National Library of Energy BETA

Sample records for hydrogen production facility

  1. Hydrogen Production and Dispensing Facility Opens at W. Va. Airport |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Production and Dispensing Facility Opens at W. Va. Airport Hydrogen Production and Dispensing Facility Opens at W. Va. Airport August 19, 2009 - 1:00pm Addthis Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Washington, D.C. -- A

  2. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks. Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.

  3. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  4. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  5. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  6. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  7. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  8. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  9. Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

  10. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  11. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  12. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis Hydrogen Production: Electrolysis Electrolysis is a promising option for hydrogen production from renewable resources. Electrolysis is the process of using electricity to split water into hydrogen and oxygen. This reaction takes place in a unit called an electrolyzer. Electrolyzers can range in size from small, appliance-size equipment that is well-suited for small-scale distributed hydrogen production to large-scale, central production facilities that could be tied directly to

  13. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  14. Central Versus Distributed Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production » Central Versus Distributed Hydrogen Production Central Versus Distributed Hydrogen Production Central, semi-central, and distributed production facilities are expected to play a role in the evolution and long-term use of hydrogen as an energy carrier. The different resources and processes used to produce hydrogen may be suitable to one or more of these scales of production. Distributed Production Hydrogen can be produced in small units where it is needed, such as vehicle

  15. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  16. Photoelectrochemical hydrogen production

    SciTech Connect (OSTI)

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  17. Toda Cathode Materials Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Production Facility Toda Cathode Materials Production Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2013_p.pdf (1.45 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities

  18. Photovoltaic hydrogen production

    SciTech Connect (OSTI)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  19. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  20. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  1. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toda Material/Component Production Facilities Toda Material/Component Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt017_han_2010_p.pdf (2.09 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  2. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  3. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Energy Savers [EERE]

    Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen ...

  4. Efficient hydrogen production made easy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient hydrogen production made easy Efficient hydrogen production made easy Understanding how to use a simple, room-temperature treatment to drastically change the properties of materials could lead to a revolution in renewable fuels production and electronic applications. June 13, 2016 New research from Los Alamos National Laboratory researchers, "Efficient Hydrogen Evolution in Transition Metal Dichalcogenides via a Simple One-Step Hydrazine Reaction," not only presents one of

  5. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was

  6. Waste/By-Product Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen

  7. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2012_p.pdf (1.52 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Cathode Materials Production Facility Toda Material/Component Production Facilities

  8. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt017_es_han_2011_p.pdf (1.08 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  9. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H.; Kim, Eung S.; Sherman, Steven R.

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  10. Hydrogen Production Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. Hydrogen Production (1.69 MB) More Documents & Publications Hydrogen Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap H2 Educate Student Guide

  11. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  12. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  13. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Renewable Hydrogen Production from Biological Systems 2013 Biological Hydrogen Production Workshop Summary Report Proceedings of the 2001 U.S. DOE ...

  14. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Renewable Hydrogen Production from Biological Systems Anthropogenic CO2 as a Feedstock for ...

  15. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar Potential Strategies for Integrating Solar Hydrogen Production and ...

  16. Hydrogen Production Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  17. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  18. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  19. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  20. Negative hydrogen ion production mechanisms

    SciTech Connect (OSTI)

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  1. Hydrogen Production Infrastructure Options Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on hydrogen pathway cost distributions presented January 25, 2006. wkshp_storage_uihlein.pdf (189.04 KB) More Documents & Publications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Natural Gas Imports and Exports First Quarter Report 2016 Pathway and Resource Overview Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios | Department of Energy

    This document reports the

  2. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  3. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2 Electrolytic Hydrogen Production Potential Impacts - Electric System * Reliability * Capacity * Regulation * Generation Resources * On/Off Peak * Dispatchability Renewables Integration System Operations Electric Load Hydrogen Production * Ramp Control * Reserves * Plant Cycling 3 Unique Opportunities - Electric  Increased

  4. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production (2.61 MB) More Documents & Publications Technoeconomic Boundary Analysis of Biological

  5. Hydrogen production: Overview of technology options

    SciTech Connect (OSTI)

    None, None

    2009-01-15

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  6. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency ...

  7. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  8. Hydrogen Production Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Related Links Hydrogen Production Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen production activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Production Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and

  9. Photoelectrochemical Hydrogen Production

    SciTech Connect (OSTI)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  10. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  11. Hydrogen Storage and Production Project

    SciTech Connect (OSTI)

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  12. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    potential of Hydrogen Production Cost Estimate Using Biomass Gasification The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via ...

  13. Hydrogenases and Barriers for Biotechnological Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_peters.pdf (1.3 MB) More Documents & Publications Renewable Hydrogen Production from

  14. Webinar: Photosynthesis for Hydrogen and Fuels Production

    Broader source: Energy.gov [DOE]

    Slides presented at the Fuel Cell Technologies Office webinar "Photosynthesis for Hydrogen and Fuels Production" on January 24, 2011.

