-.4-0..5 0 EC&2;Ejmj&2;Pcqcpaf Lmt&2;0..5 QANM&2;Pcdmpkcp&2;dmp&2;Fwbpmecl&2;Npmbs...

  8. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow WorkshopInformation

  9. DOE Announces Webinars on Hydrogen Station Analysis Tools and Interoperable

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment of

  10. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathway Options

  11. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptemberConfrontingFY 2011 FY 2011 FY1

  12. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof|than Ever | Departmentof

  13. Development of a Renewable Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries withAbstractSystem | Departmenta

  14. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004 | DepartmentJanuary 2004

  15. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897ExtendingImpact

  16. Validation of an Integrated Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of Innovative Explorationan Integrated

  17. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental VehicleNaturalPropane

  18. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuelDepartment

  19. Sandia Energy - More California Gas Stations Can Provide Hydrogen than

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl HomeCommissioning Home

  20. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  1. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  2. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  3. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01T23:59:59.000Z

    Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

  4. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    SciTech Connect (OSTI)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  5. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  6. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  7. Wachs Cutter Tooling Station (4495)

    Broader source: Energy.gov (indexed) [DOE]

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  8. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of...

  9. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  10. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  11. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Environmental Management (EM)

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay...

  12. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  13. Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

  14. Alternative Fuels Data Center: Hydrogen Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucksRidesHydrogenHydrogen

  15. DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va.

  16. Fuel Station Procedure Applicability All

    E-Print Network [OSTI]

    Moore, Paul A.

    Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

  17. Hydrogen Delivery Mark Paster

    E-Print Network [OSTI]

    Liquids (e.g. ethanol etc.) ­ Truck: HP Gas & Liquid Hydrogen ­ Regional Pipelines ­ Breakthrough Hydrogen;Delivery Key Challenges · Pipelines ­ Retro-fitting existing NG pipeline for hydrogen ­ Utilizing existing NG pipeline for Hythane with cost effective hydrogen separation technology ­ New hydrogen pipeline

  18. Durability study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01T23:59:59.000Z

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31T23:59:59.000Z

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  20. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  1. HYDROGEN IN GERMANIUM

    E-Print Network [OSTI]

    Haller, E.E.

    2011-01-01T23:59:59.000Z

    •^f-1? c^4--^ LBL-7996 HYDROGEN IN GERMANIUM E. E. HallerW-7405-ENG-48 LBL-7996 HYDROGEN IN GERMANIUM* E. E. Haller48. LBL-7996 Abstract Hydrogen is shown to form molecular

  2. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is...

  3. Sandia Hydrogen Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Combustion Research Sandia Hydrogen Combustion Research Sebastian A. Kaiser (PI) Sandia National Laboratories Christopher M. White University of New Hampshire Sponsor: DoE...

  4. Sandia National Laboratories: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  5. Hydrogen Permeation Barrier Coatings

    SciTech Connect (OSTI)

    Henager, Charles H.

    2008-01-01T23:59:59.000Z

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  6. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  7. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sources Hydrogen Hydrogen September 30, 2014 Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter...

  8. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for clean energy technology manufacturers. March 28, 2014 Sales Tax Exemption for Hydrogen Generation Facilities In North Dakota, the sale of hydrogen used to power an internal...

  9. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately...

  10. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Pipelines * Nuclear Energy * Office of Science Extending Collaborations * Other Federal Agencies - DOT, EPA, Others * International Collaborations Hydrogen from Diverse...

  11. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    SciTech Connect (OSTI)

    Mahalik, M.; Stephan, C. (Decision and Information Sciences)

    2011-01-18T23:59:59.000Z

    Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be willing to install large for-profit HFSs, HDFs can serve as a bridge until demand for hydrogen increases to the point where l

  12. Electrochemical Hydrogen Compressor

    SciTech Connect (OSTI)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01T23:59:59.000Z

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

  13. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  14. Stations; A Multimedia Performance for Eight Players

    E-Print Network [OSTI]

    Giracello, Robert Francis

    2010-01-01T23:59:59.000Z

    RIVERSIDE Stations; A Multimedia Performance for EightDISSERTATION Stations; A Multimedia Performance for Eightthe tragic drama in a multimedia theater environment. Table

  15. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  16. Cryo-Compressed Hydrogen Storage: Performance and Cost Review

    Broader source: Energy.gov (indexed) [DOE]

    On-board cost modeling Results - Gravimetric and volumetric capacity - Refueling dynamics - Discharge dynamics - Dormancy and boil-off losses - WTT efficiency - Greenhouse gas...

