Sample records for hydrogen product fuel

  1. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

  2. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

  3. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

  4. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria PhotoCell ManufacturingHydrogen

  5. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  6. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe Mirror Fusion TestUp

  7. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet Hydrogen Production Factof

  8. THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS

    E-Print Network [OSTI]

    THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

  9. In search of an alternative fuel: Bio-Solar Hydrogen Production

    E-Print Network [OSTI]

    Petta, Jason

    In search of an alternative fuel: Bio-Solar Hydrogen Production from Arthrospira maxima Dariya Comparison of Potential Corn, Cellulose, and Aquatic Microbial Fuel Production Assuming demonstrated biomass

  10. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect (OSTI)

    University of Central Florida

    2004-01-30T23:59:59.000Z

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  11. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    ,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

  12. A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

  13. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  14. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one be Stored? Hydrogen storage will be required onboard vehicles and at hydrogen production sites, hydrogen

  15. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak...

  16. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  17. Hydrogen and electricity production using microbial fuel cell-based technologies

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Hydrogen and electricity production using microbial fuel cell-based technologies Bruce E. Logan/mol? ? #12;8 Energy Production using MFC technologies · Electricity production using microbial fuel cells · H to renewable energy #12;9 Demonstration of a Microbial Fuel Cell (MFC) MFC webcam (live video of an MFC running

  18. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    achieving low CoE for hydrogen production. Although other WEfor competitive hydrogen production, such advanced targetsElectricity and Hydrogen Fuel Production from Multi-Unit

  19. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel BasicsProduction and Distribution to

  20. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect (OSTI)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  1. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    hydrogen fuel by electrolysis meeting equal consumer costhydrogen fuel production by water electrolysis to provide lower fuel costFig. 2: Cost hydrogen bywater of (Coil) electrolysis as

  2. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    however). If hydrogen production via grid electrolysis orgeneration for hydrogen production is assumed to beIn both cases, hydrogen production is assumed to be

  3. Chemical Engineering Journal 93 (2003) 6980 Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon

    E-Print Network [OSTI]

    Goodman, Wayne

    Chemical Engineering Journal 93 (2003) 69­80 Production of COx-free hydrogen for fuel cells via Abstract The stringent COx-free hydrogen requirement for the current low temperature fuel cells has Hydrogen is the most promising fuel for the low temper- ature fuel cells, however, chemical processes

  4. Hydrogen Production CODES & STANDARDS

    E-Print Network [OSTI]

    Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

  5. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  6. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

  8. Webinar: Photosynthesis for Hydrogen and Fuels Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION ANDResidential Buildings2012)Department

  9. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department ofDepartment ofUsing

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30T23:59:59.000Z

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  11. Hydrogen: Fueling the Future

    SciTech Connect (OSTI)

    Leisch, Jennifer

    2007-02-27T23:59:59.000Z

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

  12. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-01-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  13. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  14. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  16. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  17. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  18. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-06-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  19. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  20. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production

    Broader source: Energy.gov [DOE]

    Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

  1. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  2. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30T23:59:59.000Z

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  3. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31T23:59:59.000Z

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  4. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  5. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17T23:59:59.000Z

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  6. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  7. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  8. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  9. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  10. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-09-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  11. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  12. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-09-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  13. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-09-30T23:59:59.000Z

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

  14. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-06-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  15. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16T23:59:59.000Z

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  16. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31T23:59:59.000Z

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  17. Hydrogen Production and Utilization of Agricultural Residues by Thermotoga Species.

    E-Print Network [OSTI]

    Zhu, Hongbin

    2007-01-01T23:59:59.000Z

    ??Hydrogen can be a renewable energy source to replace conventional fossil fuels. Compared to current hydrogen production processes by consuming fossil fuels, biological hydrogen production… (more)

  18. Summary of research on hydrogen production from fossil fuels conducted at NETL

    SciTech Connect (OSTI)

    Shamsi, Abolghasem

    2008-03-30T23:59:59.000Z

    In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100ºC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

  19. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    SciTech Connect (OSTI)

    Tao, Greg, G.

    2007-03-31T23:59:59.000Z

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  20. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin,...

  1. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14T23:59:59.000Z

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  2. BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS

    SciTech Connect (OSTI)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13T23:59:59.000Z

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H{sub 2}, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N{sub 2} adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m{sup 2}/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels”; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)

  3. Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and

    E-Print Network [OSTI]

    California at Davis, University of

    fuel providers to meet annual carbon intensity targets. These targets are based on carbon intensityProject Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start

  4. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  5. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02T23:59:59.000Z

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  6. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

  7. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  8. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmapNear-termPiping Experience

  9. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    SciTech Connect (OSTI)

    Zhicheng Wang

    2007-03-15T23:59:59.000Z

    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

  10. Co-production of Hydrogen and Electricity (A Developer's Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-production of Hydrogen and Electricity (A Developer's Perspective) Co-production of Hydrogen and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel...

  11. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  12. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

  13. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

  14. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    s future commitment to hydrogen and fuel cell vehicles haselimination of the U.S. DOE hydrogen production, deliveryhas recently re-instated hydrogen and fuel cell vehicle

  15. ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN

    E-Print Network [OSTI]

    ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN PRODUCTION PLANTS IN DENMARK Support program;"Analysis of power balancing with fuel cells & hydrogen production plants in Denmark" ­ March 2009 ­ Project ........................................................................................................................104 #12;"Analysis of power balancing with fuel cells & hydrogen production plants in Denmark" ­ March

  16. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Below is...

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  18. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

  19. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  20. Synergies in Natural Gas and Hydrogen Fuels

    Broader source: Energy.gov (indexed) [DOE]

    F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary...

  1. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

  2. Hydrogen and fuel taxation.

    E-Print Network [OSTI]

    Hansen, Anders Chr.

    2007-01-01T23:59:59.000Z

    ??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and… (more)

  3. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Mass Production Cost Estimation for Direct H2 PEM Fuel CellCost Analysis of Fuel Cell Systems for Transportation - Compressed Hydrogen and PEM

  4. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    SciTech Connect (OSTI)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03T23:59:59.000Z

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  5. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE H2 Fueling Standardization 5 SAE HYDROGEN FUELING STANDARDIZATION Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor SAE INTERNATIONAL *Hydrogen Fueling Background *SAE H2...

  6. DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option

  7. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  8. Dynamic simulation of nuclear hydrogen production systems

    E-Print Network [OSTI]

    Ramírez Muñoz, Patricio D. (Patricio Dario)

    2011-01-01T23:59:59.000Z

    Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

  9. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  10. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30T23:59:59.000Z

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  11. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel CellFuelp

  12. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  13. Thermocatalytic CO{sub 2}-Free Production of Hydrogen from Hydrocarbon Fuels - Final Report for the Period August 1999 - September 2000

    SciTech Connect (OSTI)

    Nazim Muradov, Ph.D.

    2000-10-01T23:59:59.000Z

    The overall objective of this work is to develop a novel process for CO{sub 2}-free production of hydrogen via thermocatalytic decomposition (pyrolysis) of hydrocarbon fuels as a viable alternative to the conventional processes of methane steam reforming or partial oxidation. The objective of Phase I work was to demonstrate the technical feasibility of CO{sub 2}-free production of hydrogen and carbon from different hydrocarbons, including methane, propane and gasoline.

  14. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogenFueling

  15. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

  16. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:MarketAutomotiveTransportationfor

  17. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

  19. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    $ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$° Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

  20. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14T23:59:59.000Z

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  1. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  2. Hydrogen and Fuel Cells | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

  3. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  4. Biological Hydrogen Production Measured in Batch Anaerobic

    E-Print Network [OSTI]

    of the energy balance of a global economy (1, 2). Low-cost hydrogen based fuel cells, which have been expensiveBiological Hydrogen Production Measured in Batch Anaerobic Respirometers B R U C E E . L O G A N The biological production of hydrogen from the fermentation of different substrates was examined in batch tests

  5. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Energy Savers [EERE]

    fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Fuel Station of the Future- Innovative Approach to Fuel Cell...