  15. Biological Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production Workshop Biological Hydrogen Production Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24-25, 2013, in Golden, Colorado. The workshop featured 29 participants representing academia, government, and national laboratories with expertise in the relevant fields. The objective of the Biological Hydrogen Production Workshop was to share information and identify

  16. Nanolipoprotein Particles for Hydrogen Production - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanolipoprotein Particles for Hydrogen Production Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary Lawrence Livermore National Laboratory has developed a method using nanolipoprotein particles (NLP) to solubilize and isolate membrane bound hydrogenases for the biological production of hydrogen. Hydrogen is a renewable energy carrier that has the

  17. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  18. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Selection and Investment Priority | Department of Energy Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial

  19. Hydrogen Production: Fundamentals and Case Study Summaries (Presentation)

    SciTech Connect (OSTI)

    Harrison, K.; Remick, R.; Hoskin, A.; Martin, G.

    2010-05-19

    This presentation summarizes hydrogen production fundamentals and case studies, including hydrogen to wind case studies.

  20. Distributed Hydrogen Production from Natural Gas: Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production from Natural Gas: IndependentReview Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent review report on the ...

  1. Hydrogen Production: Photobiological | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photobiological Hydrogen Production: Photobiological Photo of a woman examining a flask containing green liquid while working in a laboratory. The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen. This is a longer-term technology pathway in the early stages of research that has a long-term potential for sustainable hydrogen production with low environmental impact. How Does it Work? In photolytic biological

  2. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Workshop Electrolytic Hydrogen Production Workshop The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office (FCTO) held the Electrolytic Hydrogen Production Workshop on February 27-28, 2014, at The National Renewable Energy Laboratory (NREL) in Golden, Colorado, to discuss and share information on the research, development, and demonstration (RD&D) needs for enabling low-cost, effective hydrogen

  3. Hydrogen Production Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways Hydrogen Production Pathways Hydrogen Production Pathways DOE is focused on developing technologies that can produce hydrogen at a target of less than $4/kg (delivered and dispensed). To reach these goals, the program looks at a wide portfolio of processes over a range of time frames and production scales. Currently, most hydrogen in the United States is produced by large-scale natural gas reforming. This established technology has been shown to be able to reach the cost targets in the

  4. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  5. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production Processes Hydrogen can be produced using a number of different processes. Thermochemical processes use heat and chemical reactions to release hydrogen from organic materials such as fossil fuels and biomass. Water (H2O) can be split into hydrogen (H2) and oxygen (O2) using electrolysis or solar energy. Microorganisms such as bacteria and algae can produce hydrogen through biological processes. Thermochemical Processes Some thermal processes use the energy in various

  6. System for thermochemical hydrogen production

    DOE Patents [OSTI]

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  7. NREL: Hydrogen and Fuel Cells Research - Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Photo of person at work in laboratory setting. NREL researcher evaluates catalyst activity at the Electrochemical Characterization Laboratory. Photo by Dennis Schroeder, NREL NREL conducts hydrogen and fuel cell R&D at a variety of research facilities at our main 327-acre campus in Golden, Colorado, as well as the National Wind Technology Center near Boulder, Colorado. Industry, government, and university partners benefit from access to our state-of-the-art facilities and

  8. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  9. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  10. Webinar: Hydrogen Production by Polymer Electrolyte Membrane...

    Broader source: Energy.gov (indexed) [DOE]

    Above is the video recording for the webinar, "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton," originally held on May 23, ...

  11. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  12. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and identifies the critical path challenges to the commercial potential of each cycle. PDF icon Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical ...

  13. Autofermentative Biological Hydrogen Production by Cyanobacteria

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioSolarH 2 Autofermentative biological hydrogen production by cyanobacteria G.C. Dismukes Rutgers University Waksman Institute and Department of Chemistry & Chemical Biology ...

  14. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Randy Petri, Versa Power Systems PDF icon Renewables and Grid Integration, Kevin Harrison, NREL PDF icon Electrolytic Hydrogen Production: Potential Impacts to Utilities, ...

  15. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  16. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    SciTech Connect (OSTI)

    James, Brian D.; Baum, George N.; Perez, Julie; Baum, Kevin N.

    2009-12-01

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  17. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for...

  18. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  19. Autofermentative Biological Hydrogen Production by Cyanobacteria

    Broader source: Energy.gov [DOE]

    Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  20. Hydrogen Production: Photoelectrochemical Water Splitting

    Broader source: Energy.gov [DOE]

    In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials, which use light energy to directly dissociate water molecules into hydrogen and oxygen.

  1. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  2. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Gasification Hydrogen Production: Coal Gasification The U.S. Department of Energy (DOE) Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage. DOE anticipates that coal gasification for hydrogen production with carbon capture, utilization, and storage could be deployed in the mid-term time frame. How Does It Work? Chemically, coal is a complex and highly

  3. Redirection of metabolism for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and

  4. Hydrogen Production by Water Biophotolysis

    SciTech Connect (OSTI)

    Ghirardi, Maria L.; King, Paul W.; Mulder, David W.; Eckert, Carrie; Dubini, Alexandra; Maness, Pin-Ching; Yu, Jianping