  17. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingGasoline comes to Sacramento via pipeline, is stored in terminals

  18. Celilo Converter Station - October 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asbestos has been removed from the station. Old, noisy, maintenance-in- tensive air-cooling has been replaced with an effi - cient, closed loop water-cooled system. Chemical...

  19. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    also for electricity generation in fuel cells” (Californiageneration capability to power a stationary fuel cell that would provide electricity

  20. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Hot water, steam, process heat kW kW Split reformer / electrolyzer / pipeline stream High Temperature

  1. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    of excellence for alternative energy technology education,create curricula in alternative energy technologies to helpin order to develop alternative energy sources and energy

  2. Hydrogen quantitative risk assessment workshop proceedings.

    SciTech Connect (OSTI)

    Groth, Katrina M.; Harris, Aaron P.

    2013-09-01T23:59:59.000Z

    The Quantitative Risk Assessment (QRA) Toolkit Introduction Workshop was held at Energetics on June 11-12. The workshop was co-hosted by Sandia National Laboratories (Sandia) and HySafe, the International Association for Hydrogen Safety. The objective of the workshop was twofold: (1) Present a hydrogen-specific methodology and toolkit (currently under development) for conducting QRA to support the development of codes and standards and safety assessments of hydrogen-fueled vehicles and fueling stations, and (2) Obtain feedback on the needs of early-stage users (hydrogen as well as potential leveraging for Compressed Natural Gas [CNG], and Liquefied Natural Gas [LNG]) and set priorities for %E2%80%9CVersion 1%E2%80%9D of the toolkit in the context of the commercial evolution of hydrogen fuel cell electric vehicles (FCEV). The workshop consisted of an introduction and three technical sessions: Risk Informed Development and Approach; CNG/LNG Applications; and Introduction of a Hydrogen Specific QRA Toolkit.

  3. Gaseous Hydrogen Delivery Breakout - Strategic Directions for...

    Broader source: Energy.gov (indexed) [DOE]

    Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

  4. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  5. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  6. imulation und Optimierung der Standort- und Kapazit¨atsauswahl in der Planung von Ladeinfrastruktur fur batterieelektrische Fahrzeug?otten

    E-Print Network [OSTI]

    Siefen, Kostja

    2012-01-01T23:59:59.000Z

    design of refueling station infrastructure for alternative fuel vehicles. Computers & Chemical Engineering,

  7. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  8. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01T23:59:59.000Z

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  9. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  10. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  11. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  12. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  13. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

  14. Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network 

    E-Print Network [OSTI]

    Damodharan, Shalini

    2012-07-16T23:59:59.000Z

    emissions [19]. Hence, hydrogen can be produced on large scale from biomass feedstocks in centralized facilities and subsequently distributed at fueling stations and/or community locations as a universal clean fuel for transportation and power...

  15. Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network

    E-Print Network [OSTI]

    Damodharan, Shalini

    2012-07-16T23:59:59.000Z

    emissions [19]. Hence, hydrogen can be produced on large scale from biomass feedstocks in centralized facilities and subsequently distributed at fueling stations and/or community locations as a universal clean fuel for transportation and power...