  6. Improving Photosynthesis for Hydrogen and Fuels Production - Webinar Q&A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a sourcebookMotor

  7. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Energy Savers [EERE]

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  8. An assessment of carbon sources for the production of synthetic fuels from nuclear hydrogen

    E-Print Network [OSTI]

    Leung, MinWah

    2007-01-01T23:59:59.000Z

    In the transportation sector, the current dependence on petroleum to satisfy large transportation fuel demand in the US is unsustainable. Oil resources are finite, and causing heavy US reliance on oil imports. Therefore, ...

  9. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01T23:59:59.000Z

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  10. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    SciTech Connect (OSTI)

    Z. Wang; K. B. Bota

    2005-03-15T23:59:59.000Z

    The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, literature review has been completed. The project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests are in operation phase. The experimental installations are discussed in this paper.

  11. An Intergrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    SciTech Connect (OSTI)

    Z. Wang; K. B. Bota

    2006-03-15T23:59:59.000Z

    The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, the project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests have been performed. Field tests of char/fertilizer have been conducted.

  12. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  13. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  14. Alternative Fuels Data Center: Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanol PrintableHydrogen

  15. Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  16. Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark

    E-Print Network [OSTI]

    Berning, Torsten

    Future Smart Energy - Fuel Cell and Hydrogen Technology Summer School 2014, Aalborg, Denmark August #12;31 Future Smart Energy - Fuel Cell and Hydrogen Technology Samuel Simon Araya Introduction to fuel cells History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen

  17. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Recent trends in refinery hydrogen production

    SciTech Connect (OSTI)

    Aitani, A.M.; Siddiqui, M.A.B. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Refiners are experiencing a rise in hydrogen requirements to improve product quality and process heavy sour crudes. Fuel reformulation has disrupted refinery hydrogen balance in two ways: more hydrogen is needed for hydroprocessing and less hydrogen is coproduced from catalytic naphtha reforming. The purpose of this paper is to review trends in maximizing refinery hydrogen production by modifications and alternatives to the conventional steam methane reforming, recovery from refinery off gases and {open_quote}across-the-fence{close_quote} hydrogen supply. 11 refs., 2 tabs.

  20. Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of the ratio CO / H2 (bypass, PSA and water gas shift). Next, the removal of CO2 is performed by means of PSA and the syngas is fed to the Fischer - Tropsch reactor. The products obtained are separated while the heavy with the current automobile and gasoline supply chains. However, the profitability of biofuels depends heavily

  1. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Broader source: Energy.gov (indexed) [DOE]

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  2. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

    2013-12-16T23:59:59.000Z

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  3. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel...

  4. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy Refueling

  5. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCase Study FuelInformationFuelProduction

  6. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Energy Savers [EERE]

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

  7. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    E-Print Network [OSTI]

    fuel cells, and a microbial electrolysis cell Aijie Wang a, , Dan Sun a , Guangli Cao a , Haoyu Wang Microbial electrolysis cell (MEC) Microbial fuel cell (MFC) MEC­MFC coupled system Dark fermentation a b production pro- cess consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power

  8. Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen

    E-Print Network [OSTI]

    Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Catalyst Development Water and Thermal Management Economic Analysis of PEM Fuel Cell Systems #12; Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12

  9. An Overview of Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Holladay, Jamie D.; Hu, Jianli; King, David L.; Wang, Yong

    2009-01-30T23:59:59.000Z

    Currently, hydrogen is primarily used in the chemical industry, but in the near future it will become a significant fuel. There are many processes for hydrogen production. This paper reviews reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase), pyrolysis, hydrogen from biomass, electrolysis and other methods for generating hydrogen from water, and hydrogen storage. In addition, desulfurization, water-gas-shift, and hydrogen purification methods are discussed. Basics of these processes are presented with a large number of references for the interested reader to learn more.

  10. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

  11. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  12. Hydrogen Fueling Infrastructure Research and Station Technology...

    Energy Savers [EERE]

    Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

  13. Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

  14. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14T23:59:59.000Z

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  15. Alternative Fuels Is US Investment in Hydrogen,

    E-Print Network [OSTI]

    Bowen, James D.

    Worth It? Alex Apple Andrew Cochrane Matt Goodman 4/23/09 #12;Hydrogen Fuel Cells Powerful potential similar to a diesel engine ­ Hydrogen Fuel Cell · Separates H2 into protons and electrons and works · Additional power demands to make H2 · Fuel cells themselves are expensive ­ Hydrogen cars today cost over

  16. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

  17. Overview of Hydrogen and Fuel Cell Activities: February 2011...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February...

  18. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  19. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Societal lifetime cost of hydrogen fuel cell vehiclesthe societal cost of hydrogen fuel-cell vehicles with modelsand running costs) than hydrogen fuel-cell vehicles in 2030.

  20. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Energy Savers [EERE]

    6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita...

  1. The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.

    E-Print Network [OSTI]

    Chiuta, Steven

    2010-01-01T23:59:59.000Z

    ??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

  2. Fossil-Based Hydrogen Production

    E-Print Network [OSTI]

    ) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

  3. Overview of Hydrogen and Fuel Cell Activities: 6th International...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

  4. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  5. Methane Decomposition: Production of Hydrogen and Carbon Filaments

    E-Print Network [OSTI]

    Goodman, Wayne

    for hydrogen is to power fuel cells. Major automobile manufac- turers are currently working towards developing ppm in the preferential oxidation reactor (PROX). The hydrogen can be introduced in the fuel cell only for the performance of PEM fuel cells.6 Other conventional process of hydrogen production such as partial oxidation

  6. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    For The Hydrogen Economy President Bush "Hydrogen fuel cells represent one of the most encouraging, innovative for the Hydrogen Economy Hydrogen is America's clean energy choice. Hydrogen is flexible, affordable, safe Calls for "International Partnership for the Hydrogen Economy" April 28, 2003 Secretary of Energy

  7. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  8. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

  9. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Energy Savers [EERE]

    DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel...

  10. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel

  11. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

  12. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  13. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES 2009 DOE Hydrogen Program...

  14. Basic Energy SciencesBasic Energy Sciences DOE Hydrogen and Fuel Cells

    E-Print Network [OSTI]

    for Hydrogen Production, Storage and UseProduction, Storage and Use Walter J. StevensWalter J. Stevens Director" #12;Basic Energy SciencesBasic Energy Sciences Workshop on Hydrogen Production, Storage, and UseWorkshop on Hydrogen Production, Storage, and Use DOE Hydrogen and Fuel Cells Coordination Meeting 6/2/2003 Workshop

  15. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19T23:59:59.000Z

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  16. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  17. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01T23:59:59.000Z

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  18. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel CellFuel

  19. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  20. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  1. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J. (Fremont, CA)

    2010-08-24T23:59:59.000Z

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  2. Four products from Escherichia coli pseudogenes increase hydrogen production q

    E-Print Network [OSTI]

    Wood, Thomas K.

    Article history: Received 26 August 2013 Available online 8 September 2013 Keywords: Biohydrogen hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth, and production of hydrogen as a renewable fuel is important as a means to address the problems associated

  3. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

  4. Webinar: Hydrogen Production by PEM Electrolysis-Spotlight on...

    Broader source: Energy.gov (indexed) [DOE]

    on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

  5. DOE Issues Request for Information on Biological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological hydrogen production research and...

  6. Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry

    E-Print Network [OSTI]

    Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

    2006-01-01T23:59:59.000Z

    for on- board hydrogen production for fuel-cell poweredSteam-Reforming Hydrogen production Reactors, M.S. Thesis,at the UC Davis Hydrogen Production and Utilization

  7. The economics of biological methods of hydrogen production

    E-Print Network [OSTI]

    Resnick, Richard J. (Richard Jay), 1971-

    2004-01-01T23:59:59.000Z

    The costs to produce and utilize hydrogen are extremely high per unit of energy when compared to fossil fuel energy sources such as natural gas or gasoline. The cheapest hydrogen production approaches today are also the ...