    2014-01-22

    The use of microalgae for production of hydrogen gas from water photolysis has been studied for many years, but its commercialization is still limited by multiple challenges. Most of the barriers to commercialization are attributed to the existence of biological regulatory mechanisms that, under anaerobic conditions, quench the absorbed light energy, down-regulate linear electron transfer, inactivate the H2-producing enzyme, and compete for electrons with the hydrogenase. Consequently, the conversion efficiency of absorbed photons into H2 is significantly lower than its estimated potential of 12–13 %. However, extensive research continues towards addressing these barriers by either trying to understand and circumvent intracellular regulatory mechanisms at the enzyme and metabolic level or by developing biological systems that achieve prolonged H2 production albeit under lower than 12–13 % solar conversion efficiency. This chapter describes the metabolic pathways involved in biological H2 photoproduction from water photolysis, the attributes of the two hydrogenases, [FeFe] and [NiFe], that catalyze biological H2 production, and highlights research related to addressing the barriers described above. These highlights include: (a) recent advances in improving our understanding of the O2 inactivation mechanism in different classes of hydrogenases; (b) progress made in preventing competitive pathways from diverting electrons from H2 photoproduction; and (c) new developments in bypassing the non-dissipated proton gradient from down-regulating photosynthetic electron transfer. As an example of a major success story, we mention the generation of truncated-antenna mutants in Chlamydomonas and Synechocystis that address the inherent low-light saturation of photosynthesis. In addition, we highlight the rationale and progress towards coupling biological hydrogenases to non-biological, photochemical charge-separation as a means to bypass the barriers of photobiological

  5. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record 12024 (448.95 KB) More Documents & Publications Distributed Hydrogen ...

  6. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  7. Air Products Hydrogen Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems (423.04 KB) More Documents & Publications QTR Ex Parte Communications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Hydrogen Fuel for Material Handling

  8. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  9. Production of hydrogen from alcohols

    DOE Patents [OSTI]

    Deluga, Gregg A.; Schmidt, Lanny D.

    2007-08-14

    A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

  10. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  11. DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ

  12. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  13. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Hydrogen From Starch Using in vitro Pentose Phosphate Pathway or Acetate Microbial Fuel Cells Zhang et al., 2007 PLoSOne Prospecting for New Enzymes and Organisms H 2 production in ...

  14. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  15. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATIN...

    Office of Scientific and Technical Information (OSTI)

    CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY Citation Details In-Document Search Title: CO-PRODUCTION OF HYDROGEN ...

  16. DOE Technical Targets for Hydrogen Production from Thermochemical...

    Office of Environmental Management (EM)

    DOE Technical Targets for Hydrogen Production from Thermochemical Water Splitting These ... that achieve the targets for hydrogen production from thermochemical water splitting. ...

  17. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Energy Savers [EERE]

    20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies June 16, 2014 - ...

  18. DOE Technical Targets for Hydrogen Production from Microbial...

    Office of Environmental Management (EM)

    DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from ...

  19. DOE Technical Targets for Hydrogen Production from Photoelectrochemica...

    Broader source: Energy.gov (indexed) [DOE]

    More information about targets can be found in the Hydrogen Production section of the Fuel ... Photoelectrode Systems Technical Targets: Photoelectrochemical Hydrogen Production: ...

  20. Co-production of Hydrogen and Electricity (A Developer's Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-production of Hydrogen and Electricity (A Developer's Perspective) Co-production of Hydrogen and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel ...

  1. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion ...

  2. Hydrogen Production and Purification from Coal and Other Heavy...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - ... Title: Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - ...

  3. Hydrogen and Biogas Production using Microbial Electrolysis Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Biogas Production using Microbial Electrolysis Cells Hydrogen and Biogas Production using Microbial Electrolysis Cells Breakout Session 2-C: Biogas and Beyond: ...

  4. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  5. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. ...

  6. High Pressure Ethanol Reforming for Distributed Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the ...

  7. Hydrogen Production by Polymer Electrolyte Membrane (PEM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis-Spotlight on Giner and Proton | Department of Energy by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton" held on May 23, 2011. Water Electrolysis

  8. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion. Because growing biomass removes carbon dioxide from the atmosphere, the net carbon emissions of this method can be low, especially if coupled with carbon capture, utilization, and

  9. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production Final Report December 2009 Prepared by: Brian D. James George N. Baum Julie Perez Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 (703) 243-3383 DOE Contract Number: GS-10F-009J DOE Technical Monitor: David Peterson Deliverable Task 5.1: Draft Project Final Report Technoeconomic Analysis for Photoelectrochemical Hydrogen Production 2 Acknowledgements The authors of this report

  10. DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The ...

  11. Hydrogen production using ammonia borane

    DOE Patents [OSTI]

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  12. 2013 Biological Hydrogen Production Workshop Summary Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen Production Workshop. bio_h2_workshop_final_report.pdf (1.55 MB) More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Renewable Hydrogen Production from Biological Systems

  13. Hydrolysis reactor for hydrogen production

    DOE Patents [OSTI]

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  14. World-Class Test Facility Increases Efficiency of Solar Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of ...

  15. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places

  16. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  17. Low-cost process for hydrogen production

    SciTech Connect (OSTI)

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  18. Hydrogen Production: Overview of Technology Options, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  19. Photoelectrochemical Hydrogen Production - Final Report

    SciTech Connect (OSTI)

    Miller, E.L.; Marsen, B.; Paluselli, D.; Rocheleau, R.