  16. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

  17. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  18. Hydrogen Bus Technology Validation Program

    E-Print Network [OSTI]

    Burke, Andy; McCaffrey, Zach; Miller, Marshall; Collier, Kirk; Mulligan, Neal

    2005-01-01T23:59:59.000Z

    and evaluate hydrogen enriched natural gas (HCNG) enginewas to demonstrate that hydrogen enriched natural gas (HCNG)characteristics of hydrogen enriched natural gas combustion,

  19. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    the electronic level of hydrogen (thick red bar) was notdescribing the behavior of hydrogen atoms as impuritiesenergy of interstitial hydrogen as a function of Fermi level

  20. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03T23:59:59.000Z

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  1. Electrolysis: Technology and Infrastructure Options Today, electrolysis systems supply 4% of the world's hydrogen. Although electrolysis can be

    E-Print Network [OSTI]

    . In order to achieve the cost target of $2.85 per kg of hydrogen, electricity would need to be available to these stations at prices of 4.5 cents per kWh or less assuming full utilization of the station. As space 2010 hydrogen delivery target), electricity prices of 3.5 cents per kWh or less will be required if we

  2. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14T23:59:59.000Z

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  3. Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

  4. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  5. LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station

    E-Print Network [OSTI]

    Ohta, Shigemi

    Beamline CapabilitiesBeamline Capabilities Sector 12-ID. Poster updated March 2014. #12;LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station: * Energy range: 2.1 to 24 keV * Low divergence mode: * Energy range: 6.5 to 24 keV * Beam focus:

  6. Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop

    Broader source: Energy.gov [DOE]

    Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

  7. Gaseous Hydrogen Delivery Breakout

    E-Print Network [OSTI]

    Gaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 detection Pipeline Safety: odorants, flame visibility Compression: cost, reliability #12;Breakout Session goal of a realistic, multi-energy distribution network model Pipeline Technology Improved field

  8. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  9. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  10. Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen

    E-Print Network [OSTI]

    Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  11. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  12. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01T23:59:59.000Z

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  13. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  14. Anti-Hydrogen Jonny Martinez

    E-Print Network [OSTI]

    Budker, Dmitry

    Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

  15. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24T23:59:59.000Z

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  16. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  17. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  18. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    SciTech Connect (OSTI)

    Petitpas, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benard, P [Universite du Quebec a Trois-Rivieres (Canada); Klebanoff, L E [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, J [Universite du Quebec a Trois-Rivieres (Canada); Aceves, S M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01T23:59:59.000Z

    While conventional low-pressure LH? dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H? density and dormancy. We start by reviewing some basic aspects of LH? properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H?, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H? capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  19. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    SciTech Connect (OSTI)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy; Engel, Richard A.

    2011-09-15T23:59:59.000Z

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  20. 7.1.1. Fernbahnhof / Rail Station

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Fernbahnhofs 7.1.1.4.5 Kälteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

  1. Technical data HMS 760 X -36 stations

    E-Print Network [OSTI]

    Shoubridge, Eric

    water/rinse stations - 2 dry stations / or 2 pressure controlled DI stations - 60 slides per basket - 1. - Simultaneous multiple program execution for several programs. - Carriers for up to 2 slide baskets with 30 downwards ventilation flow and active charcoal filter. - Permanent program memory for more than 50 different

  2. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  3. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  4. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01T23:59:59.000Z

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  5. High Pressure Hydrogen Materials Compatibility of Piezoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

  6. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  7. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  8. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31T23:59:59.000Z

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  9. Dubuque generation station, Dubuque, Iowa

    SciTech Connect (OSTI)

    Peltier, R.

    2008-10-15T23:59:59.000Z

    Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

  10. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You|DidYouKnowStation Hanford

  11. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22T23:59:59.000Z

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  12. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01T23:59:59.000Z

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  13. Department of Energy - Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

  14. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  15. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15T23:59:59.000Z

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  16. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16T23:59:59.000Z

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  17. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  18. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  19. DOE Hydrogen Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 emissions & energy consumption International Partnership for the Hydrogen Economy Norway An IPHE Vision: "... consumers will have the practical option of purchasing a...