  8. January 2009 Hydrogen and Fuel Cell Activities,

    E-Print Network [OSTI]

    of primary industry (or a related industry) to a fully commercialized hydrogen economy; (3) any change made a Related Industry) to a Fully Commercialized Hydrogen Economy [response to EPACT section 811(a)(2January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress #12;Preface

  9. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  10. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

  11. Hydrogen and Fuel Cell Activity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy RefuelingHydrogen and

  12. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy RefuelingHydrogen

  13. DOE Hydrogen Program New Fuel Cell Projects

    E-Print Network [OSTI]

    Development Building Weatherization & Intergovernmental Geothermal Hydrogen Wind & Hydropower #12;Integrated Production EERE is working to provide a prosperous future where energy is clean, abundant, reliable Davis - Safety, Codes/Standards Antonio Ruiz - Safety Engineer Hydrogen Technologies Program Patrick

  14. DOE Hydrogen Program FY 2004 Progress Report II.E.2 Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    to commercialization Technical Barriers The Hydrogen, Fuel Cells & Infrastructure Technologies (HFCIT) Program MultiDOE Hydrogen Program FY 2004 Progress Report II.E.2 Photoelectrochemical Hydrogen Production Eric L DOE in the development of technology to produce hydrogen using solar energy to photoelectrochemically

  15. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

  16. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

  17. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and...

  18. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's...

  19. Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

  20. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

  1. Author's personal copy Photoelectrochemical hydrogen production from water/

    E-Print Network [OSTI]

    Wood, Thomas K.

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

  2. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect (OSTI)

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01T23:59:59.000Z

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  3. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

  4. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Environmental Management (EM)

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

  5. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  6. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel Cell

  7. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen...

  8. Electrochemical treatment of human waste coupled with molecular hydrogen production

    E-Print Network [OSTI]

    Heaton, Thomas H.

    in a hydrogen fuel cell. Herein, we report on the efficacy of a laboratory-scale wastewater electrolysis cell an electrolysis cell for on-site wastewater treatment coupled with molecular hydrogen production for useElectrochemical treatment of human waste coupled with molecular hydrogen production Kangwoo Cho

  9. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet Hydrogen ProductionBiomass

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  11. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

  12. Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

    2003-01-01T23:59:59.000Z

    as those for hydrogen and fuel cell vehicles (FCVs). 1 Wein the market if hydrogen and fuel cells are the best energypaper we argue that hydrogen and fuel cells will effectively

  13. FreedomCAR and Fuel Cells: Toward the Hydrogen Economy?

    E-Print Network [OSTI]

    Sperling, Daniel

    2003-01-01T23:59:59.000Z

    best to deliver hydrogen to the fuel cell on the vehicle.to simply deliver hydrogen to a fuel cell via another typefor selling fuel cell vehicles and hydrogen, and consumers

  14. Vacancy Announcements Posted for Hydrogen Production and Delivery Program

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office has posted two vacancy announcements for a position to serve as Program Manager for the Hydrogen Production and Delivery Program in the DOE EERE Fuel Cell Technologies Office. The closing date is October 28, 2014.

  15. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    Infrastructure Development TIAX Sunline LAX, Praxair · Fuels Choice · Renewable Energy Transportation System

  16. Bachelor of Science Engineering Technology Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

  17. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  18. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  19. Forum Agenda: International Hydrogen Fuel and Pressure Vessel...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles...

  20. Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels,...

  1. Hydrogen and Fuel Cells Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    advanced fuel cell and hydrogen technologies pave the way for the adoption of cleaner fuels and more efficient energy storage in vehicles and buildings. Explore EERE's hydrogen and...

  2. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  3. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

  4. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation...

  5. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online...

  6. Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer...

  7. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  8. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role...

  9. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by...

  10. Hydrogen and Fuel Cell Technical Advisory Committee Biennial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary...

  11. Overview of Hydrogen and Fuel Cells: National Academy of Sciences...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Presentation by Sunita...

  12. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer...

  13. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

  14. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer...

  15. Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout...

    Energy Savers [EERE]

    FY 2014 Budget Request Rollout to Stakeholders Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to Stakeholders Presentation slides from the Hydrogen and Fuel...

  16. New Mexico Hydrogen Fuels Challenge Program Description The New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

  17. Sales Tax Exemption for Hydrogen Fuel Cells

    Broader source: Energy.gov [DOE]

    South Carolina offers a sales tax exemption for "any device, equipment, or machinery operated by hydrogen or fuel cells, any device, equipment or machinery used to generate, produce, or distribute...

  18. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Broader source: Energy.gov (indexed) [DOE]

    2013 Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological...

  19. Distributed Hydrogen Production from Natural Gas: Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent...

  20. Hydrogen Production - Current Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Current Technology Hydrogen Production - Current Technology The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future...

  1. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Power Heat + Cooling Electricity Cooling Natural Gas Natural Gas or Biogas Fuel Cell H Excess power generated by the fuel cell is fed to the grid National...

  2. Hydrogen and Fuel Cell Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy RefuelingHydrogen and Fuel

  3. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

  4. The Hype About Hydrogen

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

  5. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Other State Hydrogen and Fuel Cell Programs Regional Levelrelated to hydrogen and fuel cell tech- nologies. Otherapplications of hydrogen and fuel cell technologies. They

  6. Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    of the origin of the renewable fuel or feedstock, the production process and how the fuel or feedstock is to spur market production and sale of renewable hydrogen beyond the current legal minimum. Regarding1 Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure Renewable

  7. Hydrogen fuel closer to reality because of storage advances

    E-Print Network [OSTI]

    extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

  8. Turing Water into Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation6/14/11 Page 1 of 17TurbinesTurning Water

  9. Hydrogen & Fuel Cells -Program Overview -

    E-Print Network [OSTI]

    , Panasonic, Delphi Technologies Clean Energy Patent Growth Index Source: Clean Energy Patent Growth Index #12 and Peer Evaluation Meeting May 14, 2012 #12;Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9, 2010 Fuel Cells can apply to diverse sectors #12;3 Fuel Cells ­ An Emerging Global Industry Clean

  10. Hydrogen Production & Delivery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose

  11. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  12. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01T23:59:59.000Z

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  13. PHOTOCATALYTIC AND PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS

    E-Print Network [OSTI]

    Wagner, F.T.

    2012-01-01T23:59:59.000Z

    HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS F.HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS

  14. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    Integrated Ceramic Membrane System for H2 Production, Praxair 2.67 v Focus on developing better modeling. #12;10 Low Cost H2 Production Platform, Praxair 2.95 v Emphasize collaboration. 11 Defect-free Thin Film

  15. Hydrogen Production From Metal-Water Reactions

    E-Print Network [OSTI]

    Barthelat, Francois

    Hydrogen Production From Metal-Water Reactions Why Hydrogen Production? Hydrogen is a critical. Current methods of hydrogen storage in automobiles are either too bulky (large storage space for gas phase) or require a high input energy (cooling or pressurization systems for liquid hydrogen), making widespread use

  16. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 ReviewersProcessEnergy DecemberofDepartment ofHydrogen

  17. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction Technical Team Roadmap June 2013 This

  18. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  19. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29T23:59:59.000Z

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  20. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogen Printable

  1. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogen

  2. 2013 Biological Hydrogen Production Workshop Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    for Hydrogen Production: In vitro biohybrid systems and enzyme engineering for solar hydrogen Non-Light Driven Biological Breakout Groups - Day 2 Fermentative...