    2004-11-17

    The scope of this photoelectrochemical hydrogen research project is defined by multijunction photoelectrode concepts for solar-powered water splitting, with the goal of efficient, stable, and economic operation. From an initial selection of several planar photoelectrode designs, the Hybrid Photoelectrode (HPE) has been identified as the most promising candidate technology. This photoelectrode consists of a photoelectrochemical (PEC) junction and a solid-state photovoltaic (PV) junction. Immersed in aqueous electrolyte and exposed to sunlight, these two junctions provide the necessary voltage to split water into hydrogen and oxygen gas. The efficiency of the conversion process is determined by the performance of the PEC- and the PV-junctions and on their spectral match. Based on their stability and cost effectiveness, iron oxide (Fe2O3) and tungsten oxide (WO3) films have been studied and developed as candidate semiconductor materials for the PEC junction (photoanode). High-temperature synthesis methods, as reported for some high-performance metal oxides, have been found incompatible with multijunction device fabrication. A low-temperature reactive sputtering process has been developed instead. In the parameter space investigated so far, the optoelectronic properties of WO3 films were superior to those of Fe2O3 films, which showed high recombination of photo-generated carriers. For the PV-junction, amorphous-silicon-based multijunction devices have been studied. Tandem junctions were preferred over triple junctions for better stability and spectral matching with the PEC junction. Based on a tandem a-SiGe/a-SiGe device and a tungsten trioxide film, a prototype hybrid photoelectrode has been demonstrated at 0.7% solar-to-hydrogen (STH) conversion efficiency. The PEC junction performance has been identified as the most critical element for higher-efficiency devices. Research into sputter-deposited tungsten trioxide films has yielded samples with higher photocurrents of

  20. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  1. Hydrogen (H2) Production by Oxygenic Phototrophs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygenic Phototrophs Hydrogen (H2) Production by Oxygenic Phototrophs Presentation by Eric Hegg, Michigan State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bio_h2_workshop_hegg.pdf (1.07 MB) More Documents & Publications Renewable Hydrogen Production from Biological Systems Autofermentative Biological Hydrogen Production by Cyanobacteria 2013 Biological Hydrogen Production Workshop

  2. US DRIVE Hydrogen Production Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap The mission of the Hydrogen Production Technical Team (HPTT) is to enable the development of hydrogen production technologies, using clean, domestic resources, which will allow for an as-produced, delivered, and dispensed cost of $2 to $4 per gasoline gallon equivalent (gge) of hydrogen. hptt_roadmap_june2013.pdf (2.62 MB) More Documents & Publications Hydrogen Production Technical Team Roadmap Bio-Derived

  3. DOE Technical Targets for Photobiological Hydrogen Production | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Photobiological Hydrogen Production DOE Technical Targets for Photobiological Hydrogen Production These tables list the U.S. Department of Energy (DOE) technical targets for photobiological hydrogen production. The tables are organized into separate sections for photolytic biological and photosynthetic bacterial hydrogen production systems. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research,

  4. Method for the enzymatic production of hydrogen

    DOE Patents [OSTI]

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  5. Method for the enzymatic production of hydrogen

    DOE Patents [OSTI]

    Woodward, Jonathan; Mattingly, Susan M.

    1999-01-01

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

  6. The plutonium-hydrogen reaction: SEM characterization of product...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The plutonium-hydrogen reaction: SEM characterization of product morphology Citation Details In-Document Search Title: The plutonium-hydrogen reaction: SEM ...

  7. DOE Technical Targets for Hydrogen Production from Biomass-Derived...

    Office of Environmental Management (EM)

    for Hydrogen Production from Biomass-Derived Liquid Reforming These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen ...

  8. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation ...

  9. Method for the continuous production of hydrogen

    DOE Patents [OSTI]

    Getty, John Paul; Orr, Mark T.; Woodward, Jonathan

    2002-01-01

    The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of .ltoreq.80.degree. C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

  10. Hydrogen Production Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Team Roadmap Hydrogen Production Technical Team Roadmap The mission of the Hydrogen Production Technical Team (HPTT) is to enable the development of hydrogen production technologies, using clean, domestic resources, which will allow for an as-produced, delivered, and dispensed cost of $2 to $4 per gasoline gallon equivalent (gge) of hydrogen. hptt_roadmap_june2013.pdf (2.62 MB) More Documents & Publications US DRIVE Hydrogen Production Technical Team Roadmap Bio-Derived Liquids to

  11. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil

  12. Thermoelectrochemical hydrogen production using sodium chloride

    SciTech Connect (OSTI)

    El-Bassuoni, A.M.A.; Sheffield, J.W.; Veziroglu, T.N.

    1981-01-01

    Three closed-cycle processes for the thermoelectrochemical production of hydrogen from water using sodium chloride are under investigation. The maximum required temperature of 700/degree/C can be achieved by solar energy using various concentration techniques. By means of photovoltaic cells or a solar power station, the required electric power can be obtained. 11 refs.

  13. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  14. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect (OSTI)

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  15. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment for Hydrogen Production Hydrogen Production Potential from Fossil and Renewable Energy Resources M. Melaina, M. Penev, and D. Heimiller National Renewable Energy Laboratory Technical Report NREL/TP-5400-55626 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  16. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  17. Thermochemical hydrogen production based on magnetic fusion

    SciTech Connect (OSTI)

    Krikorian, O.H.; Brown, L.C.

