National Library of Energy BETA

Sample records for hydrogen production costs

  1. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost models assume a natural gas cost of $5/MMBtu (HHV). Praxair has, in Phases I and II of this program, shown that significant improvements in cost, plant layout, system integration and overall system optimization are achievable. Phase III of the program, submitted in January 2007, was to focus on demonstrating both the technical feasibility and economic viability of the design developed in Phases I and II through a full-scale prototype design, construction, installation, analysis and operation at a hydrogen fueling station. Due to funding limitations, Phase III of the program was not approved by the DOE.

  2. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  3. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  4. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. PDF icon DOE Hydrogen and Fuel Cells Program Record # 12024 More Documents & Publications Distributed Hydrogen

  5. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for ... PDF icon Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for ...

  6. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  7. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  8. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Broader source: Energy.gov [DOE]

    This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

  9. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect (OSTI)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  10. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis ...

  11. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 ...

  12. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  13. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  14. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

    SciTech Connect (OSTI)

    none,

    2009-09-01

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  15. Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

    Broader source: Energy.gov [DOE]

    This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

  16. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    SciTech Connect (OSTI)

    Ramsden, T.; Steward, D.; Zuboy, J.

    2009-09-01

    Analysis of the levelized cost of producing hydrogen via different pathways using the National Renewable Energy Laboratory's H2A Hydrogen Production Model, Version 2.

  17. DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery | Department of Energy 2 Requests for Information on Low-Cost Hydrogen Production and Delivery DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery October 29, 2014 - 12:29pm Addthis The U.S. Department of Energy's Fuel Cell Technologies Office has issued two requests for information (RFIs) seeking feedback from the research community and relevant stakeholders about hydrogen production and hydrogen delivery research, development, and demonstration

  18. Low-Cost Production of Hydrogen and Electricity | Department...

    Broader source: Energy.gov (indexed) [DOE]

    producing hydrogen and electricity. The Fuel Cell Technologies Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional ...

  19. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect (OSTI)

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption and significant GHG emissions (in the absence of carbon caps, taxes or sequestration); (5) Nuclear pathway is most favorable from energy use and GHG emissions perspective; (6) GH2 Truck and Pipeline delivery have much lower energy use and GHG emissions than LH2 Truck delivery; and (7) For LH2 Truck delivery, the liquefier accounts for most of the energy and GHG emissions.

  20. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  1. Costs of Storing and Transporting Hydrogen

    Broader source: Energy.gov [DOE]

    An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen.

  2. EERE Success Story-Low-Cost Production of Hydrogen and Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low-Cost Production of Hydrogen and Electricity EERE Success Story-Low-Cost Production of Hydrogen and Electricity April 10, 2013 - 12:00am Addthis At an airport in Anchorage, Alaska, EERE provided funds to Bloom Energy in completing a one-year demonstration of two 25-kilowatt fuel cells-providing valuable, real-world data in one of the harshest environments on earth. Each fuel cell showed an impressive peak electrical efficiency of more than 50%. The high operating

  3. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  4. Hydrogen Pathways. Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, Mark; Laffen, Melissa; Timbario, Thomas A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  5. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, M.; Laffen, M.; Timbario, T. A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  6. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Fuel Cell Technologies Publication and Product Library (EERE)

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  7. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: Energy.gov [DOE]

    Report of levelized cost in 2005 US dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  8. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  9. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    267 September 2009 Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 T. Ramsden and D. Steward National Renewable Energy Laboratory J. Zuboy Independent Contractor National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for

  10. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    This report updates the 1999 economic analysis of NREL’s photobiological hydrogen production from Chlamydomonas reinhardtii.

  11. Energy Department Announces up to $4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources

    Broader source: Energy.gov [DOE]

    In support of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced up to$4 million in new funding to address critical challenges and barriers for low-cost, low-carbon hydrogen production.

  12. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  13. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  14. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  15. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  16. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    SciTech Connect (OSTI)

    Amos, W. A.

    2004-01-01

    This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

  17. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A10-60528 March 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  18. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  19. Hydrogen Production Technical Team Roadmap

    Broader source: Energy.gov [DOE]

    The mission of the Hydrogen Production Technical Team (HPTT) is to enable the development of hydrogen production technologies, using clean, domestic resources, which will allow for an as-produced, delivered, and dispensed cost of $2 to $4 per gasoline gallon equivalent (gge) of hydrogen.

  20. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Photoelectrochemical (PEC) Hydrogen can be produced directly from water using sunlight and a special class of semiconductor materials. These highly specialized semiconductors ...

  1. Hydrogen Production: Photobiological

    Broader source: Energy.gov [DOE]

    The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen.

  2. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd ......... 4 3.2 Wind Farm ......

  3. Hydrogen Pathway Cost Distributions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway Cost Distributions Hydrogen Pathway Cost Distributions Presentation on hydrogen pathway cost distributions presented January 25, 2006. PDF icon wkshpstorageuihlein.pdf...

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  5. Hydrogen Analysis (H2A) Production Component Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    determine the hydrogen selling cost given a specified after-tax internal rate of return. ... Production model evaluates cost of hydrogen production from any primary energy source for ...

  6. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Broader source: Energy.gov [DOE]

    Presentation by C.E. (Sandy) Thomas at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  7. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  8. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    SciTech Connect (OSTI)

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to ?-Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  9. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... cost of maintenance, tires, repairs, insurance, registration, taxes, and fees, the ... FreedomCar & Fuel Partnership * Industrial gas companies, energy companies, automobile ...

  10. EERE Success Story-Low-Cost Production of Hydrogen and Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower temperature fuel cells, which a have a peak electrical efficiency closer to 40% when operating on natural gas. In addition, a small-scale electrochemical hydrogen pump was ...

  11. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record ...

  12. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Broader source: Energy.gov [DOE]

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  13. Liquid Hydrogen Production and Delivery from a Dedicated Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production and Delivery from a Dedicated Wind Power Plant Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant This May 2012 study assesses the costs ...

  14. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  15. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  16. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    SciTech Connect (OSTI)

    James, Brian D.; Baum, George N.; Perez, Julie; Baum, Kevin N.

    2009-12-01

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  17. Cutting Biofuel Production Costs | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cutting Biofuel Production Costs Working to use sunlight to convert biomass to biofuels, ... bioderived alcohols to benzaldehyde, toluene, and the zero-emission biofuel hydrogen. ...

  18. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  19. Hydrogen Production Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways Hydrogen Production Pathways Hydrogen Production Pathways DOE is focused on developing technologies that can produce hydrogen at a target of less than $4/kg (delivered and dispensed). To reach these goals, the program looks at a wide portfolio of processes over a range of time frames and production scales. Currently, most hydrogen in the United States is produced by large-scale natural gas reforming. This established technology has been shown to be able to reach the cost targets in the

  20. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Workshop Electrolytic Hydrogen Production Workshop The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office (FCTO) held the Electrolytic Hydrogen Production Workshop on February 27-28, 2014, at The National Renewable Energy Laboratory (NREL) in Golden, Colorado, to discuss and share information on the research, development, and demonstration (RD&D) needs for enabling low-cost, effective hydrogen

  1. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  2. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  3. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Hydrogen Pathways: ...

  4. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional feedback on the worksop received via a request for information issued in ...

  5. Cost Analysis of Hydrogen Storage Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Cost Analysis of Hydrogen Storage Systems Presentation by Stephen Lasher on cost analysis of hydrogen storage systems. PDF icon wkshpstoragelasher.pdf ...

  6. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  7. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  8. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    SciTech Connect (OSTI)

    Saur, G.

    2008-12-01

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

  9. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a “bottom-up” costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  10. Wind Electrolysis - Hydrogen Cost Optimization (Presentation)

    SciTech Connect (OSTI)

    Saur, G.

    2011-02-01

    This presentation is about the Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task and the examination of a grid-tied, co-located wind electrolysis hydrogen production facility.

  11. US DRIVE Hydrogen Production Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap The mission of the Hydrogen Production Technical Team (HPTT) is to enable the development of hydrogen production technologies, using clean, domestic resources, which will allow for an as-produced, delivered, and dispensed cost of $2 to $4 per gasoline gallon equivalent (gge) of hydrogen. PDF icon hptt_roadmap_june2013.pdf More Documents & Publications Hydrogen Production Technical Team Roadmap Bio-Derived

  12. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  13. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    SciTech Connect (OSTI)

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  14. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  15. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  16. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  17. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive ...

  18. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download ...

  19. 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report ...

  20. Cryo-Compressed Hydrogen Storage: Performance and Cost Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage: Performance and Cost Review Cryo-Compressed Hydrogen Storage: Performance and Cost Review Presented at the R&D Strategies for Compressed, ...

  1. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculation | Department of Energy DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$), which represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost per mile basis with the competing vehicles (gasoline in

  2. Hydrogen Production Basics

    Broader source: Energy.gov [DOE]

    Hydrogen is an energy carrier, not an energy source—it stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds.

  3. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  4. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2...

  5. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    SciTech Connect (OSTI)

    B. Lanning; J. Arps

    2004-10-01

    To overcome the issue of pinhole (defect) formation in membrane films over large areas, a process was developed and implemented for producing 6-12 {micro}m-thick, Pd-Cu alloy films on thermally oxidized silicon wafer substrates. The processing parameters on silicon are such that adhesion is poor and as-deposited Pd-Cu alloy films easily release from the oxidized silicon surface. Hydrogen permeation tests were conducted on 9 and 12 {micro}m-thick Pd-Cu alloy films and the hydrogen flux for 9 and 12 {micro}m-thick films were 16.8 and 8 cm{sup 3}(STP)/cm{sup 2} {center_dot} min respectively. The hydrogen permeability (corrected using data in McKinnley patent) of the 9 {micro}m-thick membrane is 7.4 {center_dot} 10{sup -5} cm{sup 3}(STP) {center_dot} cm/cm{sup 2} {center_dot} s {center_dot} cm Hg{sup 0.5} at 350 C and compares very well to permeability reported by McKinnley for a 62.5% Pd membrane; this permeability is {approx}56% of the value reported for a Pd-Cu alloy membrane with optimum 60% Pd composition. Using XRD, we confirmed the presence of a two-phase, {alpha}/{beta}, structure and that the composition of our membrane was slightly higher than the optimum composition. We are making adjustments to the compositions of the Pd-Cu alloy target in order to produce films next quarter that match the ideal Pd{sub 60}Cu{sub 40} composition.

  6. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  7. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    SciTech Connect (OSTI)

    K. Coulter

    2007-03-31

    In the past quarter, no technical work has been completed and a ''no cost'' time extension was requested and granted to allow IdaTech time to complete task 5 relating to the testing of prototype membrane modules. The scheduled completion date is now October 31, 2007.