  3. Development of a Natural Gas-to-Hydrogen Fueling System

    E-Print Network [OSTI]

    compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

  4. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Broader source: Energy.gov (indexed) [DOE]

    Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

  5. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the...

  6. Overview of Hydrogen and Fuel Cell Activities: 2010 Military...

    Energy Savers [EERE]

    0 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference This presentation by DOE's...

  7. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo ofResearchHydrogen and

  8. NREL: Hydrogen and Fuel Cells Research - Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo ofResearchHydrogen

  9. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

  10. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

  11. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

  12. Hydrogen and Fuel Cell Technical Advisory

    E-Print Network [OSTI]

    , distribution, delivery, storage or use of hydrogen energy and fuel cells; and 3) the plan called for by section to funding a substantial portion of that investment, and numerous entrepreneurial companies have attracted falling behind in developing and implementing some renewable technologies such as solar, and is in danger

  13. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  14. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

  15. Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes

    E-Print Network [OSTI]

    Harkness, J.; Doctor, R. D.

    as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular...

  16. Photoelectrochemical Hydrogen Production

    SciTech Connect (OSTI)

    Hu, Jian

    2013-12-23T23:59:59.000Z

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short-circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ?1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes. With the metal oxide compounds, we have demonstrated that a WO{sub 3}-based hybrid p

  17. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen storage of hydrogen, by 2008; · Complete U.S. adoption of a Global Technical Regulation (GTR) for hydrogen, storage, and use of hydrogen incorporate project safety requirements into the procurements, by 2005

  18. DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va.

  19. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011

  20. A Near-term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis” The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

  1. A Near-Term Economic Analysis of Hydrogen Fueling Stations

    E-Print Network [OSTI]

    Weinert, Jonathan X.

    2005-01-01T23:59:59.000Z

    of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis” The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

  2. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    report on renewable hydrogen production. We hope that youis one method of hydrogen production at small and mediumis one method of hydrogen production at small and medium

  3. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

  4. Hydrogen and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011 eere.energy.gov FUEL

  5. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section V. Integrated Hydrogen and Fuel Cell

    E-Print Network [OSTI]

    -board fuel cell vehicles. · Analyze the viability (cost and performance) of using ammonia-borane complex (H3. Integrated Hydrogen and Fuel Cell Demonstration/Analysis #12;Hydrogen, Fuel Cells, and InfrastructureBNH3) as a chemical hydrogen storage medium on-board fuel cell vehicles. · Identify technoeconomic

  6. PHOTOCATALYTIC AND PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION ON STRONTIUM TITANATE SINGLE CRYSTALS

    E-Print Network [OSTI]

    Wagner, F.T.

    2012-01-01T23:59:59.000Z

    AND PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION ON STRONTIUMAND PHOTOELECTROCHEHICAL HYDROGEN PRODUCTION ON STRONTIUMand photocatalytic hydrogen production from SrTi0 3 crystals

  7. Analytical approaches to photobiological hydrogen production in unicellular green algae

    E-Print Network [OSTI]

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01T23:59:59.000Z

    Photofermentation and hydrogen production upon sulphurG, Happe T (2008) Hydrogen production by ChlamydomonasA, Happe T (2001) Hydrogen production. Green algae as a

  8. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  9. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

  10. NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-05-01T23:59:59.000Z

    The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

  11. Interested in Hydrogen and Fuel Cell Technologies? Help Shape...

    Broader source: Energy.gov (indexed) [DOE]

    Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize...

  12. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrogen systems (TIR) 01-2009 Safety Being revised SAE J2594 Design for recycling PEM fuel cell system 09-2003 Perf. Static SAE J2600 Compressed hydrogen fueling receptacles...

  13. Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards

    Broader source: Energy.gov [DOE]

    The USDOE's Hydrogen and Fuel Cells Program presented its annual awards at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting on June 17.

  14. 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

  15. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...

    Energy Savers [EERE]

    4 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

  16. Hydrogen Production: Fundamentals and Case Study Summaries (Presentation)

    SciTech Connect (OSTI)

    Harrison, K.; Remick, R.; Hoskin, A.; Martin, G.

    2010-05-19T23:59:59.000Z

    This presentation summarizes hydrogen production fundamentals and case studies, including hydrogen to wind case studies.

  17. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

  18. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  20. Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...

    Energy Savers [EERE]

    and Fuel Cell Activities, Progress, and Plans: Report to Congress Hydrogen and Fuel Cell Activities, Progress, and Plans: Report to Congress The Department of Energy is conducting...

  1. Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar...

    Energy Savers [EERE]

    Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing Presentation by Sunita Satyapal at a...

  2. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is...

  3. Hydrogen & Fuel Cells - Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and ProductivityEnergyEnergyHybrid MembraneHydroVisionProgram

  4. Hydrogen and Fuel Cell Technologies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011DemonstrationsSource:

  5. Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda

    E-Print Network [OSTI]

    Eggert, Anthony; Kurani, Kenneth S; Turrentine, Tom; Ogden, Joan M; Sperling, Dan; Winston, Emily

    2005-01-01T23:59:59.000Z

    April 1, 2005 Hydrogen and Fuel Cells – Refining the MessageHydrogen and Fuel Cells – Refining the Message Initiating athe communication problem. Hydrogen and fuel cells have now

  6. Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service

    E-Print Network [OSTI]

    Eggert, Anthony

    2004-01-01T23:59:59.000Z

    surrounding hydrogen and fuel cell vehicle research,as renewable power, hydrogen and fuel cells. Further, theSpecifically, hydrogen and fuel cell vehicle demonstrations

  7. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  8. Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda

    E-Print Network [OSTI]

    Eggert, Anthony; Kurani, Kenneth S; Turrentine, Tom; Ogden, Joan M; Sperling, Dan; Winston, Emily

    2005-01-01T23:59:59.000Z

    Hydrogen and Fuel Cells – Refining the Message Initiating aApril 1, 2005 Hydrogen and Fuel Cells – Refining the Messagethe communication problem. Hydrogen and fuel cells have now

  9. Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    Tomorrow's Energy: Hydrogen, Fuel Cells, and the ProspectsTomorrow's Energy: Hydrogen, Fuel Cells, and the Prospectsthe utilization of hydrogen in fuel cells as well as its

  10. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  11. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  12. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  13. Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System

    SciTech Connect (OSTI)

    Thompson, J. R.; McConnell, R. D.; Mosleh, M.

    2005-08-01T23:59:59.000Z

    The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

  14. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16T23:59:59.000Z

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

  15. Hydrogen production using single-chamber membrane-free microbial electrolysis cells

    E-Print Network [OSTI]

    Tullos, Desiree

    efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

  16. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011 eere.energy.gov

  17. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  18. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  19. Fuel cell electric power production

    SciTech Connect (OSTI)

    Hwang, H.-S.; Heck, R. M.; Yarrington, R. M.

    1985-06-11T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  20. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  1. Hydrogen and Fuel Cells Merit Review May 22, 2003

    E-Print Network [OSTI]

    RANGE OF THE FUEL CELL STACK TEMPERATURE · HUMIDIFICATION: SOME FUEL CELL STACKS (E.G. PEM) REQUIRE system meets packaging, cost, and performance requirements. #12;Hydrogen and Fuel Cells Merit Review MayHydrogen and Fuel Cells Merit Review May 22, 2003 C:\\mkg\\doefc4\\030522H2fuelcelllsmeritreview

  2. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section IV. Fuel Cells

    E-Print Network [OSTI]

    W advanced PEM power plant. Approach Figure 1 provides a schematic of the gasoline fuel cell power plantHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 265 Section IV. Fuel Cells #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 266 #12;Hydrogen

  3. System for thermochemical hydrogen production

    DOE Patents [OSTI]

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22T23:59:59.000Z

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  4. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01T23:59:59.000Z

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  5. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19T23:59:59.000Z

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  6. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles No. DE-EE0003507 Under Task 3.3: Hydrogen September 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

  7. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost,” DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. ” DOE Hydrogen and Fuel Cells Program, Web. 22

  8. Hydrogen and Fuel Cells - Refining the Message Initiating a National Dialogue and Educational Agenda

    E-Print Network [OSTI]

    Eggert, Anthony; Kurani, Kenneth S; Turrentine, Tom; Ogden, Joan M; Sperling, Dan; Winston, Emily

    2005-01-01T23:59:59.000Z

    Hydrogen and Fuel Cells – Refining the Message Initiating aHydrogen and Fuel Cells – Refining the Message Initiating a

  9. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12T23:59:59.000Z

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  10. A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION

    E-Print Network [OSTI]

    Southern California, University of

    hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

  11. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    1] D.J. Friedman etc. , PEM Fuel Cell System Optimization,Pressure Operation of PEM Fuel Cell Systems, SAE 2001, 2001-Maximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  12. Energy Department Applauds World's First Fuel Cell and Hydrogen...