    1982-06-10

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

  18. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  19. A Photosynthetic Hydrogel for Catalytic Hydrogen Production | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production

  20. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    SciTech Connect (OSTI)

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  1. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Energy Savers [EERE]

    cell electric vehicles and other fuel cell technologies. The six hydrogen production R&D projects selected ... novel hybrid system for low-cost, low greenhouse gas hydrogen production. ...

  2. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  3. Startech Hydrogen Production Final Technical Report

    SciTech Connect (OSTI)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  4. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added Product Report ...

  5. Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  6. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support ...

  7. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to

  8. Summary of Electrolytic Hydrogen Production: Milestone Completion Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of Electrolytic Hydrogen Production: Milestone Completion Report Summary of Electrolytic Hydrogen Production: Milestone Completion Report This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003. 36734.pdf (719.5 KB) More Documents & Publications Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water

  9. Hydrogen Production Roadmap. Technology Pathways to the Future, January 2009

    SciTech Connect (OSTI)

    Curry-Nkansah, Maria; Driscoll, Daniel; Farmer, Richard; Garland, Roxanne; Gruber, Jill; Gupta, Nikunj; Hershkowitz, Frank; Holladay, Jamelyn; Nguyen, Kevin; Schlasner, Steven; Steward, Darlene; Penev, Michael

    2009-01-01

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  10. Maximizing Light Utilization Efficiency and Hydrogen Production in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report | Department of Energy Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report UCB will minimize, or truncate, the chlorophyll antenna size in green algae to maximize photobiological solar conversion

  11. Updated Cost Analysis of Photobiological Hydrogen Production from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chlamydomonas reinhardtii Green Algae: Milestone Completion Report | Department of Energy Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. 35593.pdf

  12. Hydrogen Production Forwards and Backwards | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Hydrogen Production Forwards and Backwards Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.12 Hydrogen Production Forwards and

  13. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  14. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  15. Development of efficient photoreactors for solar hydrogen production

    SciTech Connect (OSTI)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim

    2011-01-15

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  16. Energy Department Invests $20 Million to Advance Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Technologies | Department of Energy 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies June 16, 2014 - 1:21pm Addthis The Energy Department today announced $20 million for ten new research and development projects that will advance hydrogen production and delivery technologies. Developing technologies that can economically produce and deliver hydrogen to power fuel cells

  17. Energy Department Invests $20 Million to Advance Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Technologies | Department of Energy $20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies June 16, 2014 - 12:47pm Addthis The Energy Department today announced $20 million for 10 new research and development projects that will advance hydrogen production and delivery technologies. Developing technologies that can economically produce and deliver hydrogen to power fuel cells

  18. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record # 12024 (448.95 KB) More Documents & Publications Distributed

  19. DOE Technical Targets for Hydrogen Production from Microbial Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion | Department of Energy Microbial Biomass Conversion DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from microbial biomass conversion. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Dark Fermentative Hydrogen

  20. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  1. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  2. Hydrogen Production in the U.S. and Worldwide - 2013

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2015-04-01

    This article describes the different categories of hydrogen production (captive, by-product, and merchant) and presents production data for 2013 by industry within these categories. Merchant production data is provided for the top-four industrial gas companies.

  3. Hydrogen Production via a Commerically Ready Inorganic membrane Reactor

    SciTech Connect (OSTI)

    Paul Liu

    2007-06-30

    supported on our commercial ceramic membrane for large-scale applications, such as coal-based power generation/hydrogen production, was also continued. A significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during the first production trial. In addition, we have verified the functional performance and material stability of this hydrogen selective CMS membrane with a hydrocracker purge gas stream at a refinery pilot testing facility. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The excellent stability of our hydrogen selective CMS membrane opens the door for its use in WGS-MR with a significantly reduced requirement of the feedstock pretreatment.

  4. 2014 Electrolytic Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kevin Harrison inspects a hydrogen-producing electrolyzer system. Photographer: Greg Martin. Photo courtesy of NREL. (NREL 23852-C) Shell's Santa Monica Blvd. hydrogen fueling ...

  5. H2A Hydrogen Production Analysis Tool (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production Analysis Tool For BILIWG and PURIWG Preliminary Cost Analyses Darlene Steward, NREL H2A Overview * Discounted cash flow analysis tool for production of hydrogen from various feedstocks - Inputs are; * Capital costs * Operating costs * Financial parameters - Outputs are cost of hydrogen ($/kg) and yearly breakdown of costs and revenue H2A Hydrogen Analysis Tool - Structure * Excel spreadsheet based * Spreadsheet tabs for: - Information about the process - Feedstock prices and

  6. High Pressure Ethanol Reforming for Distributed Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_ahmed_anl.pdf (638.37 KB) More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen

  7. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Program Document: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  8. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  9. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1-September 30, 2012 Citation Details In-Document Search Title: ARM Climate Research Facility ...