  8. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    SciTech Connect (OSTI)

    K. Coulter

    2006-12-31

    In the past quarter, no technical work has been completed and two ''no cost'' time extensions have been requested and granted to allow Idatech time to complete Task 5 relating to the testing of prototype membrane modules. The scheduled completion date of April 7, 2007 has been confirmed by Idatech.

  9. Hydrogen Production: Natural Gas Reforming

    Broader source: Energy.gov [DOE]

    Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production.

  10. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    SciTech Connect (OSTI)

    B. Lanning; J. Arps

    2004-07-01

    In continuation of efforts from last quarter, processing parameters, used in the formation of Pd-Cu alloy films, were being optimized in a drum (web) coater system with the goal of producing large-area, contiguous, pinhole-free films for H{sub 2} separation membranes. Since the (pre-treatment) functionality of the surface of the plastic backing material is sub-optimal, they tended to produce films in the drum coater that were either not contiguous (disseminates upon release from the polymer backing material) or contain pinholes. Alternative approaches, such as direct deposition onto thermally oxidized silicon wafers, have been attempted to yield pinhole-free films; i.e., formation of a poorly adherent Pd-Cu film on silicon will then directly release from the silicon substrate. Permeation characteristics of a 25 {micro}m-thick, Pd{sub 60}Cu{sub 40} alloy foil were conducted. After pre-treating the sample to stabilize the FCC {beta}-phase, the hydrogen permeability was determined to be 5.4 x 10{sup -5} cm{sup 3} cmcm{sup -2}s{sup -1}cm Hg{sup -1/2}. Thin, 1-3 {micro}m-thick Pd-Cu alloy films have been prepared on PS films and samples will be prepared and tested in the next quarter.

  11. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    SciTech Connect (OSTI)

    J. Arps; K. Coulter

    2006-09-30

    In the past quarter, we have conducted additional characterization and permeation tests on different Pd alloy membranes including PdCuTa ternary alloy materials. We attempted to address some discrepancies between SwRI{reg_sign} and CSM relating to PdCu stoichiometry by preparing a range of PdCu membranes with compositions from {approx}58-65 at% Pd (bal. Cu). While some difficulties in cutting and sealing these thin membranes at CSM continue, some progress has been made in identifying improved membrane support materials. We have also completed an initial cost analysis for large-scale vacuum deposition and fabrication of thin Pd ally membranes and project that the process can meet DOE cost targets. Minimal progress was made in the past quarter relating to the testing of prototype membrane modules at Idatech. In the past quarter Idatech was acquired by a UK investment firm, which we believe may have impacted the ability of key technical personnel to devote sufficient time to support this effort. We are hopeful their work can be completed by the end of the calendar year.

  12. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSIIPSI...

  13. Nanolipoprotein Particles for Hydrogen Production - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Nanolipoprotein Particles for Hydrogen Production Lawrence Livermore National Laboratory Contact...

  14. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. PDF icon DOE Hydrogen and Fuel Cells Program Record # 14014 More Documents & Publications Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013

  15. Hydrogen Production Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. PDF icon Hydrogen Production More Documents & Publications Hydrogen Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap FTA - SunLine Transit Agency - Final Report

  16. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    SciTech Connect (OSTI)

    K. Coulter

    2008-03-31

    Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

  17. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment for Hydrogen Production Hydrogen Production Potential from Fossil and Renewable Energy Resources M. Melaina, M. Penev, and D. Heimiller National Renewable Energy Laboratory Technical Report NREL/TP-5400-55626 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  18. Hydrogen Production: Microbial Biomass Conversion

    Broader source: Energy.gov [DOE]

    Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used.

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  20. Photoelectrochemical Hydrogen Production

    SciTech Connect (OSTI)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (5% STH equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid photoelectrode was feasible. Specifically, we showed that WO{sub 3} paired with an a-Si tandem solar cell can generate short circuit photocurrent density of 2.5 mA/cm{sup 2}, equivalent to STH efficiency of 3.1%. Long-term durability tests demonstrated WO{sub 3} ability to split water over extended periods, for up to 600 hours at current density levels of 2.0-2.5 mA/cm{sup 2}. Efforts have been done to decrease WO{sub 3} bandgap using foreign elements incorporation. We did not manage to reduce the bandgap of WO{sub 3} with this method. However, more promising results have been achieved with bilayered systems, where only the top part of WO{sub 3} films was modified. Also, we have demonstrated that alloying WO{sub 3} with CuO can form 2.2eV bandgap CuWO{sub 4}. Incorporating conductive carbon nanotubes in CuWO{sub 4} reduced its intrinsic bulk resistance. Saturation photocurrent densities in the 0.4-0.5 mA/cm{sub 2} range were achieved. Recently, in collaboration with University of Texas at Arlington, we have identified new quaternary metal oxides with CuWO{sub 4} as primary material host. Our experimental work on ceramics confirmed the theoretical calculations that crowned bismuth as a possible candidate to improve CuWO{sub 4} water splitting efficiency.

  1. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint PDF icon 34851.pdf More Documents ...

  2. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016. PDF icon Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Slides More Documents &

  3. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: Fuel Cell Tech Team Review | Department of Energy Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications. PDF icon Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech

  4. 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report | Department of Energy Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Proceedings from the Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop held March 20-21, 2013, at Argonne National Laboratory. PDF icon 2013_csd_workshop_report.pdf More Documents & Publications Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop

  5. Webinar: Hydrogen Production by Polymer Electrolyte Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Above is the video recording for the webinar, "Hydrogen Production by ...

  6. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Barriers for Biotechnological Hydrogen Production Technologies Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held...

  7. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon bioh2workshopdismukes.pdf More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Renewable Hydrogen Production from Biological ...

  8. Hydrogen Production Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  9. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Broader source: Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  10. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  11. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect (OSTI)

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  12. DOE Technical Targets for Hydrogen Production from Biomass Gasification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biomass Gasification DOE Technical Targets for Hydrogen Production from Biomass Gasification These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from biomass gasification. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Biomass Gasification/Pyrolysis

  13. DOE Technical Targets for Hydrogen Production from Electrolysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electrolysis DOE Technical Targets for Hydrogen Production from Electrolysis These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from water electrolysis. The tables are organized into separate sections for distributed electrolysis and central electrolysis. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research,

  14. DOE Technical Targets for Hydrogen Production from Thermochemical Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Splitting | Department of Energy from Thermochemical Water Splitting DOE Technical Targets for Hydrogen Production from Thermochemical Water Splitting These tables list the U.S. Department of Energy (DOE) technical targets and example cost and performance parameter values that achieve the targets for hydrogen production from thermochemical water splitting. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year

  15. Negative hydrogen ion production mechanisms

    SciTech Connect (OSTI)

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  16. DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Note that the potential effects that low natural gas prices might have on electricity prices are not incorporated into these analyses. Figure 2. Hydrogen Levelized Cost Results for ...

  17. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Technical Report Wind-To-Hydrogen Project: NREL... H271.3730 National Renewable Energy Laboratory 1617 Cole ... hydrogen on a scale much greater than current production. ...

  18. Hydrogen production: Overview of technology options

    SciTech Connect (OSTI)

    None, None

    2009-01-15

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    SciTech Connect (OSTI)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  20. Hydrogen Production: Electrolysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Processes » Hydrogen Production: Electrolysis Hydrogen Production: Electrolysis Electrolysis is a promising option for hydrogen production from renewable resources. Electrolysis is the process of using electricity to split water into hydrogen and oxygen. This reaction takes place in a unit called an electrolyzer. Electrolyzers can range in size from small, appliance-size equipment that is well-suited for small-scale distributed hydrogen production to large-scale, central production

  1. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency ...

  2. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2013 summary report for the 2013 Biological Hydrogen Production Workshop. PDF icon bioh2workshopfinalreport.pdf More Documents & Publications The Hydrogen Program at ...

  3. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  4. Hydrogen Production Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Related Links Hydrogen Production Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen production activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Production Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and

  5. Autofermentative Biological Hydrogen Production by Cyanobacteria |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Autofermentative Biological Hydrogen Production by Cyanobacteria Autofermentative Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_dismukes.pdf More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Renewable Hydrogen

  6. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California ...

  7. Hydrogen Storage and Production Project

    SciTech Connect (OSTI)

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  8. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experts from industry and national laboratories representing polymer electrolyte membrane, ...SOEC Development Hydrogen Production by Polymer Electrolyte Membrane (PEM) ...

  9. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for

    Energy Savers [EERE]

    Electrical Energy Storage | Department of Energy Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy

  10. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via ...

  11. Hydrogen Production: Fundamentals and Case Study Summaries (Presentation)

    SciTech Connect (OSTI)

    Harrison, K.; Remick, R.; Hoskin, A.; Martin, G.

    2010-05-19

    This presentation summarizes hydrogen production fundamentals and case studies, including hydrogen to wind case studies.

  12. Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Compression, Storage, and Dispensing Cost Reduction Workshop Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop The U.S. Department of Energy's (DOE's) Argonne National Laboratory (ANL) held a Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop on March 20-21, 2013, in Argonne, Illinois. The workshop featured 36 participants representing industry, government, and national laboratories with expertise in the relevant fields. The

  13. System for thermochemical hydrogen production

    DOE Patents [OSTI]

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  14. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production Processes Hydrogen can be produced using a number of different processes. Thermochemical processes use heat and chemical reactions to release hydrogen from organic materials such as fossil fuels and biomass. Water (H2O) can be split into hydrogen (H2) and oxygen (O2) using electrolysis or solar energy. Microorganisms such as bacteria and algae can produce hydrogen through biological processes. Thermochemical Processes Some thermal processes use the energy in various

  15. DOE Technical Targets for Hydrogen Production from Photoelectrochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Splitting | Department of Energy from Photoelectrochemical Water Splitting DOE Technical Targets for Hydrogen Production from Photoelectrochemical Water Splitting These tables list the U.S. Department of Energy (DOE) technical targets and example cost and performance parameter values that achieve the targets for hydrogen production from photoelectrochemical water splitting. The tables are organized into separate sections for photoelectrode systems and dual bed photocatalyst systems.

  16. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    SciTech Connect (OSTI)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  17. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  18. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine; Dalton, Luke; Roemer, Andy; Carter, Blake; Niedzwiecki, Mike; Manco, Judith; Anderson, Everett; Capuano, Chris; Wang, Chao-Yang; Zhao, Wei

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  19. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  20. Photoelectrochemical Hydrogen Production - Final Report

    SciTech Connect (OSTI)

    Miller, E.L.; Marsen, B.; Paluselli, D.; Rocheleau, R.