    Office of Environmental Management (EM)

    The Fountain Valley tri-generation fuel cell and hydrogen energy station uses biogas from the municipal wastewater treatment plant as the fuel for a fuel cell. The system...

  13. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

  14. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area: Hydrogen...

  15. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth [University of South Carolina; Chen, Fanglin [University of South Carolina; Popov, Branko [University of South Carolina; Chao, Yuh [University of South Carolina; Xue, Xingjian [University of South Carolina

    2012-09-15T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  16. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  17. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. bioh2workshoppeters.pdf More Documents &...

  18. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

  19. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen...

  20. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

  1. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

  2. Fuel Ethanol Oxygenate Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608 12,438

  3. Hydrogen production from microbial strains

    SciTech Connect (OSTI)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18T23:59:59.000Z

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogen DeliveryEnergyDate:

  5. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. newfcdavisdoe.pdf More Documents & Publications Federal Support for Hydrogen and...

  6. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic...

  7. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles in 2030. This comparative analysis, based on costfuel cell or hydrogen ICE) and all-electric vehicles. According to the analysis, the societal cost

  8. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...

    Broader source: Energy.gov (indexed) [DOE]

    ihfpvproceedings.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles""...

  9. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from...

  10. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan Technological University...

  11. DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated...

    Energy Savers [EERE]

    typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars June 24: Live Webinar on Hydrogen Fueling...

  12. Hydrogen and Fuel Cell Activities, Progress, and Plans: August...

    Office of Environmental Management (EM)

    Cell Activities, Progress, and Plans: August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department of Energy (DOE)...

  13. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  14. Making biomimetic complexes to produce hydrogen fuel | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomimetic complexes to produce hydrogen fuel 4 Nov 2012 Souvik Roy, graduate student (Subtask 3, laboratory of Anne Jones). "I am involved mostly in mimicking Fe-hydrogenases,...

  15. NREL: Hydrogen and Fuel Cells Research - Watch Energy Secretary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or Secretary Moniz's Twitter to see what driving an FCEV looks like. Printable Version Hydrogen & Fuel Cells Research Home Projects Success Stories Research Staff Facilities...

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

  17. Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

  18. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More DOE Announces Webinars on Best...

  19. International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings

    Broader source: Energy.gov (indexed) [DOE]

    experts presented information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG fuels. 1 Specific objectives of the Forum were...

  20. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

  1. NREL: Hydrogen and Fuel Cells Research - Webinar November 18...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project November 12, 2014 The Energy Department will present a...

  2. Overview of Hydrogen and Fuel Cells: National Academy of Sciences...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells: National Academy of Sciences March 2011 Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Presentation by Sunita Satyapal to the National Academy...

  3. Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...

    Office of Environmental Management (EM)

    Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting...

  4. Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...

    Energy Savers [EERE]

    3 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  5. DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...

    Energy Savers [EERE]

    January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation by Sunita Satyapal to the...

  6. DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...

    Energy Savers [EERE]

    Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita Satyapal at the 2010...

  7. Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...

    Energy Savers [EERE]

    1 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

  8. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    SMR production with gaseous hydrogen pipeline delivery, andhydrogen: gaseous hydrogen pipeline vs. liquid hydrogenproduction with gaseous hydrogen pipeline delivery systems;

  9. Redirection of metabolism for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S.

    2011-11-28T23:59:59.000Z

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and to hydrogen. Also R. palustris cells remain viable in a non-growing state for long periods of time.

  10. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    28 2.2.5.1. Hydrogen productionLifecycle Assessment of Hydrogen Production via Natural Gasconsidered: onsite hydrogen production via small-scale steam

  11. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  12. International Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China

    E-Print Network [OSTI]

    challenges in harmonizing test protocols and requirements for compressed natural gas (CNG), hydrogen, and CNGInternational Hydrogen Fuel and Pressure Vessel Forum 2010 Beijing, China September 27-29, 2010 Background The China Association for Hydrogen Energy, the Engineering Research Center of High Pressure

  13. Webinar: Hydrogen Fueling for Current and Anticipated FCEVs

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles" on Tuesday, June 24, from 12:00 p.m. to 1:00 p.m. Eastern...

  14. Hydrogen Fuel Cells Providing Critical Backup Power | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power April 9, 2010 - 3:43pm Addthis Customers of AT&T Wireless and Pacific Gas & Electric...

  15. Generation of hydrogen peroxide in a shorted fuel cell

    SciTech Connect (OSTI)

    Webb, S.P.; McIntyre, J.A. [Dow Chemical Company, Midland, MI (United States)

    1996-12-31T23:59:59.000Z

    Hydrogen peroxide is a {open_quotes}green{close_quotes} chemical with a well-assured future. As such, significant growth in demand is predicted for this material. To meet this growth, new technologies of manufacture are being contemplated to compete with the established Anthraquinone process. Some of these new methods seek the niche market of on-site generation of hydrogen peroxide. One good example of this is Dow`s caustic/peroxide generation scheme for the bleaching of paper pulp. Others rely on externally-supplied electrical power in an electrochemical reactor scheme, where peroxide may be generated additionally in neutral or acidic solution. It has long been realized that the chemical potential of the reactants themselves can be used in a controlled manner in an electrolytic cell. This is the basis of fuel cells (to generate electrical power) and has been extended to the synthesis of useful chemical species, either using solid polymer electrolytes or active oxygen transporting membranes. Use has also been made of the inherent chemical potential in H{sub 2}/O{sub 2} reactions to produce hydrogen peroxide. This reactor utilized a liquid phase cathode with dissolved air or oxygen to produce small concentrations of peroxide in a fixed volume. In fact, most schemes for the direct, electrochemical production of peroxide from hydrogen and oxygen yield low, millimolar peroxide concentrations. This paper describes the development of a scalable, segmented-flow, shorted fuel cell for the generation of greater than 1 w/o hydrogen peroxide. Three areas are of major importance in the development of a continuous, peroxide-forming reactor: the reactor design, catalyst choice and application, and the operating parameters for the reactor. The cathode catalyst is probably the single most important part. Operating parameters include such basics as temperature, pressure, gas flow rate, and liquid flow rate. Each of these topics will be discussed.