  10. Production Facility System Reliability Analysis Report

    SciTech Connect (OSTI)

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  11. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect (OSTI)

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  12. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  13. Deadline Extended for RFI on Biological Hydrogen Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Biological Hydrogen Production Deadline Extended for RFI on Biological Hydrogen Production February 26, 2014 - 12:00am Addthis DOE has extended the submission deadline for this Request for Information. Responses must be submitted by 5:00 p.m. Eastern Time on March 14, 2014. The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological hydrogen production research

  14. Co-production of Hydrogen and Electricity (A Developer's Perspective) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Co-production of Hydrogen and Electricity (A Developer's Perspective) Co-production of Hydrogen and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel Cell (DFC) Technology Status, Hydrogen Co-production Technology, Benefits and Status, Strategic Input tspi_patel.pdf (3.35 MB) More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels DFC Technology Status Fuel Cells and Renewable Portfolio Standards

  15. DOE Technical Targets for Hydrogen Production from Biomass Gasification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biomass Gasification DOE Technical Targets for Hydrogen Production from Biomass Gasification These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from biomass gasification. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Biomass Gasification/Pyrolysis

  16. DOE Technical Targets for Hydrogen Production from Electrolysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electrolysis DOE Technical Targets for Hydrogen Production from Electrolysis These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from water electrolysis. The tables are organized into separate sections for distributed electrolysis and central electrolysis. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research,

  17. DOE Technical Targets for Hydrogen Production from Thermochemical Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Splitting | Department of Energy from Thermochemical Water Splitting DOE Technical Targets for Hydrogen Production from Thermochemical Water Splitting These tables list the U.S. Department of Energy (DOE) technical targets and example cost and performance parameter values that achieve the targets for hydrogen production from thermochemical water splitting. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year

  18. Toda Material/Component Production Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review June 7-9, 2010 Washington D.C. Jun Nakano, David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017 Esarravt017_han_2010_p_final This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview Li-ion Cathode Materials Production Facility Timelines Start: February, 2010 Finish: December, 2013 1 st Line Schedule: Feb., 2011 Completion: ~10% Challenges Compressed schedule - first line production within 1 year

  19. Technical Analysis of Hydrogen Production: Evaluation of H2 Mini-Grids

    SciTech Connect (OSTI)

    Lasher, Stephen; Sinha, Jayanti

    2005-05-03

    We have assessed the transportation of hydrogen as a metal hydride slurry through pipelines over a short distance from a neighborhood hydrogen production facility to local points of use. The assessment was conducted in the context of a hydrogen "mini-grid" serving both vehicle fueling and stationary fuel cell power systems for local building heat and power. The concept was compared to a compressed gaseous hydrogen mini-grid option and to a stand-alone hydrogen fueling station. Based on our analysis results we have concluded that the metal hydride slurry concept has potential to provide significant reductions in overall energy use compared to liquid or chemical hydride delivery, but only modest reductions in overall energy use, hydrogen cost, and GHG emissions compared to a compressed gaseous hydrogen delivery. However, given the inherent (and perceived) safety and reasonable cost/efficiency of the metal hydride slurry systems, additional research and analysis is warranted. The concept could potentially overcome the public acceptance barrier associated with the perceptions about hydrogen delivery (including liquid hydrogen tanker trucks and high-pressure gaseous hydrogen pipelines or tube trailers) and facilitate the development of a near-term hydrogen infrastructure.

  20. D.C. Hydrogen Fuel Station Demonstration Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. Hydrogen Fuel Station Demonstration Facility D.C. Hydrogen Fuel Station Demonstration Facility Addthis Description Below is the text version for the "D.C. Hydrogen Fuel Station Demonstration Facility" video. Text Version The video opens with six men at a ribbon-cutting ceremony. The crowd counts down 3-2-1. The men cut the ribbons, and everyone cheers. Text appears: Energy.gov presents In Partnership with the National Park Service, The Office of Energy Efficiency and Renewable

  1. Fermentation and Electrohydrogenic Approaches to Hydrogen Production (Presentation)

    SciTech Connect (OSTI)

    Maness, P. C.; Thammannagowda, S.; Magnusson, L.; Logan, B.

    2010-06-01

    This work describes the development of a waste biomass fermentation process using cellulose-degrading bacteria for hydrogen production. This process is then integrated with an electrohydrogenesis process via the development of a microbial electrolysis cell reactor, during which fermentation waste effluent is further converted to hydrogen to increase the total output of hydrogen from biomass.

  2. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  3. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  4. Solar Thermochemical Hydrogen Production Research (STCH)

    SciTech Connect (OSTI)

    Perret, Robert

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  5. MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

    2007-01-10

    This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

  6. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  7. DOE Issues Request for Information on Biological Hydrogen Production

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office has issued a request for information seeking feedback from interested stakeholders regarding biological hydrogen production research and development.

  8. Hydrogen production by water dissociation using ceramic membranes...

    Office of Scientific and Technical Information (OSTI)

    by water dissociation using ceramic membranes - annual report for FY 2008. Citation Details In-Document Search Title: Hydrogen production by water dissociation using ceramic ...

  9. Hydrogen production by water dissociation using mixed conducting...

    Office of Scientific and Technical Information (OSTI)

    by water dissociation using mixed conducting dense ceramic membranes. Citation Details In-Document Search Title: Hydrogen production by water dissociation using mixed conducting dense ...

  10. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  11. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and ...

  12. Hydrogen production from fossil and renewable sources using an...

    Office of Scientific and Technical Information (OSTI)

    from fossil and renewable sources using an oxygen transport membrane. Citation Details In-Document Search Title: Hydrogen production from fossil and renewable sources using an ...

  13. Oxygen permeation and coal-gas-assisted hydrogen production using...

    Office of Scientific and Technical Information (OSTI)

    Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes Citation Details In-Document Search Title: Oxygen permeation and coal-gas-assisted ...