  20. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  1. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  2. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  3. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31T23:59:59.000Z

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  4. Hydrogen Energy Technology Geoff Dutton

    E-Print Network [OSTI]

    Watson, Andrew

    Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems OverallHydrogen Energy Technology Geoff Dutton April 2002 Tyndall Centre for Climate Change Research Tyndall°Centre for Climate Change Research Working Paper 17 #12;Hydrogen Energy Technology Dr Geoff Dutton

  5. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29T23:59:59.000Z

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12T23:59:59.000Z

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  7. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  8. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28T23:59:59.000Z

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  9. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  10. Technical Analysis of Hydrogen Production: Evaluation of H2 Mini-Grids

    SciTech Connect (OSTI)

    Lasher, Stephen; Sinha, Jayanti

    2005-05-03T23:59:59.000Z

    We have assessed the transportation of hydrogen as a metal hydride slurry through pipelines over a short distance from a neighborhood hydrogen production facility to local points of use. The assessment was conducted in the context of a hydrogen "mini-grid" serving both vehicle fueling and stationary fuel cell power systems for local building heat and power. The concept was compared to a compressed gaseous hydrogen mini-grid option and to a stand-alone hydrogen fueling station. Based on our analysis results we have concluded that the metal hydride slurry concept has potential to provide significant reductions in overall energy use compared to liquid or chemical hydride delivery, but only modest reductions in overall energy use, hydrogen cost, and GHG emissions compared to a compressed gaseous hydrogen delivery. However, given the inherent (and perceived) safety and reasonable cost/efficiency of the metal hydride slurry systems, additional research and analysis is warranted. The concept could potentially overcome the public acceptance barrier associated with the perceptions about hydrogen delivery (including liquid hydrogen tanker trucks and high-pressure gaseous hydrogen pipelines or tube trailers) and facilitate the development of a near-term hydrogen infrastructure.

  11. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  12. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03T23:59:59.000Z

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  13. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  14. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  15. The Bumpy Road to Hydrogen

    E-Print Network [OSTI]

    Sperling, Dan; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    It appears to us that hydrogen is a highly promising option06—16 The Bumpy Road to Hydrogen Daniel Sperling Joan OgdenThe Bumpy Road to Hydrogen 1 Daniel Sperling and Joan Ogden

  16. Hydrogen Delivery- Current Technology

    Broader source: Energy.gov [DOE]

    Hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube trailers, or by rail or barge. Read on to learn more about current hydrogen delivery and storage technologies.

  17. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  18. August 2006 Hydrogen Program

    E-Print Network [OSTI]

    after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating's primary transportation fuel from petroleum, which is increasingly imported, to hydrogen, which can the energy, environmental and economic benefits of a hydrogen economy. The goals and milestones

  19. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  20. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  1. Performance Evaluation and Analysis Consortium End Station |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highlighting the "bucket" algorithm from UIUC. Credit: Leonid Oliker, Lawrence Berkeley National Laboratory Performance Evaluation and Analysis Consortium End Station PI Name:...

  2. Computational Optimization of Gas Compressor Stations: MINLP ...

    E-Print Network [OSTI]

    Daniel Rose

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper ...

  3. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  4. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  5. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  6. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  9. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  10. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItĆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  11. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  12. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  13. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  14. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  15. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  16. CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN

    E-Print Network [OSTI]

    -constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel

  17. Joint Meeting on Hydrogen Delivery Modeling and Analysis, May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up to 2 truck deliveries per day realizing this may be a stretch. 4. Refueling site compressors: how many and what reliability? Follow-up: Change to 3 @ 50% especially considering...

  18. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01T23:59:59.000Z

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  19. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect (OSTI)

    Tolley, George S

    2010-06-29T23:59:59.000Z

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  20. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  1. NREL's Hydrogen Program

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.

  2. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01T23:59:59.000Z

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  3. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  4. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  5. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  6. Webinar: Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

  7. Hydrogen Production & Delivery Sara Dillich

    E-Print Network [OSTI]

    ). 15% solar-to-chemical energy efficiency by microalgae Biomass Gasification Hydrogen Production Cost

  8. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  9. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  10. Hydrogen | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    biomass, landfill gas, bio-oil or biodiesel. CHP systems that use natural gas, wood pellets, hydrogen, propane or heating oil are also eligible.* March 28, 2014 Net Metering The...