    2004-11-17

    The scope of this photoelectrochemical hydrogen research project is defined by multijunction photoelectrode concepts for solar-powered water splitting, with the goal of efficient, stable, and economic operation. From an initial selection of several planar photoelectrode designs, the Hybrid Photoelectrode (HPE) has been identified as the most promising candidate technology. This photoelectrode consists of a photoelectrochemical (PEC) junction and a solid-state photovoltaic (PV) junction. Immersed in aqueous electrolyte and exposed to sunlight, these two junctions provide the necessary voltage to split water into hydrogen and oxygen gas. The efficiency of the conversion process is determined by the performance of the PEC- and the PV-junctions and on their spectral match. Based on their stability and cost effectiveness, iron oxide (Fe2O3) and tungsten oxide (WO3) films have been studied and developed as candidate semiconductor materials for the PEC junction (photoanode). High-temperature synthesis methods, as reported for some high-performance metal oxides, have been found incompatible with multijunction device fabrication. A low-temperature reactive sputtering process has been developed instead. In the parameter space investigated so far, the optoelectronic properties of WO3 films were superior to those of Fe2O3 films, which showed high recombination of photo-generated carriers. For the PV-junction, amorphous-silicon-based multijunction devices have been studied. Tandem junctions were preferred over triple junctions for better stability and spectral matching with the PEC junction. Based on a tandem a-SiGe/a-SiGe device and a tungsten trioxide film, a prototype hybrid photoelectrode has been demonstrated at 0.7% solar-to-hydrogen (STH) conversion efficiency. The PEC junction performance has been identified as the most critical element for higher-efficiency devices. Research into sputter-deposited tungsten trioxide films has yielded samples with higher photocurrents of up to 1.3 mA/cm2. An improved a-Si/aSi tandem device has been demonstrated that would provide a better voltage match to the recently improved WO3 films. For a hybrid photoelectrode based on these component devices the projected STH efficiency is 1.3%. For significant efficiency enhancements, metal oxide films with increased optical absorption, thus lower bandgap, are necessary. Initial experiments were successful in lowering the WO3 bandgap by nitrogen doping, from 3.0 eV to 2.1 eV. Optimizing the electronic properties of these compounds, or other reduced-bandgap materials such as Fe2O3, is the most immediate challenge. As the photocurrent levels of the PEC junction are improved, increasing attention will have to be paid to the matching PV junction.

  1. 2013 Biological Hydrogen Production Workshop Summary Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen Production Workshop. PDF icon bio_h2_workshop_final_report.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies Renewable Hydrogen Production from Biological Systems

  2. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and identifies the critical path challenges to the commercial potential of each cycle. PDF icon Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical ...

  3. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogenases and barriers for biotechnological hydrogen production technologies John W. Peters Department of Chemistry and Biochemistry Department of Microbiology Montana State...

  4. Renewable Hydrogen Production from Biomass Pyrolysis Aqueous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... via directed evolution (25 generations) - Demonstration of hydrogen production from bio-oil aqueous phase (boap) (5 LL-day) - Demonstrating conversion of phenolic ...

  5. Hydrogen (H2) Production by Oxygenic Phototrophs

    Broader source: Energy.gov [DOE]

    Presentation by Eric Hegg, Michigan State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  6. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis U.S. Department of Energy Fuel Cell Technologies Office January ...

  7. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for...

  8. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  9. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    SciTech Connect (OSTI)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  10. Redirection of metabolism for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and to hydrogen. Also R. palustris cells remain viable in a non-growing state for long periods of time.

  11. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Gasification Hydrogen Production: Coal Gasification The U.S. Department of Energy (DOE) Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage. DOE anticipates that coal gasification for hydrogen production with carbon capture, utilization, and storage could be deployed in the mid-term time frame. How Does It Work? Chemically, coal is a complex and highly

  12. Hydrogen Production by Water Biophotolysis

    SciTech Connect (OSTI)

    Ghirardi, Maria L.; King, Paul W.; Mulder, David W.; Eckert, Carrie; Dubini, Alexandra; Maness, Pin-Ching; Yu, Jianping

    2014-01-22

    The use of microalgae for production of hydrogen gas from water photolysis has been studied for many years, but its commercialization is still limited by multiple challenges. Most of the barriers to commercialization are attributed to the existence of biological regulatory mechanisms that, under anaerobic conditions, quench the absorbed light energy, down-regulate linear electron transfer, inactivate the H2-producing enzyme, and compete for electrons with the hydrogenase. Consequently, the conversion efficiency of absorbed photons into H2 is significantly lower than its estimated potential of 1213 %. However, extensive research continues towards addressing these barriers by either trying to understand and circumvent intracellular regulatory mechanisms at the enzyme and metabolic level or by developing biological systems that achieve prolonged H2 production albeit under lower than 1213 % solar conversion efficiency. This chapter describes the metabolic pathways involved in biological H2 photoproduction from water photolysis, the attributes of the two hydrogenases, [FeFe] and [NiFe], that catalyze biological H2 production, and highlights research related to addressing the barriers described above. These highlights include: (a) recent advances in improving our understanding of the O2 inactivation mechanism in different classes of hydrogenases; (b) progress made in preventing competitive pathways from diverting electrons from H2 photoproduction; and (c) new developments in bypassing the non-dissipated proton gradient from down-regulating photosynthetic electron transfer. As an example of a major success story, we mention the generation of truncated-antenna mutants in Chlamydomonas and Synechocystis that address the inherent low-light saturation of photosynthesis. In addition, we highlight the rationale and progress towards coupling biological hydrogenases to non-biological, photochemical charge-separation as a means to bypass the barriers of photobiological systems.

  13. Waste/By-Product Hydrogen

    Broader source: Energy.gov [DOE]

    Presentation by Ruth Cox, Fuel Cell and Hydrogen Energy Association, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

  14. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  15. Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs

    Broader source: Energy.gov [DOE]

    New aqueous phase reforming process uses liquid feedstocks to produce energy from hydrogen with reduced costs.

  16. Hydrogen Production: Photoelectrochemical Water Splitting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Photoelectrochemical Water Splitting Hydrogen Production: Photoelectrochemical Water Splitting In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials, which use light energy to directly dissociate water molecules into hydrogen and oxygen. This is a long-term technology pathway, with the potential for low or no greenhouse gas emissions. How Does it Work? The PEC water splitting

  17. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    Stephen Herring

    2010-01-08

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, lab

  18. Production of hydrogen from alcohols

    DOE Patents [OSTI]

    Deluga, Gregg A.; Schmidt, Lanny D.

    2007-08-14

    A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

  19. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  20. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  1. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  2. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  3. Central Versus Distributed Hydrogen Production | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central, semi-central, and distributed production facilities are expected to play a role in the evolution and long-term use of hydrogen as an energy carrier. The different ...

  4. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. ...

  5. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ... Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte ...

  6. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  7. Vacancy Announcements Posted for Hydrogen Production and Delivery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacancy Announcements Posted for Hydrogen Production and Delivery Program Vacancy Announcements Posted for Hydrogen Production and Delivery Program October 3, 2014 - 10:49am ...

  8. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATIN...

    Office of Scientific and Technical Information (OSTI)

    CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY Citation Details In-Document Search Title: CO-PRODUCTION OF HYDROGEN ...

  9. Hydrogen and Biogas Production using Microbial Electrolysis Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Biogas Production using Microbial Electrolysis Cells Hydrogen and Biogas Production using Microbial Electrolysis Cells Breakout Session 2-C: Biogas and Beyond: ...

  10. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion. Because growing biomass removes carbon dioxide from the atmosphere, the net carbon emissions of this method can be low, especially if coupled with carbon capture, utilization, and

  11. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  12. Hydrogen production using ammonia borane

    DOE Patents [OSTI]

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  13. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte ...

  14. Hydrolysis reactor for hydrogen production

    DOE Patents [OSTI]

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  15. DOE Technical Targets for Hydrogen Production from Biomass-Derived Liquid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Biomass-Derived Liquid Reforming DOE Technical Targets for Hydrogen Production from Biomass-Derived Liquid Reforming These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from biomass-derived liquid reforming. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan.

  16. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places

  17. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  19. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  20. Hydrogen Production: Overview of Technology Options, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  1. Development of efficient photoreactors for solar hydrogen production

    SciTech Connect (OSTI)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim

    2011-01-15

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  2. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  3. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  4. DOE Technical Targets for Photobiological Hydrogen Production | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Photobiological Hydrogen Production DOE Technical Targets for Photobiological Hydrogen Production These tables list the U.S. Department of Energy (DOE) technical targets for photobiological hydrogen production. The tables are organized into separate sections for photolytic biological and photosynthetic bacterial hydrogen production systems. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research,

  5. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy ...

  6. Method for the enzymatic production of hydrogen

    DOE Patents [OSTI]

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  7. Method for the enzymatic production of hydrogen

    DOE Patents [OSTI]

    Woodward, Jonathan; Mattingly, Susan M.

    1999-01-01

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

  8. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at from data collection, document reviews, interviews and deliberation from ... and approaches that better reflect the current technology and business environments. ...

  9. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  10. Cheaper catalyst may lower fuel costs for hydrogen-powered cars...

    National Nuclear Security Administration (NNSA)

    Cheaper catalyst may lower fuel costs for hydrogen-powered cars | National Nuclear ... Home NNSA Blog Cheaper catalyst may lower fuel costs for ... Cheaper catalyst may ...

  11. The plutonium-hydrogen reaction: SEM characterization of product...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The plutonium-hydrogen reaction: SEM characterization of product morphology Citation Details In-Document Search Title: The plutonium-hydrogen reaction: SEM ...

  12. Renewable Hydrogen Production at Hickam Air Force Base | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Hickam Air Force Base Renewable Hydrogen Production at Hickam Air Force Base Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon ...

  13. Method of Production of Pure Hydrogen Near Room Temperature From...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Method of Production of Pure...

  14. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities. Process analysis of several leading routes to AB (Purdue's formate-based metathesis route and PNNL's NH{sub 4}BH{sub 4}-based route) indicated the cost to produce first-fill AB to be on the order of $9-10/kg AB, assuming a NaBH{sub 4} cost of $5/kg for a 10,000 metric tons/year sized AB plant. The analysis showed that the dominant cost component for producing first-fill AB is the cost of the NaBH4 raw material. At this AB cost and assuming 2.5 moles hydrogen released per mole of AB, it may be possible to meet DOE's 2010 storage system cost target, but the 2015 target will likely require lower cost AB and demonstrates the importance of having a low-cost route to NaBH{sub 4}. Substantial progress has also been made to define feasible pathways for the regeneration of spent ammonia borane fuel.

  15. Method for the continuous production of hydrogen

    DOE Patents [OSTI]

    Getty, John Paul; Orr, Mark T.; Woodward, Jonathan

    2002-01-01

    The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of .ltoreq.80.degree. C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

  16. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  17. Thermoelectrochemical hydrogen production using sodium chloride

    SciTech Connect (OSTI)

    El-Bassuoni, A.M.A.; Sheffield, J.W.; Veziroglu, T.N.