  16. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    McGraw, Jennifer

    2013-05-28T23:59:59.000Z

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  17. Hydrogen milestone could help lower fossil fuel refining costs

    SciTech Connect (OSTI)

    McGraw, Jennifer

    2009-01-01T23:59:59.000Z

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  18. Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy RefuelingHydrogenSecretary

  19. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner of the identified semiconductor materials as required. · Determine if existing photovoltaic (PV) device structures

  20. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01T23:59:59.000Z

    a background on alternative fuel acceptance research, withexperience with alternative fuels, impressions of hydrogenRespondent experience with alternative fuels and hydrogen 3)

  1. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    of hydrogen, methanol and gasoline as fuels for fuel cellon Environmental Quality (TCEQ). Gasoline Vapor Recovery (Quality Impacts of Hydrogen and Gasoline Transportation Fuel

  2. Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting

    E-Print Network [OSTI]

    Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting Rod Borup, Michael Inbody, Jose in Fuel Cell Reformers #12;Fuel Cell Program Technical Objectives: Examine Fuel Effects on Fuel Processor processor and stack lifetime and durability. · Fuel processor catalyst stability and activity · Evaluate

  3. Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2007-01-01T23:59:59.000Z

    include on-board hydrogen storage and fuel cell durability.drive Hydrogen production Hydrogen storage Hydrogen fuelingnecessary are on-board hydrogen storage and fuel cells. The

  4. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    2004. Fuel economy of hydrogen fuel cell vehicles. JournalSwitching to a U.S. hydrogen fuel cell vehicle fleet: TheImproving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

  5. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

    2008-01-01T23:59:59.000Z

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  6. Production of Hydrogen and Electricity from Coal with CO2 Capture

    E-Print Network [OSTI]

    fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

  7. Hydrogen fuel cells could power ships at port

    SciTech Connect (OSTI)

    Pratt, Joe

    2013-06-27T23:59:59.000Z

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  8. Hydrogen fuel cells could power ships at port

    ScienceCinema (OSTI)

    Pratt, Joe

    2013-11-22T23:59:59.000Z

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  9. DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION

    E-Print Network [OSTI]

    of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrate to the reforming of natural gas to produce a reformate stream; · Develop an efficient, cost-effective means the basis for future commercial Fueling Stations. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review

  10. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels, but fall with increased scale to $3-4/kg (~$2-3/gal gasoline) Hydrogen Cost in Selected Cities 0.06 0.08 0

  11. Technical Breakthrough Points and Opportunities in Transition Scenarios for Hydrogen as Vehicular Fuel

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; James, B.; Perez, J.; Spisak, A.

    2011-12-01T23:59:59.000Z

    This technical reports is about investigating a generic case of hydrogen production/delivery/dispensing pathway evolution in a large population city, assuming that hydrogen fuel cell electric vehicles (FCEV) will capture a major share of the vehicle market by the year 2050. The range of questions that are considered includes (i) what is the typical succession of hydrogen pathways that minimizes consumer cost? (ii) what are the major factors that will likely influence this sequence?

  12. Hydrogen Production and Delivery Research

    SciTech Connect (OSTI)

    Iouri Balachov, PhD

    2007-10-15T23:59:59.000Z

    In response to DOE's Solicitation for Grant Applications DE-PS36-03GO93007, 'Hydrogen Production and Delivery Research', SRI International (SRI) proposed to conduct work under Technical Topic Area 5, Advanced Electrolysis Systems; Sub-Topic 5B, High-Temperature Steam Electrolysis. We proposed to develop a prototype of a modular industrial system for low-cost generation of H{sub 2} (<$2/kg) by steam electrolysis with anodic depolarization by CO. Water will be decomposed electrochemically into H{sub 2} and O{sub 2} on the cathode side of a high-temperature electrolyzer. Oxygen ions will migrate through an oxygen-ion-conductive solid oxide electrolyte. Gas mixtures on the cathode side (H{sub 2} + H{sub 2}O) and on the anode side (CO + CO{sub 2}) will be reliably separated by the solid electrolyte. Depolarization of the anodic process will decrease the electrolysis voltage, and thus the electricity required for H{sub 2} generation and the cost of produced H{sub 2}. The process is expected to be at least 10 times more energy-efficient than low-temperature electrolysis and will generate H{sub 2} at a cost of approximately $1-$1.5/kg. The operating economics of the system can be made even more attractive by deploying it at locations where waste heat is available; using waste heat would reduce the electricity required for heating the system. Two critical targets must be achieved: an H{sub 2} production cost below $2/kg, and scalable design of the pilot H{sub 2} generation system. The project deliverables would be (1) a pilot electrolysis system for H{sub 2} generation, (2) an economic analysis, (3) a market analysis, and (4) recommendations and technical documentation for field deployment. DOE was able to provide only 200K out of 1.8M (or about 10% of awarded budget), so project was stopped abruptly.

  13. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  14. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    E-Print Network [OSTI]

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01T23:59:59.000Z

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  15. Premixer Design for High Hydrogen Fuels

    SciTech Connect (OSTI)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16T23:59:59.000Z

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were analyzed to evaluate the performance of the different concepts. Detailed 1-D analysis was performed to provide 1-step NOx and 1-step combustion models that could be utilized in CFD to provide more accurate estimates of NOx for more complicated combustion designs. The swozzle results identified potential problems with flame holding, flashback and with adequate mixing. Flame holding issues were further evaluated with laboratory testing to determine under what conditions a jet in cross flow would flame hold. Additional CFD analysis was also performed on fuel injection from a peg to simulate fuel injection off a vane's trailing edge. This task was concluded with a Conceptual Design Review of the two selected design concepts. (3) Optimize design and re-evaluate operability risks. This task extended the analysis of LDI concepts and increased understanding of the optimal design configuration. Designs were selected for subscale combustion laboratory testing and then modeled using CFD to validate CFD methodology. CFD provided a good qualitative match and reasonable quantitative match with the test results. Tests and CFD modeling indicated a path to low NOx combustion with no diluent addition. Different swirler designs were also evaluated and the most promising, a counter rotating swirler, was selected for further evaluation. CFD modeling was performed and the design was optimized to improve mixing. CFD modeling indicated the potential for low NOx combustion without diluent addition. CFD was validated against cold flow testing on a swirler using helium injection in place of hydrogen. Further validation work is still needed to ensure the ability to accurately model the mixing of swirling flows. Entitlement testing was performed on a perfectly premixed H2/N2/air mixture. Results showed that low NOx could be obtained at the temperatures of interest (7FB conditions) with no diluent addition. Results also showed that further NOx reductions might be possible by taking advantage of the very rapid H2 reaction to reduce combustor length and hence residence time. These results also in

  16. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S. (Pleasanton, CA)

    2008-10-07T23:59:59.000Z

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  17. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel

  18. Hydrogen Fuel Cell Engines and Related Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel Cell Engines

  19. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen FuelDepartment of

  20. Fluidizable Catalysts for Hydrogen Production from Biomass

    E-Print Network [OSTI]

    Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

  1. HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland

    E-Print Network [OSTI]

    HYDROGEN PRODUCTION THROUGH ELECTROLYSIS Robert J. Friedland A. John Speranza Proton Energy Systems of the Department of Energy (DOE). Proton's goal is to drive the cost of PEM electrolysis to levels of $600 per years of the cost reduction efforts for the HOGEN 40 hydrogen generator on this program are in line

  2. Vacancy Announcements Posted for Hydrogen Production and Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Vacancy Announcements Posted for Hydrogen Production and Delivery Program Vacancy Announcements Posted for Hydrogen Production and Delivery Program October 3, 2014 - 10:49am...

  3. Feasibility Study of Hydrogen Production at Existing Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity...

  4. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

  5. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    E-Print Network [OSTI]

    the glycerol byproduct of biodiesel fuel production at a rate of 0.41 � 0.1 m3 /m3 d. These results demonstrate byproducts of biodiesel fuel production. ª 2009 International Association for Hydrogen Energy. Published- maceutical industry. However, it is being overproduced as a result of biodiesel fuel production as 1 L

  6. Potential Fusion Market for Hydrogen Production Under Environmental Constraints

    SciTech Connect (OSTI)

    Konishi, Satoshi [Kyoto University (Japan)

    2005-05-15T23:59:59.000Z

    Potential future hydrogen market and possible applications of fusion were analyzed. Hydrogen is expected as a major energy and fuel mediun for the future, and various processes for hydrogen production can be considered as candidates for the use of fusion energy. In order to significantly contribute to reduction of CO{sub 2} emission, fusion must be deployed in developing countries, and must substitute fossil based energy with synthetic fuel such as hydrogen. Hydrogen production processes will have to evaluated and compared from the aspects of energy efficiency and CO{sub 2} emission. Fusion can provide high temperature heat that is suitable for vapor electrolysis, thermo-chemical water decomposition and steam reforming with biomass waste. That is a possible advantage of fusion over renewables and Light water power reactor. Despite of its technical difficulty, fusion is also expected to have less limitation for siting location in the developing countries. Under environmental constraints, fusion has a chance to be a major primary energy source, and production of hydrogen enhances its contribution, while in 'business as usual', fusion will not be selected in the market. Thus if fusion is to be largely used in the future, meeting socio-economic requirements would be important.