  14. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details ... OSTI Identifier: 879832 Report Number(s): US 6755021 US patent application 10246064 DOE ...

  15. Techno-economic Analysis of PEM Electrolysis for Hydrogen Production

    Broader source: Energy.gov (indexed) [DOE]

    PEM Electrolysis for Hydrogen Production Strategic ... delivery of H 2 fuel for fuel cell vehicles (FCVs). * Identify ... Case * New materials and systems with increased H 2 ...

  16. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  17. Hydrogen Production Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen is an energy carrier, not an energy source-it stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds. Diverse and Domestic ...

  18. NREL Photoelectrode Research Advances Hydrogen Production Efforts

    SciTech Connect (OSTI)

    Gu, Jing

    2015-12-01

    Scientists have created a high-performing photoelectrode that boosts the ability of solar water-splitting to produce hydrogen.

  19. Suite of Photo-electrochemical Technologies for Hydrogen Production -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Suite of Photo-electrochemical Technologies for Hydrogen Production National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The primary fuel powering new fuel cell technologies is hydrogen. The market for fuel cells is expected

  20. Renewable Hydrogen Production at Hickam Air Force Base | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy at Hickam Air Force Base Renewable Hydrogen Production at Hickam Air Force Base Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_quinn.pdf (920.39 KB) More Documents & Publications Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Hawaii

  1. Ceramic Membranes for Hydrogen/Oxygen Production - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Startup America Startup America Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Ceramic Membranes for Hydrogen/Oxygen Production Ceramic Membranes Developed at Argonne May Bring Fuel-Cell Cars Closer to Reality Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary In the long term, hydrogen is expected to be the fuel of choice for both the

  2. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  3. Hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  4. Production of negative hydrogen ions on metal grids

    SciTech Connect (OSTI)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  5. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011. infocallfeb11_lipman.pdf (0 B) More Documents & Publications Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Financing Fuel Cells The Department of Energy Hydrogen and Fuel Cells

  6. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How

  7. NREL Research Advances Hydrogen Production Efforts - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Research Advances Hydrogen Production Efforts December 21, 2015 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen. NREL's scientists took a different approach to the PEC process, which uses solar energy to split water into hydrogen and oxygen. The process requires special semiconductors, the PEC materials and catalysts to split the water. Previous work used precious metals

  8. Waste/By-Product Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste/By-Product Hydrogen Waste/By-Product Hydrogen Presentation by Ruth Cox, Fuel Cell and Hydrogen Energy Association, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011 waste_cox.pdf (1.15 MB) More Documents & Publications Biogas Technologies and Integration with Fuel Cells Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Biogas and Fuel Cells

  9. Livermore team awarded for hydrogen production research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) team awarded for hydrogen production research Thursday, August 28, 2014 - 1:19pm Three Lawrence Livermore researchers have received the Department of Energy's 2014 Hydrogen Production R&D Award for their research in producing hydrogen photoelectrochemically - by splitting water using sunlight. Shared with collaborators from the National Renewable Energy Laboratory (NREL) and the University of Nevada, Las Vegas (UNLV), the award recognizes the team for its

  10. Metallic Membrane Materials Development for Hydrogen Production from Coal

    Office of Scientific and Technical Information (OSTI)

    Derived Syngas (Conference) | SciTech Connect Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the

  11. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect (OSTI)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  12. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  13. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    SciTech Connect (OSTI)

    Melis, Anastasios

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  14. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  15. Process for the thermochemical production of hydrogen

    DOE Patents [OSTI]

    Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  16. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOE Patents [OSTI]

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  17. Structured material for the production of hydrogen

    DOE Patents [OSTI]

    Flickinger, Michael C.; Harwood, Caroline S.; Rey, Federico

    2010-06-29

    The present invention provides composite biological devices that include biological material as an integral component thereof. The devices can be used for producing hydrogen gas, for example.

  18. Fermentative Approaches to Hydrogen Production (Presentation)

    SciTech Connect (OSTI)

    Maness, P. C.; Czernik, S.; Smolinski, S.

    2005-05-01

    A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 23-26, 2005, in Washington, D.C.

  19. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect (OSTI)

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  20. Process for the production of hydrogen peroxide

    DOE Patents [OSTI]

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  1. Process for the production of hydrogen peroxide

    DOE Patents [OSTI]

    Datta, Rathin (Chicago, IL); Randhava, Sarabjit S. (Evanston, IL); Tsai, Shih-Perng (Naperville, IL)

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  2. Hydrogen production by the decomposition of water

    DOE Patents [OSTI]

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  3. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect (OSTI)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and

  5. Hydrogen production with coal using a pulverization device

    DOE Patents [OSTI]

    Paulson, Leland E.