    1981-01-01

    Three closed-cycle processes for the thermoelectrochemical production of hydrogen from water using sodium chloride are under investigation. The maximum required temperature of 700/degree/C can be achieved by solar energy using various concentration techniques. By means of photovoltaic cells or a solar power station, the required electric power can be obtained. 11 refs.

  18. DOE Science Showcase - Hydrogen Production | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org More information Making molecular hydrogen more efficiently Breaking Up (Hydrogen) No Longer As Hard To Do Hydrogen and Our Energy Future Fuel Cell Animation Hydrogen & Fuel Cells Increase your Hydrogen IQ Visit the Science Showcase homepage. Last updated on Monday 29 July

  19. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NRELFS-5600-48437 * Revised December 2010 Hydrogen electrical energy storage and dispatch scenario Electricity Hydrogen Storage Electrolyzer Fuel Cell Electricity Hydrogen Storage ...

  20. Development of Low Cost Sensors for Hydrogen Safety Applications

    SciTech Connect (OSTI)

    Hoffheins, B.S.; Holmes, W., Jr.; Lauf, R.J.; Maxey, L.C.; Salter, C.; Walker, D.

    1999-04-07

    We are developing rugged and reliable hydrogen safety sensors that can be easily manufactured. Potential applications also require an inexpensive sensor that can be easily deployed. Automotive applications demand low cost, while personnel safety applications emphasize light-weight, battery-operated, and wearable sensors. Our current efforts involve developing and optimizing sensor materials for stability and compatibility with typical thick-film manufacturing processes. We are also tailoring the sensor design and size along with various packaging and communication schemes for optimal acceptance by end users.

  1. Hydrogen Production and Purification from Coal and Other Heavy Feedstocks

    Office of Scientific and Technical Information (OSTI)

    Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology Air Products and

  2. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect (OSTI)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.

  3. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect (OSTI)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  4. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines A ...

  5. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines You ...

  6. A Photosynthetic Hydrogel for Catalytic Hydrogen Production | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production

  7. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  8. Startech Hydrogen Production Final Technical Report

    SciTech Connect (OSTI)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  9. Impact of Hydrogen Production on U.S. Energy Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Evaluate impacts on U.S. energy markets including price and consumption changes for coal, natural gas, ... * IEA cost data from "Prospects for Hydrogen and Fuel Cells" * ...

  10. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Wiretough Cylinders LLC of Bristol, Virginia will receive 2 million to demonstrate a low cost high pressure hydrogen storage vessel using a steel wire overwrap. Find additional ...

  11. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  12. Webinar: Photosynthesis for Hydrogen and Fuels Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Photosynthesis for Hydrogen and Fuels Production Webinar: Photosynthesis for Hydrogen and Fuels Production Presentation slides, webinar Q&A, and speaker biography from the Fuel Cell Technologies Office webinar "Photosynthesis for Hydrogen and Fuels Production" held on January 24, 2011. PDF icon Photosynthesis for Hydrogen and Fuels Production Webinar Slides PDF icon Webinar Q&A PDF icon Professional Biography for Tasios Melis More Documents & Publications

  13. Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  14. Hydrogen Production Roadmap. Technology Pathways to the Future, January 2009

    SciTech Connect (OSTI)

    Curry-Nkansah, Maria; Driscoll, Daniel; Farmer, Richard; Garland, Roxanne; Gruber, Jill; Gupta, Nikunj; Hershkowitz, Frank; Holladay, Jamelyn; Nguyen, Kevin; Schlasner, Steven; Steward, Darlene; Penev, Michael

    2009-01-01

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  15. Hydrogen Production and Purification from Coal and Other Heavy Feedstocks

    Office of Scientific and Technical Information (OSTI)

    Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology × You are accessing a

  16. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  17. Lifecycle Cost and GHG Implications of a Hydrogen Energy Storage Scenario (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.

    2010-05-01

    Overview of life cycle cost and green house gas implications of a hydrogen energy storage scenario presented at the National Hydrogen Association Conference & Expo, Long Beach, CA, May 3-6, 2010

  18. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    McGraw, Jennifer

    2013-05-28

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  19. EERE Success Story—Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs

    Broader source: Energy.gov [DOE]

    New aqueous phase reforming process uses liquid feedstocks to produce energy from hydrogen with reduced costs.

  20. The plutonium-hydrogen reaction: SEM characterization of product...

    Office of Scientific and Technical Information (OSTI)

    of product morphology Citation Details In-Document Search Title: The plutonium-hydrogen reaction: SEM characterization of product morphology Authors: Dinh, L N ; ...

  1. DOE Technical Targets for Hydrogen Production from Microbial Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion | Department of Energy Microbial Biomass Conversion DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from microbial biomass conversion. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Dark Fermentative Hydrogen

  2. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  3. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Technology available for licensing: Two alternative strategies for detecting impurities in the hydrogen used in fuel cells. Both yield highly accurate results and use simpler, less costly equipment. Facilitates the analysis of trace impurities in high-pressure hydrogen streams Replaces costly analytical equipment with inexpensive, easy-to-operate, portable sensor devices PDF icon impurity_detection

  4. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  5. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  6. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  7. Hydrogen Production in the U.S. and Worldwide - 2013

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2015-04-01

    This article describes the different categories of hydrogen production (captive, by-product, and merchant) and presents production data for 2013 by industry within these categories. Merchant production data is provided for the top-four industrial gas companies.

  8. High Performance Home Cost Performance Trade-Offs: Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders - ...

  9. Low-Cost Ventilation in Production Housing - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple ...

  10. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  11. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements around 530 C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  12. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2005-07-01

    Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the ninth quarter of work performed under this agreement. The design of the vessel for pressure testing has been completed. The design will be finalized and purchased in the next quarter.

  13. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect (OSTI)

    Feng, Zhili; Zhang, Wei; Wang, Jy-An John; Ren, Fei

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

  15. EERE Success Story-Element One Reduces Cost of Hydrogen Leak Detection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Element One Reduces Cost of Hydrogen Leak Detection Systems EERE Success Story-Element One Reduces Cost of Hydrogen Leak Detection Systems August 25, 2014 - 1:47pm Addthis Element One, Inc. of Boulder, Colorado, has patented unique hydrogen leak detection materials that form the basis for a wide array of very low-cost hydrogen detection systems. Applied as a thin film, or incorporated into paints and inks, the materials change color and conductivity to alert

  16. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect (OSTI)

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

  17. Hydrogen and Biogas Production using Microbial Electrolysis Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Biogas Production using Microbial Electrolysis Cells Hydrogen and Biogas Production using Microbial Electrolysis Cells Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Hydrogen and Biogas Production using Microbial Electrolysis Cells Bruce Logan, Kappe Professor of Environmental Engineering and Evan Pugh Professor, Pennsylvania State University PDF icon logan_bioenergy_2015.pdf More

  18. Fermentation and Electrohydrogenic Approaches to Hydrogen Production (Presentation)

    SciTech Connect (OSTI)

    Maness, P. C.; Thammannagowda, S.; Magnusson, L.; Logan, B.

    2010-06-01

    This work describes the development of a waste biomass fermentation process using cellulose-degrading bacteria for hydrogen production. This process is then integrated with an electrohydrogenesis process via the development of a microbial electrolysis cell reactor, during which fermentation waste effluent is further converted to hydrogen to increase the total output of hydrogen from biomass.

  19. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

  20. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  1. Solar Thermochemical Hydrogen Production Research (STCH)

    SciTech Connect (OSTI)

    Perret, Robert

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  2. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    Broader source: Energy.gov [DOE]

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  3. Summary of Electrolytic Hydrogen Production: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003.

  4. DOE Technical Targets for Hydrogen Production from Biomass-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Distributed Forecourt Production of Hydrogen from Bio-Derived ...

  5. Livermore team awarded for hydrogen production research | National...

    National Nuclear Security Administration (NNSA)

    the University of Nevada, Las Vegas (UNLV), the award recognizes the team for its work developing models of photoelectrochemical solar-hydrogen production and corrosion processes. ...

  6. Co-production of Hydrogen and Electricity (A Developer's Perspective)

    Broader source: Energy.gov [DOE]

    FuelCell Energy Overview, Direct Fuel Cell (DFC) Technology Status, Hydrogen Co-production Technology, Benefits and Status, Strategic Input

  7. Co-production of Hydrogen and Electricity (A Developer's Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelCell Energy Overview, Direct Fuel Cell (DFC) Technology Status, Hydrogen Co-production Technology, Benefits and Status, Strategic Input PDF icon tspipatel.pdf More Documents & ...

  8. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life ... Analysis Activities at National Renewable Energy Laboratory Life Cycle Assessment of ...

  9. Hydrogen Production and Purification from Coal and Other Heavy...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - ... sour syngas exposure, as well as deposition of metals from carbonyl decomposition. ...

  10. Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies

    Broader source: Energy.gov [DOE]

    Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  11. DOE Issues Request for Information on Biological Hydrogen Production

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office has issued a request for information seeking feedback from interested stakeholders regarding biological hydrogen production research and development.

  12. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  13. Hydrogen Production: Thermochemical Water Splitting | Department...

    Broader source: Energy.gov (indexed) [DOE]

    nuclear power reactions-and chemical reactions to produce hydrogen and oxygen from water. ... heat (500-2,000C) to drive a series of chemical reactions that produce hydrogen. ...

  14. NREL Photoelectrode Research Advances Hydrogen Production Efforts

    SciTech Connect (OSTI)

    Gu, Jing

    2015-12-01

    Scientists have created a high-performing photoelectrode that boosts the ability of solar water-splitting to produce hydrogen.

  15. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H.; Kim, Eung S.; Sherman, Steven R.

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  16. Suite of Photo-electrochemical Technologies for Hydrogen Production -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Suite of Photo-electrochemical Technologies for Hydrogen Production National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The primary fuel powering new fuel cell technologies is hydrogen. The market for fuel cells is expected

  17. Ceramic Membranes for Hydrogen/Oxygen Production - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Startup America Startup America Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Ceramic Membranes for Hydrogen/Oxygen Production Ceramic Membranes Developed at Argonne May Bring Fuel-Cell Cars Closer to Reality Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary In the long term, hydrogen is expected to be the fuel of choice for both the

  18. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost characteristics of four PEC hydrogen production systems ...

  19. Hydrogen Leak Detection – Low-Cost Distributed Gas Sensors

    Broader source: Energy.gov [DOE]

    Presentation slides from the April 3, 2012, Fuel Cell Technologies Program webinar "America's Next Top Energy Innovator Runner-Up Presents Hydrogen Detection Technologies".