  7. Study of net soot formation in hydrocarbon reforming for hydrogen fuel cells. Final report

    SciTech Connect (OSTI)

    Edelman, R. B.; Farmer, R. C.; Wang, T. S.

    1982-08-01T23:59:59.000Z

    The hydrogen fuel cell is expected to be a valuable addition to the electric utility industry; however, the current fuel supply availability requires that conventional heavier hydrocarbon fuels also be considered as primary fuels. Typical heavier fuels would be No. 2 fuel oil with its accompanying sulfur impurities, compared with the currently used light hydrocarbon gases. The potential future use of alternate fuels which are rich in aromatics would exacerbate the problems associated with hydrogen production. Among the more severe of these problems, is the greater tendency of heavier hydrocarbons to form soot. The development of a quasi-global kinetics model to represent the homogeneous and heterogeneous reactions which control the autothermal hydrogen reforming process and the accompanying soot formation and gasification was the objective of this study.

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

  9. Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    hydrogen blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing). In the keynote...

  10. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an on market for cost-effective and efficient high-pressure hydrogen storage systems. The world's premier

  11. Production of hydrogen from alcohols

    DOE Patents [OSTI]

    Deluga, Gregg A. (St. Paul, MN); Schmidt, Lanny D. (Minneapolis, MN)

    2007-08-14T23:59:59.000Z

    A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

  12. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment of

  13. Catalysis Letters Vol. 72, No. 3-4, 2001 197 Catalytic ammonia decomposition: COx-free hydrogen production

    E-Print Network [OSTI]

    Goodman, Wayne

    as a method to produce hydrogen for fuel cell applications. The absence of any undesirable by-products (unlike of hydrogen for fuel cells. In this study a variety of supported metal catalysts have been studied. Supported is the recent interest in the generation of clean hydrogen for fuel cells. Conventional processes such as steam

  14. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  15. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  16. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31T23:59:59.000Z

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  17. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect (OSTI)

    Doyle, T.A.

    1998-01-31T23:59:59.000Z

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  18. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet HydrogenCoal Gasification

  19. Hydrogen Production: Photobiological | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFact Sheet HydrogenCoalNatural

  20. Tomorrow’s Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    Chronicles the progress of hydrogen energy from a vision torange of information about hydrogen energy issues. This bookReview: Tomorrow's Energy: Hydrogen, Fuel Cells, and the

  1. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

  3. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    recently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical AdvisoryCommittee (HTAC), “Hydrogen and Fuel Cell Technical Advisory

  4. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    commitment to hydrogen and fuel cell vehicles has beenrecently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical Advisory

  5. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01T23:59:59.000Z

    Academies Press. Hydrogen and Fuel Cell Technical AdvisorySeptember 10. Hydrogen and Fuel Cell Technical AdvisoryUCD-ITS-RR-08-06 Why Hydrogen and Fuel Cells are Needed to

  6. Sandia National Laboratories: hydrogen production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradationstationproduction

  7. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: A Comparative Analysis of Short- and Long-Term Exposure

    E-Print Network [OSTI]

    Martin, Elliot; Shaheen, Susan; Lipman, Timothy; Lidicker, Jeffery

    2008-01-01T23:59:59.000Z

    on the attitude towards hydrogen fuel cell buses in the CUTEBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES ANDBEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

  8. Hydrogen Storage and Supply for Vehicular Fuel Systems

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-05-11T23:59:59.000Z

    Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

  9. Hydrogen and fuel cell research | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogen Solar Ltd

  10. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNaturalAlaska InformationExample

  11. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels

    E-Print Network [OSTI]

    optimal use of fuel lean combustion for NOx control ­ Replaces hydrocarbon fuels for reduced CO2 emissions ­ Enables use of domestically-produced H2 #12;U.S. CO2 EmissionsU.S. CO2 Emissions by Combustion Source 0 81Reduced Turbine Emissions Using Hydrogen-Enriched Fuels Robert W. Schefer Joseph C. Oefelein Jay O

  12. Hydrogen Operated Internal Combustion Engines – A New Generation Fuel

    E-Print Network [OSTI]

    B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

    Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

  13. Overview of DOE Hydrogen and Fuel Cell Activities

    E-Print Network [OSTI]

    #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 3 #12;4 Fuel Cells and oil consumption. DOE Program Record #9002, www.hydrogen.energy.gov/program_records.html. #12 of Energy Fuel Cell Technologies Program Gordon Research Conference: Fuel Cells, Rhode Island August 1, 2010

  14. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  15. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page

  16. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    500/kW Anode tail gas Hydrogen Engine Gen-Set ICE/GeneratorFuel Cell Deployment and Hydrogen Infrastructure, WorldwideOffice (2005), “Florida Hydrogen Business Partnership,”

  17. Hydrogen Production & Delivery Sara Dillich

    E-Print Network [OSTI]

    (May 9, 2011) #12;2 Goals and Objectives: Develop technologies to produce hydrogen from clean, domestic Electrolysis (Solar) 2015-2020Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture) Biomass Gasification Water Electrolysis (Wind) High-Temp Water

  18. PHOTOELECTROCHEMICAL SYSTEMS FOR HYDROGEN PRODUCTION

    E-Print Network [OSTI]

    to allow the overlap of the bandedges with the water redox potentials in the dark. Charge transfer analysis A photoelectrochemical (PEC) system combines the harvesting of solar energy with the electrolysis of water. When, the energy can be sufficient to split water into hydrogen and oxygen. Depending on the type of semiconductor

  19. Hydrogen production using ammonia borane

    DOE Patents [OSTI]

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24T23:59:59.000Z

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  20. DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel Cells

  1. Speaker biographies for the Fuel Cell Technologies Program Webinar titled Hydrogen Production by PEM Electrolysis Â… Spotlight on Giner and Proton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy SouthDepartment|

  2. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  3. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01T23:59:59.000Z

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  4. Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in mobile hydrogen refuelers, fuel cell powered range extenders for light-duty hybrid electric vehicles, and a Communities of Excellence topic featuring hydrogen and fuel cell...

  5. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Energy Savers [EERE]

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

  6. DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting June 16, 2014...

  7. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    on technical and cost issues for hydrogen and fuel cellvehicle component costs (for fuel cells and hydrogenfuel cell durability, vehicle range and hydrogen station capacity and costs.

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria PhotoCell

  9. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanolNaturalHawaiiEmissions

  10. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    SunLine. NRELPIX 14396 NRELPIX 14395 FUEL CELL BUS DEMONSTRATION PROJECTS Hydrogen, Fuel Cells & Infrastructure Technologies program F U E L C E L L B U S D E M o N S T R A T I...

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  12. Hydrogen Production | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory HistoryEducation » Increase

  13. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009Energy

  14. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment ofCombustuionDOEGovernmentProtonWebinar: March

  15. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment of Energy

  16. Hydrogen Production: Overview of Technology Options, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  17. Hydrolysis reactor for hydrogen production

    DOE Patents [OSTI]

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04T23:59:59.000Z

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  18. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivities FUEL CELL

  19. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivities FUEL

  20. Syngas production from heavy liquid fuel reforming in inert porous media

    E-Print Network [OSTI]

    Pastore, Andrea

    2010-11-16T23:59:59.000Z

    -up), but it will still show a significant efficiency advantage [2]. Eventually, when fuel cells and hydrogen demand will build up, a switch can be made to central hydrogen production, by using fossil sources with CO2 sequestration and finally by the use of low carbon... requirements: • Hydrogen production levels smaller than those in chemical plants; • Severe constraints on size and weight; • Ability to cycle through frequent start-ups and shutdowns; • Hydrogen production rate should be responsive to changes in demand...