  11. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  12. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01T23:59:59.000Z

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  13. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  14. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01T23:59:59.000Z

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  15. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  16. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01T23:59:59.000Z

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  17. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24T23:59:59.000Z

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  18. Air pollution study of Laredo Customs Station

    E-Print Network [OSTI]

    Welling, Vidyadhar Yeshwant

    1972-01-01T23:59:59.000Z

    to the General Services Admin1stration for improv1ng the air quality at the Laredo Customs Station. The study includes investigation conducted on the site at the Station and at the Environmental Wind Tunnel Facilities located on the main campus of Texas A... the accuracy of the scaled model with that of the actual station a complete survey of veloc1ty, pressure, temperature and video tape recordings were taken in Laredo. These results were then compared with those simulated in the wind tunnel. Good correlation...

  19. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    SciTech Connect (OSTI)

    Budnitz, R.J. [Future Resources Associates, Inc., Berkeley, CA (United States); Davis, P.R. [PRD Consulting (United States); Ravindra, M.K.; Tong, W.H. [EQE International, Inc., Irvine, CA (United States)

    1994-08-01T23:59:59.000Z

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.

  20. air station north: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality monitoring station. Application to Physics Websites Summary: considered in the area of representativeness of differs from the station measurement by more than the given...

  1. Solution Methods for the Periodic Petrol Station Replenishment ...

    E-Print Network [OSTI]

    chefi

    2013-03-11T23:59:59.000Z

    The problem of planning petrol delivery to the distribution stations is well recognized in the Operations Research literature under the name of Petrol Station ...

  2. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  3. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14T23:59:59.000Z

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  4. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATIONCann Please use the following citation for this report: Klein, Joel. 2009. Comparative Costs of California............................................................................................................................1 Changes in the Cost of Generation Model

  5. CASE CRITICAL The Navajo Generating Station

    E-Print Network [OSTI]

    Hall, Sharon J.

    Republic The Navajo Generating Station, the largest coal-fired power plant in the West, provides electrical-old plant, Arizona's largest single source of carbon pollution, needs to update its pollution controls. Join

  6. The College Station Residential Energy Compliance Code

    E-Print Network [OSTI]

    Claridge, D. E.; Schrock, D.

    1988-01-01T23:59:59.000Z

    The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

  7. Repowering of the Midland Nuclear Station 

    E-Print Network [OSTI]

    Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

    1988-01-01T23:59:59.000Z

    The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility...

  8. CHARGING STATION FOR ELECTRIC VEHICLES GREEN PARKING

    E-Print Network [OSTI]

    Vellend, Mark

    CHARGING STATION FOR ELECTRIC VEHICLES P 3 P 3 P 6 GREEN PARKING UNIVERSITÉ DE SHERBROOKE YELLOW (CAR-POOLING) PERMITS HOSPITAL PARKING PARKING-PERMIT DISPENSERS RESERVED DISABLED PARKING PLACES ONE

  9. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10T23:59:59.000Z

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  10. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  11. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  12. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01T23:59:59.000Z

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  13. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen...

  14. Hydrogen Production & Delivery | Department of Energy

    Energy Savers [EERE]

    Hydrogen Production & Delivery Hydrogen Production & Delivery "2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2...

  15. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  16. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18T23:59:59.000Z

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  17. The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

    E-Print Network [OSTI]

    The JET Hydrogen-Oxygen Recombination Sensor – A Safety Device for Hydrogen Isotope Processing Systems

  18. Reactions of Methylene Hydrogen

    E-Print Network [OSTI]

    Griffin, E. L.

    1912-05-15T23:59:59.000Z

    was orystallized out as a yellow solid from aloohol and then from ethyl aostate. Melting point 170°C Analysis: Calculated for C17H14O2U s - 10.10$ Found I = 10.00$ SUMMARY 0 It was found that the methods given in the literature for the preparation... following* 1. Metallic sodium replaces either one, or both of the hydrogens, the latter being given off as a free gas. 2. Sodium hydroxide replaces the hydrogen by the metal, with a splitting off of water. 3. Sodium ethylate reacts, giving the metal 3...

  19. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01T23:59:59.000Z

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  20. Hawaii hydrogen power park Hawaii Hydrogen Power Park

    E-Print Network [OSTI]

    energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V Vent AC Power Reformer Low Pressure H2 Storage Propane Hydrogen Optional Reformer System Optional Wind. Low pressure hydrogen storage utilizing propane tanks. High pressure storage using lightweight