  20. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% postconsumer waste iii Executive Summary As ... cell H 2 hydrogen ICE internal combustion engine IGCC integrated ... gas turbines, 2 heat recovery steam generators, ...

  1. Cryo-Compressed Hydrogen Storage: Performance and Cost Review

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  2. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Balance of Plant - Resin with lower density and cost - Carbon fiber from high volume ... and practices, DFMA software, innovation, and practicality Estimated Cost ...

  3. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2005-01-01

    This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  4. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum baseline all filament wound vessel. Due to project timing, there was no additional time available to fine tune the design to improve the load transfer between AFP and FW. Further design modifications will likely help pass the extreme temperature cycle test, the remaining test that is critical to the hybrid design.

  5. Cost reduction in deep water production systems

    SciTech Connect (OSTI)

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  6. Production of negative hydrogen ions on metal grids

    SciTech Connect (OSTI)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  7. Hydrogen production from water: Recent advances in photosynthesis research

    SciTech Connect (OSTI)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  8. Process for the thermochemical production of hydrogen

    DOE Patents [OSTI]

    Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  9. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    SciTech Connect (OSTI)

    Melis, Anastasios

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  10. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  11. Energy and Cost Savings Calculators for Energy-Efficient Products...

    Open Energy Info (EERE)

    Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for...

  12. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOE Patents [OSTI]

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  13. Designing catalysts for hydrogen production | Center for Bio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for hydrogen production 12 Oct 2012 Dr. Anne Jones is a Principal Investigator in the Center of Bio-Inspired Solar Fuel production at Arizona State University. Her lab is...

  14. Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wind-to-Hydrogen Cost Modeling and Project Findings Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings Below is the text version of the webinar titled "Wind-to-Hydrogen Cost Modeling and Project Findings," originally presented on January 17, 2013. In addition to this text version of the audio, you can access the presentation slides. Moderator: Welcome to today's second attempt at the webinar given by NREL today. So we appreciate you guys that were patient with

  15. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  16. Structured material for the production of hydrogen

    DOE Patents [OSTI]

    Flickinger, Michael C.; Harwood, Caroline S.; Rey, Federico

    2010-06-29

    The present invention provides composite biological devices that include biological material as an integral component thereof. The devices can be used for producing hydrogen gas, for example.

  17. Distributed Hydrogen Production from Natural Gas: Independent...

    Broader source: Energy.gov (indexed) [DOE]

    Independent review report on the available information concerning the technologies needed for forecourts producing 150 kgday of hydrogen from natural gas. PDF icon 40382.pdf More ...

  18. Fermentative Approaches to Hydrogen Production (Presentation)

    SciTech Connect (OSTI)

    Maness, P. C.; Czernik, S.; Smolinski, S.

    2005-05-01

    A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 23-26, 2005, in Washington, D.C.

  19. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  20. Process for the production of hydrogen peroxide

    DOE Patents [OSTI]

    Datta, Rathin (Chicago, IL); Randhava, Sarabjit S. (Evanston, IL); Tsai, Shih-Perng (Naperville, IL)

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  1. Process for the production of hydrogen peroxide

    DOE Patents [OSTI]

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  2. Hydrogen production by the decomposition of water

    DOE Patents [OSTI]

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  3. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  4. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time.

  5. Hydrogen production with coal using a pulverization device

    DOE Patents [OSTI]

    Paulson, Leland E.

    1989-01-01

    A method for producing hydrogen from coal is described wherein high temperature steam is brought into contact with coal in a pulverizer or fluid energy mill for effecting a steam-carbon reaction to provide for the generation of gaseous hydrogen. The high temperature steam is utilized to drive the coal particles into violent particle-to-particle contact for comminuting the particulates and thereby increasing the surface area of the coal particles for enhancing the productivity of the hydrogen.

  6. Process for the production of hydrogen from water

    DOE Patents [OSTI]

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  7. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Cost of Production Advanced Biofuels Cost of Production Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. PDF icon aviation_biofuels_haq.pdf More Documents & Publications A Review of DOE Biofuels Program DOE Perspectives on Advanced Hydrocarbon-based Biofuels Pathways for Algal Biofuels

  8. Novel, Low-Cost Nanoparticle Production

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing a modular hybrid plasma reactor and process to manufacture low-cost nanoparticles

  9. Carbonate thermochemical cycle for the production of hydrogen

    DOE Patents [OSTI]

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis Jr., Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  10. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N. (Ann Arbor, MI)

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  11. Hydrogen Production and Consumption in the U.S.: The Last 25...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Production and Consumption in the U.S.: The Last 25 Years. Brown, Daryl R. hydrogen; production; U.S.; merchant; captive hydrogen; production; U.S.; merchant; captive This...

  12. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Advancing the science of fuel cells for advanced technology vehicles Argonne National Laboratory Contact ANL About This Technology <p align="LEFT"> <i><font color="#808285" size="1"><font color="#808285" size="1">Conceptual diagram of a hydrogen-permeating

  13. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator M.W. Melaina, D. Steward, and M. Penev National Renewable Energy Laboratory S. McQueen Energetics S. Jaffe and C. Talon IDC Energy Insights Technical Report NREL/BK-5600-55961 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of

  14. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  15. Hydrogen Production and Dispensing Facility Opens at W. Va. Airport

    Broader source: Energy.gov [DOE]

    A hydrogen production and dispensing station constructed and operated with support from the Office of Fossil Energy's National Energy Technology Laboratory was officially opened Monday at the Yeager Airport in Charleston, W.Va.

  16. Renewable Hydrogen Production at Hickam Air Force Base

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... steel packages for military or commercial transport. *&1; Three primary PODs: &2;&1; Hydrogen Fuel Processor (H 2 FP) using two Teledyne Energy Systems HMX 200 electrolyzers; production ...

  17. Vacancy Announcements Posted for Hydrogen Production and Delivery Program

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office has posted two vacancy announcements for a position to serve as Program Manager for the Hydrogen Production and Delivery Program in the DOE EERE Fuel Cell Technologies Office. The closing date is October 28, 2014.

  18. Hydrogen Production and Storage for Fuel Cells: Current Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of ...

  19. Photo-induced hydrogen production in a helical peptide incorporating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo-induced hydrogen production in a helical peptide incorporating a FeFe hydrogenase active site mimic Authors: Roy, A., Madden, C., and Ghirlanda, G. Title: Photo-induced...

  20. Potential for Hydrogen Production from Key Renewable Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  1. Hydrogen (H2) Production by Anoxygenic Purple Nonsulfur Bacteria

    Broader source: Energy.gov [DOE]

    Presentation by Jake McKinlay, Indiana University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  2. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect (OSTI)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  3. Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Authors: Jones, A.K., McIntosh, C.L., Dutta, A., Kwan, P., Roy, S., Yang, S. Title: Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Source: In: Enzymatic fuel cells: From fundamentals to applications. Edited by H. Luckarift, G. Johnson and P. Attanasov, Wiley-VCH, Weinheim, Germany Year: 2013 Volume: in press Pages: ABSTRACT: Date of online publication: Link online: http://solarfuel.clas.asu.edu

  4. Hydrogen Production Roadmap: Technology Pathways to the Future

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FreedomCAR and Fuel Partnership Hydrogen Production Technical Team This roadmap was created by the Hydrogen Production Technical Team (HPTT) of the FreedomCAR and Fuel Partnership. This is a partnership of industry's U.S. Council for Automotive Research (USCAR), energy companies and the U.S. Department of Energy (DOE) to advance technologies that enable reduced oil consumption and increased energy efficiency in passenger vehicles. The Partnership focuses on the pre-competitive, high-risk

  5. Deadline Extended for RFI on Biological Hydrogen Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Deadline Extended for RFI on Biological Hydrogen Production Deadline Extended for RFI on Biological Hydrogen Production February 26, 2014 - 12:00am Addthis DOE has extended the submission deadline for this Request for Information. Responses must be submitted by 5:00 p.m. Eastern Time on March 14, 2014. The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological

  6. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2010-06-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  7. Hydrogen Production by High Temperature Electrolysis with Nuclear Reactor

    SciTech Connect (OSTI)

    Ogawa, Takashi; Fujiwara, Seiji; Kasai, Shigeo; Yamada, Kazuya

    2007-07-01

    In this paper, we report our design of high temperature electrolysis plant system and the analysis results. The system efficiency increases with the increase of the steam utilization in the solid oxide electrolysis cell (SOEC) or the decrease of the hydrogen recycle (hydrogen recycle flow to product hydrogen flow) ratio,. The system efficiency is nearly independent of the SOEC operating temperature and pressure, and the air to product O{sub 2} ratio. In this study, the maximum system efficiency is 56.3%. (authors)

  8. Update of Hydrogen from Biomass — Determination of the Delivered Cost of Hydrogen: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    Milestone report summarizing the economic feasibility of producing hydrogen from biomass via (1) gasification/reforming of the resulting syngas and (2) fast pyrolysis/reforming of the resulting bio-oil.

  9. Energy and Cost Savings Calculators for Energy-Efficient Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Efficient Products » Energy and Cost Savings Calculators for Energy-Efficient Products Energy and Cost Savings Calculators for Energy-Efficient Products Estimate energy and cost savings for energy- and water-efficient product categories using these interactive calculators provided by the Federal Energy Management Program or ENERGY STAR. Commercial Heating and Cooling Air-Cooled Chillers Boilers Commercial Heat Pumps Commercial Rooftop Air Conditioners Residential

  10. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction...

  11. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  12. Hydrogen production by the decomposition of water

    DOE Patents [OSTI]

    Hollabaugh, Charles M.; Bowman, Melvin G.

    1981-01-01

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  13. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    SciTech Connect (OSTI)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.

  14. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  15. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  16. Discovery of Photocatalysts for Hydrogen Production

    SciTech Connect (OSTI)

    D. Brent MacQueen

    2006-10-01

    This project for DOE was designed to address these materials-related issues through a combination of high-throughput screening of semiconductor candidates and theoretical modeling of nanostructures. High-throughput screening is an effective and economical way to examine a large number of candidates and identify those worthy of further study. Unfortunately, in the course of this project, we discovered no semiconductor candidates that can meet the DOEs stringent requirements for an economically feasible photoelectrochemical process. However, some of our results indicated that several systems may have potential if further optimized. In particular, the published theoretical modeling work indicates that core-shell nanorod structures, if properly engineered, have the potential to overcome the shortfalls of current semiconductors. Although the synthesis of the designed core-shell nanorod structures proved to be beyond the current capabilities of our laboratories, recent advances in the synthesis of core-shell nanorod structures imply that the designed structures can be synthesized. SRI is confident that once these materials are made they will validate our models and lead to economical and environmentally friendly hydrogen from sunlight and water. The high-throughput photolysis analysis module developed at SRI will also have utility in applications such as identifying catalysts for photo-assisted chemical detoxification, as well as non-photolytic applications such as hydrogen storage, which can take advantage of the ability of the analysis module to monitor pressure over time.