  1. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M. Orr,Energy

  2. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartment ofCreatingCell Research |

  3. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid

  4. Method in the production of hydrogen peroxide

    SciTech Connect (OSTI)

    Franzen, B. G.; Herrmann, W.

    1985-03-05T23:59:59.000Z

    A method in the production of hydrogen peroxide by the anthraquinone process is described, in which method anthraquinone derivatives dissolved in a working solution are subjected alternatingly to hydrogenation and oxidation. To reduce the relative moisture in the working solution to a suitable level of 20-98%, preferably 40-85%, the working solution is dried prior to hydrogenation by contacting it with a gas or a gaseous mixture, the water vapor pressure of which is below that of the working solution. Suitable gases or gas mixtures are air or exhaust gases from the oxidation stage of the anthraquinone process.

  5. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Bauer, Hans F. (Morgantown, WV); Grimes, Robert W. (Laramie, WY)

    1993-01-01T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  6. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  7. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16T23:59:59.000Z

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  8. Introduction to SAE Hydrogen Fueling Standardization Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ? At this time, the SAE J2601 only covers fueling for light-duty vehicles. However, motorcycle fueling (<2 kg) is planned to be covered in the future. Q: I may sound a little...

  9. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: • Fuel cell system cost: % of DOE 2015 Target

  10. Biological Hydrogen Production Using Synthetic Wastewater Biotin and glutamic acid are not required for biological hydrogen production.

    E-Print Network [OSTI]

    Barthelat, Francois

    Biological Hydrogen Production Using Synthetic Wastewater Conclusion ·Biotin and glutamic acid are not required for biological hydrogen production. ·MgSO4 .7H2O is a required nutrient, but hydrogen production work should focus on minimizing the lag time in biological hydrogen production, by varying nutrient

  11. Sandia National Laboratories: hydrogen fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradation ofcell More

  12. Sandia National Laboratories: hydrogen fuel expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradation ofcell

  13. Sandia National Laboratories: hydrogen fuel systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradation ofcellsystems

  14. Sandia National Laboratories: hydrogen fueling infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradation

  15. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradationstation Widespread

  16. Sandia National Laboratories: hydrogen powered fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spardegradationstation

  17. NREL: Hydrogen and Fuel Cells Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria

  18. Say hello to cheaper hydrogen fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home Water Heating

  19. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    primary motivation for alternative fuel vehicles, such astowards hydrogen and alternative fuel vehicles of F-Cellbehavioral research on alternative fuels, a brief discussion

  20. Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System

    SciTech Connect (OSTI)

    Eric J. Carlson

    2004-10-20T23:59:59.000Z

    PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

  1. DOE Hydrogen, Fuel Cells, and Infrastructure Technologies

    E-Print Network [OSTI]

    : Economic Analysis of Stationary PEM Fuel Cell Systems · Harry Stone, Economist and Principal Investigator. #12;8 Skill Set ­ Models (Battelle) Battelle Team: Economic Analysis of Stationary PEM Fuel Cell Systems Economic analysis of stationary fuel cells and their associated markets to understand the cost

  2. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    is ter for PEM fuel cells: thinner membranes cost less andPEM fuel cells, the extra yearly mineproduc- ciency, environmental impacts and Iife-cycle costcost air-separation or COz- removal methods are found, alkaline fuel cells could prove to be superior to PEM

  3. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment ofWorkshop |Hydrogen

  4. Overview of Hydrogen & Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009Energy FrictionProgram

  5. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivities FUELand

  6. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivities

  7. Overview of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivitiesgov

  8. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergy Technology

  9. Fuel Cells: Making Power from Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015authors JudithFuel

  10. President's Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 ReviewersProcessEnergy DecemberofDepartment

  11. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment of Energy24/2011

  12. DOE Hydrogen and Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment of Energy24/2011DOE

  13. Hydrogen & Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply forInstitute Mission andHDEnergy2013

  14. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011 Annual

  15. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011

  16. Hydrogen and Fuel Cells Program Plenary Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011U.S.

  17. Hydrogen and Fuel Cells Webinar Series Kickoff

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011U.S.Clean

  18. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluationfor Heating

  19. Alternative Fuels Data Center: Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid ElectricBasics to

  20. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place:

  1. HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.

    E-Print Network [OSTI]

    Haryanto, Agus

    2008-01-01T23:59:59.000Z

    ??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance.… (more)

  2. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation...

  3. The Modular Helium Reactor for Hydrogen Production

    SciTech Connect (OSTI)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-10-01T23:59:59.000Z

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

  4. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02T23:59:59.000Z

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  5. South Carolina Hydrogen and Fuel Cell Alliance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -Sonelgaz JumpSouth Carolina Hydrogen and Fuel

  6. Introduction to SAE Hydrogen Fueling Standardization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,Introducing the All-StarSAE Hydrogen Fueling

  7. HYDROGEN FUEL CELL BUS EVALUATION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED HotSeptember 2005HYDROGEN FUEL CELL

  8. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01T23:59:59.000Z

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  9. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen FuelDepartment

  10. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavidDepartment of

  11. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentationDOE

  12. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals,Slides | Department

  13. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ...theDepartmentfrom

  14. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22T23:59:59.000Z

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  15. Integration Strategy for DB-MHR TRISO Fuel production in conjunction with MOX Fuel production

    SciTech Connect (OSTI)

    MCGUIRE, DAVID

    2005-09-30T23:59:59.000Z

    One of the nuclear power options for the future involves the evolution of gas cooled reactors to support the likely high temperature operations needed for commercial scale hydrogen production. One such proposed option is to use a Gas Turbine Modular Helium Reactor fueled with uranium based TRISO (coated particle) fuel. It has also been suggested that such a MHR could be operated in a ''Deep Burn'' manner fueled with TRISO fuel produced from recycle spent nuclear fuel. This concept known as a DBMHR must withstand significant development and fuel fabrication cost to be economically viable. The purpose of this report is to consider and propose a strategy where synergy with a parallel MOX fuel to LWR program provides economic or other advantage for either or both programs. A strategy involving three phases has been envisioned with potential for economic benefit relative to a stand-alone TRISO/DBMHR program. Such a strategy and related timing will ultimately be driven by economics, but is offered here for consideration of value to the total AFCI program. Phase I Near-term. Conventional spent fuel aqueous processing, MOX fuel fabrication, and use of present and future LWR/ALWR's with objective of a ''Continuous Recycle'' mode of fuel cycle management. Phase II Intermediate. Augmentation of LWR/ALWR industry with MHR deployment as justified by hydrogen economy and/or electrical demand. Phase III Long-term. Introduction of DBMHR's to offer alternative method for transuranic destruction and associated repository benefits, in addition to Phase II benefits. The basic philosophy of this strategy appears sound. However, the details of the technology plans and economic evaluations should receive additional detail and evaluation in the next fiscal year as funding can support.

  16. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen is a versatile energy car-

    E-Print Network [OSTI]

    to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can a particularly important role in the future by re- placing the imported petroleum we currently use in our cars) fuel cell, which is widely regarded as the most promising for light-duty transporta- tion, hydrogen gas

  17. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect (OSTI)

    James E. Francfort

    2003-12-01T23:59:59.000Z

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  18. Hydrogen and Fuel Cells | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy andAction

  19. Hydrogen Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose of thisDepartment ofis

  20. Hydrogen Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose of thisDepartment