    1989-01-01

    A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

  6. Process for the production of hydrogen from water

    DOE Patents [OSTI]

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  7. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis-Spotlight on Giner and Proton | Department of Energy Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Above is the video recording for the webinar, "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton," originally held on May 23, 2011. In addition to this recording, you

  8. 2014 Electrolytic Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Photos from top to bottom) A vehicle refueling at an electrolysis-based fueling station. Photo courtesy of Proton OnSite. A vehicle refuels at an ITM Power mobile refueler. Photo courtesy of ITM Power. Dr. Kevin Harrison inspects a hydrogen-producing electrolyzer system. Photographer: Greg Martin. Photo courtesy of NREL. (NREL 23852-C) Shell's Santa Monica Blvd. hydrogen fueling station in west Los Angeles. Photographer: Keith Wipke. Photo courtesy of NREL. (NREL 17321) Vehicles at an

  9. 2013 Biological Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Photos from top to bottom) Cultures of green algae producing hydrogen from water and light. Photo courtesy of National Renewable Energy Laboratory (NREL). (NREL 14579) A model of the small subunit of a hydrogenase enzyme, showing the metal clusters as colored balls and the protein structure as green ribbons. The amino acids in red indicate substitutions that improved hydrogen evolution rates. Photo courtesy of Philip D. Weyman, J. Craig Venter Institute Bacteria break down biomass to produce

  10. Electrolytic production and dispensing of hydrogen

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  11. Hydrogen Production via a Commercially Ready Inorganic membrane Reactor

    SciTech Connect (OSTI)

    Paul K.T. Liu

    2005-08-23

    Single stage low-temperature-shift water-gas-shift (WGS-LTS) via a membrane reactor (MR) process was studied through both mathematical simulation and experimental verification in this quarter. Our proposed MR yields a reactor size that is 10 to >55% smaller than the comparable conventional reactor for a CO conversion of 80 to 90%. In addition, the CO contaminant level in the hydrogen produced via MR ranges from 1,000 to 4,000 ppm vs 40,000 to >70,000 ppm via the conventional reactor. The advantages of the reduced WGS reactor size and the reduced CO contaminant level provide an excellent opportunity for intensification of the hydrogen production process by the proposed MR. To prepare for the field test planned in Yr III, a significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during this first production trial. In addition, an innovative full-scale membrane module has been designed, which can potentially deliver >20 to 30 m{sup 2}/module making it suitable for large-scale applications, such as power generation. Finally, we have verified our membrane performance and stability in a refinery pilot testing facility on a hydrocracker purge gas. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The high stability of these membranes opens the door for the use of our membrane in the WGS environment with significantly reduced pretreatment burden.

  12. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  13. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  14. Carbonate thermochemical cycle for the production of hydrogen

    DOE Patents [OSTI]

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis Jr., Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  15. Hydrogen Production and Consumption in the U.S.: The Last 25...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Production and Consumption in the U.S.: The Last 25 Years. Brown, Daryl R. hydrogen; production; U.S.; merchant; captive hydrogen; production; U.S.; merchant; captive This...

  16. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  17. Microbial control of hydrogen sulfide production

    SciTech Connect (OSTI)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J.

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  18. Hydrogen Production and Purification from Coal and Other Heavy...

    Office of Scientific and Technical Information (OSTI)

    1.4 - Development of a National Center for Hydrogen Technology You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of ...

  19. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

  20. Hydrogen and Biogas Production using Microbial Electrolysis Cells

    Broader source: Energy.gov [DOE]

    Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Hydrogen and Biogas Production using Microbial Electrolysis Cells Bruce Logan, Kappe Professor of Environmental Engineering and Evan Pugh Professor, Pennsylvania State University

  1. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria

    Broader source: Energy.gov [DOE]

    Presentation by Jake McKinlay, Indiana University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  2. Low-Cost Co-Production of Hydrogen and Electricity

    SciTech Connect (OSTI)

    Mitlitsky, Fred; Mulhauser, Sara; McElroy, Jim

    2010-09-28

    A study to further the efforts of low-cost co-production of hydrogen and electricity through the use of a distributed approach on a planar solid oxide fuel cell platform.

  3. Photo-induced hydrogen production in a helical peptide incorporating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo-induced hydrogen production in a helical peptide incorporating a FeFe hydrogenase active site mimic Authors: Roy, A., Madden, C., and Ghirlanda, G. Title: Photo-induced...

  4. Potential for Hydrogen Production from Key Renewable Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  5. Vacancy Announcements Posted for Hydrogen Production and Delivery Program

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office has posted two vacancy announcements for a position to serve as Program Manager for the Hydrogen Production and Delivery Program in the DOE EERE Fuel Cell Technologies Office. The closing date is October 28, 2014.

  6. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water ...

  7. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 ...

  8. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect (OSTI)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  9. Hydrogen Production Roadmap: Technology Pathways to the Future

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FreedomCAR and Fuel Partnership Hydrogen Production Technical Team This roadmap was created by the Hydrogen Production Technical Team (HPTT) of the FreedomCAR and Fuel Partnership. This is a partnership of industry's U.S. Council for Automotive Research (USCAR), energy companies and the U.S. Department of Energy (DOE) to advance technologies that enable reduced oil consumption and increased energy efficiency in passenger vehicles. The Partnership focuses on the pre-competitive, high-risk

  10. Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Authors: Jones, A.K., McIntosh, C.L., Dutta, A., Kwan, P., Roy, S., Yang, S. Title: Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Source: In: Enzymatic fuel cells: From fundamentals to applications. Edited by H. Luckarift, G. Johnson and P. Attanasov, Wiley-VCH, Weinheim, Germany Year: 2013 Volume: in press Pages: ABSTRACT: Date of online publication: Link online: http://solarfuel.clas.asu.edu