  17. stochastic energy production cost model simulator for electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production cost model simulator for electric power systems - Sandia Energy Energy ... Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  18. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  19. Sandia Develops Stochastic Production Cost Model Simulator for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs ... to perform power system production cost model simulations. ...

  20. 2014 Electrolytic Hydrogen Production Workshop Summary Report

    Energy Savers [EERE]

    PROGRAM | Department of Energy ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM In 2015, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  1. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect (OSTI)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  2. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production and Concentrating Solar Power: A Systems Analysis Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar ...

  3. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  4. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  5. The plutonium-hydrogen reaction: SEM characterization of product morphology

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect The plutonium-hydrogen reaction: SEM characterization of product morphology Citation Details In-Document Search Title: The plutonium-hydrogen reaction: SEM characterization of product morphology Authors: Dinh, L N ; McCall, S K ; Saw, C K ; Haschke, J M ; Allen, P G ; McClean II, W Publication Date: 2013-12-23 OSTI Identifier: 1150726 Report Number(s): LLNL-JRNL-648158 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation:

  6. Thermochemical cycles for the production of hydrogen

    DOE Patents [OSTI]

    Steinberg, M.; Dang, V.D.

    Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.

  7. POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time.

  8. Long-Term Demonstration of Hydrogen Production from Coal at Elevated...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen ...

  9. Low-Cost Ventilation in Production Housing - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple and cost-effective ventilation strategies for homes. As high-performance homes get more air tight and better insulated, attention to good indoor air quality becomes essential. This Top Innovation profile describes Building America research by Building Science Corporation to develop

  10. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    SciTech Connect (OSTI)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  11. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  12. Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and

    Broader source: Energy.gov (indexed) [DOE]

    Asymmetric Rolling | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm058_warren_2012_o.pdf More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials Materials Characterization Capabilities at the High

  13. Hydrogen production at run-of-river hydro plants

    SciTech Connect (OSTI)

    Tarnay, D.S.

    1983-12-01

    Production of energy from non-renewable petroleum, natural gas and coal is declining due to depletion and high prices. Presently, the research concentrates on reduction of consumption and more efficient use of traditional fuels, and on development of renewable sources of energy and new energy technologies. Most of the new energy sources, however, are not available in a convenient form for consumer. The new energy must be renewable, economically feasible and transportable. Not all the available renewable energy sources have these qualities. Many scientists and engineers believe that hydrogen meets these criteria best. Hydrogen can be produced from various renewable sources such as solar, wind, geothermal, tidal and glacier energies, ocean thermal energy conversion (OTEC), and obviously from - waterpower. The production of hydrogen at run-of-river hydropower plants via electrolysis could be the front-runner in developing new hydrogen energy technologies, and open the way to a new hydrogen era, similarly as the polyphase system and the a-c current generator of N. Tesla used at the Niagara Falls Hydropower Plant, opened the door to a new electrical age in 1895.

  14. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect (OSTI)

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  15. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  16. Levelized life-cycle costs for four residue-collection systems and four gas-production systems

    SciTech Connect (OSTI)

    Thayer, G.R.; Rood, P.L.; Williamson, K.D. Jr.; Rollett, H.

    1983-01-01

    Technology characterizations and life-cycle costs were obtained for four residue-collection systems and four gas-production systems. All costs are in constant 1981 dollars. The residue-collection systems were cornstover collection, wheat-straw collection, soybean-residue collection, and wood chips from forest residue. The life-cycle costs ranged from $19/ton for cornstover collection to $56/ton for wood chips from forest residues. The gas-production systems were low-Btu gas from a farm-size gasifier, solar flash pyrolysis of biomass, methane from seaweed farms, and hydrogen production from bacteria. Life-cycle costs ranged from $3.3/10/sup 6/ Btu for solar flash pyrolysis of biomass to $9.6/10/sup 6/ Btu for hydrogen from bacteria. Sensitivity studies were also performed for each system. The sensitivity studies indicated that fertilizer replacement costs were the dominate costs for the farm-residue collection, while residue yield was most important for the wood residue. Feedstock costs were most important for the flash pyrolysis. Yields and capital costs are most important for the seaweed farm and the hydrogen from bacteria system.

  17. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  18. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  19. One Step Hydrogen Generation Through Sorption Enhanced Reforming

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information. Project Objective Develop compact, hydrogen production technology for large-scale applications Reduces cost of hydrogen by...

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect (OSTI)

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  2. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C.

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  3. Critical Updates to the Hydrogen Analysis Production Model (H2A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Presentation slides from the February 8, ...

  4. Hydrogen Production and Consumption in the U.S.: The Last 25...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Hydrogen Production and Consumption in the U.S.: The Last 25 Years. Citation Details In-Document Search Title: Hydrogen Production and Consumption in the U.S.: The...

  5. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  6. Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant

    Broader source: Energy.gov [DOE]

    This May 2012 study assesses the costs and potential for remote renewable energy to be transported via hydrogen to a demand center for transportation use.

  7. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  8. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  9. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  10. Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report

    Broader source: Energy.gov [DOE]

    This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis.

  11. Time Domain Partitioning of Electricity Production Cost Simulations

    SciTech Connect (OSTI)

    Barrows, C.; Hummon, M.; Jones, W.; Hale, E.

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  12. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    SciTech Connect (OSTI)

    Wall, Judy D.

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  13. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  14. A review of recent advances of numerical simulations of microscale fuel processors for hydrogen production

    SciTech Connect (OSTI)

    Holladay, Jamelyn D.; Wang, Yong

    2015-05-01

    Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer’s small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol’s low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.

  15. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  16. Critical Updates to the Hydrogen Analysis Production Model (H2A v3) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Presentation slides from the February 8, 2012, Fuel Cell Technologies Program webinar, "Critical Updates to the Hydrogen Analysis Production Model (H2A v3)." PDF icon Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Webinar Slides More Documents & Publications H2A Delivery Models and Results Hydrogen

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost ...

  18. Production of Hydrogen at the Forecourt Using Off-Peak Electricity: June 2005 (Milestone Report)

    SciTech Connect (OSTI)

    Levene, J. I.

    2007-02-01

    This milestone report provides information about the production of hydrogen at the forecourt using off-peak electricity as well as the Hydrogen Off-Peak Electricity (HOPE) model.

  19. Long-Term Demonstration of Hydrogen Production from Coal at Elevated

    Office of Scientific and Technical Information (OSTI)

    Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Technical Report: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center

  20. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect (OSTI)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  1. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  2. Production and Engineering of Hydrogenase as a Biocatalyst for Hydrogen Fuel

    SciTech Connect (OSTI)

    Wang, Guangyi

    2010-04-09

    Hydrogenases are fascinating redox proteins, showing tremendous promise in the utilization of hydrogen fuel as a bioelectrocatalyst. They play critical roles in both biohydrogen production and hydrogen oxidation. Specifically, the recently-established comparability of the oxidative activity of the [NiFe]-hydrogenase active site to that of the fuel cell catalyst platinum marks a significant milestone for the potential application of hydrogenase in hydrogen fuel cells to replace platinum. However, the ability of producing hydrogenase in heterologous expression hosts and the sensitivity of hydrogenases to oxygen and carbon monoxide, etc. have seriously limited the viable macroscale utilization and production of hydrogen from the renewable source. A new technology for the production of up-take hydrogenase is being developed for the utilization of hydrogenase as a hydrogen catalyst. The development of this new technology integrates knowledge of structural biology, molecular biology, and principles of metabolic engineering to produce and engineer a stable hydrogenase as a hydrogen bioelectrocatalyst. It contributes to the critical issues of expensive noble metal catalysts (i.e., platinum) and their limited reserves threatening the long-term sustainability of a hydrogen economy. It also provides a model to design natural materials and enzyme catalyst for efficient and cost-effective technologies for a clean and sustainable energy in 21st century. This new technology includes 3 major components. The first component is the synthetic operons, which carry hydrogenase maturation pathways of Ralstonia eutropha. These synthetic operons are engineered to produce RH hydrogenase in the Escherichia coli strains based on our current molecular and genetic information of hydrogenase maturation mechanisms and pathways of R. eutropha. It presents the first example of producing hydrogenase in the conventional expression host using synthetic biology principles and tool kits. For the high-yield production of the hydrogenase, protein degradation pathways are altered to prevent hydrogenase degradation. This part of the new technology provides a frame work for the design of hydrogenase production pathways for desirable bioengineering purposes. The results of this work are significantly beneficial to research in the areas of enzyme fuel cells, bioelectrocatalyst production, and biohydrogen production as well as basic research in hydrogenase structure biology. The second component of the new technology includes the stable hydrogenase with the improved electrochemical and catalytic properties. With the guidance of the current information on [NiFe] hydrogenase structure, hydrogenase mutants and mutant libraries are generated using protein engineering approaches. The resulting mutants are screened for better hydrogenase stability and catalytic activities. This part of the research results in the identification of new hydrogenase mutants with improved catalytic properties, which can be used for the future studies on enzyme full cells and the catalytic mechanism of hydrogenase. The third component is the optimized production of the selected hydrogenase mutant using current fermentation and metabolic engineering strategies. Metabolic burdens and biomass is balanced using different induction conditions for the optimum production of the engineered hydrogenase in genetically engineered E. coli strains. The success of this work presents a good example of the application of modern fermentation technologies in bioelectrocatalyst production.

  3. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells. ...

  4. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOE Patents [OSTI]

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  5. Hydrogen Supply: Cost Estimate for Hydrogen Pathways—Scoping Analysis. January 22, 2002—July 22, 2002

    Broader source: Energy.gov [DOE]

    A report showing a comparative scooping economic analysis of 19 pathways for producing, handling, distributing, and dispensing hydrogen for fuel cell vehicle applications.

  6. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    SciTech Connect (OSTI)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  7. Sandia Develops Stochastic Production Cost Model Simulator for Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Stochastic Production Cost Model Simulator for Electric Power Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  8. Natural Gas Used as Feedstock for Hydrogen Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Used as Feedstock for Hydrogen Production (Million Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 143,004 154,503 169,465 183,051 182,715 186,006 2008-2014 East Coast (PADD 1) 4,178 3,346 4,815 6,313 5,261 5,723 2008-2014 Midwest (PADD 2) 36,936 45,452 44,623 46,640 45,069 46,871 2008-2014 Gulf Coast (PADD 3) 41,049 43,170 50,968 62,829 62,936 60,887

  9. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  10. Research identifies designs for lowering subsea production cost

    SciTech Connect (OSTI)

    Rothberg, R.H.; Hall, J.E. ); Douglas, L.D. ); Manuel, W.S. ); Kirkland, K.G.

    1993-03-08

    To reduce costs and simplify installation operations for subsea hardware, Amoco Production Co. in 1986 began the development of a diverless subsea production system (DSPS). At present, Amoco has completed the testing phase for selected prototype components and has completed a deepwater system design that incorporates many of these ideas. This program has yielded several configurations suitable for full-field development; however, the emphasis of the research and development program has been to identify, design, and test components of key subsystems. This first of a three-part series describes the design considerations, equipment configuration, and subsea trees.

  11. Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton" on May 23, 2011.

  12. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  13. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009)

    Broader source: Energy.gov [DOE]

    Presentation by Brian James, Strategic Analysis Inc., at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  14. Hydrogen Production from Biomass via Indirect Gasification: The Impact of NREL Process Development Unit Gasifier Correlations

    SciTech Connect (OSTI)

    Kinchin, C. M.; Bain, R. L.

    2009-05-01

    This report describes a set of updated gasifier correlations developed by NREL to predict biomass gasification products and Minimum Hydrogen Selling Price.

  15. Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $20 million for ten new research and development projects that will advance hydrogen production and delivery technologies.

  16. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

  17. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Post, M.; Saur, G.; Peters, M.

    2013-11-01

    This report includes 18 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 2 of 2013.

  18. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The ...

  19. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C.

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  20. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. )

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  1. Energy Department Announces up to $4 Million to Advance Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low ...

  2. Volume, cost and energy for the production of gasoline

    SciTech Connect (OSTI)

    Cortes-Islas, E.M.; Ramirez-Garcia, P.F. )

    1988-06-01

    The relationship between the growth of the petrochemical industry and increasing standards of living is well known. However, a detailed analysis of the lower energy consumption that characterizes oil-based products when compared to the equivalent traditional products, used, for instance, in the automobile, textile and construction industries, has not yet been carried out. This paper models the chemical processing industries. The information obtained with this approach permits the structuring of a technical data bank in such a way that the decision maker is able to choose between new processes or the development of existing ones. The model is illustrated with the processes involved in the production of gasoline obtained from crude oil remarking volume, cost and consumption of energy.

  3. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    SciTech Connect (OSTI)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful experimental results with the hybrid polymer/metal H2 membrane, a conventional CO2 capture (single-stage Selexol) and hydrogen purification (PSA) technologies were used in the appropriate cases. In all cases, the integrated system of Advanced Compact coal gasifier, non-catalytic natural gas partial oxidation, and SR2 multicontaminant removal with state-of-the-art auxiliary system provided a 5-25% cost advantage over the base line plants using GEE coal gasifier with conventional Selexol/Claus sulfur removal and recovery. These plants also produce 18-30% less CO2 than with the conventional coal gasification plants.

  4. Cost guide. Volume 2. Standard procedures for determining revenue requirements (product cost)

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The DOE has conducted economic analyses of alternative energy projects over the past several years which compared emerging technologies to conventional technologies and also to competing emerging technologies. The method used was to determine and compare the product costs of the technologies being assessed. A review of the application of this product cost technique over the past few years revealed that slightly different financial assumptions, economic factors, and scope were used. Therefore, it is not meaningful to compare results. Consistent comparison of the economic benefits of programs and projects being evaluated by DOE is essential to accomplish the assigned missions and functions. The process of reviewing much of the work accomplished by DOE and its support contractors failed to disclose a single source document or methodology which had potential application across the full range of DOE interests. However, the 1981 version of the Technical Assessment Guide published by the Electric Power Research Institute (EPRI) appears to have all of the necessary elements, economic factors, assumptions, and cost performance information necessary to meet the DOE's needs. A review of the document indicates that the methodology described by EPRI can be applied to almost any energy project so long as appropriate business and financial assumptions are made.The financial and business assumptions presented in EPRI technical report P-2410-SR are typical of the electric utility industry. Moreover, using a methodology already widely accepted by the utility industry, DOE can help reduce proliferation of different methods and promote the adoption of a standard. This guide presents a summary of the methodology, data on fuel price projections, and cost and performance information for transmission and generation technologies, and reflects an explanation of the economic methodology to include sample problems.

  5. Value of Demand Response: Quantities from Production Cost Modeling (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind and solar power generation. However, managed loads in grid models are limited by data availability and modeling complexity. This presentation focuses on the value of co-optimized DR resources to provide energy and ancillary services in a production cost model. There are significant variations in the availabilities of different types of DR resources, which affect both the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves. In addition, the revenue is characterized by the capacity, energy, and units of DR enabled.

  6. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this multi-year project, SA estimates the material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane (PEM) fuel cell systems suitable for ...

  7. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  8. Hydrogen production from water using copper and barium hydroxide

    DOE Patents [OSTI]

    Bamberger, Carlos E.; Richardson, deceased, Donald M.

    1979-01-01

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  9. DOE Technical Targets for Hydrogen Production from Photoelectrochemica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Progress Report; Crystalline material systems have been demonstrated with STH >12% for tens of hours. O. Khaselev, J.A. Turner, Science 280, 425 (1998). g The hydrogen ...

  10. Hydrogen Production via Reforming of Bio-Derived Liquids

    Broader source: Energy.gov [DOE]

    Presentation by Yong Wang and David King at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  11. Renewable Hydrogen Production Using Sugars and Sugar Alcohols...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 10virentaqeousphasereforming.pdf More Documents & Publications Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming Bio-Derived Liquids ...

  12. Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

  13. DOE Issues Request for Information on Biological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a request for information (RFI) seeking feedback from interested stakeholders regarding ... Feedback is specifically requested on the workshop report for the Biological Hydrogen ...

  14. H2A Hydrogen Production Analysis Tool (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  15. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  16. DOE Technical Targets for Hydrogen Production from Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... "Electrochemical evaluation of a molybdenum disulfide catalyst for the hydrogen evolution reaction under solution conditions applicable to microbial electrolysis cells." Int. ...

  17. Distributed Hydrogen Production from Natural Gas: Independent Review

    SciTech Connect (OSTI)

    Fletcher, J.; Callaghan, V.

    2006-10-01

    Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

  18. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASFs battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASFs already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEMs and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  19. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    SciTech Connect (OSTI)

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P.

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.

  20. Techno-economic Analysis of PEM Electrolysis for Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system Bill of Materials * Estimate capital costs * Define system performance ... are implemented * Potential reduction in capital cost from existing values * Plant ...

  1. Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2006-01-01

    This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  2. Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2006-04-01

    Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

  3. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  4. Process for Low Cost Domestic Production of LIB Cathode Materials

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. R2R Production of Low-Cost Integrated OLED Substrate with Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling R2R Production of Low-Cost Integrated OLED Substrate with ...

  6. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  7. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2010 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  9. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  10. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  11. High Pressure Ethanol Reforming for Distributed Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by S. Ahmed and S.H.D. Lee at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  14. Webinar: Critical Updates to the Hydrogen Analysis Production Model (H2A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    v3) | Department of Energy Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Webinar: Critical Updates to the Hydrogen Analysis Production Model (H2A v3) Below is the text version of the webinar titled "Critical Updates to the Hydrogen Analysis Production Model (H2A v3)," originally presented on February 8, 2012. In addition to this text version of the audio, you can access the presentation slides. Darlene Steward: So I have a little presentation here. The real

  15. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  16. SBIR/STTR FY15 Phase 2 Awards Announced—Includes Hydrogen Production and FCEV Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase 2 Release 1 Awards, including three Office of Science projects focusing on hydrogen production from electrolysis and hydrogen systems supporting fuel cell electric vehicles (FCEVs).

  17. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  18. Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

  19. Hydrogen Infrastructure Expansion: Consumer Demand and Cost-Reduction Potential (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.

    2014-04-01

    The presentation summarizes key challenges in financing hydrogen infrastructure and reviews analysis tools available to inform investment decisions and reduce financial risks.

  20. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  1. Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2006-09-30

    This report describes activities for the sixteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing now plans to deliver it by November 20, 2006 instead of October 20, 2006 as previously reported. MEFOS performed a hazardous operation review of pressurized testing. The current schedule anticipates above atmospheric pressure testing to begin during the week of April 16, 2007. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 3 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  2. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  3. Process for Low Cost Domestic Production of LIB Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es013thurston2010o...

  4. Methane-methanol cycle for the thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.; Hickman, Robert G.

    1976-01-01

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal: CH.sub.4 + H.sub.2 O .fwdarw. CO + 3H.sub.2 (1) co + 2h.sub.2 .fwdarw. ch.sub.3 oh (2) ch.sub.3 oh + so.sub.2 + mo .fwdarw. mso.sub.4 + ch.sub.4 (3) mso.sub.4 .fwdarw. mo + so.sub.2 + 1/2o.sub.2 (4) the net reaction is the decomposition of water into hydrogen and oxygen.

  5. Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface

    SciTech Connect (OSTI)

    Joseph W. Newkirk; Richard K. Brow

    2010-01-21

    The overall goal of this project was to develop Ni-Si alloys for use in vessels to contain hot, pressurized sulfuric acid. The application was to be in the decomposition loop of the thermochemical cycle for production of hydrogen.

  6. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority

    Broader source: Energy.gov [DOE]

    This Sandia National Laboratories report documents the evaluation of nine solar thermochemical reaction cycles for the production of hydrogen and identifies the critical path challenges to the commercial potential of each cycle.

  7. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    Broader source: Energy.gov [DOE]

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences.

  8. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  9. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  10. Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials

    Broader source: Energy.gov [DOE]

    Presentation by Jason Ren, University of Colorado Boulder, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  11. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOE Patents [OSTI]

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  12. Oil Production Capacity Expansion Costs for the Persian Gulf

    Reports and Publications (EIA)

    1996-01-01

    Provides estimates of development and operating costs for various size fields in countries surrounding the Persian Gulf. In addition, a forecast of the required reserve development and associated costs to meet the expected demand through the year 2010 is presented.

  13. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a hydrogen economy. The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  14. Hydrogen Production Forwards and Backwards | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Hydrogen Production Forwards and Backwards Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.12 Hydrogen Production Forwards and

  15. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  17. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A.; Kong, Peter C.

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  18. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks. Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.

  19. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect (OSTI)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  20. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Broader source: Energy.gov [DOE]

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  1. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  2. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

  3. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect (OSTI)

    Paul Liu

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a “one-box” process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor’s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered ≥90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promising process scheme has been developed for power generation and/or hydrogen coproduction with CCS based upon our proposed "one-box" process. Our preliminary economic analysis indicates about 10% reduction in the required electricity selling price and ~40% cost reduction in CCS on per ton CO{sub 2} can be achieved in comparison with the base case involving conventional WGS with a two-stage Selexsol® for CCS. Long term field tests (e.g., >1,000 hrs) with the incorporation of the catalyst for the WGS membrane reactor and more in-depth analysis of the process scheme are recommended for the future study.

  4. Cost-Effective Fabrication Routes for the Production of Quantum...

    Broader source: Energy.gov (indexed) [DOE]

    Cost-Effective Fabrication Routes for the Productionof Quantum-Well-Type Structures and Recovoery of Waste Heat from Heavy-Duty Trucks Thermoelectric Developments for Vehicular ...

  5. Hydrogen Production by PEM Electrolysis: Spotlight on Giner and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRODUCTION BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. ...

  6. The reaction of cobaloximes with hydrogen: Products and thermodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Estes, Deven P.; Grills, David C.; Norton, Jack R.

    2014-11-26

    In this study, a cobalt hydride has been proposed as an intermediate in many reactions of the Co(dmgBF₂)₂L₂ system, but its observation has proven difficult. We have observed the UV–vis spectra of Co(dmgBF₂)₂L₂ (1) in CH₃CN under hydrogen pressures up to 70 atm. A Co(I) compound (6), with an exchangeable proton, is eventually formed. We have determined the bond dissociation free energy and pKa of the new O–H bond in 6 to be 50.5 kcal/mol and 13.4, respectively, in CH₃CN, matching previous reports.

  7. The reaction of cobaloximes with hydrogen: Products and thermodynamics

    SciTech Connect (OSTI)

    Estes, Deven P.; Grills, David C.; Norton, Jack R.

    2014-11-26

    In this study, a cobalt hydride has been proposed as an intermediate in many reactions of the Co(dmgBF?)?L? system, but its observation has proven difficult. We have observed the UVvis spectra of Co(dmgBF?)?L? (1) in CH?CN under hydrogen pressures up to 70 atm. A Co(I) compound (6), with an exchangeable proton, is eventually formed. We have determined the bond dissociation free energy and pKa of the new OH bond in 6 to be 50.5 kcal/mol and 13.4, respectively, in CH?CN, matching previous reports.

  8. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z.

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  9. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOE Patents [OSTI]

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  10. Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic

    SciTech Connect (OSTI)

    Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.; Bullock, Morris

    2012-03-26

    A new bis(diphosphine) nickel(II) complex, [Ni(PPh2NR2)2](BF4)2, 1, (R = CH2CH2OCH3) is described. A {Delta}G{sup o} of 0.84 kcal/mol{sup -1} for hydrogen addition for this complex was calculated from the experimentally determined equilibrium constant. This complex displays reversible electrocatalytic activity for hydrogen production and oxidation at low overpotentials, a characteristic most commonly associated with hydrogenase enzymes.

  11. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING...

    Broader source: Energy.gov (indexed) [DOE]

    A novel metallurgical process for producing titanium (Ti) components could produce a ... PDF icon A New Method for Low-Cost Production of Titanium Alloys More Documents & ...

  12. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High ...

  13. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P.

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%,more » respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.« less

  14. DOE Technical Targets for Hydrogen Production from Thermochemical...

    Energy Savers [EERE]

    Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Solar-Driven High-Temperature ...

  15. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage – in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  16. MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

    2007-01-10

    This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

  17. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    SciTech Connect (OSTI)

    Ozbilen, Ahmet Dincer, Ibrahim Rosen, Marc A.

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  18. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    SciTech Connect (OSTI)

    Zhicheng Wang

    2007-03-15

    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

  19. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    SciTech Connect (OSTI)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposure as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.

  20. Maximizing productivity & profitability through best cost shift schedules

    SciTech Connect (OSTI)

    Coleman, R.

    1996-12-31

    If you have the right equipment and employees at the right place, the fight time, and the right cost, you have the perfect business schedule. But, if you`re like most mines, you can probably improve your schedule, improvements that will reach all the way to the bottom line. And unlike adding employees, materials, or capital equipment, better scheduling is a cost-free way improve profitability. A good schedule can save millions. A bad schedule will cost money every year. A shift schedule is not a day off pattern or shift length. A shift schedule is a complete system deploying personnel and capital equipment. Most mining schedules are either copied from another operation, based on tradition or the result of a contract negotiation made far from the mine site. Unfortunately, most mine managers don`t give much thought to schedules until a crisis develops; at which point the tendency is to implement the first solution that comes along as quickly as possible. Costly mistakes are made.

  1. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Peters, M.

    2015-05-14

    This publication includes 43 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2014.

  2. Novel Hydrogen Production Systems Operative at Thermodynamic Extremes

    SciTech Connect (OSTI)

    Gunsalus, Robert

    2012-11-30

    We have employed a suite of molecular, bioinformatics, and biochemical tools to interrogate the thermodynamically limiting steps of H{sub 2} production from fatty acids in syntrophic communities. We also developed a new microbial model system that generates high H{sub 2} concentrations (over 17% of the gas phase) with high H{sub 2} yields of over 3 moles H{sub 2} per mole glucose. Lastly, a systems-based study of biohydrogen production in model anaerobic consortia was performed to begin identifying key regulated steps as a precursor to modeling co-metabolism. The results of these studies significantly expand our ability to predict and model systems for H{sub 2} production in novel anaerobes that are currently very poorly documented or understood.

  3. A Process Model for the Production of Hydrogen Using High Temperature Electrolysis

    SciTech Connect (OSTI)

    M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

    2006-07-01

    High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

  4. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  5. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect (OSTI)

    Tabita, F. Robert [The Ohio State University] [The Ohio State University

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available unrestrained organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  6. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  7. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect (OSTI)

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  8. Process for Low Cost Domestic Production of LIB Cathode Materials |

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon process_development_nanostructured_pv.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office Evaluation Volume 4 | Department of

  9. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    ... Electricity Production in Mexico Independent 15.74% Hydro 7.4% Wind 0.004% Nuclear 5.81% Coal 9.83% Geothermal 3.47% Thermal 58.15% Figure 1. Distribution of the total electricity ...

  10. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect (OSTI)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  11. Hydrogen production. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning the manufacture of hydrogen by electrolysis, photosynthesis, and coal conversion processes. Citations discuss plant and process evaluations, theoretical and laboratory investigations, economic analyses, and the use of thermonuclear reactors as production source. (Contains 250 citations and includes a subject term index and title list.)

  12. Hydrogen Production and Consumption in the U.S.: The Last 25 Years.

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2015-09-01

    This article was requested by Cryogas International, which is celebrating its 25th anniversary this year. At the title suggests, the article identifies hydrogen consumption in the U.S., broken out by the major contributors to total production. Explanatory information is provided describing the causes underlying the significant changes seen in the summary data.

  13. Multi-stage microbial system for continuous hydrogen production

    DOE Patents [OSTI]

    Kosourov, Sergey; Ghirardi, Maria L.; Seibert, Michael

    2010-06-08

    A method of using sequential chemostat culture vessels to provide continuous H.sub.2 production, in which photosynthetic O.sub.2 evolution and H.sub.2 photoproduction are separated physically into two separate bioreactors, comprising: a) growing a microorganism culture able to continuously generate H.sub.2 by photosynthetically producing cells at about the early-to-late log state in a first photobioreactor operating as a sulfur chemostat under aerobic and/or conditions; b) continuously feeding cells from the first photobioreactor to a second photobioreactor operating under anaerobic conditions and sulfur deprivation conditions resulting from constant uptake of sulfate in the first bioreactor and a low rate of culture flow between the first and second bioreactors, for induction of hydrogenase and H.sub.2 photoproduction to allow for continuous cultivation of the microorganism's cells in the first photobioreactor and constant H.sub.2 production in the second photobioreactor, and c) H.sub.2 gas from the second photobioreactor.

  14. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  15. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for

    Broader source: Energy.gov (indexed) [DOE]

    Transportation Applications: 2013 Update | Department of Energy report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. In this multi-year project, SA estimates the material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane (PEM) fuel cell systems suitable for powering light-duty automobiles and 160 kWnet systems of the same type suitable for

  16. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  17. SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS

    SciTech Connect (OSTI)

    Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

    2003-12-01

    This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).

  18. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  19. Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing

    Energy Savers [EERE]

    simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight

  20. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  1. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    SciTech Connect (OSTI)

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-06-15

    Highlights: ? A large number of factors affect fermentative hydrogen production. ? Harmonization and systematic comparison of results from different literature sources are needed. ? More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ? Experimental data from the reviewed literature were analyzed using statistical tools. ? For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.

  2. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSUMPTION OF MECHANICAL SYSTEMS | Department of Energy A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY CONSUMPTION OF MECHANICAL SYSTEMS A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY CONSUMPTION OF MECHANICAL SYSTEMS The University of Utah - Salt Lake City, UT A novel metallurgical process for producing titanium (Ti) components could produce a ten-fold material usage improvement in aircraft and vehicle manufacturing. This technology

  3. R2R Production of Low-Cost Integrated OLED Substrate with Improved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Conductor and Enhanced Light Outcoupling | Department of Energy R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling Lead Performer: MicroContinuum, Inc. - Cambridge, MA DOE Total Funding: $1,149,037 Project Term: April 6, 2015 - April 5, 2017 Funding Opportunity: FY2015 Phase II Release 1 SBIR

  4. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  5. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

    1999-09-01

    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

  6. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    SciTech Connect (OSTI)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin; Simpson, James; Statnick, Robert; Tong, Andrew; Fan, Liang-Shih

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  7. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  8. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect (OSTI)

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  9. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  10. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement DE-FOA-0001412: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations includes up to $35 million in funding across four areas of interest: research and development (R&D) for hydrogen fuel technologies; demonstration and deployment for manufacturing technologies and Climate Action Champions; R&D within consortia for fuel cell performance and durability and hydrogen storage materials; and cost and performance analyses for hydrogen production and delivery, hydrogen storage, and fuel cells.

  11. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  12. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    SciTech Connect (OSTI)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: • Development of an iron-based catalyst suitable for a circulating fluid-bed reactor • Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production • Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.

  13. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  14. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  15. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOE Patents [OSTI]

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  16. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  17. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  18. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  19. Hydrogen Transition (HyTRANS) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition (HyTRANS) Model (Oak Ridge National Laboratory) Objectives Dynamically simulate the transition to hydrogen powered light-duty vehicles in the U.S. to 2050, representing the simultaneous interaction of (1) hydrogen production and delivery, (2) hydrogen fuel cell vehicle production, and (3) consumers' choices among alternative vehicle technologies. Determine a market equilibrium solution by multi-period optimization of an objective function that reflects private costs and benefits. Key

  20. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.